
On the Number of Closed Factors in a Word

Golnaz Badkobeh1, Gabriele Fici2,?, Zsuzsanna Lipták3

1 Department of Computer Science, University of Sheffield, UK
g.badkobeh@sheffield.ac.uk

2 Dipartimento di Matematica e Informatica, Università di Palermo, Italy
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Abstract. A closed word (a.k.a. periodic-like word or complete first re-
turn) is a word whose longest border does not have internal occurrences,
or, equivalently, whose longest repeated prefix is not right special. We
investigate the structure of closed factors of words. We show that a word
of length n contains at least n+1 distinct closed factors, and characterize
those words having exactly n + 1 closed factors. Furthermore, we show
that a word of length n can contain Θ(n2) many distinct closed factors.
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Introduction

It is known (see for example [8]) that any word w of length n contains at most
n+ 1 palindromic factors. Triggered by this result, several researchers initiated
a study to characterize words that can accommodate a maximal number of
palindromes, called rich (or full) words (see, for example, [2, 10, 3, 4, 12]).

In this paper, we consider the notion of closed word (a.k.a. periodic-like word
or complete first return). A word w is closed if and only if it is empty or has
a factor v 6= w occurring exactly twice in w, as a prefix and as a suffix of w.
We also say in this case that w is a complete return to v. For example, aaa,
ababa, ccabcc are all closed words (they are complete returns to aa, aba and cc,
respectively), while ab and abaabab are not. As shown in Proposition 1, any word
whose exponent is at least two is closed.

The closed factors of a word are its factors that are closed words. In contrast
to the case of palindromic factors, we show that a word of length n contains at
least n + 1 closed factors (Lemma 3). Inspired by this property, we study the
class of words that contain the smallest number of closed factors, and we call
them CR-poor words.

As an example, abca is a CR-poor word, since it has length 4 and exactly 5
closed factors, namely ε, a, b, c and abca, whereas the word ababa is not CR-poor
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since it has length 5 but contains 8 closed factors: ε, a, b, aba, bab, abab, baba
and ababa.

However, there is some relation between rich words and CR-poor words.
Bucci, de Luca and De Luca [3] showed that a palindromic word is rich if and
only if all of its palindromic factors are closed. We show, in Proposition 3, that
if a word w has the property that all of its closed factors are palindromes, then
w is a CR-poor word, and it is also rich. CR-poor words are also connected to
some problems on privileged words (see [11]).

While having only palindromic closed factors is a necessary and sufficient
condition for a binary word to be CR-poor (Theorem 3), we prove that in a
word w over an alphabet Σ of arbitrary cardinality, the set of closed factors and
the set of palindromic factors of w coincide if and only if w is both rich and
CR-poor (Proposition 5).

In Theorem 2, we give a combinatorial characterization of CR-poor words
over an alphabet Σ of cardinality greater than one: A word over Σ is CR-poor if
and only if it does not contain any closed factor that is a complete return to xy,
for x, y different letters in Σ. In other words, CR-poor words are exactly those
words having as their closed factors only complete returns to powers of a single
letter. As a consequence, the language of CR-poor words over Σ is a regular
language. In contrast, the language of closed words is not regular (Proposition
2).

We give some further characterizations of CR-poor words in the case of the
binary alphabet (Theorem 3). One of them is that the binary CR-poor words
are the bitonic words, i.e., the conjugates to words in a∗b∗. We therefore have
that binary CR-poor words form a regular subset of the language of rich words.

Finally, we show that a word of length n can contain Θ(n2) many distinct
closed factors (Theorem 4).

1 Closed Words

A word is a finite sequence of elements from a finite set Σ. We refer to the
elements of Σ as letters and to Σ as the alphabet. The i-th letter of a word w is
denoted by wi. Given a word w = w1w2 · · ·wn, with wi ∈ Σ for 1 ≤ i ≤ n, the
nonnegative integer n is the length of w, denoted by |w|. The empty word has
length zero and is denoted by ε. The set of all words over Σ is denoted by Σ∗.
Any subset of Σ∗ is called a language. A language is regular (or rational) if it
can be recognized by a finite state automaton.

