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Abstract— Human activity recognition (HAR) based on 
wearable sensors has emerged as an active topic of research in 
machine learning and human behavior analysis because of its 
applications in several fields, including health, security and 
surveillance, and remote monitoring. Machine learning 
algorithms are frequently applied in HAR systems to learn from 
labeled sensor data. The effectiveness of these algorithms 
generally relies on having access to lots of accurately labeled 
training data. But labeled data for HAR is hard to come by and 
is often heavily imbalanced in favor of one or other dominant 
classes, which in turn leads to poor recognition performance.  

In this study we introduce a generative adversarial network 
(GAN)-based approach for HAR that we use to automatically 
synthesize balanced and realistic sensor data.  GANs are robust 
generative networks, typically used to create synthetic images 
that cannot be distinguished from real images. Here we explore 
and construct a model for generating several types of human 
activity sensor data using a Wasserstein GAN (WGAN). We 
assess the synthetic data using two commonly-used classifier 
models, Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM). We evaluate the quality and diversity 
of the synthetic data by training on synthetic data and testing on 
real sensor data, and vice versa. We then use synthetic sensor 
data to oversample the imbalanced training set. We demonstrate 
the efficacy of the proposed method on two publicly available 
human activity datasets, the Sussex-Huawei Locomotion (SHL) 
and Smoking Activity Dataset (SAD). We achieve improvements 
of using WGAN augmented training data over the imbalanced 
case, for both SHL (0.85 to 0.95 F1-score), and for SAD (0.70 to 
0.77 F1-score) when using a CNN activity classifier.  
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I. INTRODUCTION 

A. HAR Background 
Due to the prevalent use of mobile devices with built-in 

inertial measurement unit (IMU) sensors, like in 
smartphones, wearables and other on-body devices [1], 
human activity recognition (HAR) has gained extensive 
attention and plays a significant role in several domains, 
including human–computer interaction (HCI) [2], mobile and 
ubiquitous computing [3] [4], and human behavior analysis 
[5].  HAR has empowered researchers to better understand 
and analyze individual behavior [6]. Thus, HAR has been 
used in numerous applications in people’s daily lives in 
various areas such as healthcare, elderly monitoring, physical 
therapy, fitness trackers, and sleep quality monitors [7]. 

HAR is typically considered a pattern recognition system 
and uses machine learning methods to acquire useful 
representations of sensor data that correspond to feature 
extractions so that the characteristics of pre-defined activities 
are well recognized by machine learning methods [2]. 

Human activity data can be described as a multivariate 
time-series, with further categorical divisions according to the 
duration and complexity of activities. In this work we 
consider three categories of activity: hand-to-mouth (HMG), 
basic, and transportation.  

The first category of activity, HMG, is characterized by 
short durations, less-repetitive and activities frequently 
confound with each other because of their similar gestures. 
For example, drinking, eating, smoking while drinking or 
talking can present similar hand movement.  

The second category of activity that we consider are basic 
activities. Basic activities are characterized by a long interval 
and come in two forms: static or dynamic. For example, 
standing still and sitting are static and less-repetitive 
activities, but running and walking are dynamic and repetitive 
activities.  

The third category that we consider are transportation 
activities. The period of activity is also long, such as on a bus 
or on a train where the subject might be sitting or standing.  

HAR has been extensively studied in fields like HCI, 
mobile and ubiquitous computing and human behavior 
analysis [8]. Traditional machine learning methods are 
commonly used, such as K-nearest neighbor (KNN), support 
vector machines (SVM), and decision trees (DT) [8]. In 
recent years, deep learning methods such as a convolutional 
neural network (CNN), recurrent neural network (RNN) and 
Long short-term memory (LSTM) has been used to classify 
human activities using sensor data and have achieved 
favorable recognition performance [2] [9]. Since LSTMs in 
[10] and [11] and 1-D CNN in [12] and [13] have been 
successful in recognizing activity from raw sensor data and 
were implemented in both [14] and [15] for sensor data 
generation, we adopted them for this study.  

Traditional machine learning methods depend on 
handcrafted features. In order to achieve desirable results 
when using those methods, more feature extraction 
techniques must be explored to find well-designed and hand-
crafted features [16]. Plenty of effort has been devoted to 
study and design effective features to enhance HAR 
performance [2] [17]. In contrast, deep-learning methods are 
capable of automatically learning feature representation and 
extracting features directly from the sensor data [9]. 



Consequently, deep learning classification models have been 
introduced to recognize human activities and replace hand-
crafted features, greatly improving the performance of HAR 
[18]. 

B. HAR Dataset Challenges 
HAR research relies entirely on the amount and the 

quality of the collected sensor data. Sensor data quality is 
mostly imperfect and is often with missing data. This occurs 
due to several factors, such as an individual not wearing a 
sensor, or a sensor is malfunctioning [19]. Likewise, the 
sensor data may be extremely imbalanced due to huge 
individual differences, with limited labels for some activities 
[7]. Thus, collecting a large enough sample of sensor data of 
human activity can effectively enhance the performance of 
HAR models. In this paper we use GANs to produce synthetic 
data for several types of human activity and we use this data 
to rebalance the training set.  

The overall performance of HAR classifiers can be 
negatively impacted by a large class imbalance, where 
classifiers can be skewed towards performing well on the 
dominant class and less on the minority class.  

To overcome the negative impact of imbalanced training 
data, different approaches have been employed, such as data 
level resampling. Here data is resampled to make the data 
more balanced. The Synthetic Minority Over-sampling 
Technique (SMOTE) was proposed to create synthetic data 
points from the minority class in a training set [20].  

