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Abstract

Artificial Neural Networks have reached ‘Grandmaster’ and even ‘super-
human’ performance’ across a variety of games, from those involving perfect-
information, such as Go [Silver et al., 2016]; to those involving imperfect-
information, such as ‘Starcraft’ [Vinyals et al., 2019]. Such technological
developments from AI-labs have ushered concomitant applications across
the world of business, where an ‘AI’ brand-tag is fast becoming ubiquitous.
A corollary of such widespread commercial deployment is that when AI gets
things wrong - an autonomous vehicle crashes; a chatbot exhibits ‘racist’
behaviour; automated credit-scoring processes ‘discriminate’ on gender etc.
- there are often significant financial, legal and brand consequences, and the
incident becomes major news.

As Judea Pearl sees it, the underlying reason for such mistakes is that
“... all the impressive achievements of deep learning amount to just curve
fitting”. The key, Pearl suggests [Pearl and Mackenzie, 2018], is to replace
‘reasoning by association’ with ‘causal reasoning’ - the ability to infer causes
from observed phenomena. It is a point that was echoed by Gary Marcus
and Ernest Davis in a recent piece for the New York Times: “we need to
stop building computer systems that merely get better and better at detecting
statistical patterns in data sets – often using an approach known as “Deep
Learning” – and start building computer systems that from the moment of
their assembly innately grasp three basic concepts: time, space and causal-
ity” [Marcus and Davis, 2019].

In this paper, foregrounding what in 1949 Gilbert Ryle termed ‘a cat-
egory mistake’ [Ryle, 1949], I will offer an alternative explanation for AI
errors; it is not so much that AI machinery cannot ‘grasp’ causality, but
that AI machinery (qua computation) cannot understand anything at all.

Keywords: Cognitive Science, Artificial Intelligence, Artificial Neural Net-

works, Causal Cognition, Chinese Room Argument, Dancing with Pixies.
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1 Making a mind

For much of the twentieth century the dominant cognitive paradigm identi-
fied the mind with the brain; as the Nobel laureate Francis Crick eloquently
summarised:

“You, your joys and your sorrows, your memories and your ambitions, your
sense of personal identity and free will, are in fact no more than the behaviour
of a vast assembly of nerve cells and their associated molecules. As Lewis
Carroll’s Alice might have phrased, “You’re nothing but a pack of neurons”.
This hypothesis is so alien to the ideas of most people today that it can truly
be called astonishing” Crick [1994].

Motivation for the belief that a computational simulation of the mind is
possible stemmed initially from the work of Turing [1937] and Church [1936]
and the ‘Church-Turing hypothesis’; in Turing’s formulation, every ‘function
which would naturally be regarded as computable’ can be computed by
the ‘Universal Turing Machine’. If computers can adequately model the
brain then, theory goes, it ought to be possible to program them to act
like minds. And consequently, in the latter part of the twentieth century,
Crick’s “Astonishing Hypothesis” helped fuel an explosion of interest in
connectionism: both high-fidelity simulations of the brain (computational
neuroscience; theoretical neurobiology) and looser - merely ‘neural inspired’
- analogues (cf. Artificial Neural Networks; Multi-Layer Perceptrons; ‘Deep
Learning’ systems).

But the fundamental question that Crick’s hypothesis raises is, of course,
this: if we ever succeed in fully instantiating a sufficiently accurate simula-
tion of the brain on a digital computer, will we also have fully instantiated
a digital [computational] mind, with all the human mind’s causal power of
teleology, understanding and reasoning; will AI finally have succeeded in
delivering ‘Strong AI’1

Of course, if Strong AI is possible, accelerating progress in its underpin-
ning technologies2 - entailed both by the use of AI systems to design ever
more sophisticated AIs and the continued doubling of raw computational
power every two years3 - will eventually cause a runaway effect whereby the

1Strong AI, a term coined by Searle [1980] in the ‘Chinese Room Argument’ (CRA),
entails that, “... the computer is not merely a tool in the study of the mind; rather, the
appropriately programmed computer really is a mind, in the sense that computers given
the right programs can be literally said to understand and have other cognitive states”,
which Searle contrasted with “Weak AI” wherein “... the principal value of the computer
in the study of the mind is that it gives us a very powerful tool.” I.e. Weak AI focusses
on epistemic issues relating to engineering a simulation of [human] intelligent behaviour
whereas Strong AI, in seeking to engineer a computational system with all the causal
power of a mind, focusses on the ontological.

2Cf. “[A]mplifiers for intelligence - devices that supplied with a little intelligence will
emit a lot”, [Ashby , 1956].

3Cf. Moore’s ‘law’ :- the observation that the number of transistors in a dense inte-
grated circuit approximately doubles every two years.
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Artificial Intelligence will inexorably come to exceed human performance on
all tasks4; the so-called point of [technological] ‘singularity’ ([in]famously
predicted by Ray Kurzweil to occur as soon as 20455). And, at the point
this ‘singularity’ occurs, so commentators like Kevin Warwick6 and Stephen
Hawking7 suggest, humanity will, effectively, have been “superseded” on
the evolutionary ladder and be obliged to eke out its autumn days listen-
ing to ‘Industrial Metal’ music and gardening; or, in some of Hollywood’s
even more dystopian dreams, cruelly subjugated (and/or exterminated) by
‘Terminator’ machines.

In this paper, however, I will offer a few ‘critical reflections’ on one of the
central, albeit awkward, questions of AI: why is it that, over seven decades
since Alan Turing first deployed an ‘effective method’ to play chess in 1948,
we have seen enormous strides in engineering particular machines to do
clever things – from driving a car to beating the best at Go – but almost no
progress in getting machines to genuinely understand; to seamlessly apply
knowledge from one domain into another – the so-called problem of ‘Artificial
General Intelligence’ (AGI); the skills that both Hollywood and the wider
media really think of, and depict, as Artificial Intelligence?

2 Neural Computing

The earliest Cybernetic work in the burgeoning field of ‘neural comput-
ing’ lay in various attempts to understand, model and emulate neurological
function and learning in animal brains, the foundations of which were laid
in 1943 by the neurophysiologist Warren McCulloch and the mathematician

4Conversely, as Francois Chollet, a senior engineer at Google and well known sceptic
of the ‘Intelligence Explosion’ scenario; trenchantly observed in 2017: “The thing with
recursive self-improvement in AI, is that if it were going to happen, it would already be
happening. I.e. Auto Machine Learning systems would come up with increasingly better
Auto Machine Learning systems, Genetic Programming would discover increasingly refined
GP algorithms” and yet, as Chollet insists, “no human, nor any intelligent entity that we
know of, has ever designed anything smarter than itself ”.

5Kurzweil [2005] “set the date for the Singularity - representing a profound and dis-
ruptive transformation in human capability - as 2045”.

6In his 1997 book “March of the Machines” [Warwick , 1997] observed that there were
already robots with the ‘brain power of an insect ’; soon, or so he predicted, there would
be robots with the ‘brain power of a cat ’, and soon after that there would be ‘machines
as intelligent as humans’. When this happens, Warwick darkly forewarned, the science-
fiction nightmare of a ‘Terminator’ machine could quickly become reality because such
robots will rapidly, and inevitably, become more intelligent and superior in their practical
skills than the humans who designed and constructed them.

7In a television interview with Professor Stephen Hawking on December 2nd 2014, Rory
Cellan-Jones asked how far engineers had come along the path towards creating Artifi-
cial Intelligence, to which Professor Hawking alarmingly replied, “Once humans develop
artificial intelligence it would take off on its own and redesign itself at an ever increasing
rate. Humans, who are limited by slow biological evolution, couldn’t compete, and would
be superseded.”
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Walter Pitts [McCulloch and Pitts, 1943].

Neural Computing defines a mode of problem solving based on ‘learning
from experience’ as opposed to classical, syntactically specified, ‘algorith-
mic’ methods; at its core is “the study of networks of ‘adaptable nodes’
which, through a process of learning from task examples, store experiential
knowledge and make it available for use” [Aleksander and Morton, 1995]. So
construed, an ‘Artificial Neural Network’ (ANN) is constructed merely by
appropriately connecting a group of adaptable nodes (‘artificial neurons’).

• A single layer neural network only has one layer of adaptable nodes
between the input vector, X and the output vector O, such that the
output of each of the adaptable nodes defines one element of the net-
work output vector O.

• A multi-layer neural network has one or more ‘hidden layers’ of adapt-
able nodes between the input vector and the network output; in each
of the network hidden layers, the outputs of the adaptable nodes con-
nect to one or more inputs of the nodes in subsequent layers and in
the network output layer, the output of each of the adaptable nodes
defines one element of the network output vector O.

• A recurrent neural network is a network where the output of one or
more nodes is fed-back to the input of other nodes in the architec-
ture, such that the connections between nodes form a ‘directed graph
along a temporal sequence’, so enabling a recurrent network to exhibit
‘temporal dynamics’; enabling a recurrent network to be sensitive to
particular sequences of input vectors.