A prefix (resp. a suffix ) of a word w is any word u such that w = uz (resp. w =
zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a suffix
of a prefix) of w. The set of prefixes, suffixes and factors of the word w are denoted
by Pref(w), Suff(w) and Fact(w) respectively. A border of a word w is any word
in Pref(w) ∩ Suff(w) different from w. From the definitions, we have that ε is a
prefix, a suffix, a border and a factor of any word. An occurrence of a factor u
in w is a factorization w = vuz. An occurrence of u is internal if both v and z
are non-empty.
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The word w̃ = wnwn−1 · · ·w1 is called the reversal (or mirror image) of w.
A palindrome is a word w such that w̃ = w. In particular, the empty word is
a palindrome. A conjugate of a word w is any word of the form vu such that
uv = w, for some u, v ∈ Σ∗. A conjugate of a word w is also called a rotation of
w.

A period for the word w is a positive integer p, with 0 < p ≤ |w|, such that
wi = wi+p for every i = 1, . . . , |w| − p. Since |w| is always a period for w, we
have that every non-empty word has at least one period. We can unambiguously
define the period of the word w as the smallest of its periods. The exponent of
a word w is the ratio between its length and its smallest period. A power is a
word whose exponent is an integer greater than 1. A word that is not a power
is called primitive

We denote by PAL(w) the set of factors of w that are palindromes. A word
w of length n is rich [10] (or full [2]) if |PAL(w)| = n+ 1, i.e., if it contains the
largest number of palindromes a word of length n can contain.

A language L is called factorial if L = Fact(L), i.e., if L contains all the
factors of its words. A language L is extendible if for every word w ∈ L, there
exist letters a, b ∈ Σ such that awb ∈ L. The language of rich words over a fixed
alphabet Σ is an example of a factorial and extendible language.

We recall the definition of closed word given in [9]:

Definition 1. A word w is closed if and only if it is empty or has a factor
v 6= w occurring exactly twice in w, as a prefix and as a suffix of w.

The word aba is a closed, since its factor a appears in it only as a prefix
and as a suffix. The word abaa, on the contrary, is not closed. Note that for any
letter a ∈ Σ and for any integer n > 0, the word an is closed, an−1 being a factor
occurring only as a prefix and as a suffix in it (this includes the special case of
single letters, for which n = 1 and an−1 = ε).

Remark 1. The notion of closed word is equivalent to that of periodic-like word
[6]. A word w is periodic-like if its longest repeated prefix does not have two
occurrences in w followed by different letters, i.e., if its longest repeated prefix
is not right special.

The notion of closed word is also closely related to the concept of complete
return to a factor, as considered in [10]. A complete return to the factor u in a
word w is any factor of w having exactly two occurrences of u, one as a prefix
and one as a suffix. Hence a non-empty word w is closed if and only if it is a
complete return to one of its factors; such a factor is clearly both the longest
repeated prefix and the longest repeated suffix of w (i.e., the longest border of
w).

Remark 2. Let w be a non-empty word over Σ. The following characterizations
of closed words follow easily from the definition:

1. w has a factor v 6= w occurring exactly twice in w, as a prefix and as a suffix
of w;
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2. the longest repeated prefix (resp. suffix) of w does not have internal occur-
rences in w, i.e., occurs in w only as a prefix and as a suffix;

3. the longest repeated prefix (resp. suffix) of w does not have two occurrences
in w followed (resp. preceded) by different letters;

4. w has a border that does not have internal occurrences in w;

5. the longest border of w does not have internal occurrences in w;

6. w is a complete return to its longest repeated prefix;

7. w is a complete return to its longest border.

For more details on closed words and related results see [6, 3, 9, 5, 7, 1, 13].

