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Abstract 

Use of non-invasive brain stimulation methods (NIBS) has become a common approach to 

study social processing in addition to behavioural, imaging and lesion studies. However, 

research using NIBS to investigate social processing faces challenges. Overcoming these is 

important to allow valid and reliable interpretation of findings in neurotypical cohorts, but 

also to allow us to tailor NIBS protocols to atypical groups with social difficulties. In this 

review, we consider the utility of brain stimulation as a technique to study and modulate 

social processing. We also discuss challenges that face researchers using NIBS to study social 

processing in neurotypical adults with a view to highlighting potential solutions. Finally, we 

discuss additional challenges that face researchers using NIBS to study and modulate social 

processing in atypical groups. These are important to consider given that NIBS protocols are 

rarely tailored to atypical groups before use. Instead, many rely on protocols designed for 

neurotypical adults despite differences in brain function that are likely to impact response to 

NIBS.  
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Introduction 

 Non-invasive brain stimulation (NIBS) refers to a range of techniques including 

transcranial magnetic stimulation (TMS), transcranial electric stimulation (tES) and focused 

ultrasound stimulation (tFUS), used to modulate brain excitability. Use of NIBS has 

increased significantly in recent years. This has enhanced our understanding of cognitive and 

perceptual processes (Miniussi, Paulus & Rossini, 2012; Miniussi & Ruzzoli, 2013; Parkin, 

Ekhtiari & Walsh, 2015; Taylor, 2018), and enabled a new stream of intervention research 

(Rossi, Hallett, Rossini, Pascual-Leone, 2009; Miniussi & Vallar, 2011, Miniussi et al., 2012; 

Perera et al., 2016). Whilst of clear utility, this increasing experimental and applied research 

focus has been accompanied by questions regarding study design and generalisability of 

findings (Parkin et al., 2015). In response, the field of brain stimulation has made efforts to 

strengthen experimental design. For example, several recent articles provide guidance on how 

to conduct well-controlled brain stimulation experiments (transcranial direct current 

stimulation [tDCS] - Woods et al., 2016; Ferrucci, Cortese & Priori, 2015; TMS - Sandrini, 

Umiltà & Rusconi, 2011; TMS-Electroencephalography [TMS-EEG] - Ilmoniemi & Kičić, 

2010; Miniussi & Thut, 2010). Additionally, there is increasing interest in understanding null 

results in NIBS studies and the mechanisms underlying NIBS effects (Thut et al., 2018; de 

Graaf & Sack, 2018). One area of research that has benefitted from the use of brain 

stimulation techniques is social processing. Here, we review examples of the application of 

NIBS in this area of research and outline several key contributions of NIBS research to our 

understanding of social processing and its neural correlates; specifically, face processing, 

mirror responses and self-other processing. Whilst this review is not exhaustive, it highlights 

the utility of NIBS methods to study social processing. 

Addressing more nuanced challenges facing social processing research using NIBS methods 

is important to allow for reliable interpretation of findings in neurotypical cohorts. It also 

allows us to tailor NIBS protocols to atypical groups with social difficulties. Therefore, we 

highlight several methods and techniques that may help to support the use of NIBS in both 

typical and atypical groups. Note, we assume that the reader has a working knowledge of 

commonly used NIBS techniques, but there are several useful reviews for a more detailed 

introduction (Walsh & Cowey, 2000; Walsh & Pascual-Leone, 2003; Wassermann et al., 

2008; Reed & Kadosh, 2018; Parkin et al., 2015). 
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How have NIBS studies contributed to understanding of social processing? 

  

Facial Identity Processing  

One domain where NIBS has been used to explore social perception is the study of 

facial identity processing. Here, work has utilised both TMS and tES to explore this ability 

(e.g. Barbieri, Negrini, Nitsche & Rivolta, 2016; Lafontaine, Théoret, Gosselin, & Lippé, 

2013; Renzi et al., 2013; Romanska, Rezlescu, Susilo, Duchaine & Banissy, 2015). We 

specifically highlight the work elucidating the role of the occipital face area (OFA) in facial 

identity processing as a clear example of how using TMS can extend and support previous 

findings in facial identity research. Whilst beyond the scope of the current review, we also 

acknowledge the extensive body of work using NIBS to investigate processing of facial 

expressions (see Pitcher, 2019; Atkinson & Adolphs, 2011 for reviews in this area). 