Since 1943 a variety of frameworks for the adaptable nodes have been
proposed8 however the most common, as deployed in many ‘deep’ neural
networks, remain grounded on the McCulloch/Pitts model.

2.1 The McCulloch/Pitts (MCP) model

In order to describe how the basic processing elements of the brain might
function, McCulloch and Pitts showed how simple electrical circuits, con-
necting groups of ‘linear threshold functions’, could compute a variety of
logical functions [McCulloch and Pitts, 1943]. In their model McCulloch

8 These include: ‘spiking neurons’ as widely used in computational neuroscience
[Hodgkin and Huxley , 1952]; ‘kernel functions’ as deployed in ‘Radial Basis Function’
networks [Broomhead and Lowe, 1988] and ‘Support Vector Machines’ [Boser et al., 1992];
‘Gated MCP Cells’, as deployed in LSTM networks [Hochreiter and Schmidhuber , 1997];
‘n-tuple’ or ‘RAM’ neurons, as used in ‘Weightless’ neural network architectures [Bledsoe
and Browning , 1959; Aleksander and Stonham, 1979] and ‘Stochastic Diffusion Processes’
[Bishop, 1989] as deployed in the NESTOR multi-variate connectionist framework [Nasuto
et al., 2009].
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and Pitts provided a first (albeit very simplified) mathematical account of
the chemical processes that define neuronal operation and in so doing re-
alised that the mathematics that describe the neuron operation exhibited
exactly the same type of logic that Shannon deployed in describing the be-
haviour of switching circuits: namely, the calculus of propositions.

McCulloch and Pitts realized (ibid) (a) that neurons can receive posi-
tive or negative encouragement to fire, contingent upon the type of their
‘synaptic connections’ (excitatory or inhibitory) and (b) that in firing the
neuron has effectively performed a ‘computation’; once the effect of the exci-
tatory/inhibitory synapses are taken into account, it is possible to arithmeti-
cally determine the net effect of incoming patterns of ‘signals’ innervating
each neuron.

Figure 1: The McCulloch-Pitts neuron model.

In a simple MCP threshold model, adaptability comes from representing
each synaptic junction by a variable (usually rational) valued weight Wi,
indicating the degree to which the neuron should react to the ith particular
input (see Figure 1). By convention, positive weights represent excitatory
synapses and negative, inhibitory synapses; the neuron firing threshold being
represented by a variable T . In modern use T is usually clamped to zero
and a threshold implemented using a variable ‘bias’ weight, b; typically, a
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neuron firing9 is represented by the value +1 and not firing by 0.
Activity at the ith input to an n input neuron is represented by the

symbol Xi and the effect of the ith synapse by a weight Wi, hence the net
effect of the ith input on the ith synapse on the MCP cell is thus Xi ×Wi.
Thus the MCP cell is denoted as firing if:

n∑
i

Xi ×Wi + b ≥ 0 (1)

In a subsequent generalisation of the basic MCP neuron, cell output is
defined by a further [typically non-linear] function of the weighted sum of
its input; the neuron’s activation function.

McCulloch and Pitts proved (ibid) that if ‘synapse polarity’ is chosen
appropriately, any single pattern of input can be ‘recognised’ by a suit-
able network of MCP neurons (i.e. any finite logical expression can be
realised by a suitable network of McCulloch-Pitts neurons). In other words,
the McCulloch-Pitts’ result demonstrated that networks of artificial neurons
could be mathematically specified which would perform ‘computations’ of
immense complexity and power and in so doing, opened the door to a form of
problem solving based on the design of appropriate neural network architec-
tures and automatic (machine) ‘learning’ of appropriate network parameters.

3 Embeddings in Euclidean space

The most commonly used framework for information representation and
processing in artificial neural networks (via generalised McCulloch/Pitts
neurons) is a subspace of Euclidean space. Supervised learning in this
framework is equivalent to deriving appropriate transformations (learning
appropriate mappings) from training data (problem exemplars; pairs of
Input + ‘TargetOutput′ vectors). The majority of learning algorithms ad-
just neuron interconnection weights according to a specified ‘learning rule’,
the adjustment in a given time step being a function of a particular training
example.

Weight updates are successively aggregated in this manner until the net-
work reaches an equilibrium, at which point no further adjustments are made
or, alternatively, learning stops before equilibrium to avoid ‘overfitting’ the
training data. On completion of these computations, knowledge about the
training set is represented across a distribution of final weight values; thus,
a trained network does not possess any internal representation of the (po-
tentially complex) relationships between particular training exemplars.

9“In psychology .. the fundamental relations are those of two valued logic” and Mc-
Culloch and Pitts recognised neuronal firing as equivalent to ‘representing’ a proposition
as TRUE or FALSE [McCulloch and Pitts, 1943].
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Classical multi-layer neural networks are capable of discovering non-
linear, continuous transformations between objects or events, but never-
theless they are restricted by operating on representations embedded in the
linear, continuous structure of Euclidean space. It is, however, doubtful
whether regression constitutes a satisfactory (or the most general) model of
information processing in natural systems.

As Nasuto et al. observed Nasuto et al. [1998], the world, and rela-
tionships between objects in it, is fundamentally non-linear; relationships
between real-world objects (or events) are typically far too messy and com-
plex for representations in Euclidean spaces - and smooth mappings between
them - to be appropriate embeddings (e.g. entities and objects in the real-
world are often fundamentally discrete or qualitatively vague in nature, in
which case Euclidean space does not offer an appropriate embedding for
their representation).

Furthermore, representing objects in a Euclidean space imposes a serious
additional effect, because Euclidean vectors can be compared to each other
by means of metrics; enabling data to be compared in spite of any real-life
constraints (sensu stricto, metric rankings may be undefined for objects and
relations of the real-world). I.e. As Nasuto et al. highlight (ibid), it is
not usually the case that all objects in the world can be equipped with a
‘natural ordering relation’; after all, what is the natural ordering of ‘banana’
and ‘door’?

It thus follows that classical neural networks are best equipped only
for tasks in which they process numerical data whose relationships can be
reflected by Euclidean distance. In other words, classical connectionism can
be reasonably-well applied to the same category of problems which could
be dealt with by various regression methods from statistics; as Francois
Chollet10, in reflecting on the limitations of deep learning, recently remarked:

“[a] deep learning model is ‘just’ a chain of simple, continuous geometric
transformations mapping one vector space into another. All it can do is map
one data manifold X into another manifold Y, assuming the existence of a
learnable continuous transform from X to Y, and the availability of a dense
sampling of X: Y to use as training data. So even though a deep learning
model can be interpreted as a kind of program, inversely most programs
cannot be expressed as deep learning models-for most tasks, either there
exists no corresponding practically-sized deep neural network that solves
the task, or even if there exists one, it may not be learnable ... most of the
programs that one may wish to learn cannot be expressed as a continuous
geometric morphing of a data manifold.” [Chollet, 2018].

Over the last decade, however, Artificial Neural Network technology has
developed beyond performing ‘simple function approximation’ (cf. Multi-

10Chollet is a senior software engineer at Google, who - as the primary author and
maintainer of Keras, the Python open source neural network interface designed to facil-
itate fast experimentation with Deep Neural Networks - is particularly familiar with the
problem-solving capabilities of Deep Learning systems.
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Figure 2: Terrence Broad’s Auto-encoding network ‘dreams’ of Bladerunner
(from [Broad , 2016]).

Layer Perceptrons) and deep [discriminative11] classification (cf. Deep Con-
volutional Networks), to include new, Generative architectures12 where -
because they can learn to generate any distribution of data - the variety of
potential use-cases is huge (e.g. generative networks can be taught to create
novel outputs similar to real-world exemplars across any modality: images,
music, speech, prose etc).

3.1 Autoencoders, Variational Autoencoders and Genera-
tive Adversarial Networks

On the right hand side of Figure (2) we see the output of a neural sys-
tem, engineered by Terence Broad whilst studying for a MSc at Goldsmiths.
Broad used a ‘complex, deep auto-encoder neural network’ to process Blade
Runner - a well-known sci-fi film which riffs on the notion of what is hu-
man and what is machine - building up its own ‘internal representations’ of
that film and then re-rendering these to produce an output movie that is
surprisingly similar to the original (shown on the left).

In his dissertation Broad [2016], a ‘Generative Autoencoder Network’
reduced each frame of Ridley Scott’s Blade Runner to 200 ‘latent variables’
(hidden representations), then invoked a ‘decoder network’ to reconstruct
each frame just using those numbers. The result is eerily suggestive of an

11A discriminative architecture - or discriminative classifier without a model - can be
used to “discriminate” the value of the target variable Y , given an observation x.

12A generative architecture can be used to “generate” random instances, either of an
observation and target (x, y), or of an observation x given a target value y.
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Android’s dream; the network, working without human instruction, was able
to capture the most important elements of each frame so well that when its
reconstruction of a clip from the Blade Runner movie was posted to Vimeo,
it triggered a ‘Copyright Takedown Notice’ from Warner Brothers.

To understand if Generative Architectures are subject to the Euclidean
constraints identified above for classical neural paradigms, it is necessary to
trace their evolution: from the basic Autoencoder Network, through Varia-
tional Autoencoders to Generative Adversarial Networks.