We end this section by exhibiting some properties of closed words.

Proposition 1. Any word whose exponent is at least 2 is closed.

Proof. Let w = vnv′ for n ≥ 2, v a primitive word, and v′ a prefix of v such that
the exponent of w is equal to n+ |v′|/n. Then vn−1v′ is a border of w. If vn−1v′

has an internal occurrence in w, then there exists a proper prefix u of v such
that uv = vu, and it is a basic result in Combinatorics on Words that two words
commute if and only if they are powers of the same word, in contradiction with
our hypotheses on u and v. ut

Moreover, it is easy to see that for any rational number x between 1 and 2,
there exists a closed word having exponent x (it is sufficient to take a word over
{a, b} ending with b and with only one other occurrence of b, placed in the first
half of the word).

Proposition 2. Let Σ be an alphabet of cardinality |Σ| ≥ 2. The language of
closed words over Σ is not regular.

Proof. Let L be the language of closed words over Σ and let a, b ∈ Σ be different
letters. Let us assume that L is regular. This implies that also L ∩ a∗b∗a∗ is
regular, since a∗b∗a∗ is a regular language and the intersection of two regular
languages is regular. We claim that L∩ a∗b∗a∗ = {anbman | n,m ≥ 0}, which is
not a regular language, and so we have a contradiction.

Clearly, every word in {anbman | n,m ≥ 0} is closed. Suppose now that w
belongs to a∗b∗a∗. Hence, w = anbmak, for some n,m, k ≥ 0. If n 6= k, say
n < k, then the longest repeated prefix of w is an and it has at least one internal
occurrence in w. By Remark 2, w is not closed. The case n > k is symmetric. ut

Finally, we recall two results from [7].

Lemma 1. [7, Lemma 4] Let w be a non-empty word over Σ. Then there exists
at most one letter x ∈ Σ such that wx is closed.

Lemma 2. [7, Lemma 5] Let w be a closed word. Then wx, x ∈ Σ, is closed if
and only if wx has the same period of w.
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2 Closed Factors

Let w be a word. A factor of w that is a closed word is called a closed factor of
w. The set of closed factors of the word w is denoted by C(w).

Lemma 3. For any word w of length n, one has |C(w)| ≥ n+ 1.

Proof. We show that every position of w is the ending position of an occurrence
of a distinct closed factor of w. Thus w contains at least n non-empty closed
factors, and the claim follows. Indeed, let v be the longest non-empty closed
factor ending in position i, so that wi−|v|+1 · · ·wi = v. Since a is closed for
every a ∈ Σ, such a factor always exists. If v did not occur before in w, then
we are done. Otherwise, let j be the largest position smaller than i such that
wj−|v|+1 · · ·wj = v. Set v′ = wj−|v|+1 · · ·wi and observe that v′ is a closed factor
ending in i, with longest border v. But |v′| > |v|, in contradiction to the choice
of v. ut

Lemma 4. For any words u, v one has |C(u)|+ |C(v)| ≤ |C(uv)|+ 1.

Proof. Clearly, C(u) ⊆ C(uv). In order to prove the statement, it is sufficient
to prove that for any non-empty z in C(v), there exists an f(z) in C(uv) \C(u)
and f is injective. So let z ∈ C(v), uv = w = w1 · · ·wn, and let j be the smallest
integer greater than |u| such that z = wj · · ·wj+|z|−1. If j is the smallest integer
such that z = wj · · ·wj+|z|−1, then set f(z) = z. Otherwise, there is in w a closed
z′ to z ending in position wj+|z|−1. If this is the first occurrence of z′ in w, then
set f(z) = z′, otherwise repeat the construction for z′. Eventually, we will find a
closed factor f(z) = z(k) whose first occurrence in w ends in position wj+|z|−1.

