
Tight Upper and Lower Bounds on Suffix Tree Breadth

Golnaz Badkobeha, Pawe l Gawrychowskib, Juha Kärkkäinenc, Simon J.
Puglisic,∗, Bella Zhukovac

aDepartment of Informatics, Goldsmiths University of London, London, United Kingdom
bUniversity of Wroc law, Wroc law, Poland

cHelsinki Institute for Information Technology, Department of Computer Science,
University of Helsinki, Helsinki, Finland

Abstract

The suffix tree — the compacted trie of all the suffixes of a string — is the most
important and widely-used data structure in string processing. We consider a
natural combinatorial question about suffix trees: for a string S of length n,
how many nodes νS(d) can there be at (string) depth d in its suffix tree? We
prove ν(n, d) = maxS∈Σn νS(d) is O((n/d) log(n/d)), and show that this bound
is asymptotically tight, describing strings for which νS(d) is Ω((n/d) log(n/d)).

1. Introduction

The suffix tree, TS , of a string S of n symbols is a compacted trie containing
all the suffixes of S. Since its discovery by Weiner 44 years ago [8] — as an
optimal solution to the longest common substring problem — the suffix tree
has emerged as perhaps the most important abstraction in string processing [1],
and now has dozens of applications, most notably in bioinformatics [7].

Consequently, combinatorial properties of suffix trees are of great interest,
and have been exploited in various ways to obtain faster construction algo-
rithms, succinct representations, and efficient pattern matching and discovery
algorithms.

Our focus in this article is on a natural combinatorial question about suffix
trees: how many nodes νS(d) can there be at (string) depth d in the suffix tree
of a string S? We prove that ν(n, d) = maxS∈Σn νS(d) is O((n/d) log(n/d)),
and show that this bound is asymptotically tight, describing strings for which
νS(d) is Ω((n/d) log(n/d)).

This article is an extension of an earlier paper where a weaker upper bound
of O((n/d) log n) was shown. The stronger upper bound relies on a new result on

∗Corresponding author
Email addresses: g.badkobeh@warwick.ac.uk (Golnaz Badkobeh),

gawry@cs.uni.wroc.pl (Pawe l Gawrychowski), juha.karkkainen@cs.helsinki.fi (Juha
Kärkkäinen), puglisi@cs.helsinki.fi (Simon J. Puglisi), bella.zhukova@helsinki.fi
(Bella Zhukova)

Preprint submitted to Elsevier April 26, 2020

another interesting combinatorial quantity on strings: the sum of irreducible lcp
values in the LCP array [5, 4]. Specifically, we show that the sum of irreducible
values greater than or equal to d is O(n log(n/d)).

In the following section we lay down notation and formally define basic
concepts. Section 3 and Section 4 deal with the upper bound and lower bound
in turn, and we close with a discussion of the results.

2. Preliminaries

Throughout we consider a string S = S[1..n] = S[1]S[2] . . . S[n] of n symbols
drawn from an ordered alphabet Σ of size σ. For i = 1, . . . , n we write S[i..n]
to denote the suffix of S of length n− i+ 1, that is S[i..n] = S[i]S[i+ 1] · · ·S[n].
For convenience we will frequently refer to suffix S[i..n] simply as “suffix i”.

The suffix tree of S is a compact trie representing all the suffixes of S.
Every suffix tree node either represents a suffix or is a branching node. Each
branching node represents a string that occurs at least twice in S and has at
least two distinct symbols following those occurrences. The string depth — or
simply depth — of a node is the length of the string it represents. Figs. 1 and 2
show examples of suffix trees.

The suffix array of S, denoted SA, is an array SA[1..n] which contains a
permutation of the integers 1..n such that S[SA[1]..n] < S[SA[2]..n] < · · · <
S[SA[n]..n]. In other words, SA[j] = i iff S[i..n] is the jth suffix of S in ascending
lexicographical order. We use SA−1 to denote the inverse permutation. For
convenience, we also define SA[0] = n+ 1 to represent the empty suffix.

The lcp array LCP = LCP[1..n] is an array defined by S and SA. Let lcp(i, j)
denote the length of the longest common prefix of suffixes i and j. For every
j ∈ {1..n},

LCP[j] = lcp(SA[j − 1],SA[j]),

that is, LCP contains the length of the longest common prefix for each pair of
lexicographically adjacent suffixes.