 Influential models of face processing suggest the OFA contributes to early visual 

processing of faces (Haxby, Hoffman & Gobbini, 2000; Calder & Young, 2005), with further 

processing relying on a distributed network of brain regions (Rossion, 2014). This model is 

supported by a combination of fMRI, lesion, and animal work (Atkinson & Adolphs, 2011, 

Rossion, 2014), but has been extended and tested through the use of NIBS methods (Pitcher, 

2019; Pitcher, Walsh & Duchaine, 2011; Atkinson & Adolphs, 2011). Work by Pitcher, 

Walsh, Yovel and Duchaine (2007) demonstrated the importance of the right occipital face 

area (rOFA) in processing facial features (see Figure 1). Disruption of face discrimination 

abilities was observed after stimulation to the rOFA when facial features were varied, but not 

when the spacing between features was varied, suggesting a role for the rOFA in featural but 

not holistic face processing (see also Pitcher, Charles, Devlin, Walsh & Duchaine, 2009; 

Solomon-Harris, Mullin & Steeves, 2013). Furthermore, using double-pulse TMS (two single 

pulses of TMS applied close together in time), the authors demonstrated the time course of 

rOFA involvement. Specifically, rOFA TMS reduced face discrimination accuracy only when 

delivered 60 and 100ms after stimulus onset. Ambrus, Windel, Burton and Kovács (2017a) 

extended these findings using TMS to explore the role of the rOFA in recognising different 

images of the same identity (see also Ambrus, Dotzer, Schweinberger, Kovács, 2017b).  

 Collectively, these findings validate and extend models of face processing implicating 

the OFA in early face processing (Haxby et al., 2000; Calder &Young, 2005). The work 
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builds on fMRI studies by demonstrating a causal relationship between OFA activity and face 

processing (Rossion, 2014). It also supports findings from lesion studies that disruption to the 

OFA can impair face processing, whilst overcoming limitations of such studies (such as non-

localised lesions making it difficult to infer site-specific effects, or cortical reorganisation 

following trauma limiting generalisability to a healthy brain). This work also builds on fMRI 

and lesion studies by demonstrating the time course of OFA involvement in face processing. 

Finally, the work demonstrates task, site and temporal specificity of brain stimulation effects. 

It is clear therefore, that the use of NIBS has provided an important contribution to our 

understanding of the role of the OFA in face processing. 

[INSERT FIGURE 1 HERE] 

Mirror Responses 

 In the action domain, mirror neurons fire both when performing an action, and when 

observing another agent performing the same, or a similar, action (Gallese, Fadiga, Fogassi & 

Rizzolatti, 1996). It has been suggested that this ability to map observed movements onto the 

observer’s own motor representations may assist in understanding another’s actions 

(Rizzolatti & Sinigaglia, 2010), although a re-analysis of available data suggests mirror 

neurons instead respond to socially contingent actions (e.g., imitation; Cook, Bird, Catmur, 

Press, & Heyes, 2014), with a potential role in action perception (Thompson, Bird & Catmur, 

2019).  

 Research into mirror responses provides another example where NIBS studies have 

complemented animal, imaging and lesion studies to further understanding of the neural basis 

of social processing (Keysers, Paracampo & Gazzola, 2018). Research in non-human 

primates identified mirror neurons in area F5 (homologue of ventral premotor cortex in 

humans) and inferior parietal regions (Casile, 2013). In humans, fMRI revealed increased 

activation in these regions during action observation and execution (Caspers, Zilles, Laird & 

Eickhoff, 2010). In NIBS studies, mirror responses are indexed by measuring muscle 

responses to single-pulse TMS delivered over the primary motor cortex (motor evoked 

potentials; MEPs; see Figure 1). Changes in MEP amplitudes are thought to index motor 

cortex excitability, with larger amplitudes indicative of greater excitability (Fadiga, Fogassi, 

Pavesi, & Rizzolatti, 1995). Strafella and Paus (2000) demonstrated a muscle-specific 

increase in excitability to observation of different actions, coupled with a muscle-specific 

reduction in cortical inhibition and facilitation (indexed by reduced response to short 
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intracortical inhibition and intracortical facilitation, respectively). By demonstrating the 

muscle-specific nature of mirror responses, these findings go beyond what had previously 

been demonstrated using fMRI. Subsequently, extensive NIBS work perturbing different 

brain regions has demonstrated the anatomical specificity and functional role of brain regions 

involved in producing mirror responses (Keysers et al. 2018).  

 NIBS studies have also shed light on connectivity patterns between regions involved 

in mirror responses, and their likely origin. For example, Catmur, Mars, Rushworth and 

Heyes (2011) showed that connectivity between mirror response regions can be altered 

through associative learning. Initially, a conditioning pulse applied to either the dorsal or 

ventral premotor cortex facilitated MEP responses from M1 representations of index and little 

finger muscles after observation of index or little finger actions, respectively. After counter-

mirror training to alter learned associations between observed and executed actions (where 

participants move their index finger in response to observed little finger movements and vice 

versa; Catmur, Walsh & Heyes, 2007), mirror responses were significantly reduced. This 

reduction was amplified following conditioning pulses to the premotor cortex, supporting the 

idea that the mirror system can adapt through associative learning (Cook et al., 2014) and 

demonstrating the role of premotor-M1 connections in such associations. 

