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1 Introduction

Economic dynamics has been an important theme in the theoretical pursuits right from
the classical economists. Attempts to incorporate dynamic phenomena, in particular,
sustained fluctuations into economic theory began getting prominent around the turn of
the twentieth century. The corpus of economic theory prevailing then was predominantly
static and tied to the notion of equilibrium. These attempts arguably culminated in the
birth of modern macroeconomics, in particular business cycle theory, monetary theory,
theory of economic policy and growth theory. Developments to this end saw a major surge
in theoretical innovations, particularly those in mathematical applications, especially in
the 1930s and the immediate decades that followed the second world war. Major con-
tributors include Wicksell, Fisher, Frisch, Kalecki, Tinbergen, Keynes, Hayek, Myrdal,
Lindhal, Hawtrey, Aftalion, Schumpeter, Hicks, Harrod, Samuelson, Hansen, Leontief,
Solow and Goodwin, among others.

If we focus our attention to business cycle theory, it is perhaps useful to classify
different visions to reconcile dynamic phenomena into static equilibrium theory as two
types: exogenous and endogenous theories. The exogenous view relied on factors outside
the system that disturb an economy which is in equilibrium or steady state as the major
driver of fluctuations. In this view, studying business cycles translates to understanding
how positive or negative stochastic shocks to a variable, for example technology, translates
to output or employment fluctuations. This view has been quite influential in the empirical
and policy front till today in orthodox macroeconomic theory in the form of impulse
response investigations.

The endogenous tradition in cycle theories, on the other hand, focus on the structure
of relationships between different economic variables within the capitalistic economic sys-
tems. There are many different strands under this broad view. Overall, the nature of
relationships between economic variables are such that they make the system prone to
sustained fluctuations, even if they are insulated from the disturbances. Exogenous shocks
may very well have an impact in the endogenous view, however, they play a subordinate
role at best. They are not central to explaining the persistent cyclical tendencies of the
economic system. The unifying theme is that the source of these fluctuations are from
within the system, which does not have any self-regulating mechanisms to bring itself
back to a stable equilibrium or continue to evolve without cycles.

In the development of endogenous cycle theories in the mathematical mode, the pres-
ence of non-linear relationships between different variables proved to be a crucial ingredi-
ent. Consequently, formalisms from the theory of non-linear oscillations (in the formative
years) and non-linear dynamical systems theory (in the later years) were utilized for build-
ing mathematical models. They demonstrate different long and short-term properties of
the system and their capacity to oscillate by resorting to the application of different exis-
tence theorems. In particular, Poincaré–Bendixson theorem and Levinson-Smith theorem
were widely used to demonstrate persistent fluctuations in the form of limit cycles.1 In
addition to the existence of limit cycles, questions concerning the number of such limit
cycles are also important. If more than one such attractor is present, it is always possible
for an economy to head towards one of the undesirable attractors. In such cases, there
may a need to steer it away from these basins with the aid of policy. From an algorith-
mic perspective, whether these mathematical objects (i.e., limit cycles) that are proved
to exist and their properties (e.g., their uniqueness), are computable is also a relevant

1See Ragupathy and Velupillai (2012).
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question.
Stefano Zambelli has been a deep scholar in the endogenous business cycle tradition,

especially in studying them via careful numerical approximations and simulations. To-
gether with Vela Velupillai, he has also advanced a computable approach to studying
economic dynamics. We both have been fortunate enough to learn these issues from him
and later work with him on several aspects within this broad research programme.

In this paper, we examine some of the uniqueness theorems employed in business cycle
theories. We confine our attention to the Non-linear, Endogenous theories of Business
cycle (NETBC), in particular, to the pioneering models of Goodwin, Kaldor, Hicks and
their variations. We focus on the uniqueness proofs concerning the attractors (limit cycles)
in these models. Section 2 provides a survey of different uniqueness theorems that were
used in Kaldor’s trade cycle model. In Section 3 Goodwin’s non-linear cycle model is
considered and we apply a sufficiency theorem for the non-linear accelerator model, with
just one non-linearity. We point out the connection that this theorem has with Goodwin’s
own contribution. Section 4 addresses the issues concerning the algorithmic decidability
of properties of attractors and uniqueness in particular. To this end, we use the framework
of computable analysis that provides one way to pose decidability questions for continuous
time models.

2 Uniqueness proofs in NETBC

In the planar models of NETBC, the qualitative nature of the attractors that underpin
these theories is fairly obvious, viz, limit cycles2. Important pioneering models in this tra-
dition are Goodwin (1951), Kaldor (1940), Hicks (1950), Lundberg (1937). These models
were broadly in the Keynesian tradition. Their unifying thread was the presence of non-
linearities in how different economic variables were related. For example: relationship
between income, savings and investment; presence of limits to investment and growth due
to natural economic constraints such as full employment. This non-linearity played a cru-
cial role in explaining the observed, sustained fluctuations in aggregate variables such as
output and employment. Mathematically, what these economic theories sought to explain
(viz., sustained fluctuations of aggregate economic variables over time) were translated to
demonstrating the presence of periodic solutions at a local or global level3. These theories
were formulated in terms of models using differential or difference equations or dynamical
systems. The early models that were formulated in continuous time were mostly reduced
to one or the other special case of the Liénard equation4 – van der Pol equation (in the
case of Kaldor’s model) or the Rayleigh equation Goodwin (1951)), which were known
to possess stable periodic solutions. Later models were formulated in terms of dynamical
systems and the attention shifted to demonstrating the existence of sustained oscillations
by means of existence proofs.Theorems such as Poincaré- Bendixson theorem were used
to establish the necessary and sufficient conditions for the presence of limit cycles.

Compared to the use of existence proofs in NETBC, studies providing results concern-

2There is also the case of ‘centers’, which is associated with the growth cycle model of Goodwin (1967)
3However, this may not be applicable in the case of Lundberg(1937).
4Liénard equation is written as

ẍ+ f ′(x)ẋ+ g(x) = 0
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ing the number of possible attractors have been relatively few. The proof of existence and
uniqueness was established in some of the early models models by invoking the Levinson-
Smith theorem. While Poincaré- Bendixson guarantees the existence of at least one limit
cycle for planar dynamical systems, the Levinson and Smith theorem establishes the
sufficient conditions under which a Liénard equation (a special case of a second-order dif-
ferential equation) can have a unique isolated periodic solution(limit cycle). There are a
couple of observations that may be relevant here. First, uniqueness theorems that are used
often provide only sufficient conditions and not the necessary and sufficient conditions for
the presence of a unique limit cycle. Presupposing that a cycle already exists for a given
system, these theorems provide the conditions for such a cycle to be unique. Therefore,
proof of existence is provided first and then these sufficiency conditions are provided for
the strip in which the limit cycle exists. Secondly, it is relatively easier to provide suf-
ficient conditions, compared to proving the existence of a limit cycle. The more general
mathematical problem concerning the upper bound on the number of limit cycles for a
planar polynomial vector field (as a function of the degree of the polynomial) concerns
the second part of Hilbert’s 16th problem. This problem remains unresolved till today.
Consequently, a ‘complete’ characterization of the nature and number of attractors, even
for Liénard equation (which is a special case of the planar polynomial vector fields), is
still beyond reach.