3.1.1 Autoencoder Networks

‘Autoencoder Networks’ [Kramer , 1991] create a latent (or hidden), typically
much compressed, representation of their input data. When Autoencoders
are paired with a decoder-network, the system can reverse this process and
reconstruct the input data that generates a particular latent representa-
tion. In operation, the Autoencoder Network is given a data input x, which
it maps to a latent representation z, from which the decoder network re-
constructs the data input x′ (typically, the cost function used to train the
network is defined as the mean squared error between the input x and the
reconstruction x′). Historically, Autoencoders have been used for ‘feature
learning’ and ‘reducing the dimensionality of data’ [Hinton and Salakhutdi-
nov , 2006], but more recent variants (described below) have been powerfully
deployed to learn ‘Generative Models’ of data.

3.1.2 Variational Autoencoder Networks

In taking a ‘variational Bayesian’ approach to learning the hidden represen-
tation, ‘Variational Autoencoder Networks’ [Kingma and Welling , 2013] add
an additional constraint; placing a strict assumption on the distribution of
the latent variables. Variational Autoencoder Networks are capable of both
compressing data instances (like an Autoencoder) and generating new data
instances.

3.1.3 Generative Adversarial Networks

Generative Adversarial Networks [Goodfellow et al., 2014] deploy two ‘adver-
sary’ neural networks: one - the Generator - synthesises new data instances,
whilst the other - the Discriminator - rates each instance as how likely it
is to belong to the training dataset. Colloquially, the Generator takes the
role of a ‘counterfeiter’ and the Discriminator the role of ‘the police’, in a
complex and evolving game of cat and mouse, wherein the counterfeiter is
evolving to produce better and better counterfeit money while the police are
getting better and better at detecting it. This game goes on until, at con-
vergence, both networks have become very good at their tasks; so good that
Yann LeCun, Facebook’s AI Director of Research, recently claimed them to

9



Figure 3: The tasks ANNs and ML can perform.

be “the most interesting idea in the last ten years in Machine Learning13”.

Nonetheless, as Goodfellow emphasizes (ibid), the generative modelling
framework is most straightforwardly realised using “multilayer perceptron
models”. Hence, although the functionally of generative architectures moves
beyond the simple function-approximation and discriminative-classification
abilities of classical multi-layer perceptrons, at heart, in common with all
neural networks that learn, and operate on, functions embedded in Euclidean
space14, they remain subject to the constraints of Euclidean embeddings
highlighted above.

4 Problem solving using Artificial Neural Networks

In analysing what problems neural networks and machine learning can solve,
Andrew Ng15 suggested that if a task only takes a few seconds of human
judgement and, at its core, merely involves an association of A with B, then
it may well be ripe for imminent AI automation (see Figure (3)).

However, although we can see how we might deploy a trained neural
network in the engineering of solutions to specific, well-defined problems -
such as, “Does a given image contain a representation of a human face?”

13Quora July 28, 2016, (https://www.quora.com/session/Yann-LeCun/1).
14Including neural networks constructed using alternative ‘adaptable node’ frameworks

(e.g. those highlighted in footnote [8]), where these operate on data embeddings in Eu-
clidean space.

15Adjunct professor at Stanford University and formerly associate professor and Director
of its AI Lab.
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- it remains unproven if (a) every human intellectual skill is computable
in this way and, if so, (b) is it possible to engineer an Artificial General
Intelligence that would negate the need to engineer bespoke solutions for
each and every problem.

For example, to master image recognition, an ANN might be taught us-
ing images from ImageNet (a database of more than 14 million photographs
of objects that have been categorised and labelled by humans), but is this
how humans learn? In [Savage, 2019] Tomaso Poggio, a computational
neuroscientist at the Massachusetts Institute of Technology, observes that,
although a baby may see around a billion images in the first two years of
life, only a tiny proportion of objects in the images will be actively pointed
out, named and labelled.

4.1 On cats, classifiers and grandmothers

In 2012, organisers of ‘The Singularity Summit’, an event which foregrounds
predictions from the like of Kurzweil and Warwick (vis a vis ‘the forthcoming
Technological Singularity’ [sic]), invited Peter Norvig16 to discuss a surpris-
ing result from a Google team that appeared to indicate significant progress
towards the goal of unsupervised category learning in machine vision; in-
stead of having to engineer a system to recognise each and every category of
interest (e.g. to detect if an image depicts a human face, a horse, a car etc.)
by training it with explicitly labelled examples of each class (so called, ‘su-
pervised learning’), Le et al. conjectured that it might be possible to build
high-level image classifiers using only un-labelled images, “... we would like
to understand if it is possible to build a face detector from only un-labelled
images. This approach is inspired by the neuro-scientific conjecture that
there exist highly class-specific neurons in the human brain, generally and
informally known as ‘grandmother neurons”.

In his address, [Norvig , 2012] described what happened when Google’s
‘Deep Brain’ system was ‘let loose’ on unlabelled images obtained from the
internet:

“.. and so this is what we did. We said we’re going to train this, we’re going
to give our system ten million YouTube videos, but for the first experiment,
we’ll just pick out one frame from each video. And, you sorta know what
YouTube looks like .. We’re going to feed in all those images and then we’re
going to ask it to represent the world. So what happened? Well, this is
YouTube, so there will be cats.
And what I have here is a representation of two of the top level features [see
Figures (4) and (5)]. So the images come in, they’re compressed there, we
build up representations of what’s in all the images. And then at the top

16Peter is Director of Research at Google and, even though also serving an adviser to
‘The Singularity University’, clearly has reservations about the notion: “.. this idea, that
intelligence is the one thing that amplifies itself indefinitely, I guess, is what I’m resistant
to ..” [Guardian 23/11/12].
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Figure 4: Reconstructed archetypal cat (extracted from YouTube video of
Peter Norvig’s address to the 2012 Singularity summit).

Figure 5: Reconstructed archetypal face (extracted from YouTube video of
Peter Norvig’s address to the 2012 Singularity summit).
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level, some representations come out. These are basis functions - features
that are representing the world - and the one on the left here is sensitive
to cats. So these are the images that most excited that this node in the
network; that ‘best matches’ to that node in the network. And the other
one is a bunch of faces, on the right. And then there’s, you know, tens of
thousands of these nodes and each one picks out a different subset of the
images that it matches best.
So, one way to represent ‘what is this feature?’ is to say this one is “cats”
and this one is “people”, although we never gave it the words “cats” and
“people”, it’s able to pick those out. We can also ask this feature, this
neuron or node in the network, “What would be the best possible picture
that you would be most excited about?” And, by process of mathematical
optimisation, we can come up with that picture (Figure (4)). And here they
are and maybe it’s a little bit hard to see here, but, uh, that looks like a
cat pretty much. And Figure (5) definitely looks like a face. So the system,
just by observing the world, without being told anything, has invented these
concepts” [Norvig, 2012].

... and, at first sight, the results from Le et al. appear to confirm this
conjecture. Yet, within a year of publication, another Google team - this
time led by Szegedy et al. [2013] - showed how, in all the Deep Learning
networks they studied, apparently successfully trained neural network clas-
sifiers could be confused into misclassifying by ‘adversarial examples17’ (see
Figure (6)). Even worse, the experiments suggested that the “adversarial
examples are ‘somewhat universal’ and not just the results of overfitting to
a particular model or to the specific selection of the training set” (ibid).

Subsequently, in 2018 Athalye et al. demonstrated randomly sampled
poses of a 3D-printed turtle, adversarially perturbed, being misclassified as
a rifle at every viewpoint; an unperturbed turtle being classified correctly
as a turtle almost 100% of the time [Athalye et al., 2018]. Most recently,
Su et al. [2019] proved the existence of yet more extreme, ‘one-pixel’ forced
classification errors.

When, in these examples, a neural network incorrectly categorises an
adversarial example (e.g. a slightly modified toy turtle, as a rifle; a slightly
modified image of a van, as an ostrich), a human still sees the ‘turtle as
a turtle’ and the ‘van as a van’, because we understand what turtles and
vans are and what semantic features typically constitute them; this under-
standing allows us to ‘abstract away’ from low-level arbitrary or incidental
details. As Yoshua Bengio observed (in [Heaven, 2019]), “We know from
prior experience which features are the salient ones ... And that comes from
a deep understanding of the structure of the world”.

Clearly, whatever engineering feat Le’s neural networks had achieved in
2013, they hadn’t proved the existence of ‘Grandmother cells’, or that Deep
Neural Networks understood - in any human-like way - the images they
appeared to classify.

17Mathematically constructed image that appeared [to human eyes] ‘identical’ to those
it correctly classified.
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Figure 6: From Szegedy et al. [2013]: Adversarial examples generated for
AlexNet. (Left) is a correctly predicted sample; (centre) difference between
correct image, and image predicted incorrectly; (right) an adversarial exam-
ple. All images in the right column are predicted to be an ostrich [Struthio
Camelus].