By construction, f has the desired properties. ut

Proposition 3. Let w be a word of length n. If C(w) ⊆ PAL(w), then C(w) =
PAL(w) and |C(w)| = |PAL(w)| = n+ 1. In particular, w is a rich word.

Proof. On the one hand, from Lemma 3, one has |C(w)| ≥ n+ 1. On the other
hand, one has |PAL(w)| ≤ n + 1. Hence, if C(w) ⊆ PAL(w), then it must be
C(w) = PAL(w) and |C(w)| = |PAL(w)| = n+ 1, and so w is a rich word. ut

Bucci et al. [3, Proposition 4.3] showed that a word w is rich if and only if
every closed factor v of w has the property that the longest palindromic prefix (or
suffix) of v is unrepeated in v. Moreover, they proved the following remarkable
result:

Theorem 1 (Bucci et al. [3, Corollary 5.2]). A palindromic word w is rich
if and only if PAL(w) ⊆ C(w).

In Section 4, we will prove that the condition PAL(w) = C(w) characterizes
the CR-poor words over a binary alphabet.
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3 CR-poor Words

By Lemma 3, we have that n+1 is a lower bound on the number of closed factors
of a word of length n. We introduce the following definition:

Definition 2. A word w ∈ Σ∗ is CR-poor if |C(w)| = |w|+ 1. We also set

LΣ = {w ∈ Σ∗ : |C(w)| = |w|+ 1}

the language of CR-poor words over the alphabet Σ.

Remark 3. If |Σ| = 1, then LΣ = Σ∗. So in what follows we will suppose |Σ| ≥ 2.

Note that, for any alphabet Σ, the language LΣ of CR-poor words over Σ is
closed under reversal. Indeed, it follows from the definition that a word w ∈ Σ∗
is closed if and only if its reversal w̃ is closed.

Proposition 4. The language LΣ of CR-poor words over Σ is a factorial lan-
guage.

Proof. We have to prove that for any word CR-poor w and any factor v of w, v
is a CR-poor word. Suppose by contradiction that there exists a CR-poor word
w containing a factor v that is not a CR-poor word, i.e., w ∈ LΣ , w = uvz
and |C(v)| > |v| + 1. By Lemma 4, |C(w)| ≥ |C(u)| + |C(v)| + |C(z)| − 2 >
|u|+ |z|+ |v|+ 1 = |w|+ 1 and therefore w cannot be a CR-poor word. ut

The following technical lemma will be used in the proof of the next theorem.

Lemma 5. Let w be a CR-poor word over the alphabet Σ and x ∈ Σ. The word
wx (resp. xw) is CR-poor if and only if it has a unique suffix (resp. prefix) that
is closed and is not a factor of w.

Proof. We prove the statement for wx, the one for xw will follow by symmetry.
The “if” part is straightforward. For the “only if” part, recall from the proof of
Lemma 3 that there is at least one new closed factor ending in every position,
so in particular wx has at least one suffix that is closed and is not a factor of
w. ut

Remark 4. Suppose that a word w contains as a factor a complete return to
some word u. Then for every factor u′ of u, the word w contains as a factor a
complete return to u′.

We now give a characterization of CR-poor words.

Theorem 2. A word w over Σ is CR-poor if and only if for any two different
letters a, b ∈ Σ, w does not contain any complete return to ab. In other words,

LΣ = Σ∗ \
⋃
a 6=b

Σ∗abΣ∗abΣ∗.
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Proof. Let u be a complete return to ab for a, b ∈ Σ different letters. We claim
that u is not CR-poor. Since by Proposition 4, a CR-poor word cannot contain
a factor that is not CR-poor, once the claim is proved the “only if” part of the
theorem follows. So let u′ be the longest suffix of u that is closed and starts with
the letter b. Such a suffix exists since u contains at least two occurrences of b.
Then u′ is unioccurrent in u, and since u is a closed suffix of itself we have, by
Lemma 5, that u is not CR-poor.