2.1 Uniqueness of limit cycle - Kaldor’s Model

In the early mathematical models of NETBC, the proof of uniqueness of the limit cycle
in the planar models has involved reducing the dynamic model to a generalized Liénard
equation and invoking the Levinson-Smith theorem, which provides sufficient conditions
for the existence and uniqueness of limit cycles. Depending on the way in which one
approximates the economic assumptions into a mathematical model, the number of limit
cycles can vary. Therefore, any categorical statement regarding the presence of unique
limit cycle must be evaluated in the light of the approximation involved.
We provide a survey of the studies that employ uniqueness theorems in NETBC. We
restrict our attention only to analytical proofs for establishing uniqueness and therefore we
will not focus on studies which use numerical simulations and other approximate methods.
In case of Kaldor’s model, the issue of the uniqueness of attractors has been taken up
for the different versions of the model by Ichimura (1955), Lorenz (1987) and Galeotti
and Gori (1989) . Earliest application of sufficient conditions to guarantee a unique limit
cycle was by Yasui (1953) who applied Levinson-Smith theorem to his version of Kaldor’s
model. In this case, the model was reduced to a van der Pol type equation, which is a
special case of the Liénard equation.

Theorem 1 (Levinson Smith Theorem) [Gandolfo (2005), p.440]
Consider a two-dimensional differential equation system

ẋ = y − f(x)

ẏ = −g(x)

which is represented as a second-order differential equation,

ẍ+ f ′(x)ẋ+ g(x) = 0

The above equation has a unique periodic solution if the following conditions are satisfied.
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1. f ′(x) and g(x) are C1

2. ∃x1 > 0 and x2 > 0 such that for −x1 < x < x2 : f ′(x) < 0 and ≥ 0 otherwise.

3. xg(x) > 0 ∀x 6= 0

4. lim
x→∞

f(x) = lim
x→∞

G(x) =∞ where f(x) =

∫ x

0

f ′(s)ds and G(x) =

∫ x

0

g(s)ds

5. G(−x1) = G(x2)

Ichimura (1955) discussed the possibility of applying the above theorem to a particular
case of his model, in which he attempted to synthesize the theory of Kaldor, Goodwin and
Hicks. However, he perceptively noted that the symmetry condition (G(−x1) = G(x2))
may not hold for his system and therefore uniqueness of the limit cycle was not certain.
Lorenz (1987) later took up the Kaldor model and explicitly addressed the question of
uniqueness. He observed that Kaldor’s model (as formalised by Chang and Smyth (1971))
does not reduce to a generalized Liénard equation, and therefore Levinson and Smith
theorem cannot be applied. In particular, he argued the assumption concerning symmetry
of G(x) may be too restrictive from an economic point of view. He contended that it is
not possible to apply the above theorem unless one of the following assumptions are made:
Investment is assumed to be independent of capital stock or that changes in capital stock is
entirely determined by savings, which is independent of the level of capital. This is because
in the Kaldor model, as long as one assumes investment function is dependent on both
capital stock and income, the resulting second-order differential equation is not a Liénard
equation. The main argument was that it was not possible to retain all the assumptions
of the original economic model, without making further simplifying assumptions to satisfy
mathematical requirements of the theorems invoked.

In reply to this, Galeotti and Gori (1989) contended that it is possible to make use of
other uniqueness theorems for Kaldor’s trade cycle model and demonstrate the presence of
unique limit cycle. By making convenient assumptions and appropriate transformations,
they show that Kaldor’s system is reducible to a Liénard system.

ẋ = y − F (x)

ẏ = −g(x)
(1)

The existence of a limit cycle is proved by using the theorem by Fillipov and they
provide the sufficiency conditions for uniqueness of the limit cycle for this model through
the following theorem.

Theorem 2 (Zhang Zhi-Fen5) Suppose the system (1) above satisfies the following con-
ditions:

1. There exists a ≥ 0 such that, F1(z) ≤ 0 ≤ F2(z) for 0 ≤ z ≤ a, F1(z) 6≡ F2(z) for
0 < z � 1, F1(z) > 0 for z > a; F ′2(z) ≤ 0 for z ∈ {z > 0|F2(z) < 0}

2. F ′1(z) is non-decreasing for z > a

3. if F1(z) = F2(u) with a < z < u, then F ′1(z) ≥ F ′2(u)

Then the system has at most one limit cycle, which, if exists, must be stable.
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The above theorem is utilized by applying the Fillipov transformation6.
However, in the process of doing so, they overlook the essential message that there is

a tendency among economists to force their economic intuitions to the demands of the
existence-uniqueness theorems.

Goodwin (1951) did not ‘prove’ existence or uniqueness of the limit cycle by invoking
theorems of these kind, instead he demonstrated the presence of single stable limit cycle
(for an S-shaped characteristic) by using geometric methods (Liénard integration). This
was later addressed by Sasakura (1996), pp.1771-73:

In Goodwin’s (1951) model there has been something mysterious to business
cycle theorists, since, in spite of the simple structure, the question: “Does the
model have really a unique stable limit cycle?” could not be solved in general
circumstances. In this paper I gave a correct answer to the question: ‘Yes, as
was expected.’ The model has a unique stable limit cycle in an economically
meaningful region.

His demonstrated the uniqueness of the limit cycle by using the following theorem,
which provides the sufficient conditions.

Theorem 3 Luo Ding-Jun Uniqueness Theorem
For the system

ẋ = y − F (x)

ẏ = −x

if F ′(x)− F (x)/x ≥ 0 (or ≤ 0) for all x 6= 0, and in the strip where the limit cycle
exists the left side of the above formula is not identically zero, then the system has at
most one limit cycle. (Ye et al. (1986), 139-140)

The above theorems comprehensively cover almost all the uniqueness results that were
employed within this tradition.

3 Uniqueness of Limit cycle and Goodwin’s (1951)

model

There has been a fair amount of ambiguity about the number of limit cycles that are
associated with the Goodwin model. On the one hand, Sasakura points out the ‘aca-
demic belief’ that was held about the presence of a unique limit cycle for this model.
Flaschel(2009) also resonates the same belief for his version of Goodwin’s model, but at
the same time makes a puzzling remark7 that there could be multiple limit cycles:

6Fillipov transformation is done as follows:

z1 =
∫ x

0
g(t)dt if x ≥ 0;F1(z1) = F (x)as x ≥ 0

z2 =
∫ x

0
g(t)dt if x ≤ 0;F2(z2) = F (x)as x ≤ 0

zi is the integral curve of g(x) and therefore instead of the trajectory of (1) in the right and left half-
planes, due to the transformation, one deals with the integral curves dz

dy = Fi(z)− y, i = 1, 2. Uniqueness

in this case is established by way of an comparison argument involving F1(z) and F2(z) for z > 0.
7In chapter 3 footnote 75, Flaschel’s remark about uniqueness may be slightly misleading and his

reference to Ye et al. (1986) is inaccurate. It is misleading because the uniqueness theorems discussed in
Ye et al. (1986) deal with ‘sufficiency’ conditions and not ‘necessary’ conditions.
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... We state without proof that a [Goodwin] system such as the one
we depicted earlier will not only have a closed orbit, but will in fact
exhibit just one limit cycle, which will be a globally stable attractor
for all other trajectories of this dynamical system in the above depicted
domain.