The permuted lcp array — PLCP[1..n] — has the same contents as LCP but
in a different order. Specifically, for every j ∈ {1..n},

PLCP[SA[j]] = LCP[j]. (1)

Then PLCP[i] = lcp(i, φ(i)) when we define φ(i) = SA[SA−1[i]− 1].
A binary de Bruijn sequence of order k, denoted by βk, is a binary word of

length 2k+k−1 where each of the 2k words of length k over the binary alphabet
appears as a factor exactly once. As an example, β4 = aaaabaabbababbbbaaa is
a de Bruijn sequence of order 4, see Fig. 1.

A positive integer p is a period of a string w, |w| ≥ p, if there exists a string
x of length p such that w is a prefix of xω (an infinite repetition of x).

Lemma 1 (Weak periodicity [3]). If p and q are periods of a string w, |w| ≥
p+ q, then gcd(p, q) (greatest common divisor) is a period of w too.

2

Figure 1: The suffix tree of string β4 = aaaabaabbababbbbaaa, the binary de Bruijn sequence
of order 4. The dashed rectangle contains internal nodes at depth 3.

3. Upper Bound

We are interested in the quantity ν(n, d), which is the maximum number of
branching nodes at depth d over any string of length n. By depth we mean the
string depth, the length of the string represented by the node.

A trivial upper bound on ν(n, d) — relevant for shallow depths — is ν(n, d) ≤
σd for strings over an alphabet of size σ. Another easy upper bound is ν(n, d) ≤
(n− d)/2, since there are n− d suffixes longer than d and each branching node
at depth d must represent a prefix of at least two such suffixes. In particular,
ν(2k + k − 1, k − 1) = 2k−1 since the upper bound is matched by a binary de
Bruijn sequence of order k, as shown in Fig. 1.

Based on the above, ν(n, d) increases with d up to depth d ≈ logσ n and
then starts to go down. The main result of this section is a much tighter upper
bound for larger d showing a quick decrease after depth log n.

Our upper bound proof makes use of the concept of irreducible lcp values,
first defined in [5]. We say that PLCP[i] = lcp(i, φ(i)) is reducible if S[i−1] =
S[φ(i)−1] and irreducible otherwise. In particular, it is irreducible if i = 1 or
φ(i) = 1. Reducible values are easy to compute via the next lemma.

Lemma 2 ([5]). If PLCP[i] is reducible, then PLCP[i] = PLCP[i− 1]− 1.

Our proof relies on an upper bound on the sum of irreducible lcp values.
The following result was used in an earlier version of this paper [2] for deriving
a weaker upper bound O((n/d) log n).

3

Lemma 3 ([5, 4]). The sum of all irreducible lcp values is ≤ n log n.

For a tighter upper bound on the suffix tree breadth, we need a tighter upper
bound on large irreducible lcp values. First we need the following result.

Lemma 4. Let u and w be nonempty strings and a 6= b two distinct characters.
Then at least one of wa and wb occurs fewer than 2|u|/|wa| times in u.

Proof. Assume to the contrary that both wa and wb occur at least 2|u|/|wa|
times in u. Then there must be two occurrences of wa starting p < |wa|/2
positions apart, and thus p is a period of wa. Similarly, wb must have a period
q < |wb|/2. Then p, q ≤ |w|/2, and since p and q are both periods of w, so is
r = gcd(p, q). Let x, y and z be prefixes of w of length p, q and r, respectively.
Since r divides both p and q, we must have xω = zω = yω. Thus both wa and
wb are prefixes of zω, but this is not possible, resulting a contradiction. 2

Now we are ready for an improved bound on large irreducible lcp values.

Lemma 5. The sum of irreducible lcp values greater than or equal to d is less
than 12n+ 4n log(n/d).

Proof. We will follow the proof of the O(n log n) bound in [5] with a few
modifications.