Conversely, suppose that the word w is not CR-poor. Then, analogously as
in the proof of Lemma 3, it follows that there is a position i of w such that there
are at least two different closed factors u and u′ of w that end in position i and
do not occur in w1 · · ·wi−1. If both u and u′ are complete returns to a power of
the letter wi, then one of them must occur in w1 · · ·wi−1, so this situation is not
possible, and we can therefore suppose that there is a factor ending in position i
that is a complete return to a word containing at least two different letters. The
statement then follows from Remark 4. ut

Corollary 1. A word w over Σ is CR-poor if and only if every closed factor of
w is a complete return to a power of a single letter.

Corollary 2. The language LΣ of CR-poor words over Σ is a regular language.

We can now state the following result:

Proposition 5. Let w be a word over Σ. Then C(w) = PAL(w) if and only if
w is rich and CR-poor.

Proof. If C(w) = PAL(w), then |C(w)| = |PAL(w)|, and since |C(w)| ≥ |w|+ 1
(by Lemma 3) and |PAL(w)| ≤ |w| + 1, then it must be |C(w)| = |PAL(w)| =
|w|+ 1, and hence by definition w is rich and CR-poor.

Conversely, suppose that w is rich and CR-poor. Let v ∈ C(w). By Corollary
1, v is a complete return to a power of a single letter, so v is a complete return to
a palindrome. It is known (see [10, Theorem 2.14]) that a word is rich if and only
if all of its factors that are complete returns to a palindrome are palindromes
themselves. Therefore, v is a palindrome, and hence we proved that C(w) ⊆
PAL(w). By Proposition 3, C(w) = PAL(w) and we are done. ut

4 The Case of Binary Words

In this section we fix the alphabet Σ = {a, b}. For simplicity of exposition, we
will denote the language of CR-poor words over {a, b} by L rather than by L{a,b}.
We first recall the definition of bitonic word.

Definition 3. A word w ∈ {a, b}∗ is bitonic if it is a conjugate of a word in
a∗b∗, i.e., if it is of the form aibjak or biajbk for some integers i, j, k ≥ 0.

By Theorem 2, it is easy to see that a binary word is in L if and only if it is
bitonic.
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Lemma 6. Let w be a bitonic word. Then C(w) ⊆ PAL(w).

Proof. Since w is bitonic, a closed factor of w can only be the complete return
to a power of a single letter. So a closed factor u of w is of the form u = an,
u = bn, u = anbman or u = bnambn, for some n,m > 0, and these words are all
palindromes. ut

Thus, by Proposition 3, any bitonic word w of length n > 0 contains exactly
n+ 1 closed factors and so is a CR-poor word. We therefore have the following
characterizations of CR-poor binary words.

Theorem 3. Let w ∈ {a, b}∗. The following are equivalent:

1. w ∈ L;
2. w does not contain any complete return to ab or ba;
3. C(w) ⊆ PAL(w);
4. C(w) = PAL(w);
5. w is a bitonic word.

Notice that the condition C(w) ⊆ PAL(w) does not hold in general for CR-
poor words over alphabets larger than two. As an example, the word abca is CR-
poor but contains a closed factor (abca) that is not a palindrome. In view of The-
orem 1, a natural question would be that of establishing whether a palindrome
w is CR-poor if and only if C(w) = PAL(w), i.e., whether the characterization
in Theorem 3 can be generalized to larger alphabets at least for palindromes.
However, the answer to this question is negative since, for example, the word
w = abcacba is a CR-poor palindrome and contains the non-palindromic closed
factor abca. Note that, coherently with Theorem 1 (and with Proposition 5),
w is not rich. However, in the case of a binary alphabet, we have, by Theorem
3 and Proposition 3, that every CR-poor word is rich. Since by Theorem 2 it
follows that the language LΣ is extendible for any alphabet Σ, the language L
is therefore a factorial and extendible subset of the language of (binary) rich
words.