For economic purposes, it is, however, not necessary to have a unique
and stable limit cycle under all circumstances. Figure 3.13 shows that
all points close to the boundary of the box as well as points close to the
stationary state of the dynamics cannot lie on the limit cycle, but will be
attracted by one (not necessarily the same) in the interior of the box.
- Flaschel (2009, p. 97–98, emphasis added).

In this section, let us take a closer look at Goodwin’s model in the light of the above
discussion on the uniqueness of limit cycle and hope to clarify some of these ambiguities.

3.1 Goodwin’s Non-linear Model

Let us briefly sketch the business cycle model developed by Goodwin (1951). In this
model, cyclical fluctuations result from the interaction of the dynamic multiplier with a
non-linear accelerator. Let y, α, k̇, β, ε be the income, marginal propensity to consume,
change in capital stock, autonomous consumption and the lag in consumption for the
changes in income, respectively. The multiplier relation can be written as,

y =
1

1− α
(β + k̇ − εẏ)

By introducing a lag between the time at which investment outlays are made and their
realization (θ - the time to build parameter), we have

(1− α)y(t+ θ) + εẏ(t+ θ) = OA(t+ θ) +OI(t+ θ)

where,
OA(t+ θ) = β(t+ θ) + l(t+ θ)

and
OI(t+ θ) ' OD ' ψ(ẏ)

Here OA is the sum of autonomous investment and consumption outlays and OI is the
induced investment ψ(ẏ) (the nonlinear accelerator or the flexible accelerator). This
investment function is assumed to be non-linear.8 We then have

(1− α)y(t+ θ) + εẏ(t+ θ) = OA(t+ θ) + ψ(ẏ(t)) (2)

This we shall call as the Canonical Goodwin Equation. From here, based on the kind of
approximation we would like, we can have different final equations and consequently, the
nature and the number of attractors can vary.

Taking the Canonical Goodwin Equation and approximating the equation through
Taylor-series expansion for the (t + θ) terms and retaining only the first two terms of y

8Goodwin also introduces a lag in investment and decision outlays - the time lag between decisions
on investment and actual investment outlays. However, it is assumed that OI(t+ θ) ' OD(t)
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and ẏ variable9, we have:

εθÿ + [ε+ (1− α)θ]ẏ]− ϕ(ẏ) + (1− α)y = OA(t+ θ) (3)

This is a second-order non-linear difference-differential equation. Goodwin shifts the
time co-ordinate of the autonomous injections by θ units and arrives at,

εθÿ + [ε+ (1− α)θ]ẏ(t)]− ϕ(ẏ) + (1− α)y = OA(t) (4)

The delay term here can be viewed as a periodic forcing to the differential system by
the injection of autonomous investment. This equation corresponds to a Rayleigh-type
equation with external forcing10 and to the best of our knowledge, there is no general result
characterizing the attractors completely or establishing that this system has a unique limit
cycle. As in the case of the forced van der Pol equation, results are known only for some
special cases of the forced Rayleigh type equation. However, Goodwin himself went on to
further approximate this equation by assuming that OA to be constant O∗ and redefined
the variable y in terms of z, representing deviations from the equilibrium value O∗

(1−α) .
The system is assumed to have a cubic characteristic, i.e, the non-linear accelerator is
assumed to be a S-shaped function, with two non-linearities representing the built-in
economic constraints.

εθz̈ + [ε+ (1− α)θ]ż(t)]− ϕ(ż) + (1− α)z = 0 (5)

To this, he adds the requirement that the equilibrium is locally unstable and that

dϕ(0)/dż > ε + (1 − α)θ. By defining the following variables, x =
√

1−α
εθ
z/ż0 and t1 =√

1−α
εθ
t, the above equation can be reduced to a dimension-less form,11, to the following

equation.12

ẍ+ χ(ẋ) + x = 0 (6)

where, χ(ẋ) =
[ε+ (1− α)θ]ż(t)]− ϕ(ż)√

(1− α)εθ

Goodwin states that

Consequently the system oscillates with increasing violence in the central re-
gion, but as it expands into the outer regions, it enters more and more into
an area of positive damping with a growing tendency to attenuation. It is
intuitively clear that it will settle down to such a motion as will just balance
the two tendencies, although proof requires the rigorous methods developed
by Poincaré.
... Perfectly general conditions for the stability of motion are complicated and
difficult to formulate, but what we can say is that any curve of the general
shape of X(ẋ) [or ϕ(ẏ)] will give rise to a single, stable limit cycle.
Goodwin (1951, pp.13-14,emphasis added.)

He uses the graphical integration method of Liénard, a geometric method and not a proof
of existence and uniqueness, to establish the presence of a limit cycle. However, whether

9That is, without taking OA(t+ θ) term into account.
10In this case, constant and periodic.
11Refer Goodwin (1951) pp. 12-13.
12ż0 is any unit to measure velocity.
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there will be ‘single, stable limit cycle’ for more complicated functional forms of non-linear
accelerator is not addressed.

We can rewrite the above system as

ẋ = u−Θ(x)

u̇ = −x
(7)

where,
Θ(x) = στ(x)

σ =
1√

(1− α)εθ

and
τ(x) = [ε+ (1− α)θ]ẋ(t)]− ϕ(ẋ)

Does this system have a unique limit cycle? The answer to that question depends on
the approximation of the non-linear investment function. For example, Matsumoto (2009)
shows that assuming ϕ(ẋ) = vtan−1(x)(an odd function), the system can have single or
multiple limit cycles depending on the values of θ and the local instability condition
ε+ (1− α)θ − v < 0 on Θ(x).

Approximating the non-linear accelerator ϕ(ẋ) = vtan−1(x) by x − 1
3
x3 would have

different result on the number of limit cycles as opposed to taking the higher order terms,
by say the fifth order expression, where τ(x) = x− 5

3
x3+ 2

5
x5, which has two limit cycles.13

For the above Liénard form representation of the Goodwin model, the number of limit
cycles for the system will depend on the degree of Θ function. Therefore, approximations
play a crucial role and it is also necessary to have these approximations correspond to the
actual shape of the investment function and compatible with the economic assumptions.14

Goodwin was aware of this and notes:

Finally, it should be noted that, while I have assumed a particular shape
for ϕ(ẏ), the power of the Liénard construction is shown by the fact that
an equation containing any given curve may be easily integrated. Therefore,
whatever sort of investment function is found actually to hold, that type may
be completely analyzed in its cyclical functioning. If we look closely into this
problem, we find that what is really necessary is to take individual account
of many different industries because, while one industry may still have excess
capacity, another may be short of fixed capital. Therefore, the combined
operation may depend as much on the points at which different industries fire
into investment activity as on the actual shape of the X function for each
industry or any conceivable aggregation of all of them.
-(Goodwin, 1951, p. 17)

Instead of approximations of the investment functions, if one resorts to higher order
approximations around the time lag parameter θ, it would result in multiple limit cycles
as well. Over all, the uniqueness of the limit cycle in Goodwin’s model and its indepen-
dence from initial conditions is not so straightforward.