Figure 7: From Athalye et al. [2018]: A 3D printed toy-turtle, originally clas-
sified correctly as a turtle, was ‘adversarially perturbed’ and subsequently
misclassified as a rifle at every viewpoint tested.
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Figure 8: Siri: on ‘buying’ books.

5 AI doesn’t understand

Figure (8) shows a screen-shot from an iPhone after Siri, Apple’s AI ‘chat-
bot’, was asked to add a ‘litre of books’ to a shopping list; Siri’s response
clearly demonstrates that it doesn’t understand language, and specifically
the ontology of books and liquids, in anything like the same way that my
six year old daughter does. Furthermore, AI agents catastrophically failing
to understand the nuances of everyday language is not a problem restricted
to Apple.

5.1 Microsoft’s XiaoIce chatbot

With over 660 million active users since 2014, each spending an average 23
conversation turns per engagement, Microsoft XiaoIce is the most popular
social chatbot in the world [Zhou et al., 2018]. In this role, XiaoIce serves
as an eighteen year old, female-gendered AI ‘companion’ - always reliable,
sympathetic, affectionate, knowledgeable but self-effacing, with a lively sense
of humour - endeavouring to form ‘meaningful’ emotional connections with
her human ‘users’, the depth of these connections being revealed in the
conversations between XiaoIce and the users. Indeed, the ability to establish
‘long-term’ engagement with human users distinguishes XiaoIce from other,
recently developed, AI controlled Personal Assistants (AI-PAs), such as:

15



Apple Siri, Amazon Alexa, Google Assistant and Microsoft Cortana.
XiaoIce’s responses are either generated from text databases or ‘on-the-

fly’ via a neural network. Aware of the potential for machine learning in
XiaoIce to go awry, the designers of XiaoIce note that they:

“... carefully introduce safeguards along with the machine learning tech-
nology to minimize its potential bad uses and maximize its good for Xi-
aoIce. Take XiaoIce’s Core Chat as an example. The databases used by the
retrieval-based candidate generators and for training the neural response
generator have been carefully cleaned, and a hand-crafted editorial response
is used to avoid any improper or offensive responses. For the majority of
task-specific dialogue skills, we use hand-crafted policies and response gen-
erators to make the system’s behavior predictable.” [Zhou et al., 2018].

XiaoIce was launched on May 29, 2014 and by August 2015 had success-
fully engaged in more than 10 billion conversations with humans across five
countries.

5.2 We need to talk about Tay

Following the success of XiaoIce in China, Peter Lee (Corporate Vice Presi-
dent, Microsoft Healthcare) wondered if “an AI like this be just as captivating
in a radically different cultural environment?” and the company set about
re-engineering XiaoIce into a new chatbot, specifically created for 18- to 24-
year-olds in the U.S. market.

As the product was developed, Microsoft planned and implemented addi-
tional ‘cautionary’ filters and conducted extensive user studies with diverse
user groups: ‘stress-testing’ the new system under a variety of conditions,
specifically to make interacting with it a positive experience. Then, on
March 23rd 2016, the company released ‘Tay’ - “an experiment in conver-
sational understanding” - onto Twitter, where it needed less than 24 hours
exposure to the ‘twitterverse’, to fundamentally corrupt their ‘newborn AI
child’. As TOMO news reported18:

“REDMOND, WASHINGTON: Microsoft’s new artificial intelligence chat-
bot had an interesting first day of class after Twitter’s users taught it to
say a bunch of racist things. The verified Twitter account called Tay was
launched on Wednesday. The bot was meant to respond to users’ questions
and emulate casual, comedic speech patterns of a typical millennial. Accord-
ing to Microsoft, Tay was ‘designed to engage and entertain people where
they connect with each other online through casual and playful conversa-
tion. The more you chat with Tay the smarter she gets, so the experience
can be more personalised for you’. Tay uses AI to learn from interactions
with users, and then uses text input by a team of staff including comedi-
ans. Enter trolls and Tay quickly turned into a racist dropping n-bombs,
supporting white-supremacists and calling for genocide. After the enormous
backfire, Microsoft took Tay offline for upgrades and is deleting some of the
more offensive tweets. Tay hopped off Twitter with the message, ‘c u soon

18Cf. https://www.youtube.com/watch?v=IeF5E56lmk0.
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humans need sleep now so many conversations today thx’.” (TOMO News:
25th March, 2016).

One week later, on the 30th March 2016, the company released a ‘patched’
version, only to see the same recalcitrant behaviours surface again; causing
TAY to be taken permanently off-line and resulting in significant reputa-
tional damage to Microsoft. How did the engineers get things so badly
wrong19?

The reason, Liu [2017] suggests, is that Tay is fundamentally unable
to truly understand either the meaning of the words she processes, or the
context of the conversation. AI and neural networks enabled Tay to recognise
and associate patterns, but the algorithms she deployed could not give Tay
“an epistemology”. I.e. Tay was able to identify nouns, verbs, adverbs,
and adjectives, but had no idea ‘who Hitler was’ or what ‘genocide’ actually
means’ (ibid).

In contrast to Tay, and moving far beyond the reasoning power of her ar-
chitecture, Judea Pearl, who pioneered the application of Bayesian Networks
[Pearl , 1985] and who once believed “they held the key to unlocking AI”
[Pearl , 2018] (pp. 18), now offers causal reasoning as the missing mathe-
matical mechanism to computationally unlock meaning-grounding, the Tur-
ing test and eventually “human level [Strong] AI” (ibid, pp. 11).

5.3 Causal cognition and ‘Strong AI’

Judea Pearl believes that we will not succeed in realising Strong AI until we
can create an intelligence like that deployed by a three year old child and that
to do this we will need to equip systems with a ‘mastery of causation’. As
Judea Pearl sees it, AI needs to move away from neural networks and mere
‘probabilistic associations’, such that machines can reason [using appropriate
causal structure modelling] how the world works20. E.g. That the world
contains discrete objects and that they are related to one another in various
ways on a ‘ladder of causation’ corresponding to three distinct levels of
cognitive ability - seeing, doing and imagining [Pearl and Mackenzie, 2018]:

• Level one seeing ; Association: the first step on the ladder invokes
purely statistical relationships. I.e. Relationships fully encapsulated
by raw data (e.g. a customer who buys toothpaste is more likely

19As Leigh Alexander pithily observed, “How could anyone think that creating a young
woman and inviting strangers to interact with her on social media would make Tay
‘smarter’? How can the story of Tay be met with such corporate bafflement, such late
apology? Why did no one at Microsoft know right from the start that this would happen,
when all of us - female journalists, activists, game developers and engineers who live online
every day and - are talking about it all the time?” (Guardian, March 28th, 2016).

20“Deep learning has instead given us machines with truly impressive abilities but no
intelligence. The difference is profound and lies in the absence of a model of reality”
[Pearl and Mackenzie, 2018], pp.30.
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to buy floss); for Pearl “machine learning programs (including those
with deep neural networks) operate almost entirely in an associational
mode”.

• Level two doing ; Intervention: questions on level two are not an-
swered by ‘passively collected’ data alone, as they invoke an imposed
change in customer behaviour (e.g. What will happen to my headache
if I take an aspirin?), and hence additionally require an appropriate
‘causal model’: if our belief (our ‘causal model’) about aspirin is cor-
rect, then the ‘outcome’ will change from ‘headache’ to ‘no headache’.

• Level three imagining ; Counterfactuals: are at the top of the ladder
because they subsume interventional and associational questions, ne-
cessitating ‘retrospective reasoning’ (e.g. “My headache is gone now,
but why? Was it the aspirin I took? The coffee I drank? The music
being silenced? ...).

Pearl firmly positions most animals [and machine learning systems] on
the first rung of the ladder, effectively merely learning from association.
Assuming they act by planning (and not mere imitation) more advanced
animals (‘tool users’ that learn the effect of ‘interventions’) are found on
the second rung. Whereas, the top rung is reserved for those systems that
can reason with counterfactuals to ‘imagine’ worlds that do not exist and
establish theory for observed phenomena’ (ibid, pp.31).

Over a number of years Pearl’s causal inference methods have found
ever wider applicability and hence questions of cause-and-effect have gained
concomitant importance in computing. In 2018 Microsoft Research, as a
result of both their ‘in-house’ experience of causal methods21 and the desire
to better facilitate their more widespread use22, released ‘DoWhy ’ - a Python
library implementing Judea Pearl’s ‘Do calculus for causal inference23’.

5.3.1 A ‘mini’ Turing test

All his life Judea Pearl has been centrally concerned with answering a ques-
tion he terms the ‘Mini Turing Test’ (MTT): ‘How can machines (and peo-
ple) represent causal knowledge in a way that would enable them to access
the necessary information swiftly, answer questions correctly, and do it with
ease, as a three-year-old child can?’ (ibid, pp.37).

21Cf. [Olteanu et al., 2017] and [Sharma et al., 2018].
22As [Pearl , 2018] highlighted, “the major impediment to achieving accelerated learning

speeds as well as human level performance should be overcome by removing these barriers
and equipping learning machines with causal reasoning tools. This postulate would have
been speculative twenty years ago, prior to the mathematization of counterfactuals. Not
so today”.