 Collectively, these NIBS studies demonstrate the causal role of a group of brain 

regions, and connectivity between these regions, in mirror responses, and lend support to key 

theories such as associative learning accounts of mirror response origin. These studies also 

demonstrate muscle-specific responses to action observation, and hence mirror responses, 

more directly than is possible using neuroimaging. 

Self-other Processing 

 During social interaction it can be important to enhance representation of another 

person and suppress representation of the self (e.g. in order to represent another's beliefs 

when they differ from your own). Conversely, it can also be beneficial to suppress 

representation of another and enhance representation of the self (e.g. to inhibit imitation of 

another). This ability to selectively modulate representations of the self and the other is 

known as self-other control and is thought to play a key role in several social processes 

including empathy, perspective taking and theory of mind (de Guzman, Bird, Banissy & 

Catmur, 2016; Ward & Banissy, 2015). The medial prefrontal cortex (mPFC) and the 

temporoparietal junction (TPJ) have been linked to this process through a body of fMRI work 
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(e.g. Brass, Ruby & Spengler, 2009). The use of NIBS has allowed the causal link between 

the TPJ and self-other control to be established. For example, Costa et al. (2008) and Young 

et al. (2010) both showed that 1 Hz repetitive TMS (rTMS) to the right TPJ (rTPJ; Figure 1) 

disrupts performance on theory of mind tasks.. Similarly, Wang, Callaghan, Gooding-

Williams, McAllister and Kessler (2016) showed that double-pulse TMS to the right posterior 

TPJ also disrupted performance on a perspective-taking task. Furthermore, rTMS delivered at 

a theta frequency (6 Hz) relative to alpha (10 Hz) facilitated embodied perspective taking, 

highlighting the role of theta oscillations in this process (Gooding-Williams et al., 2017). 

Studies have also employed tDCS to investigate the role of the TPJ in self-other 

control. For example, Santiesteban, Banissy, Catmur and Bird (2012) demonstrated that 

anodal tDCS to the rTPJ selectively improved performance on tasks requiring self-other 

control (imitation-inhibition and perspective taking) relative to a task requiring self-

referential processing. No differences in task performance were found between cathodal 

stimulation and sham. This effect of improved self-other control following anodal tDCS to 

the rTPJ was subsequently replicated by Santiesteban, Banissy, Catmur and Bird (2015), who 

also showed a similar pattern of results for left TPJ stimulation (see also Hogeveen et al. 

2014). Collectively, these findings highlight the role of the TPJ in self-other control. 

Additionally, they demonstrate that modulation of social processing can be achieved, and 

replicated, using tDCS methods (see Sellaro, Nitsche & Colzato, 2016, for review on tDCS in 

social processing research).  

 Whilst NIBS research has clearly enhanced understanding of the role of the TPJ, 

further research is needed to understand the role of the mPFC.  It is commonly thought that 

ventral regions of the mPFC are involved in self-referential processing whereas dorsal 

regions are involved in representing others (see van der Meer, Costafreda, Aleman & David, 

2010; Denny, Kober, Wager & Ochsner, 2012, for meta-analyses). However, Nicolle et al. 

(2012) suggest that the mPFC is organised with respect to task-relevance, thus challenging 

prevailing accounts of mPFC organisation (also see Cook, 2014). They argue that ventral 

regions of the mPFC keep track of task-relevant information (e.g. information about the self 

during a self-relevant trial), whereas more dorsal regions of the mPFC keep track of task-

irrelevant information (e.g. information about the self during an other-relevant trial). Use of 

more focal NIBS techniques (such as TMS) is one way to test contrasting accounts of brain 

function in social processing. However, we are generally limited to stimulating areas near the 

cortical surface. Targeting deeper regions often requires higher-intensity stimulation which 
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impacts focality of the electric field. Thus, in order to test accounts regarding the role of 

deeper or less accessible brain structures in social processing (e.g. mPFC), we must first 

overcome several challenges associated with using NIBS in social processing research. 

  

Challenges using NIBS to study social processing 

 Whilst the above examples highlight successes of using NIBS to modulate social 

processing, there are also a number of challenges. The remainder of this paper will discuss 

key challenges facing researchers using NIBS to study social processing in neurotypical and 

atypical populations. This section is not an exhaustive list of limitations, but rather highlights 

several challenges that are particularly problematic.  

Depth of Regions of Interest 

 With most brain stimulation methods, we are only able to target shallow cortical 

regions (Kammer, 1998; Roth, Amir, Levkovitz & Zangen, 2007). This can be problematic 

for many areas of study, but is particularly challenging when investigating social processing 

that relies on networks encompassing subcortical regions. For example, processing of facial 

emotions requires a distributed network including cortical regions such as the ventromedial 

prefrontal cortex and somatosensory cortex; less accessible structures such as the fusiform 

gyrus; and subcortical regions such as the amygdala and insula (Adolphs, 2002; Fairhall & 

Ishai, 2006). If we could reliably target deeper regions, we may be able to further understand 

the role of, and connectivity between, different regions within networks responsible for social 

processing. With TMS, it is possible to stimulate subcortically using alternative coil types to 

the commonly used figure-of-eight coil. However, the increased current spread makes 

approaches like this unsuitable for most studies as it reduces the focality of stimulation. 