13For σ = 0.08. Refer Matsumoto (2009) for the details of the approximation.
14For example, Matsumoto notes that the fifth order approximation specified above does not have

asymptotic bounds that correspond to the ceiling and the floor and the same goes for the values of θ
being small or large.
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3.2 Sasakura’s proof

Sasakura (1996) starts his analysis by taking the following equation mentioned in the last
section:

εθŸ + [ε+ (1− α)θ]Ẏ (t)]− ϕ(Ẏ ) + (1− α)Y = β + l (8)

He then replaces it with the following, mathematically equivalent system of the pre-
vious equation:

Ẏ = (1/ε) (I − (1− α)y + β)

İ = (1/θ) (ϕ[ẏ(t)] + l − I)
(9)

Here I = K̇ and income is not in terms of deviations from its equilibrium value, but
its absolute value. By restricting the domain of income and investment values to an
economically meaningful region, he proved the existence of a limit cycle for this region
using the Poincaré- Bendixson theorem. He considers the dimensionless form (eq. 6)

z̈ + ζ ′(z)ż + z = 0 (10)

Let u = ż and v = −z
u̇ = v − ζ(u)

v̇ = −u

and uses a theorem that provides sufficient conditions for uniqueness of the limit cycle
for this system. Since this theorem does not require any assumptions regarding symmetry,
the functional form of the induced investment (or the characteristic) need not be restricted
to be symmetric around the origin. From the economic point of view, the meaning of this
asymmetry is quite clear.

Theorem 1 (Luo Ding-Jun Theorem) For the system

ẋ = y − F (x)

ẏ = −x

if F ′(x)− F (x)/x ≥ 0 (or ≤ 0) for all x 6= 0, and in the strip where the limit cycle
exists the left side of the above formula is not identically zero, then the system has at
most one limit cycle. (Ye et al., 1986, p. 139-140)

The intuitive meaning of the condition is the following: if the marginal propensity to
invest due to an increase in income is less than the average propensity in the strip where
the limit cycle exists, such a cycle will be unique, within that strip.

3.2.1 One Sided Oscillator

Since the approximations and the assumptions that go into defining the shape of the
investment function are crucial in Goodwin’s model, we shall examine alternative con-
siderations regarding the shape of non-linear accelerator. The non-linear accelerator in
Goodwin (1951) is motivated by the fact that aggregate capital accumulation in an econ-
omy cannot go on unhindered forever, since the built-in constraints of the economic system
come in to play at some point. In the multiplier-accelerator mode, this meant that the
operation of the accelerator mechanism (changes in investment as induced by changes in
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income) is restricted during the upswing by having reached the desired level of capital
(which is a function of income) or by hitting full employment of economic resources. In
the downswing, the fact that net investment in fixed capital cannot be lower than the
amount required corresponding to rate(s) of depreciation poses a natural lower bound.
These constraints have traditionally been dubbed as the ceiling and the floor of the eco-
nomic system. This means that there are two economically plausible non-linearities, or
two plausible bends on the either ends of the accelerator if we wish, in the model of the
economy. In Hicks’ model, exogenous, autonomous growth factors are superimposed on to
a disequilibrium model of fluctuations which incorporates both the ceiling and the floor.
Goodwin(1951) model also had two built-in constraints on either side for the accelerator,
therefore, utilizing two non-linearities in order to explain sustained oscillations. In terms
of the mathematical structure, this means that the dimensionless form (eq. 6) of the
reduced master equation has a cubic characteristic.

However, the presence of two bounds is not a necessary condition for showing persis-
tence of cycles in this class of planar models. It was persuasively argued by Goodwin in his
review of Hicks’ book that economic intuition would suggest that either the ceiling (full
employment) or the floor (lower limit on disinvestment, which is zero) would be sufficient
to guarantee the presence of sustained oscillations.15 In terms of the mathematical struc-
ture, this meant that a single non-linearity would be enough to have sustained oscillations,
which until then was not thought to be possible. This was shown to be a mathematically
plausible by Goodwin himself and thus was born the ‘one-sided oscillator’.16

Now, if we approximate the investment function with a piecewise linear function, with
only one non-linearity - either a ceiling or a floor, it is still possible to show the presence
of a limit cycle.17 Let us consider the case where the accelerator becomes inflexible after
having reached a ceiling18:

φ(ẏ) =

{
κẏ if κẏ ≤ k̇U

k̇ if ẏ > κk̇U

Here κ is the accelerator co-efficient and k̇U is the investment level once the system reaches
the ceiling. This can be appropriately modified in case one wants to shift the focus to the
floor and on the downswing. Let us measure income in terms of the deviations from its
equilibrium value and express

τ(ż) =

{
−[κ− (ε+ (1− α)θ)]ż if ż ≤ k̇U/κ

−[k̇U − (ε+ (1− α)θ)]ż if ż > k̇U/κ

15He notes:

Either the “ceiling” or the “floor” will suffice to check and hence perpetuate it. Thus the
boom may die before hitting full employment,but then it will be checked on the down-
swing by the limit on disinvestment. Or again it may, indeed it ordinarily does, start up
again before eliminating the excess capital as a result of autonomous outlays by business or
government. Goodwin (1950, p.319).

16A detailed discussion of this discovery can be found in Velupillai (1998).
17See: Sordi (2006), which focuses on the simulation aspects of the cycle more than the proof of

uniqueness.
18Note that this ceiling, given by desired capital level given the income level, need not necessarily coin-

cide with the full employment ceiling. This ceiling can come into effect even before the full employment
ceiling is reached.
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When we substitute this and following the time translations x =
√

1−α
εθ
z/ż0 and t1 =√

1−α
εθ
t, we arrive at the eq. 5 and reduce it to the dimensionless19 form, the characteristic

of which is as follows:

ẍ+ ζ(ẋ) + x = 0

where,

ζ(ż) =
τ(ẋż0)

ż0
√

(1− α)εθ

The above dimensionless equation can be rewritten as:

ẋ = −u− ζ(x)

u̇ = x
(12)

The proof of existence is given by a theorem by de Figueiredo, making use of the
Poincaré-Bendixson theorem. (de Figueiredo, 1960, Theorem 1, p. 274).

Theorem 2 de Figueiredo’s Existence Theorem
Consider the system (12) above and let

1. ζ(0) = 0

2. ζ ′(0) exists and is negative and provided there exists a y0 > 0 such that

3. ζ(ẋ) > 0, min(ẋ ≥ y0)

4. 2 > −minζ ′(ẋ) < ζ ′(−ẋ), (ẋ ≤ −y0) except for values of ẋ at which ζ ′(ẋ) undergoes
simple discontinuities.

Under the above conditions, the system has at least one periodic solution.