Let ` = PLCP[i] = lcp(i, j) ≥ d (i.e., j = φ(i)) be an irreducible lcp value,
i.e., S[i−1] 6= S[j−1], S[i..i+`−1] = S[j..j+`−1] and S[i+`] 6= S[j+`]. In [5],
the cost ` was distributed over the matching pairs of characters S[i+k] = S[j+k],
k ∈ {0..` − 1}. Here we distribute the cost over the pairs S[i + k] = S[j + k],
k ∈ {bd/2c..`− 1}, assigning a cost of at most two to each pair.

Consider the suffix tree of the reverse of S, and let vi+k and vj+k be the
leaves corresponding to the prefixes S[1..i + k] and S[1..j + k]. The nearest
common ancestor u of vi+k and vj+k represents the reverse of S[i..i+k] (because
S[i − 1] 6= S[j − 1]). If vi+k is in a smaller subtree of u than vj+k, the cost of
the pair S[i+ k] = S[j + k] is assigned to vi+k, otherwise to vj+k.

Now we show that each leaf v carries a cost of less than 12 + 4 log(n/d).
Whenever v is assigned a cost, this is associated with an ancestor u of v and
another leaf w under u. We call u a costly ancestor of v and w a costly cousin of
v. We will show that (a) each leaf v has less than 3 + log(n/d) costly ancestors,
and that (b) for each costly ancestor, there are at most two costly cousins.

To show (a), we use the “smaller half trick”. Consider the path from v to
the root. At each costly ancestor u, the size of the subtree at least doubles with
the addition of the subtree containing w. Since the highest costly ancestor is at
depth ≥ bd/2c, its subtree containing v must be smaller than 2n/(d/2) = 4n/d
by Lemma 4. Thus there are less than 1 + log(4n/d) = 3 + log(n/d) costly
ancestors.

Finally, to show (b), let v be leaf, u a costly ancestor of v and w a correspond-
ing costly cousin representing the reverse of the strings S[1..i+k], S[i..i+k] and
S[1..j + k], respectively. Then i and j are adjacent in the suffix array. Since i
can be adjacent to only two values, there can be at most two such costly cousins
for each costly ancestor. 2

4

Now we are ready for the main result.

Theorem 6. The number of branching nodes at depth d in the suffix tree for
a string of length n is at most R≥d/d, where R≥d is the sum of irreducible lcp
values greater than or equal to d, and more specifically, it is at most

min{(n/d) log n, 12n/d+ 4(n/d) log(n/d)} .

Proof. Let S be a string with ν(n, d) branching nodes at depth d in the suffix
tree of S. Every such branching node corresponds to one or more values d in
the lcp array, each of which in turn corresponds to a position in the PLCP array
with value d. In other words, the number of d’s in the PLCP array of S is an
upper bound on νS(d). Let i1, . . . , ir be the positions of irreducible values in
the PCLP array in ascending order, and let ir+1 = n + 1. Since i1 = 1, the
intervals PLCP[ij ..ij+1 − 1], j = 1..n, form a partitioning of the PLCP array.
Due to Lemma 2, for every j = 1..n, PLCP[ij ..ij+1 − 1] contains at most one d
and only if PLCP[ij] ≥ d. Therefore, each occurrence of d can be mapped to a
unique irreducible lcp value ≥ d. Thus dν(n, d) ≤ R≥d.

The more specific bound follows by inserting Lemmas 3 and 5. 2

4. Lower Bound

This section is devoted to proving the following result.

Theorem 7. For any positive integers j ≥ 1 and k ≥ 3, there exists a string
of length n = j(2k + k − 1) such that its suffix tree has ≥ 1

2

(
n
d − 1

)
log

(
n
d − 1

)
branching nodes at depth d = j(k − 1).

Proof. Our proof is based on a construction of the following string, Wj,k. Let
βk be a binary de Bruijn sequence of order k. Clearly, the suffix tree of βk is full
up to depth k − 1, and has 2k−1 nodes at depth k − 1. Now, let Wj,k = wj(βk)
where the morphism wj is the following{

wj(a) = 0j

wj(b) = 10j−1

It is clear that |Wj,k| = n = j(2k + k − 1). Let m = νWj,k
(j(k − 1)) denote the

number of branching nodes of the suffix tree of string Wj,k at depth d = j(k−1).
We claim that m ≥ 2k−1. If both ya and yb occur in βk for some string y, then
both x0 and x1 occur in Wi,j for x = wj(y). Thus every branching node
representing y in the suffix tree of βk is uniquely mapped to a branching node
representing x = wj(y) in the suffix tree of Wi,j . Since the suffix tree of βk has
2k−1 branching nodes at depth k − 1, the claim m ≥ 2k−1 follows.