Unintended cortical surface stimulation is also a problem with such techniques. Collectively, 

these issues make it difficult to make inferences regarding the function of more specific, 

deeper brain regions (for comparison of induced electric field see Deng, Lisanby & 

Peterchev, 2013; Lu & Ueno, 2017). Therefore, methods that allow focal stimulation of 

deeper regions would be very useful in social processing research.  

 Currently, it may be possible to overcome this issue using an indirect stimulation 

protocol (see Wang et al., 2014 Kim et al., 2018; for examples of network stimulation effects 

in associative and episodic memory). Many studies have shown that the effects of TMS can 

alter activity in non-targeted areas of a network activated during a given task (see Ruff, 
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Driver & Bestmann, 2009, for review). This approach has been used to modulate 

interoceptive processing through direct stimulation of cortical regions implicated in the 

interoception network (dorsolateral prefrontal cortex; DLPFC) that results in indirect 

activation of subcortical regions in the network (anterior insula; Mai, Braun, Probst, Kammer 

& Pollatos, 2019). Similar network effects have been shown in face processing whereby 

stimulating the rOFA alters fusiform face area activity, and stimulating the posterior superior 

temporal sulcus (pSTS) alters amygdala activity (Pitcher et al., 2014, 2017).Thus, it may be 

possible to exploit such effects to modulate activity in less accessible brain areas (i.e. 

targeting cortical sites to indirectly modulate less accessible regions). Whilst useful, this 

potential for indirect effects of NIBS can also make it difficult to interpret regional 

involvement in a given process (Coll, Penton & Hobson, 2017). 

 One thing that several of these studies have in common, is the use of imaging methods 

to verify change in subcortical network activation. Use of imaging methods is important to 

ensure that indirect stimulation protocols are indeed modulating these less accessible regions. 

This may not always be the case when targeting cortical regions that are implicated in several 

networks. The flexible hub theory (Cole et al., 2013) posits that brain areas are involved in 

multiple networks and that brain state will determine whether interaction with one network is 

privileged over another. Regions can flexibly interact with different brain networks 

depending on the nature of a participant’s task. Thus, if a brain region is part of more than 

one functional network (e.g. involved in both perception and memory networks), caution is 

required to ensure that tasks used capture the role of the region in the specific functional 

process of interest. In such cases, confirmation of network effects with neuroimaging would 

permit stronger inferences to be drawn.  

 In addition to indirect effects of NIBS, it may be possible to target deeper regions in 

the future using two emerging techniques. First, low-intensity transcranial focused ultrasound 

stimulation (tFUS) is a form of non-invasive brain stimulation relying on pressure produced 

by ultrasound waves to modulate brain activity (see Tyler, Lani & Hwang, 2018; di Biase, 

Falato & Di Lazzaro, 2019; Darrow, 2019). Importantly, this technique is thought to be able 

to stimulate subcortically whilst preserving spatial focality. This is because the acoustic focus 

(where the acoustic energy is greatest) can be steered towards deep sites whilst keeping 

the size of the stimulated area as small as possible (Folloni et al., 2019; Legon, Bansal, 

Tyshynsky, Ai & Mueller, 2018). Accordingly, this also reduces the degree of unintended 

cortical stimulation (i.e. stimulation of superficial sites when targeting less accessible 
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regions). Thus, tFUS provides a useful alternative to other deep NIBS methods (e.g. deep 

TMS using H- or double-cone coils), which suffer from a depth-focality trade off (Deng et 

al., 2013; Lu & Ueno, 2017). Preliminary data in humans has shown that tFUS can alter 

unilateral thalamic activity (Legon et al., 2018). Additionally, tFUS over the primary 

somatosensory cortex modulates somatosensory evoked potentials and behavioural 

performance on a sensory discrimination task (Legon et al., 2014), thus highlighting the 

potential of tFUS techniques to modulate behaviour in humans. However, tFUS is still in its 

infancy and more research into safety thresholds and mechanisms of action is needed prior to 

use in social processing research (Pasquinelli, Hanson, Siebner, Lee & Thielscher, 2019). 

Once better understood, tFUS may provide a useful tool to modulate deeper regions in social 

brain networks. 

 Transcranial temporal interference stimulation (tTIS; Grossman et al., 2017) may also 

overcome unintended cortical stimulation whilst being able to target less accessible regions. 