23https://www.microsoft.com/en-us/research/blog/dowhy-a-library-for-causal-inference/.
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In the MTT Pearl imagines a machine presented with a [suitably en-
coded] story and subsequently being asked questions about the story per-
taining to causal reasoning. In contrast to Stefan Harnad’s ‘Total Turing
Test’ [Harnad , 1991], it stands as a ‘mini test’ because the domain of ques-
tioning is restricted (i.e. specifically ruling out questions engaging aspects
of cognition such as perception, language etc.) and because suitable repre-
sentations are presumed given (i.e. the machine doesn’t need to acquire the
story from its own experience).

Pearl subsequently considers if the MTT could be trivially defeated by a
large lookup table storing all possible questions and answers24 - there being
no way to distinguish such a machine from one that generates answers in a
more ‘human-like’ way - albeit in the process misrepresenting the American
philosopher John Searle, by claiming that Searle introduced this ‘cheating
possibility’ in the Chinese room argument. As will be demonstrated in the
following section, in explicitly targeting any possible AI program25, Searle’s
argument is a good deal more general.

In any event, Pearl discounts the ‘lookup table’ argument - asserting it
to be fundamentally flawed as it ‘would need more entries than the number of
atoms in the universe’ to implement26 - instead suggesting that, to pass the
MTT an efficient representation and answer-extraction algorithm is required,
before concluding “such a representation not only exists but has childlike
simplicity: a causal diagram ... these models pass the mini-Turing test; no
other model is known to do so” (ibid, pp. 43).

Then in 2019, even though discovering and exploiting ‘causal structure’
from data had long been a landmark challenge for AI labs, a team at Deep-
Mind successfully demonstrated “a recurrent network with model-free rein-
forcement learning to solve a range of problems that each contain causal
structure” [Dasgupta et al., 2019].

But do computational ‘causal cognition’ systems really deliver machines
that genuinely understand; able to seamlessly transfer knowledge from one
domain to another? In the following I briefly review three a priori argu-
ments that purport to demonstrate that ‘computation’ alone can never re-
alise human-like understanding, and, a fortiori, no computational AI system
will ever fully ‘grasp’ human-meaning.

24Cf. [Block , 1981].
25Many commentators still egregiously assume that, in the CRA, Searle was merely

targeting Schank and Abelson’s approach etc., but [Searle, 1980] carefully specifies that
“The same arguments would apply to ... any Turing machine simulation of human mental
phenomena” ... concluding that “.... whatever purely formal principles you put into the
computer, they will not be sufficient for understanding, since a human will be able to follow
the formal principles without understanding anything.

26Albeit partial input-response lookup tables have been successfully embedded [as large
databases] in several conversational ‘chatbot’ systems (e.g. Mitsuku, XiaoIce, Tay,... etc.).
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6 The Chinese room

In the late 70s the AI lab at Yale secured funding for visiting speakers from
the Sloan foundation and invited the American philosopher John Searle to
speak on Cognitive Science. Before the visit, Searle read Schank and Abel-
son’s “Scripts, Plans, Goals, and Understanding: An Inquiry into Human
Knowledge Structures” and, on visiting the lab, met a group of researchers
designing AI systems which, they claimed, actually understood stories on
the basis of this theory. Not such complex works of literature as “War and
Peace”, but slightly simpler tales of the form:

Jack and Jill went up the hill to fetch a pail of water. Jack fell down and
broke his crown and Jill came tumbling after.

... and in the AI lab their computer systems were able to respond ap-
propriately to questions about such stories. Not complex social questions of
‘gender studies’, such as:

Q. Why did Jill come ‘tumbling’ after?

.. but slightly more modest enquiries, along the lines of:

Q. Who went up the hill? A. Jack went up the hill.
Q. Why did Jack go up the hill? A. To fetch a pail of water.

Searle was so astonished that anyone might seriously entertain the idea
that computational systems, purely on the basis of the execution of appropri-
ate software (however complex), might actually understand the stories that,
even prior to arriving at Yale, he had formulated an ingenious ‘thought ex-
periment’ which, if correct, fatally undermines the claim that machines can
understand anything, qua computation.

Formally, the thought experiment - subsequently to gain renown as ‘The
Chinese Room Argument’ (CRA) [Searle, 1980] - purports to show the truth
of the premise ‘syntax is not sufficient for semantics’, and forms the foun-
dation to his well-known argument against computationalism27:

1. Syntax is not sufficient for semantics.

2. Programs are formal.

3. Minds have content.

4. ∴ programs are not minds and computationalism must be
false.

To demonstrate that ‘syntax is not sufficient for semantics’ Searle de-
scribes a situation where he is locked in a room in which there are three

27That the essence of ‘[conscious] thinking’ lies in computational processes.
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stacks of papers covered with “squiggles and squoggles” (Chinese ideographs)
that he does not understand. Indeed, Searle doesn’t even recognise the
marks as being Chinese ideographs, as distinct from say Japanese or simply
meaningless patterns. In the room there is also a large book of rules (written
in English) that describe an effective method (an ‘algorithm’) for correlating
the symbols in the first pile with those in the second (e.g. by their form);
other rules instruct him how to correlate the symbols in the third pile with
those in the first two, also specifying how to return symbols of particular
shapes, in response to patterns in the third pile.

Unknown to Searle, people outside the room call the first pile of Chinese
symbols, “the script”; the second pile “the story”, the third “questions about
the story”, and the symbols he returns they call “answers to the questions
about the story”. The set of rules he is obeying, they call “the program”.

To complicate matters further, the people outside the room also give
Searle stories in English and ask him questions about these stories in English,
to which he can reply in English.

After a while Searle gets so good at following the instructions, and the
AI scientists get so good at engineering the rules, that the responses Searle
delivers to the questions in Chinese symbols become indistinguishable from
those a native Chinese speaker might give. From an external point of view,
the answers to the two sets of questions, one in English the other in Chi-
nese, are equally good (effectively Searle, in his Chinese room, has ‘passed
the [unconstrained] Turing test’). Yet in the Chinese language case, Searle
behaves ‘like a computer’ and does not understand either the questions he is
given or the answers he returns, whereas in the English case, ex hypothesi,
he does.

Searle trenchantly contrasts the claim posed by members of the AI com-
munity - that any machine capable of following such instructions can gen-
uinely understand the story, the questions and answers - with his own con-
tinuing inability to understand a word of Chinese.

In the thirty-nine yeas since the ‘Minds, Brains, and Programs’ was first
published, a huge volume of literature has developed around the Chinese
room argument (for an introduction, see Preston and Bishop [2002]); with
comment ranging from Selmer Bringsjord (ibid) who asserts the CRA to
be “arguably the 20th century’s greatest philosophical polarizer”, to Georges
Rey (ibid), who claims that in his definition of Strong AI, Searle, “burdens
the [Computational Representational Theory of Thought (Strong AI)] project
with extraneous claims which any serious defender of it should reject”. Al-
though it is beyond the scope of this article to review the merit of CRA, it
has, unquestionably, generated much controversy.

Searle, however, continues to insist that the root of confusion around the
CRA (e.g. as demonstrated in the ‘systems reply’ from Berkeley28) is simply

28The systems reply: “While it is true that the individual person who is locked in the
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a fundamental confusion between epistemic (e.g. how we might establish the
presence of a cognitive state in a human) and ontological concerns (how we
might seek to actually instantiate that state by machine).

An insight that lends support to Searle’s contention comes from the
putative phenomenology of Berkeley’s Chinese room systems. Consider the
responses of two such systems - (i) Searle-in-the-room interacting in written
Chinese (via the rule-book/program), and (ii) Searle interacting naturally in
written English - in the context where (a) a joke is made in Chinese, and
(b) the same joke is told in English.

In the former case, although Searle may make appropriate responses in
Chinese (assuming he executes the rule-book processes correctly), he will
never ‘get the joke’ nor ‘feel the laughter’ because he, John Searle, still
doesn’t understand a single word of Chinese. Whereas in the latter case,
ceteris paribus, he will ‘get the joke’, find it funny and respond appropriately;
because he, John Searle, genuinely does understand English.

There is a clear ‘ontological distinction’ between these two situations:
lacking an essential phenomenal component of understanding, Searle in the
Chinese-room-system can never ‘grasp’ the meaning of the symbols he re-
sponds to, but merely act out an ‘as-if’ understanding29 of the stories; as
Stefan Harnad echoes in ‘Lunch Uncertain30’, [phenomenal] consciousness
must have something very fundamental to do with meaning and knowing:

“[I]t feels like something to know (or mean, or believe, or perceive, or do,
or choose) something. Without feeling, we would just be grounded Turing
robots, merely acting as if we believed, meant, knew, perceived, did or
chose” [Harnad, 2011].

7 Gödelian arguments on computation and under-
standing

Although ‘understanding’ is disguised by its appearance as a “simple and
common-sense quality”, if it is, so the Oxford polymath Sir Roger Penrose
suggests, it has to be something non-computational, because otherwise it
must fall prey to a bare form of the ‘Gödelian argument’ Penrose [1994]
(pp.150).

room does not understand the story, the fact is that he is merely part of a whole system,
and the system does understand the story” [Searle, 1980].