Given the above conditions for existence, the sufficient conditions for uniqueness of
the periodic orbit are provided by the following theorem:

Theorem 3 de Figueiredo’s Uniqueness Theorem
Suppose the above system satisfies the above conditions for existence and therefore has

a periodic solution. Let there exist a y1 > 0 such that following conditions hold:

1. ζ(y1) = ζ(0) = 0

2. ẋζ(ẋ) < 0, (0 < |ẋ| < y1)

3. ζ(ẋ) > 0, (ẋ > y1)

4. ζ ′(ẋ) ≥ 1
ẋ
ζ(ẋ), ẋ < 0, ẋ > y1 except at values of ẋ where ζ ′(ẋ) undergoes simple dis-

continuities. Then the system has a unique periodic solution, except for translations
in t.

19The piecewise linear characteristic above can be approximated by a function to smoothen the dis-
continuity (Refer Le Corbeiller (1960)) and we have the following second order differential equation.

z̈ − ρ(2− e−ż)ż + z = 0 (11)

Under the instability condition assumed by Goodwin, i.e, κ > ε+ (1− α) and for appropriate parameter
values, we can establish the presence of sustained oscillations.
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A more general theorem for uniqueness is given in de Figueiredo (1970) for a general-
ized Liénard system.

Theorem 4
ẋ = y − F (x)

ẏ = −g(x)

Suppose the above system has a periodic solution. Let xg(x) > 0 for x 6= 0 and the
following conditions hold for g,G and F :

1. f and g are real valued functions which are C1 (Lipschitz condition, which in turn,
guarantees the local uniqueness of the solution of the system)

2. limx→0[g(x)/x] exists and is 6= 0

3. G(x)→∞ as x→ ±∞

4. 2G(x) + y2 − F (x)y 6= 0 ∀(x, y) 6= (0, 0)

If the inequality 2G(x)f(x)−F (x)g(x) ≥ 0 holds on the interval x < 0, x > x0, where
x0 is a positive constant such that xF (x) < 0 on 0 < |x| < x0, F (x) > 0 on x > x0
and G(x0) = G(−x0), then the above system has a unique periodic orbit (except for time
translations along t axis).

Remark 5 For g(x) = x, the above inequality reduces to f(x) − F (x)/x ≥ 0. Note that
this is the same condition that ensures the uniqueness of periodic orbit in Sasakura’s use
of Luo Ding-Jun’s theorem.20

Some remarks here may be pertinent. It is legitimate to wonder whether we are
merely providing yet another sufficiency theorem that is applicable to one of the non-
linear models of business cycle, then may be some justification is warranted. This is not
meant to be an exercise in showing that a certain sufficiency theorem can be applied, by
searching in the compendium of results on sufficiency conditions for unique limit cycles.
The motivation is the contrary - to show that economic intuition ought to come first, as in
the case of Goodwin’s review of Hicks’ book. The economic intuition that the accelerator
was dead during the downswing motivated to Goodwin to come up with the one-sided
oscillator as a mode of clarifying his economic intuition. This was acknowledged by de
Figueiredo and Le Corbeiller. de Figueiredo provided sufficient conditions for the unique

20On Sasakura’s theorem, Sordi (2006) remarks:

“.. a good starting point is the recent contribution by Sasakura (1996), where the existence
of a unique stable limit cycle in Goodwin’s model (for the general case of asymmetric non-
linearity of the investment function) is rigorously proved.”

Although de Figueiredo’s work and Goodwin’s role in the discovery of the one-sided oscillator are men-
tioned, this study overlooks the fact the sufficient conditions in Sasakura’s theorem that she discusses
are in fact the same conditions (see above) that de Figuerido obtained in his thesis, where the one-sided
oscillator played a crucial role. Sasakura also mentions about the one-sided oscillator, but does not dis-
cuss similarities of the sufficient conditions. Moreover, in footnote 3, Sasakura (1996) notes that “one
of the referees suggested another easier method for proving at least the uniqueness and stability parts
as follows: This is to compute the derivative of the Poincaré map and show that (2) is hyperbolic and
orbitally asymptotically stable. Then uniqueness drops out easily too.”. This is the way de Figuerido
proves uniqueness in his 1970 paper.
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limit cycles as early as 1958. The economic interpretation of these sufficient conditions
are exactly the same as the ones which we seem to have been ‘rediscovered’ after almost
40 years! In addition, the aim was also show that a more general, economically grounded,
yet parsimonious explanation for the persistence of the cycle can be provided within the
framework of Goodwin’s non-linear cycle model. If one wishes to prove uniqueness and
existence and so on, it is possible, but that however was not the concern for Goodwin. In
our view, he seemed to be much more interested in unearthing the nature of the cycle.

Proving existence and uniqueness which has preoccupied the theorists of NETBC
seems to have limited the potential that non-linear theories of the cycle hold. This meant
not having to dig deep to uncover the nature of the cycles, their properties, amplitude,
frequency etc., instead merely proving that there are cycles, without providing any ex-
plicit method either to find or analyse them. Goodwin’s disinterest in proving existence
may have been partly because he was concerned with solving or simulating them (geomet-
rically). In contrast, the approximations and simplifications in NETBC often got trapped
to the practice of reducing models to equations with known results on uniqueness.

.. we discuss three different accounts of the original model derived from alter-
native assumptions...
In each case the corresponding dynamics is written in Lienard form, so as to
apply a classical result of A. Fillipov and a more recent theorem of the
Chinese mathematician Zhang Zhi Fen.
. . . Indeed in business-cycle Kaldor’s systems, which can be driven to Lienard
form, several periodic orbits are ruled out: even with an imperfect knowledge
of the initial state, the limit cycle to which the economy will eventually tend
is univocally determined.
Galeotti and Gori (1989, pp. 137-38, emphasis added.)

Rather than exploring ways to generalise the models, for example to higher dimensions,
removing first approximations and so on, the above quote clearly captures the way in which
NETBC modelling activities were directed.

Lorenz repeatedly underlines the ‘ad hoc’ character of these further assump-
tions and their lack of economic meaning . . . it is very important, in our opin-
ion, to underline the fact that the empirical relevance of systems presenting
a certain number of limit cycles cannot be deduced from the ‘realism’ of the
formal conditions, which are known to guarantee such a dynamical morphol-
ogy.
In particular, in the case discussed, if the mathematical hypotheses employed
in proving existence and uniqueness of a limit cycle do not appear economi-
cally justifiable, this cannot imply that models reducible to Lienard(sic) form,
which exhibit a unique periodic orbit, are necessarily ‘unrealistic’.
Galeotti and Gori (1989, p. 137)

Expecting realism of formal conditions is one thing, demanding that the economic
assumptions be modified to suit these requirements is quite another. This practise always
came at the cost of resorting to ad-hoc assumptions which compromised the rich economic
intuitions in these models. Galeotti and Gori assume that either savings or investment
is a function of income level alone and independent of the level of capital stock. But
this does not escape the criticism that was posed by Lorenz that these assumptions are
economically restrictive. These simplifications are done so that the model is reducible to
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the general Liénard form, so that already available theorems can be readily applied. Even
when moving on to higher dimensions and other generalizations, the same temptation to
trail behind mathematical results is likely to prevail, for example, in the use of bifurcation
theory.