This method applies two different high-frequency electrical fields to the brain via surface 

electrodes. Applying current at such high frequencies (in the kHz range) is not thought to 

modulate neural oscillations (Hutcheon & Yarom, 2000). However, at the point where the 

frequencies overlap, an amplitude-modulated field is created. This waveform oscillates at a 

slower frequency – the rate of which is equal to the difference between the frequencies 

generated by the two surface electrode pairs. Depending on surface electrode placement, it 

may be possible for this overlap to occur in deeper brain regions, thus modulating activity of 

deeper areas. Importantly, because the waveforms are not overlapping on the cortical surface, 

activity of more superficial areas is unaffected. This method may therefore be useful for 

modulating deeper areas of social brain networks. tTIS has been shown to modulate focal 

cortical and subcortical regions in rats (Grossman et al., 2017) and feasibility of this 

technique in humans has recently been addressed using computational modelling approaches 

(Rampersad et al., 2019; Grossman, Okun & Boyden, 2018). However, more work is needed 

to understand the mechanisms of action, feasibility and safety of this approach in humans.  

Overlapping and Neighbouring Brain Regions 

 When using NIBS, it can be difficult to dissociate the role of a region of interest in 

task performance from the role of other neighbouring regions.This is due to both network 

activation and current spread to other neighbouring regions. For example, different regions of 

the TPJ are involved in different cortical networks. The anterior TPJ shows connectivity with 
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the ventral attention network (Corbetta & Shulman, 2002) and is implicated in both social 

and non-social processing, whilst the posterior TPJ shows connectivity with the social 

cognition network and is primarily implicated in social processing (Mars et al., 2011; see 

Krall et al., 2015, for meta-analysis). Whilst associated with different processes, these regions 

are topographically close. Thus, targeting just one with NIBS techniques becomes 

challenging. As such, it is important to ensure that when investigating the effects of brain 

stimulation on regions involved in social processing, we do not use tasks that also rely on 

alternative networks that include anatomically close regions. Conversely, it is also possible to 

use control tasks that may differentially activate these alternative networks. For example, 

Santiesteban, Kaur, Bird and Catmur (2017) demonstrated that domain-general attentional 

processes, rather than implicit mentalising, were modulated by rTMS to the rTPJ. By 

investigating both domain-general and domain-specific effects of rTPJ stimulation, the 

authors were able to shed light on rTPJ involvement in social processing. It can be difficult to 

design tasks that allow for this dissociation, but it is essential if we are to understand how 

modulation to an area affects social processing specifically, rather than more general 

processing. 

 It may also be possible to account for anatomical specificity of an effect by 

stimulating the region of interest and other anatomically close control regions. If task 

behaviour is modulated by stimulation to one site but not another nearby site, this would 

provide stronger evidence that modulation of the region of interest, rather than neighbouring 

regions, is driving the effect (subtractive inference, Walsh & Cowey, 2000). Coupling such 

protocols with imaging methods would further enhance our knowledge of anatomical 

specificity. It is also possible to record network activation following plasticity-inducing NIBS 

protocols (e.g. network activation recorded prior to and following a theta-burst TMS 

protocol). Whilst this does not overcome the issue of stimulating overlapping or neighbouring 

regions, it does allow for regional and network changes in activity to be detected.  

  One way to potentially overcome this issue is to exploit state-dependent effects of 

NIBS. Brain stimulation effects are influenced by the state of the brain at the time of 

stimulation (Silvanto, Muggleton, Cowey & Walsh, 2007). For example, in visual perception, 

researchers have been able to selectively influence the behavioural outcomes of brain 

stimulation by altering the brain state at the time of stimulation (e.g. Silvanto, Cattaneo, 

Battelli and Pascual-Leone, 2008; Cattaneo & Silvanto, 2008; Silvanto & Muggleton, 2008). 

Silvanto et al. (2008) showed that priming area V5 of the visual cortex (versus the vertex) 
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with 1Hz inhibitory rTMS resulted in facilitation of motion detection performance when 

receiving online TMS. In contrast, online TMS to area V5 disrupted motion detection 

performance when activity in this area was not suppressed (offline rTMS delivered to vertex 

control site). This study shows that it is possible to change the nature of the effects of 

stimulation by influencing the brain state at the time of stimulation (also see Cattaneo & 

Silvanto, 2008; Silvanto & Muggleton, 2008). Endogenous baseline activity has also been 

shown to partially explain variability in response to TMS (Pasley, Allen & Freeman, 2009; 

for theoretical framework see Silvanto & Cattaneo, 2017). Silvanto and Pascual-Leone 

(2008) describe the potential utility of exploiting state-dependent effects of NIBS in 

perceptual studies to selectively target specific brain networks. It may be possible to apply a 

similar approach to social processing research. In theory, this approach may provide a way to 

selectively activate networks involved in social processing whilst limiting modulation of 

other contiguous networks that may otherwise be influenced by NIBS (see Figure 2).  