29Well engineered computational systems exhibit ‘as-if’ understanding because they
have been designed by humans to be understanding systems. Cf. The ‘as-if-ness’ of
thermostats, carburettors and computers to ‘perceive’, ‘know’ [when to enrich the fuel/air
mixture] and ‘memorise’ stems from the fact they were designed by humans to perceive,
know and memorise; the qualities are merely ‘as-if perception’, ‘as-if knowledge’, ‘as-if
memory’ because they are dependent on human perception, human knowledge and human
memory.

30Cf. Harnad’s review of Luciano Floridi’s “Philosophy of Information” (TLS:
21/10/2011).
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Gödel’s first incompleteness theorem famously states that “... any effec-
tively generated theory capable of expressing elementary arithmetic cannot
be both consistent and complete. In particular, for any consistent, effectively
generated formal theory F that proves certain basic arithmetic truths, there
is an arithmetical statement that is true, but not provable in the theory”.
The resulting true, but unprovable, statement G(ǧ) is often referred to as
‘the Gödel sentence’ for the theory31.

Arguments foregrounding limitations of mechanism (qua computation)
based on Gödel’s theorem typically endeavour to show that, for any such
formal system F , humans can find the Gödel sentence G(ǧ), whilst the
computation/machine (being itself bound by F ) cannot.

The Oxford philosopher John Lucas primarily used Gödel’s theorem to
argue that an automaton cannot replicate the behaviour of a human math-
ematician ([Lucas, 1961, 1968]), as there would be some mathematical for-
mula which it could not prove, but which the human mathematician could
both see, and show, to be true; essentially refuting computationalism. Sub-
sequently, Lucas’ argument was critiqued [Benacerraf , 1967], before being
further developed, and popularised, in a series of books and articles by
[Penrose, 1989, 1994, 1996, 1997, 2002], and gaining wider renown as ‘The
Penrose-Lucas argument’.

In 1989, and in a strange irony given that he was once a teacher and then
a colleague of Stephen Hawking, [Penrose, 1989] published “The Emperor’s
New Mind”, in which he argued that certain cognitive abilities cannot be
computational; specifically, “the mental procedures whereby mathematicians
arrive at their judgements of truth are not simply rooted in the procedures
of some specific formal system” (ibid, pp. 144); in the follow-up volume,
“Shadows of the Mind” [Penrose, 1994], fundamentally concluding: “G:
Human mathematicians are not using a knowably sound argument to ascer-
tain mathematical truth” (ibid, pp. 76).

In ‘Shadows of the Mind’ Penrose puts forward two distinct lines of
argument; a broad argument and a more nuanced one:

• The ‘broad’ argument is essentially the ‘core’ Penrose-Lucas position
(in the context of mathematicians’ belief that they really are “doing
what they think they are doing”, contra blindly following the rules of
an unfathomably complex algorithm), such that “the procedures avail-
able to the mathematicians ought all to be knowable”. This argument
leads Penrose to conclusion G (above).

• More nuanced lines of argument, addressed at those who take the view
that mathematicians are not “really doing what they think they are

31NB. It must be noted that there are infinitely many other statements in the theory,
that share with the Gödel sentence the property of being true, but not provable, from the
formal theory.
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doing”, but are merely acting like Searle in the Chinese room and
blindly following the rules of a complex, unfathomable rule-book. In
this case, as there is no way to know what the algorithm is, Penrose
instead examines how it might conceivably have come about, consid-
ering (a) the role of natural selection and (b) some form of engineered
construction (e.g. neural network, evolutionary computing, machine
learning etc); a discussion of these lines of argument is outside the
scope of this paper.

7.1 The basic Penrose’ argument

Consider a to be a ‘knowably sound ’ sound set of rules (an effective proce-
dure) to determine if C(n) - the computation C on the natural number n
(e.g. ‘Find an odd number that is the sum of n even numbers’) - does not
stop. Let A be a formalisation of all such effective procedures known to
human mathematicians. By definition, the application of A terminates iff
C(n) does not stop. Now, consider a human mathematician continuously
analysing C(n) using the effective procedures, A, and only halting analysis
if it is established that C(n) does not stop.

NB. A must be ‘knowably sound ’ and cannot be wrong if it decides that
C(n) does not stop because, Penrose claims, if A was ‘knowably sound’ and
if any of the procedures in A were wrong, the error would eventually be
discovered.

Computations of one parameter, n, can be enumerated (listed):

C0(n), C1(n), C2(n)..Cp(n)

where Cp(n) is the pth computation on n (i.e. it defines the pth computation
of one parameter n). Hence A(p, n) is the effective procedure that, when
presented with p and n, attempts to discover if Cp(n) will not halt. I.e. If
A(p, n) ever halts, then we know for certain that Cp(n) does not halt32.

Given the above, Penrose’ simple Gödelian argument can be summarised
as follows:

1. If A(p, n) halts then Cp(n) does not halt.

2. Now consider the ‘Self-Applicability Problem’ (SAP), by letting p = n
in statement (1) above; thus:

3. If A(n, n) halts then Cn(n) does not halt.

4. But A(n, n) is a function of one natural number, n and hence must be
found in the enumeration of C. Let us assume it is found at position
k (i.e. it is the kth computation of one parameter Ck(n)); thus:

5. A(n, n) = Ck(n).

32Penrose, ‘Shadows of the Mind’ (pp. 72-77).
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6. Now, consider the particular computation where n = k; i.e. substitut-
ing n = k into statement (5) above; thus:

7. A(k, k) = Ck(k).
8. And rewriting (3) with n = k; thus:
9. iff A(k, k) halts then Ck(k) does not halt.

10. But substituting from (7) into (9), we get the following; thus:
11. If Ck(k) halts then Ck(k) does not halt, which clearly leads to contra-

diction if Ck(k) halts.
12. Hence from (11) we know that, if A is sound (and there is no contra-

diction) then Ck(k) cannot halt.
13. However, A cannot itself signal (12) [by halting] because (7): A(k, k) =

Ck(k). I.e. if Ck(k) cannot halt then A(k, k) cannot either.
14. Furthermore, if A exists and is sound then we know Ck(k) cannot

halt; however A is provably incapable of ascertaining this, because we
also know (from statement (11)) that A halting [to signal that Ck(k)
cannot halt] would lead to contradiction.

15. So, if A exists and is sound, we know (from statement (12)) that
Ck(k) cannot halt, and hence we know something (via statement (13))
that A is provably unable to ascertain (14).

16. Hence A - the formalisation of all procedures known to mathemati-
cians - cannot encapsulate human mathematical understanding.

In other words, the human mathematician can ‘see’ that the Gödel Sen-
tence is true for consistent F , even though the consistent F cannot prove
G(ǧ).

Arguments targeting computationalism on the basis of Gödelian theory
have been vociferously critiqued ever since they were first made33, however
discussion - both negative and positive - still continues to surface in the lit-
erature34 and detailed review of their absolute merit falls outside the scope
of this work. In this context it is sufficient simply to note, as the philoso-
pher John Burgess wryly observed, that the Penrose-Lucas thesis may be
fallacious but “logicians are not unanimously agreed as to where precisely
the fallacy in their argument lies” [Burgess, 2000]. Indeed Penrose, in re-
sponse to a volume of peer commentary on his argument [Psyche, 1995],
“was struck by the fact that none of the present commentators has chosen
to dispute my conclusion G:” [Penrose, 1996].

Perhaps reflecting this, after a decade of robust international debate on
these ideas, in 2006 Penrose was honoured with an invitation to present the
opening public address at ‘Horizons of truth’, the Gödel centenary confer-
ence at the University of Vienna; for Penrose, Gödelian arguments continue
to suggest human consciousness cannot be realised by algorithm; there must
be a “noncomputational ingredient in human conscious thinking” [Penrose,
1996].

33Lucas maintains a web page http://users.ox.ac.uk/~{}jrlucas/Godel/referenc.

html listing over fifty such criticisms; see also [Psyche, 1995] for extended peer commentary
specific to the Penrose version.

34Cf. [Bringsjord and Xiao, 2000] and [Tassinari and D’Ottaviano, 2007].
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Figure 9: Kevin Warwick’s ‘Seven Dwarves’: neural network controlled
robots.

8 Consciousness, computation and panpsychism

Figure (9) shows Professor Kevin Warwick’s “Seven Dwarves” cybernetic
learning robots in the act of moving around a small coral, ‘learning’ not to
bump into each other. Given that (i) in ‘learning’, the robots developed
individual behaviours and (ii) their neural network controllers used approxi-
mately the same number of ‘neurons’ as found in the brain of a slug, Warwick
has regularly delighted in controversially asserting that the robots were “as
conscious as a slug” and that it is only “human bias” (human chauvinism)
that has stopped people from realising and accepting this [Warwick , 2002].
Conversely, even as a fellow cybernetician and computer scientist, I have
always found such remarks - that the mechanical execution of appropriate
computation [by a robot] will realise consciousness - a little bizarre, and
eventually derived the following, a priori, argument to highlight the implicit
absurdness of such claims.