4 Algorithmic decidability and uniqueness

We will now to examine some issues related to computation in the context of dynamical
systems and differential equations, which are widely used for modelling economic dynam-
ics. This has implications for computational approaches to studying endogenous economic
dynamics as well. We will largely focus on the methodology of computational dynamics
in the context of continuous time models or flows.

By computational or algorithmic models, we refer to algorithms in the sense in which
they are formally understood in computability theory. This should not be confused with
the use of numerical procedures to solve economic models. The focus of the algorith-
mic approach is therefore on computation, the kind of numbers and processes that are
involved in it. If we choose to retain continuous time models and solve them using nu-
merical methods, we need to understand the scope and limitations of this approach. In
order to pose questions concerning computation, we first need to provide computational
meaning (in the sense in which ‘computability’ was defined by Alan Turing) to continuous
time dynamic models in macroeconomics. By imposing a computability structure, we can
ask whether questions about their long-run dynamic properties can be answered algorith-
mically. Questions concerning the extent of predictability of future events and states of
the economy arise naturally in this context. A subset of questions that are interest include
the following:

1. Is it possible to characterize the attractors of dynamic economic models algorithmi-
cally? Are their domains of attraction computable?

2. Given knowledge of the attractors, can we ‘decide’ whether and when the economy
would reach a given attractor?

3. Can we ‘decide’ the number of attractors algorithmically?

This brings us to the interface between economic theory, computability theory and
dynamical systems. First, almost all the theoretical models in economic dynamics are
defined on real number domains and the functions are real valued functions, whereas
the mathematics of digital computers deals with numbers and functions that are defined
on natural or rational numbers. It is also worth noting that not all real numbers are
computable – when we simulate these models on digital computers, we are in fact dealing
with functions that are defined over natural, rational or algebraic numbers. Second, the
natural data-type of the economic system are themselves rational numbers, at best. Many
results that are valid for dynamics defined over real domains do not easily carry over to
dynamics defined over rational numbers. The functions over these numbers also need to
be equipped with computational content. There are several ways to attempt to bridge
the gap between the world of discrete and that of the continuous.

In order to provide a computational structure to dynamical systems, we appeal to
definitions and results from computable analysis so as to keep the discussion relevant to
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continuous time models that are widely used in economic dynamics. That means, while
talking about computation, we do not impose restrictions such as that the numbers have
to be natural or rational (or computable reals) alone, as in classical computability theory.
Instead, we resort to computation over real numbers and topological spaces using type-2
machines. There are several important properties in dynamics (and also other parts of
economic theory) that are algorithmically undecidable (see Velupillai (2009)). Since we are
interested in endogenous models of economic dynamics and the role of non-linearity, the
emphasis will be on non-linear dynamical systems and the algorithmic undecidabilities
associated with them. We also discuss the decidable fragments of these models and
the assumptions that may be necessary (or sufficient) for them to be decidable. We
do not address questions related to computational complexity here. We provide a brief
introduction to the notion of computability in continuous time models in the following
subsection. We then discuss decidability of attractors, in particular about the decidability
of the number of attractors, which is related to uniqueness.

4.1 Continuous-time models and computability

Many models in endogenous business cycle theories are formulated in continuous time and
we need to endow them with computational content. Only then can the questions that we
raised in the previous section be framed as decision problems concerning economic dynam-
ics. In a decision problem, we are interested in a ‘yes’ or ‘no’ decision using an effective
procedure. Typically, this involves a problem that has many individual sub-problems and
one looks for a general method or procedure to answer each of those problems. For ex-
ample, to decide whether an arbitrary Diophantine equation is solvable is a more general
problem with countably infinite sub-problems. Instead of addressing the solvability of
each specific problem, one looks at whether there is a general method to decide. If there
is no such method available, then each problem or a sub-class of problems might need a
specific decision procedure. Some of these sub-problems might not be decidable as well.

Before proceeding, we need to formally define what we mean by a ‘procedure’, which
leads us to the definition of an algorithm, provided by the work of Turing, Church and
others. The conventional definition of an algorithm in computability theory is over dis-
crete mathematical objects. This can be viewed as a theory for (discrete) computation
on words in some alphabet Σ.21 According to the Church-Turing thesis, the set of intu-
itively computable functions are precisely those that are computable via Turing machines.
Turing machines themselves are discrete dynamical systems in their own right, and the
operation of a Turing machine can be viewed as the evolution of a corresponding dis-
crete dynamical system. Since most models of the economy are formulated in terms of
continuous-time dynamical systems that are often defined over (compact) metric spaces,
we need a way to tackle this problem for continuous time systems.

For continuous time systems, there is a need for a bridge between the structure on
which traditional computability theory is defined (N, which are countable) and continuous
systems (defined on sets in Rn, n = 1, 2.. for example, which are uncountable). Notions
such as enumerable, recursively enumerable, co-recursively enumerable, semi-decidable,
recursive are central to understanding the notion of computability of the functions defined

21In a digital computer, one can think of an alphabet as being composed of {0,1}. But it need not
necessarily be restricted to binary alphabets and can be generalized to more expressive ones. See Collins
(2010).
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over sets.

Definition 6 Recursively Enumerable Set
A set S ⊂ N is said to be recursively enumerable if and only if it can be accepted by a
Turing machine.

Definition 7 Recursive Set
A set S ⊂ N is recursive if and only if both the set S and its complement Sc are recursively
enumerable.

The idea of enumerability deals with listing the elements of a set, while recursive sets
have the property that the problem of membership is solvable for them. There are at
least two possible ways to extend the notion of computation to continuous time dynamic
models. The first is to extend the theory of computability to continuous-time systems.
In classical computability theory, the set S ⊂ N and we need to extend it to subsets of
R and functions defined on these sets. The second is to simulate the continuous time
model using continuous-time analog machines. The former is the subject of computable
analysis or recursive analysis, which extends computability to continuous objects. On
the other hand, the analog computation of continuous time models has a fairly long and
established history, even within economics. See Velupillai (2011) for a detailed account
of this tradition.22

In computable analysis,‘representations’ or naming systems provide a way to link con-
tinuous objects (such as real numbers, continuous functions) to other objects that have an
explicit computational content or meaning. It is instructive to think of this as a code word
that links elements in one domain to those in another. Using these representations, we
can induce computability on sets, and the results of the computation can be interpreted
in light of these representations. This allows to carry out accurate computations with
arbitrary finite precision.

When dealing with real numbers, we require an infinite amount of information to de-
scribe an object exactly. We also need to be able to reliably approximate these infinite
objects in R using finite information, and use them for computation or find other ways
to overcome this problem. It is possible to extend the traditional notion of computability
on words of an alphabet (Σ→ Σ) to sequences of words on an alphabet(Σω → Σω). Since
real numbers can be represented via infinite sequences, computability can now be defined
for mappings between infinite sequences. This is referred to as Type-2 computability or
Type-2 effectivity (see Weihrauch (2000), Ch:2 for more details), where infinite sequences
act as representations for a real number. Note that Type-2 computability is still explicitly
based on Turing computability and it is only as powerful. The infinite amount of compu-
tation associated while dealing with infinite inputs and outputs (sequence of decimals for
example) can be finitely approximated to any desired level of precision in this framework
and can be simulated using digital computers.