[INSERT FIGURE 2 HERE] 

 One example comes from Mazzoni, Jacobs, Venuti, Silvanto and Cattaneo (2017) 

who exploited state-dependent effects of TMS to investigate areas involved in representing 

affective body kinematics (using point light displays).  Working on the premise that single-

pulse TMS facilitates less active/excitable neural populations (Silvanto & Pascual-Leone, 

2008), Mazzoni et al. (2017) used an adaptation paradigm where participants were exposed to 

happy or fearful adapters prior to a judgement task. During the judgement task, participants 

indicated whether a target display was happy, fearful or neutral. Participants were faster to 

respond to adapter-incongruent targets when receiving no TMS, TMS to an active control 

site, or TMS to the pSTS. However, this effect was abolished for fearful displays only when 

receiving TMS to the anterior intraparietal sulcus (aIPS). This suggests that neural 

populations in the aIPS code affective (fearful) kinematic profiles and highlights the utility of 

state-dependent effects of TMS in social processing research (also see Cattaneo, Sandrini & 

Schwarzbach, 2010; Cattaneo et al., 2011; Jacquet & Avenanti, 2015 for state-dependent 

studies of action observation; and Ambrus et al., 2017b, Ambrus, Amado, Krohn & Kovacs, 

2019 for state-dependent studies of face processing). Thus, state manipulations may provide a 

useful method to understand the role of regions/networks in social processing, and to 

overcome limitations associated with stimulation of overlapping/neighbouring regions.      

Use of NIBS in autism and other atypical groups 
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 There is a growing body of work assessing the potential use of NIBS in clinical 

disorders (for reviews see Kim, Pesiridou, & O’Reardon, 2009; Machado et al., 2008; Schulz, 

Gerloff, & Hummel, 2013; Wassermann & Zimmermann, 2012). Several studies have also 

shown promising results using NIBS to modulate social processing in atypical groups (see 

Boggio, Asthana, Costa, Valasek & Osório, 2015, for review). However, the research in this 

area in limited. It is also important to consider that, in addition to the key challenges 

mentioned above, there are several additional challenges facing NIBS studies of social 

processing in atypical groups. These are important to consider given that NIBS protocols are 

rarely tailored to atypical groups. Instead, research in atypical cohorts often relies on 

protocols shown to be effective in neurotypical groups. Below, we discuss challenges facing 

studies of social processing in atypical groups using NIBS. We will use the case of Autism 

Spectrum Disorder (hereafter ‘autism’) as an example throughout.  

Autism is a neurodevelopmental disorder characterised by social difficulties and rigid 

and repetitive behaviours (APA, 2013). In addition to these core symptoms, people with 

autism often exhibit motor control difficulties (Gowen & Hamilton, 2013), and have 

significantly higher rates of neuropsychiatric disorders such as depression and anxiety 

(Hollocks, Lerh, Magiati, Meiser-Stedman & Brugha, 2019). Research investigating ways to 

ameliorate social difficulties associated with autism or co-occurring disorders and traits (e.g. 

social anxiety, alexithymia) is therefore an important area of study for researchers 

investigating social processing and for the autistic community (Pellicano, Dinsmore & 

Charman, 2014).  

Atypical groups may also benefit greatly from social interventions in neurotypical 

participants. For example, many autistic individuals find social situations challenging due to 

difficulties interpreting social cues of others. However, social situations may also be 

challenging due to a failure of neurotypical controls to interpret social cues of their autistic 

peers (Brewer et al., 2016; Edey et al., 2016). Thus, interventions must account for both 

autistic and neurotypical difficulties in order to improve social interactions across these 

cohorts. NIBS techniques may provide a useful tool to understand and ameliorate social 

difficulties in both typical and atypical populations. However, use of such techniques in 

people with autism and other disorders should be approached with caution (Wassermann & 

Lisanby, 2001; Bersani et al., 2013; Kuo, Paulus & Nitsche, 2014; Oberman, Rotenberg & 

Pascual-Leone, 2015).  
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Stimulation protocols in typical and atypical populations 

 Network recruitment & connectivity. Multiple papers highlight high variability in 

response to brain stimulation in neurotypical adults and the need to individualise or tailor 

protocols to achieve maximal gain in both typical and atypical groups (for review see Krause 

& Cohen Kadosh, 2014). However, in practice, many studies investigating social perception 

in atypical groups are reliant on findings from the neuroptyical literature to inform protocols. 