The Dancing with Pixies (DwP) reductio ad absurdum [Bishop, 2002a] is
my attempt to target any claim that machines (qua computation) can give
rise to raw sensation (phenomenal experience), unless we buy into a very
strange form of panpsychic mysterianism. Slightly more formally, DwP is a
simple reductio ad absurdum argument to demonstrate that if ([appropriate]
computations realise phenomenal sensation in machine) then (panpsychism
holds). I.e. If the DwP is correct then we must either accept a vicious form
of panpsychism (wherein every open physical system is phenomenally con-
scious) or reject the assumed claim (computational accounts of phenomenal
consciousness). Hence, because panpsychism has come to seem an implau-
sible world view35, we are obliged to reject any computational account of
phenomenal consciousness.

At its foundation, the core DwP reductio (ibid) derives from an argument

35Framed by the context of our immense scientific knowledge of the closed physical
world, and the corresponding widespread desire to explain everything ultimately in phys-
ical terms.
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by Hilary Putnam, first presented in the Appendix to ‘Representation and
Reality’ Putnam [1988]; however, it is also informed by Maudlin [1989] (on
computational counterfactuals), Searle [1990] (on software isomorphisms)
and subsequent criticism from Chalmers [1996], Klein [2018] and Chrisley
[1995]36. Subsequently, the core DwP argument has been refined, and re-
sponses to various criticisms of it presented, across a series of papers Bishop
[2002b, a, 2009, 2014]. For the purpose of this review, however, I merely
present the heart of the reductio.

In the following discussion, instead of seeking to justify the claim from
[Putnam, 1988], that “every ordinary open system is a realization of every
abstract finite automaton” (and hence that, “psychological states of the brain
cannot be functional states of a computer”), I will show that, over any finite
time period, every open physical system implements the particular execu-
tion trace [of state transitions] of a computational system Q, operating on
known input I. That this result leads to panpsychism is clear as, equating
Q(I) to a specific computational system (that is claimed to instantiate phe-
nomenal experience as it executes), and following Putnam’s state-mapping
procedure, an identical execution trace of state transitions (and ex hypothesi
phenomenal experience) can be realised in any open physical system.

8.1 The Dancing with Pixies (DwP) reductio ad absurdum

Perhaps you have seen an automaton at a museum or on television; ‘The
Writer’ is one of three surviving automata from the 18th century built by
Jaquet Droz and was the inspiration for the movie Hugo; it still writes today
(see Figure (10)). The complex clockwork mechanism seemingly brings the
automaton to life as it pens short (‘pre-programmed’) phrases. Such ma-
chines were engineered to follow through a complex sequence of operations
- in this case, to write a particular phrase - and to early-eyes at least, and
even though they are insensitive to real-time interactions, appeared almost
sentient; uncannily37 life-like in their movements.

In his 1950 paper Computing Machinery and Intelligence Turing [1950]

36For early discussion of these themes see ‘Minds and Machines’, 4: 4, ‘What is Com-
putation?’, November 1994.

37Sigmund Freud first introduced the concept of ‘the uncanny’ in his 1919 essay ‘Das Un-
heimliche’ [Freud , 1919], which explores the eeriness of dolls and waxworks; subsequently,
in aesthetics, ‘the uncanny’ highlights a hypothesized relationship between the degree of
an object’s resemblance to a human being and the human emotional response to such an
object. The notion of the ‘uncanny’ predicts humanoid objects which imperfectly resemble
real humans, may provoke eery feelings of revulsion and dread in observers [MacDorman
and Ishiguro, 2006]. [Mori , 2012] subsequently explored this concept in robotics, through
the notion of ‘the uncanny valley’. Recently, the notion of the uncanny has been critically
explored through the lens of feminist theory and contemporary art practice, for example
by Alexandra Kokoli who, in focussing on Lorraine O’Grady performances as a “black
feminist killjoy”, stridently calls out “the whiteness and sexism of the artworld” [Kokoli ,
2016].
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Figure 10: Photograph of Jaquet Droz’ The Writer (image screenshot from
BBC4 ‘Mechanical Marvels Clockwork Dreams: The Writer [2013]).

described the behaviour of a simple physical automaton - his ‘Discrete State
Machine’. This was a simple device with one moving arm, like the hour
hand of a clock; with each tick of the clock Turing conceived the machine
cycling through the 12 o’clock, 8 o’clock and 4 o’clock positions. Turing
(ibid) showed how we can describe the state evolution of his machine as a
simple Finite State Automaton (FSA).

Turing assigned the 12 o’clock (noon/midnight) arm position to FSA
state (machine-state) Q1; the 4 o’clock arm position to FSA state Q2 and
the 8 o’clock arm position to FSA state Q3. N.B. Turing’s mapping of the
machine’s physical arm position to a logical FSA (computational) state is
arbitrary (e.g. Turing could have chosen to assign the 4 o’clock arm position
to FSA state Q1)

38. The machine’s behaviour can now be described by a
simple state-transition table: if the FSA is in state Q1 then it goes to FSA
state Q2; if in FSA state Q2 it goes to Q3; if in FSA state Q3 goes to
Q1. Hence, with each clock tick the machine will cycle through FSA states
Q1, Q2, Q3, Q1, Q2, Q3, Q1, Q2, Q3, ... etc., (as shown in Figure (11)).

To see how Turing’s machine could control Jaquet Droz’ Writer automa-
ton, we simply need to ensure that when the FSA is in a particular machine-
state, a given action is caused to occur. For example, if the FSA is in FSA
state Q1 then, say, a light might be made to come on, or The Writer’s pen
be moved. In this way complex sequences of actions can be ‘programmed’.

Now, what is perhaps not so obvious is that, over any given time-period,
we can fully emulate Turing’s machine with a simple digital counter (e.g.

38In any electronic digital circuit, it is an engineering decision, contingent on the type of
logic used - TTL, ECL, CMOS etc. - what voltage range corresponds to a logical TRUE
value and what range to a logical FALSE.
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Figure 11: Turing’s Discrete State Machine.
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a digital milometer); all we need to do is to map the digital counter state
C to the appropriate FSA state Q. I.e, If the counter is in state C0 =
{000000} then we map to FSA state Q1; if it is C1 = {000001} then we
map to FSA state Q2; {000002} → Q3; {000003} → Q1; {000004} → Q2;
{000005} → Q3, ... etc.

Thus, if the counter is initially in state C0 = {000000} then, over the time
interval [t = 0..t = 5], it will reliably transit states {000000 → 000001 →
000002 → 000003 → 000004 → 000005} which, by applying the Putnam
mapping defined above, generates the Turing FSA state sequence: {Q1 →
Q2 → Q3 → Q1 → Q2 → Q3} over the interval [t = 0..t = 5]. In this manner
any input-less FSA can be realised by a [suitably large] digital counter.

Furthermore, sensu stricto, all real computers (machines with finite stor-
age) are Finite State Machines39 and so a similar process can be applied to
any computation realised by a PC. However, before looking to replace your
desktop machine with a simple digital counter, keep in mind that a FSA
without input is an extremely trivial device (as is evidenced by the ease in
which it can be emulated by a simple digital counter), merely capable of
generating a single unbranching sequence of states ending in a cycle, or at
best in a finite number of such sequences (e.g. {Q1 → Q2 → Q3 → Q1 →
Q2 → Q3}, ... etc.).

However, Turing also described the operation of a discrete state machine
with input in the form of a simple lever-brake mechanism, which could be
made to either lock-on (or lock-off) at each clock-tick. Now, if the machine
is in computational state {Q1} and the brake is on, then the machine stays
in {Q1} otherwise it moves to computational state {Q2}; if machine is in
{Q2} and brake is on, it stays in {Q2} otherwise it goes to {Q3} and if
machine is in state {Q3} and brake is on, it stays in {Q3} otherwise it cycles
back to state {Q1}. In this manner, the addition of input has transformed
the machine, from a simple device that could merely cycle through a simple
unchanging list of states, to one that is sensitive to input and as a result the
number of possible state sequences that it may enter grows combinatorially
with time, rapidly becoming larger than the number of atoms in the known
universe. It is due to this exponential growth in potential state transition
sequences that we cannot, so easily, realise a FSA with input (or a PC) using
a simple digital counter.

Nonetheless, if we have knowledge of the input over a given time period
(say, we know that the brake is initially ON for the first clock tick and OFF
thereafter), then the combinatorial contingent state structure of an FSA
with input, simply collapses into a simple linear list of state transitions (e.g.
{Q1 → Q2 → Q3 → Q1 → Q2 → Q3}, ... etc.), and so once again can
be simply realised by a suitably large digital counter using the appropriate

39Even if we usually think about computation in terms of the [more powerful] Turing
Machine model.
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Putnam mapping.

Thus, to realise Turing’s machine, say, with the brake ON for the first
clock tick and OFF thereafter, we simply need to specify that the initial
counter in state {000000} maps to the first FSA state Q1; state {000001}
maps to FSA state Q1; {000002} maps to Q2; {000003} to Q3; {000004} to
Q1; {000005} to Q2 etc.).