22One of the well known theoretical models of a universal continuous-time analogue machine is perhaps
Claude Shannon’s General Purpose Analog Computer (GPAC). The computational power of computable
analysis and GPAC is shown to be equivalent, at least in the case of real computable functions over
compact domains (Bournez et al. (2007)). However, there seems to be no explicit agreement on the
class of computable functions via different models of analog machines, as opposed to the case of digital
computation, where we have the Church-Turing thesis.

17



These representations can be extended to topological spaces as well (Weihrauch (2000),
Brattka and Weihrauch (1999)), and concepts such as effective or computable topological
spaces, admissible representations and names, computability over real numbers, com-
putability over closed, open and compact sets, can be appropriately defined (Chapters
2-5, Weihrauch (2000)). This approach relies heavily on the nexus between continuity
and computability of functions. Please refer to the appendix for some basic definitions
concerning computable analysis that are utilised in this paper.

Definition 8 1. A sequence {rn} of rational numbers is called a ρ-name of a real
number x if there are three functions a, b and c from N→ N such that for all n ∈ N,
rn = (1)a(n) b(n)

c(n)+1
and |rn − x| 12n

2. A double sequence {rn,k}n,k∈N of rational numbers is called a ρ-name for a sequence
{xn}n∈N of real numbers if there are three computable functions a, b, c from N2 → N
such that, for all k, n ∈ N , rn,k = (1)a(k,n) b(k,n)

c(k,n)+1
and

|rn,k − xn| 12k

3. A real number x (a sequence {xn}n∈N of real numbers) is called computable if it
has a computable ρ-name, i.e. there is a Type-2 machine that computes the ρ-name
without any input.

Definition 9 Computable Functions
Let A,B be sets, where ρ-names can be defined for elements of A and B. A function
f : A→ B is computable if there is a Type-2 machine such that on any ρ-name of x ∈ A,
the machine computes as output a ρ-name of f(x) ∈ B.

Definition 10 1. An open set E ⊆ Rm is called recursively enumerable (r.e. for
short) open if there are computable sequences {an} and {rn}, an ∈ Qm and rn ∈ Q,
such that
E =

⋃∞
n=0B(an, rn).

2. A closed subset K ⊆ Rm is called r.e. closed if there exist computable sequences
{bn} and {sn}, bn ∈ Qm and sn ∈ Q, such that {B(bn, sn)}n∈N lists all rational open
balls intersecting K.

3. An open set E ⊆ R is called computable (or recursive) if E is r.e. open and its
complement Ec is r.e. closed. Similarly, a closed set K ⊆ Rmis called computable
(or recursive) if K is r.e. closed and its complement Kc is r.e. open.

4. A compact set M ⊆ Rmis called computable if it is computable as a closed set and,
in addition, there is a rational number b such that ‖ x ‖≤ b∀x ∈M .

4.2 Attractors of dynamic economic models and computability

Having extended the notion of computability to real numbers and topological spaces via
representations, we can now turn to dynamic economic models formulated in these spaces.
It should be remembered that these extensions do not enable us to compute more than
what is computable by a Turing machine. This should not be interpreted as advocating
or dismissing the use of continuous time economic models. Rather, we are interested
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in exploring what properties can be declared computable in this class of economic mod-
els. In macroeconomic dynamics, given certain assumptions regarding the relationships
between different economic variables, we are interested in exploring and characterizing
certain long term properties of an economic system such as steady state paths, equilib-
rium points, limit cycles, periodic or chaotic attractors and their stability properties. If
more than one attractor is possible, then we need understand the conditions under which
the system tends to one or the other, i.e, their respective domains of attraction. This
can be viewed as the characterization of the ω limit set associated with a given dynamic
economic model. In the case of endogenous economic dynamics, the focus will be on the
algorithmic characterization of equilibrium points and periodic attractors, as has been
the major focus of this tradition.

In the context of aggregate economic dynamics, we may ask: given a representation
of an economy as a (non-linear) dynamical system, can we algorithmically characterize
features concerning the periodic attractors. It turns out that many long-run properties
associated with these models are, in general, undecidable. Therefore, exhaustive algorith-
mic classification of attractors is generally not possible. Since this is not a big surprise
for the case of continuous time models, we focus on a class for which these properties are
known to be decidable. Fortunately, the major class of economic models of endogenous
dynamics – which happen to be planar systems – do seem to have important properties
that are algorithmically decidable under certain stability conditions. In non-linear mod-
els, Poincaré-Bendixson theorem helps to classify the attractors on the plane. In higher
dimensions, the attractors can be highly complicated and we do not have general results
for classifying them as we do on the plane. Some formal definitions concerning dynamical
systems and related notions are provided in the appendix.

Definition 11 Dynamical System
A dynamical system describes the evolution of points on a state space over time. Let X is
an open subset of Rn. A dynamical system on X is a C1 function

φ : R×X → X

, where φt(x) = φ(t, x) and φt satisfies the following conditions:

1. φ0(x) = x for all x ∈ X

2. φt ◦ φs(x) = φt+s(x) for all s, t ∈ R (in case of discrete time systems s, t ∈ N) and
x ∈ X.

The evolution rule φ is a map (for discrete-time system) or can be written as a differential
equation (for a continuous-time, C1 system).

Definition 12 ω limit set
Let φ(t, x) be the flow of the above dynamical system and z be a point on this trajectory. z
is called a ω limit point of the trajectory of the dynamical system if there exists a sequence
tn →∞ such that limn→∞φ(tn, x) = z. The ω limit set of x ,ω(x), is the set of all ω-limit
points z ∈ X

Definition 13 Invariant Set
A set L ⊂ Rn is called an invariant set if φ(t, x) ∈ L, for all x ∈ L and t→∞.
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Definition 14 Attracting Set
The closed invariant set L is called an attracting set of the flow φ(t, x) if ∃ some
neighbourhood V of L, such that, ∀x ∈ V and ∀t ≥ 0, φ(t, x) ∈ V and φ(t, x) → L as
t→∞

Definition 15 Domain of Attraction Domain of attraction of the attracting set L of
φ(t, x) is defined as,

ΘL =
⋃
t≤0

φt(V )

the union of all neighbourhoods V of the attracting set, for which ∀x ∈ V and ∀t ≥
0, φ(t, x) ∈ V and φ(t, x)→ L as t→∞

For now, let us assume that we know the qualitative properties of the possible at-
tractors for the economic model. This is what is usually done when one invokes the
Poincaré-Bendixson theorem to prove the existence of limit cycles. Computability and
decidability questions about the ω-limit set can be analysed in different ways. One is to
compute the attracting set - such as fixed points and limit cycles, explicitly. The second
is to algorithmically decide whether a trajectory belongs to the domain of attraction of a
given attractor. There is also the issue of explicitly computing the domain(s) of attraction
for members of the ω-limit set.