This is problematic since it assumes that what holds in a neurotypical population will directly 

apply to atypical populations (Walsh & Pascual-Leone, 2003).  This is important when 

considering the use of NIBS in atypical groups such as those with autism. Hanson, Hanson, 

Ramsey and Glymour (2013) found that autistic participants showed different connectivity 

patterns during social processing tasks relative to neurotypical controls. This is consistent 

with other findings suggesting general atypical connectivity in autistic cohorts (Assaf et al., 

2010; Rubenstein & Merzenich, 2003). Importantly, this difference was not uniform across 

tasks. Participants with autism showed similar connectivity patterns to neurotypical controls 

when face processing networks were recruited, but not when theory of mind or action 

understanding networks were recruited (Hanson et al., 2013). Collectively, these findings 

highlight different network recruitment and connectivity patterns in participants with autism 

relative to neurotypical controls. NIBS studies investigating social processing in these groups 

should, therefore, take this into account when selecting target sites or when designing 

paradigms to investigate connectivity patterns in participants with autism. Importantly, we 

cannot assume that stimulation to target sites shown to modulate social processing in 

neurotypical adults will modulate social processing in the same way in atypical groups.  

 Neurotransmitters. Atypical inhibition in the brain has been proposed as a common 

candidate endophenotype for a range of disorders (Marín, 2012). In autism, atypical 

GABAergic activity in the brain is observed due to a multitude of factors including reduced 

GABA synthesis and reduced numbers of GABAergic receptors (for reviews see Rubenstein 

& Merzenich, 2003; Blatt & Fatemi, 2011). Atypical inhibition in autism may also results 

from atypical N-methyl-D-aspartate (NMDA) receptor activity (Lee et al., 2015).In line with 

the above, atypical plasticity profiles have been observed across a range of disorders 

including schizophrenia and autism (e.g. Forrest, Parnell & Penzes, 2018; Hall, Trent, 

Thomas, O’Donovan & Owen, 2015; Bourgeron, 2015). These findings are important given 

that several NIBS techniques are thought to work by influencing NMDA and GABAergic 

activity and increasing plasticity in targeted regions (Liebetanz, Nitsche, Tergau & Paulus, 
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2002; Bachtiar, Near, Johansen-Berg & Stagg, 2015; Stagg et al., 2009; Huang, Chen, 

Rothwell & Wen, 2007). Therefore, modulating these systems in the atypical brain may not 

have the same outcome as in a neurotypical brain. Indeed, atypical plasticity following rTMS 

in participants with autism has been observed (Oberman et al., 2010; Oberman et al., 2012). 

Thus, whilst interventions targeting these neurotransmitters in atypical groups may be useful, 

it is important to first tailor such interventions to the intended cohort.  

 One way to achieve this is testing physiological and behavioural responses to NIBS 

techniques in atypical cohorts. This can be done by borrowing protocols from studies 

addressing this in neurotypical controls (Walsh & Cowey, 2000; Jacobson, Koslowsky & 

Lavidor, 2012; Krause & Cohen Kadosh, 2014; Parkin et al., 2015; Reed & Kadosh, 2018). 

Ideally, this should be done prior to attempts to induce long-term changes in atypical groups 

using NIBS. A good example of work in atypical groups comes from Hoy, Arnold, Emonson, 

Daskalakis and Fitzgerald (2014) who show dose-dependent effects of tDCS on working 

memory in participants with schizophrenia.  Such work is important to ensure the safety of 

participants undergoing interventions and to increase the likelihood that participation is 

worthwhile for these groups. NIBS interventions can span months and require regular lab 

visits. Regular visits may be draining for atypical groups for many reasons (e.g. unknown 

social situation, anxiety when using public transport, etc.). Therefore, the time and energy 

cost to the participant must be taken into account when engaging atypical groups in 

interventions. Understanding how NIBS affects these groups, prior to undertaking longer-

term interventions, is one way to address this. Thus, whilst this work does not explicitly relate 

to investigating social processing in atypical groups, it is a necessary precursor.     

 Stimulus properties. Several studies have used NIBS methods to investigate social 

processing in autism (e.g. Enticott et al., 2012, Théoret et al., 2005). For example, Théoret et 

al. (2005) demonstrated a reduced MEP response to observed actions in participants with 

autism relative to neurotypical controls. One explanation for these results may be that 

participants with autism show a reduced mirror response to observed actions. However, this 

reduced response may also be due to the type of stimuli used. Specifically, if stimuli 

presented do not adequately map onto motor representations in the brains of participants with 

autism, this may also present as a reduced MEP response. One reason for this may be that 

participants with autism move differently to neurotypical controls. For example, participants 

with autism have a different kinematic profile when executing intransitive movements 

compared to neurotypical controls (Cook, Blakemore & Press, 2013). Considering such 
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differences when designing stimuli is important to allow stronger inferences to be drawn. In 

the case of action observation, this could simply involve inclusion of movements made by 

autistic and non-autistic individuals, as well as several movements made by the participant 

themselves.     