In this manner, considering the execution of any putative machine con-
sciousness software that is claimed to be conscious (e.g. the control program
of Kevin Warwick’s robots) if, over a finite time period, we know the input40,
we can generate precisely the same state transition trace with any [suitably
large] digital counter. Furthermore, as Hilary Putnam demonstrated, in
place of using a digital counter to generate the state sequence {C}, we could
deploy any ‘open physical system’ (such as a rock41) to generate a suit-
able non-repeating state sequence {S1, S2, S3, S4, ...}, and map FSA states
to these [non-repeating] ‘rock’ states {S} instead of the counter states. Fol-
lowing this procedure a rock, alongside a suitable Putnam mapping, can
made to realise any finite series of state transitions.

Thus, if any AI system is phenomenally conscious42 as it executes a spe-
cific set of state transitions over a finite time period, then a vicious form
of panpsychism must hold, because the same raw sensation, phenomenal
consciousness, could be realised with a simple digital counter (a rock, or
any open physical system) and the appropriate Putnam mapping. In other
words, unless we are content to ‘bite the bullet’ of panpsychism, then no ma-
chine, however complex, can ever realise phenomenal consciousness purely
in virtue of the execution of a particular computer program43.

9 Conclusion

It is my contention that at the heart of classical cognitive science - artificial
neural networks, causal cognition and artificial intelligence - lies a ubiquitous
computational metaphor:

40E.g. We can obtain the input to a robot [that is claimed to experience phenomenal
consciousness as it interacts with the world] by deploying a ‘data-logger’ to record the
data obtained from all its various sensors etc.

41The ‘Principle of Noncyclical Behaviour’, [Putnam, 1988], asserts: a system S is in
different ‘maximal states’ {S1, S2, Sn} at different times. This principle will hold true
of all systems that can “see” (are not shielded from electromagnetic and gravitational
signals from) a clock. Since there are natural clocks from which no ordinary Open system
is shielded, all such systems satisfy this principle. (N.B.: It is not assumed that this
principle has the status of a physical law; it is simply assumed that it is in fact true of all
ordinary macroscopic open systems).

42E.g. Perhaps it ‘sees’ the ineffable red of a rose; smells its bouquet etc.
43In [Bishop, 2017], I consider the further implications of the DwP reductio for ‘digital

ontology’ and the Sci-Fi notion, pace [Bostrom, 2003], that we are ‘most likely’ living in
a digitally simulated universe.
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• Explicit computation: cognition as ‘computations on symbols’; GO-
FAI; [physical] symbol systems; functionalism (philosophy of mind);
cognitivism (psychology); language of thought (philosophy; linguis-
tics).

• Implicit computation: cognition as ‘computations on sub-symbols’;
connectionism (sub-symbolic AI; psychology; linguistics); the digital
connectionist theory of mind (philosophy of mind).

• Descriptive computation: neuroscience as ‘computational simula-
tion’; Hodgkin-Huxley mathematical models of neuron action poten-
tials (computational neuroscience; computational psychology).

In contrast, the three arguments outlined in this paper purport to demon-
strate: (i) that computation cannot realise understanding; (ii) that compu-
tation cannot realise mathematical insight and (iii) that computation cannot
realise raw sensation, and hence that computational syntax will never fully
encapsulate human semantics. Furthermore, these a priori arguments per-
tain to all possible computational systems, whether they be driven by ‘Neu-
ral Networks44’, ‘Bayesian Networks’ or a ‘Causal Reasoning’ approach.

Of course, ‘deep understanding’ is not always required to engineer a de-
vice to do x, but when we do attribute agency to machines, or engage in
unconstrained, unfolding interactions with them, ‘deep [human-level] un-
derstanding’ matters. In this context, it is perhaps telling that after initial
quick gains in the average length of interactions with her users, XiaoIce has
been consistently performing no better than, on average, 23 conversational
turns for a number of years now45. Although chatbots like XiaoIce and Tay
will continue to improve, lacking genuine understanding of the bits they so
adroitly manipulate, they will ever remain prey to egregious behaviour of
the sort that finally brought Tay offline in March 2016, with potentially
disastrous brand consequences46.

Techniques such as ‘causal cognition’ - which focuses on mapping and
understanding the cognitive processes that are involved in perceiving and
reasoning about cause-effect relations - whilst undoubtedly constituting a
huge advance in the mathematization of causation will, on its own, move us

44Including ‘Whole Brain Emulation’ and, a fortiori, Henry Markram’s ‘Whole Brain
Simulation’, as underpins both the ‘Blue Brain Project’ - a Swiss research initiative that
aimed to create a digital reconstruction of rodent and eventually human brains by reverse-
engineering mammalian brain circuitry - and the concomitant, controversial, EUR 1.019
billion flagship European ‘Human Brain Project’ [Fan and Markram, 2019].

45Although it is true to say than many human-human conversations don’t even last this
long - a brief exchange with the person at the till in a supermarket - in principle, with
sufficient desire and shared interests, human conversations can be delightfully open ended.

46Cf. Tay’s association with ‘racist’ tweets or Apple’s association with ‘allegations of
gender bias’ in assessing applications for its credit card https://www.bbc.co.uk/news/

business-50432634.
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no nearer to solving foundational issues in AI pertaining to teleology and
meaning. Whilst causal cognition will undoubtedly be helpful in engineer-
ing specific solutions to particular human specified tasks, lacking human
understanding, the dream of creating an AGI remains as far away as ever.
Without genuine understanding, the ability to seamlessly transfer relevant
knowledge from one domain to another will remain allusive. Furthermore,
lacking phenomenal sensation (in which to both ground meaning and de-
sire), even a system with a ’complete explanatory model’ (allowing it to
accurately predict future states) would still lack intentional pull, with which
to drive genuinely autonomous teleological behaviour47.

No matter how sophisticated the computation is, how fast the CPU
is or how great the storage of the computing machine is, there remains
an unbridgeable gap (a ‘humanity gap’) between the engineered problem
solving ability of machine and the general problem solving ability of man48.
As a source close to the autonomous driving company Waymo49 recently
observed (in the context of autonomous vehicles):

“There are times when it seems autonomy is around the corner and the
vehicle can go for a day without a human driver intervening ... other days
reality sets in because the edge cases are endless ...” (The Information:
28th August, 2018).

47Cf. Raymond Tallis, How On Earth Can We Be Free? https://philosophynow.org/

issues/110/How_On_Earth_Can_We_Be_Free.
48Within cognitive science there is an exciting new direction broadly defined by the so-

called 4Es: the Embodied, Enactive, Ecological and Embedded approaches to cognition
(cf. [Thompson, 2007]); together, these offer an alternative approach to meaning, grounded
in the body and environment, but at the cost of fundamentally moving away from the
computationalist’s vision of the multiple realisability [in silico] of cognitive states.

49An American autonomous driving technology development company; a subsidiary of
Alphabet Inc, the parent company of Google.
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Gödel’s first incompleteness theorem and Turing machines, CLE e-
Prints:, 7, 3, 2007.

Thompson, E., Mind In Life, Harvard University Press, Cambridge, Mass,
2007.

Turing, A., On computable numbers, with an application to the entschei-
dungsproblem, Proceedings of the London Mathematical Society, 2 (42),
23–65, lecture delivered to the London Mathematical Society, November
1936, 1937.

38



Turing, A., Computing machinery and intelligence, Mind, 59, 433–460, 1950.

Vinyals, O., I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. .
Chung, and J. Oh, Grandmaster level in StarCraft II using multi-agent
reinforcement learning, pp. 1–5, 2019.

Warwick, K., March of the Machines, Random House, London, 1997.

Warwick, K., Alien encounters, in Views into the Chinese Room: New Es-
says on Searle and Artificial Intelligence, edited by J. Preston and J. M.
Bishop, pp. 308–318, Oxford University Press, Oxford, UK, chapter 16,
2002.

Zhou, L., J. Gao, D. Li, and H. Shum, The design and implementation of
xiaoice, an empathetic social chatbot, preprint, 2018.

39


	1 Making a mind
	2 Neural Computing
	2.1 The McCulloch/Pitts (MCP) model

	3 Embeddings in Euclidean space
	3.1 Autoencoders, Variational Autoencoders and Generative Adversarial Networks
	3.1.1 Autoencoder Networks
	3.1.2 Variational Autoencoder Networks
	3.1.3 Generative Adversarial Networks


	4 Problem solving using Artificial Neural Networks
	4.1 On cats, classifiers and grandmothers

	5 AI doesn't understand
	5.1 Microsoft's XiaoIce chatbot
	5.2 We need to talk about Tay
	5.3 Causal cognition and `Strong AI'
	5.3.1 A `mini' Turing test


	6 The Chinese room
	7 Gödelian arguments on computation and understanding
	7.1 The basic Penrose' argument

	8 Consciousness, computation and panpsychism
	8.1 The Dancing with Pixies (DwP) reductio ad absurdum

	9 Conclusion