In the following proposition we exhibit a closed enumerative formula for the
language L.

Proposition 6. For every n > 0, there are exactly n2 − n+ 2 distinct words in
L.

Proof. Each of the n− 1 words of length n > 0 in a+b+ has n distinct rotations,
while for the words an and bn all the rotations coincide. Thus, there are n(n−
1) + 2 bitonic words of length n, and the statement follows from Theorem 3. ut

5 How Many Closed Factors Can a Word Contain?

We showed in Lemma 3 that any word of length n contains at least n+1 distinct
closed factors. But how many closed factors, at most, can a word contain? We
provide an answer in the following theorem.
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Theorem 4. For every n > 4, there exists a word w ∈ {a, b}n with quadratically
many closed factors.

Proof. Let n > 4 be fixed. We construct a word w of length n such that |C(w)| ≥
(k + 1)(k + 2)/2, where k = bn/4c.

Let w = akbkakbkan−4k. Clearly |w| = n. Let vi,j = wi · · ·wj , 1 ≤ i ≤ j ≤ n,
be a factor of w. We claim that for every i = 1, 2, . . . , k − 1, every factor vi,j ,
with 3k − 1 + i ≤ j ≤ 4k, is closed. Indeed, fixed i between 1 and k − 1, the
factor vi,3k−1+i, of length 3k, is equal to ak−i+1bkakbi−1, and therefore it is
closed since it is a complete return to ak−i+1bi−1. Then, for every j such that
3k−1+i ≤ j ≤ 4k, the factor vi,j has the same period of vi,3k−1+i, and therefore
is closed by Lemma 2.

Finally, notice that whenever (i′, j′) is different from (i, j), for i′ and j′ in the
same range of i and j, respectively (that is, 1 ≤ i ≤ k−1 and 3k−1+i ≤ j ≤ 4k),
the factor vi′,j′ is different from the factor vi,j .

Therefore we conclude that w contains at least (k + 1)(k + 2)/2 = Θ(n2)
many different closed factors, and we are done. ut

Since a word of length n contains O(n2) distinct factors, the previous theorem
tells us that there exist words in which almost all factors (asymptotically) are
closed.

One could also give a formula for the precise value of the maximal number of
closed factors in a word of length n, but we think this adds nothing to the general
picture provided by Theorem 4. Moreover, the words realizing the upper bound
do not have a nice characterization, contrarily to the case of words realizing the
lower bound, discussed in the previous sections. However, for completeness, we
report in Table 1 the first values of the sequence of the maximum number of
closed factors for binary words.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

max 2 3 4 6 8 10 12 15 18 21 25 29 33 37 42 47 52 58 64 70

Table 1. The sequence of the maximum number of closed factors in a binary word.

6 Conclusion and Open Problems

This paper is a first attempt to study the set of closed factors of a finite word.
In particular, we investigated the words with the smallest number of closed
factors, which we referred to as CR-poor words. We provided a combinatorial
characterization of these words and exhibited some relations with rich words.

An enumerative formula for rich words is not known, not even in the binary
case. A possible approach to this problem is to separate rich words in subclasses
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to be enumerated separately. Our enumerative formula for binary CR-poor words
given in Proposition 6 could constitute a step towards this direction.

The set of closed factors could be investigated for specific (finite or infinite)
words or classes of words, and could be a tool to derive new combinatorial
properties of words.

Finally, the notion of closed factor has recently found applications in string
algorithms [1], hence a better understanding of the structure of closed factors of
a word could lead to some applications.
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11. J. Peltomäki. Introducing privileged words: Privileged complexity of Sturmian
words. Theoret. Comput. Sci., 500:57–67, 2013.

12. A. Restivo and G. Rosone. Burrows–Wheeler transform and palindromic richness.
Theoretical Computer Science, 410(30):3018–3026, 2009.

13. N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. Available elec-
tronically at http://oeis.org. Sequence A226452: Number of closed binary words
of length n.