Understanding NIBS-medication interactions 

 Many cognitive studies using NIBS typically exclude participants taking psychotropic 

medications based on safety criteria from Rossi, Hallett, Rossini, Pascual-Leone and Safety 

of TMS Consensus Group (2009). In neurotypical adults, this is important to reduce noise in 

the data and to ensure participant safety. However, this approach is less straightforward in 

atypical groups. It is common to decide on exclusion based on contraindications to NIBS by 

assessing the cost/benefit ratio of participant involvement in the study. Whilst this may be a 

good approach for therapeutic interventions targeting treatment-resistant disorders, it does 

limit inclusion of participants in research investigating atypical groups. Approximately 60% 

of participants with autism are taking one or more psychotropic medications (Buck et al., 

2014). Therefore, we need to understand safety and efficacy of NIBS in combination with 

these drugs to prevent sampling bias when testing atypical groups. Due to high heterogeneity, 

ensuring that study findings reflect the wider cohort is essential in order to interpret cognitive 

processes in atypical groups.  

This is particularly important when investigating social processing, as people may be 

on medication to ameliorate social deficits. Excluding such participants from studies 

investigating social processing can therefore bias the sample tested. McLaren, Nissim and 

Woods (2018) reviewed the interaction between medications and tDCS effects over M1 in 

neurotypical adults. Among others, interactions between drugs which alter neurotransmitter 

concentrations (e.g. GABA and dopamine) and the effects of tDCS were observed. The 

authors highlight the use of such drugs in treating neuropsychiatric conditions (e.g. anxiety 

and schizophrenia) and therefore, the importance of considering such interactions when 

translating tDCS protocols to atypical cohorts. However, the authors also stress caution when 

applying such findings to an atypical cohort, given differences in brain structure and function 

relative to neurotypical controls as well as potential differences in response to a given drug. 

Support for this cautious approach comes from work by Ajram et al. (2017), who showed that 

participants with autism showed a different neural response to a GABA- and glutamate-acting 

drug compared to neurotypical controls. Thus, it is important to consider the way in which a 
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drug works in an atypical group, as well as potential (differential) NIBS-medication 

interactions.  This will be a challenging line of research requiring data beyond that collected 

in neurotypical controls, and such research is currently in its infancy. 

One way to inform design of such studies is to use existing data from atypical groups 

taking part in clinical trials using NIBS. An increasing number of studies are being conducted 

using NIBS in participants with psychiatric disorders either as a treatment for core symptoms 

or to treat co-occurring disorders (e.g. for treatment of depression in participants with 

Schizophrenia or autism). Many of these participants are also on psychotropic medications, 

and so, whilst not the primary aim of the research, some of these studies also include analyses 

looking at NIBS-drug interactions (e.g. Hoffman et al., 2000).  Using findings from this 

literature, and literature assessing NIBS-drug interactions in neurotypical participants (e.g. 

McLaren et al., 2018; Herwig, 2007; Rumi et al., 2005; Liu, Zhang, Zhang & Li, 2014) may 

help us to begin to identify common interactions and safety limits of NIBS use in an atypical 

brain. Once these are better understood, we can then use these findings to inform the design 

of studies investigating other areas of cognition such as social processing. 

 

Conclusions 

 It is clear that NIBS methods have improved understanding of social processing. 

However, many challenges still face research into social processing in typical and atypical 

groups. Promising techniques (e.g. targeting deeper structures using tFUS) are emerging, and 

it may be possible to exploit existing knowledge of NIBS techniques (e.g. state-dependent 

effects of TMS) to refine methodology. Research into NIBS in typical groups can also be 

used to inform NIBS protocol in atypical groups when combined with advances in 

understanding of brain stimulation effects in different cohorts. Along with growing 

understanding of NIBS mechanisms in typical and atypical cohorts, advances in our 

understanding of social processing have brought behavioural paradigms in the field to a stage 

where they are accessible both conceptually and anatomically to NIBS research.  
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Figure Captions 

Figure 1. Commonly targeted stimulation sites in studies investigating face processing, self-other 

control, and mirror responses. (a) right Occipital Face Area; coordinates taken from Pitcher et al. 

(2007), (b) right Temporoparietal Junction; coordinates taken from Young et al. (2010) , (c) left 

Primary Motor Hand Area; coordinates taken from Maegherman, Nuttall, Devlin & Adank (2019). 

Figure 2. Theoretical approach to exploiting state-dependent effects of NIBS in social processing 

research. Left to right: Neural activation of representations of different facial emotions is initially at a 

baseline level. Activation of neurons coding for a particular facial emotion is then manipulated 

through use of priming. Following subsequent TMS, activity of the primed neurons (i.e. those coding 

for happy faces) may be inhibited compared to baseline, whereas activity of unprimed neurons 

(coding for sad faces) may be facilitated.  This theoretical pattern of results is in line with empirical 

evidence in the visual perception domain whereby TMS facilitates activity of less active neural 

populations (Silvanto et al., 2008).  
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