What remains is to show the steps for the calculation of the lower bound.

Since m ≥ 2k−1 and d = j(k − 1) = n(k−1)
(2k+k−1)

, we have n
d = 2k

k−1 + 1 ≤ 2m
k−1 + 1,

which implies

m ≥ 1

2

(n
d
− 1

)
(k − 1) ≥ 1

2

(n
d
− 1

)
log

(
2k

k − 1

)
=

1

2

(n
d
− 1

)
log

(n
d
− 1

)
.

2

5

Figure 2: The suffix tree of string W2,4 = 00000000100000101000100010101010000000. The
dashed rectangle contains internal nodes at depth 6.

5. Discussion

Notice that the lower bound construction implies d = Ω(log n); thus it does
not contradict the upper bounds for small d discussed in Section 3.

Essentially the same bounds hold for all variants and generalizations. We
have counted only branching nodes but including leaves (and unary nodes rep-
resenting suffixes) too would not change much as there can be only one leaf (or
unary node) at each depth. Similarly, adding a unique terminator symbol to the
end of the string adds at most one node per depth. Considering a suffix tree of
multiple strings (containing all suffixes of all strings) could add more leaves to
a depth but no more than n/d leaves at a depth d; thus the asymptotic results
do not change. Another variant considers the string to be cyclic — replacing
suffixes with rotations — and even suffix trees for collections of cyclic strings
have been considered [4, 6]. We believe that all the results hold in this case too:
a key result for the upper bound, Lemma 3, was explicitly proved for collections
of cyclic strings [4], and for the lower bound, de Bruijn sequences are naturally
defined as cyclic strings. Finally, notice that Theorems 6 and 7 hold for any
alphabet size.

6

References

[1] Apostolico, A., Crochemore, M., Farach-Colton, M., Galil, Z., Muthukrish-
nan, S.: 40 years of suffix trees. Commun. ACM 59(4), 66–73 (2016)

[2] Badkobeh, G., Kärkkäinen, J., Puglisi, S.J., Zhukova, B.: On suffix
tree breadth. In: String Processing and Information Retrieval - 24th
International Symposium, SPIRE 2017, Palermo, Italy, September 26-
29, 2017, Proceedings. pp. 68–73 (2017), https://doi.org/10.1007/

978-3-319-67428-5_6

[3] Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc.
Amer. Math. Soc. 16(1), 109–114 (1965)

[4] Kärkkäinen, J., Kempa, D., Piatkowski, M.: Tighter bounds for the sum of
irreducible LCP values. Theor. Comput. Sci. 656, 265–278 (2016), https:
//doi.org/10.1016/j.tcs.2015.12.009

[5] Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix
array. In: Combinatorial Pattern Matching, 20th Annual Symposium, CPM
2009. Lecture Notes in Computer Science, vol. 5577, pp. 181–192. Springer
(2009), https://doi.org/10.1007/978-3-642-02441-2_17

[6] Kärkkäinen, J., Piatkowski, M., Puglisi, S.J.: String inference from longest-
common-prefix array. In: 44th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2017. pp. 62:1–62:14 (2017), https:

//doi.org/10.4230/LIPIcs.ICALP.2017.62

[7] Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale
Algorithm Design: Biological Sequence Analysis in the Era of High-
Throughput Sequencing. Cambridge University Press (2015), http://www.
genome-scale.info/

[8] Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Sympo-
sium on Switching and Automata Theory. pp. 1–11. IEEE Computer Society
(1973)

7

https://doi.org/10.1007/978-3-319-67428-5_6
https://doi.org/10.1007/978-3-319-67428-5_6
https://doi.org/10.1016/j.tcs.2015.12.009
https://doi.org/10.1016/j.tcs.2015.12.009
https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.4230/LIPIcs.ICALP.2017.62
https://doi.org/10.4230/LIPIcs.ICALP.2017.62
http://www.genome-scale.info/
http://www.genome-scale.info/

	Introduction
	Preliminaries
	Upper Bound
	Lower Bound
	Discussion