When we ask such questions about attractors, we are essentially asking whether the
set is recursive. By providing a computable structure, we endow the set with the property
of recursive enumerability. That is, there is a rule or an algorithm or a partial recursive
function to list the successive members of this set. In order for this set to be decidable,
we require an algorithm that will decide whether a given element belongs to the set or
not in finite time. It is intuitive that all recursive sets are recursively enumerable, but the
converse is not true. By establishing a correspondence between the economy formulated
as a dynamical system and a Turing machine, we can study the dynamic trajectories of
an economy via the evolution of a Turing machine.

4.3 Decidability of attractors in planar models

Planar, non-linear models form an important class of models in the tradition of endogenous
business cycle theory. What is the status of these models when it comes for algorithmic
decidability and computability of attractors? Although several of their properties are
undecidable, there are some decidable fragments. Graça and Zhong (2011) conclude that
attractors and their basins of attractions are semi-computable if we assume that the system
is stable. They work within the framework of computable analysis and type-2 machines.

Definition 16 Semi-Computable Functions
A function ψ : A → O(Rm), (where O(Rm) = {O|O ⊆ Rm is open in the standard
topology} is called semi-computable if there is a Type-2 machine such that on any ρ-
name of x ∈ A, the machine computes as output two sequences {an} and {rn}, an ∈ Qm

and rn ∈ Q, such that ψ(x) =
⋃∞
n=0B(an, rn).

Definition 17 Type-2 Machine [Weihrauch(2000), p.15]
Let Σ∗ be the set of finite words over some arbitrary finite alphabet Σ. Similarly, let Σω be
the set of infinite sequence of symbols from some arbitrary finite alphabet Σ, which has at
least two elements. A Type-2 Machine M is a Turing machine with k input tapes together

20



with a type specification (Y1, Y2....Yk, Y0) with Yi ∈ (Σ∗,Σω), giving the type for each input
tape and the output tape.

Since the attractors cannot be computed in general, we need to explore the conditions
under which they become computable. Stability becomes a crucial condition for ensuring
the computability of attractors. They employ the notion of computability on closed, open
and compact sets as outlined earlier, following the work of Brattka and Weihrauch (1999)
and Weihrauch (2000).

Theorem 18 Let x′ = f(x) be a planar dynamical system. Assume that f ∈ C1(R2) and
that the system is structurally stable. Let K ⊆ R2 be a computable compact set and let
Kcycles be the union of all hyperbolic periodic orbits of the system, which is contained in
K. Then, given as input ρ-names of f and K, one can compute a sequence of closed sets
{Kn

cycles}n∈N with the following properties:

1. Kn
cycles ⊆ K for every n ∈ N

2. Kn+1
cycles ⊆ Kn

cycles for every n ∈ N

3. limn→∞K
n
cycles = Kcycles

This means that, under the assumption of structural stability (together with the Lips-
chitz property), if one can supply the ρ names of f and the compact set K as input, there
is an algorithm which can tell, in finite time, whether f has a periodic orbit of the above
dynamical system in the compact set K. Since the periodic orbits are only semi-decidable
in this case, one may need an infinite amount of time, countably calibrated, to conclude
that K does not contain a periodic orbit. The same is true for the equilibrium points of
the above dynamical system. This is a necessary consequence of dealing with a recursively
enumerable, but not recursive set.

4.4 Decidability of the number of attractors

We are now ready to address the issue of algorithmic decidability of the number of attrac-
tors associated with a given planar dynamical system. Deciding whether the attractor
(limit cycle in our case) is unique is a special case of this problem. Since the models
invoking these theorems often assume compactness, we grant these assumptions and ask
whether the number of attractors for a given economy (formulated as a planar dynamical
system) is algorithmically decidable. We can consider a situation that is general enough
by allowing the function to be analytic.

Proposition 19 Consider a non-linear model of an economy, formulated as a planar
dynamical system ẋ = ψ(x) on a compact subset K ⊆ R2. Consider the case where ψ is
described by an analytic function and assume that the system is structurally stable.

1. The possible limit sets (hyperbolic equilibria and hyperbolic limit cycles) are neces-
sarily finite.

2. Given the ρ names of the compact set K ⊆ R2 and the analytic function ψ, the prob-
lem of deciding the number of equilibria and limit cycles is in general undecidable.
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Proof 20 The first part follows from Dulac’s theorem (Perko (2001), pg. 205-6). The
second part follows from Graça and Zhong (2011), theorems 20 & 21.

Thus we note that within the framework of computable analysis, it not possible to
algorithmic decide the number of attractors, in general. The precise number and position
of limit cycles of planar polynomial vector fields is the subject of Hilbert’s 16th problem,
which is yet to be resolved.

5 Conclusion

We examined various uniqueness theorems utilised in the developments that followed
some of the pioneering contributions in the non-linear endogenous business cycle models.
We have argued that there has been a tendency to straightjacket economic models to fit
the mathematical requirements in several cases. We also highlighted some issues con-
cerning the algorithmic decidability of properties of attractors, such as their uniqueness.
This brings us to the question of whether a methodology strongly reliant on existence-
uniqueness-stability aspects which may have their legitimate place in dynamical systems
theory are relevant at all for endogenous economic theories. We believe that an excessive
reliance on existence-uniqueness-stability mode of theorising stunted the possibilities for
exploring the rich avenues that these endogenous theories possessed. Stefano Zambelli’s
work on carefully studying the dynamic possibilities of economies within the framework
of coupled oscillators through numerical simulations shows us a way to overcome some
of these limitations (Zambelli, 2015). It may be entirely possible to devise methods that
are suited for the specificities, nuances of the economic system and their evolution as
a continued transformation of its own structure. Dynamical systems of the sort anal-
ysed earlier have a given structure and one searches for associated attractors and their
properties. The key aspect of economic dynamics is the continual change in structure,
composition/dimension with birth of new products, sectors, technologies and evolving
demand patterns.

Zambelli’s painstaking development of a theory of production, extending the research
of Piero Sraffa in innovative ways, where distribution issues are at the core, has already
broken grounds (Zambelli, 2018a,b). His sustained advocacy of computable economic
dynamics (together with Velupillai), which pays close attention to the actual nature of the
domain of economic quantities, i.e., rational numbers, and algorithms provides promising
avenues for further research. In this Zambelli seems to be in elite, enviable company with
Alan Turing for his philosophy towards studying economic problems. Turing noted (in
the context of morphogenesis) that rigid (classical) mathematical requirements that one
adopts at the initial stages of developing a theory ought to give way to more powerful
computational methods, even if it is at the cost of an all embracing theory:

Most of an organism, most of the time, is developing from one pattern into
another, rather than from homogeneity into a pattern. One would like to be
able to follow this more general process mathematically also. The difficulties
are, however, such that one cannot hope to have any very embracing
theory of such processes, beyond the statement of the equations. It
might be possible, however, to treat a few particular cases in detail
with the aid of a digital computer. This method has the advantage that
it is not so necessary to make simplifying assumptions as it is which doing a
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more theoretical type of analysis. . . . The essential disadvantage of the method
is that one only gets results for particular cases. But this disadvantage is
probably of comparatively little importance. - Turing (1952, pp. 71-72,
emphasis added.)
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