SMOTE defines a neighborhood for each data point of the 
minority class by identifying its k nearest neighbors. Then 
SMOTE employs these neighbors to create synthetic data 
samples using an interpolation of those neighbors [20].  

SMOTE was previously used to fix data imbalance in 
HAR, and was shown to improve classifier performance [5].  

The success of extracting appropriate features, or 
applying deep-learning methods to automatically find 
features from sensor data, relies on having access to a large 
quantity of labeled sensor data [21]. However, collecting and 
labeling such a large amount of sensor data is both difficult 
and time consuming. As a result of these limitations, some 
inevitable challenges appear, such as insufficient sample 
information as well as imbalanced data.  

Recently, several data generation approaches have 
emerged based on deep neural networks. The generative 
adversarial network (GAN) is the most powerful method that 
has attracted much interest to generate synthetic data. GAN 
was introduced by Goodfellow [22] to generate images. GAN 
is learned by competition between two neural network 
models. The two neural network models are known as the 
generator and the discriminator. The generator model during 
the learning process is used to produce new data samples by 
capturing the distribution of the real data, and the 
discriminator model is employed to distinguish whether data 
samples are real or synthetic. 

GANs have largely been used to produce synthetic 
samples in several applications, such as image synthesis [23] 
and text generation [24]. Yet, few works have been done to 
develop GANs models for the aim of producing sensor data. 
SenseGen [14] was the first effort at using GANs to 
synthesize sensor data. However, the proposed model trained 
both the generator and the discriminator separately. 
Subsequently, during the training process, the generator did 

not learn from the feedback of the discriminator. Recently, 
researchers have developed a model called SensoryGAN for 
generating sensor data [15]. SensoryGAN models are capable 
of capturing the distribution of the original sensor data of 
human activity, consequently enabling them to generate 
synthetic sensor data. Yet, SensoryGAN suffers from 
instability while training.  

In this work we use an extended variation of GAN, called 
the Wasserstein Generative Adversarial Network (WGAN), 
which has been shown to improve stability when training 
generator and discriminator networks [25]. We focus on 
generating synthetic sensor data based on the idea of 
generative adversarial model and evaluating the quality of the 
synthetic sensor data using a supervised classifier. This study 
attempts to shed light on using WGAN for synthesizing 
sensor data.  

An increasing number of studies on HAR attempt to 
develop and optimize activity recognition models using deep 
learning [18]. However, there has been little attention paid to 
investigate the potential of using GANs to both create 
synthetic sensor data and to rebalance the training data using 
synthetic data in HAR.  

Existing over-sampling methods usually work from 
training data features (typically extracted by applying a 
sliding window over the raw data), but in cases where the 
input is raw sensor data, over-sampling methods might not 
fully consider the temporal dependencies. 

Given that sensor data is multivariate time-series and 
since the raw data used as input in our study, using GAN 
approaches based on Convolutional Neural Network (CNN)  
and Recurrent Neural Network (RNN) will preserve the 
temporal dependencies in the training data [26]. As far we 
know, no study considered before augmenting the training 
data for human activities context using GAN approaches, 
therefore, this study explored on adopting a stable method 
and demonstrated the effectiveness of GAN approach as an 
up-sampling method for imbalanced human activity training 
data. 

In particular, we investigate whether it is possible to 
generate sensor data by applying the WGAN method to 
several forms of human activity, and to augment real training 
data with WGAN-generated data. We explore reducing the 
impact of data imbalance by using WGAN to generate 
synthetic data of the minority class and examine if the 
supervised model’s performance improves.  
The main contributions of this study are the following: 

• We explore, and assess, the potential of using 
WGAN to generate synthetic multimodal sensor 
data of various activities.  

• We built two supervised classification models (1D 
CNN and LSTM) to validate that the synthetic data 
preserves the underlying pattern as well as the 
structure of the original data.  

• We resample the imbalanced training data with 
synthetic data and show how this can be used to 
improve classifier performance.  

The paper is structured as follows. Section II gives a brief 
overview of GAN. Section III describes our method; we 
describe the two proposed WGN models to generate synthetic 
sensor data. Also, we describe the classifiers to evaluate the 
quality of the produced sensor data as well as the activity 



recognition models. Section IV explains the experimental 
setup in our study. Section V presents the results, and Section 
VI discussed our findings and presents the conclusions.  

II. GENERATIVE ADVERSARIAL NETWORK 
GAN is based on the game theory concept of a minimax 

game, where two networks, the generator (G) and the 
discriminator (D), are trained in an adversarial fashion [27]. 
The objective of G is to generate synthetic data that D would 
be unable to differentiate from real data. Contrarily, the aim 
of D is to distinguish real data from generated synthetic data. 
Consequently, the objective function of GAN is identified as:  

min	max
'							(

	 𝐸*~,-[log2𝐷(𝑥)7] + 𝐸:~,; [log(1 − 𝐷2𝐺(𝑧))7] (1) 

Where 𝑥  is real data, 	𝑧  is sampled data form random 
noise, such as Gaussian distribution or uniform distribution 
[28] 𝑃A  is the real data distribution and 𝑃:  is the generated 
data distribution.  

Kullback–Leibler (KL) divergence and Jensen–Shannon 
(JS) divergence [28] are important probability measurement 
metrics that GAN uses when the discriminator is optimized. 
Those metrics estimate the distribution distance between the 
real samples and the produced samples. Mode collapse is the 
problem that constrains the capability of the generator model, 
which occurs by only allowing the generator models to 
generate a partial range of samples of the original data 
distribution. GAN suffers from mode collapse, and this 
potential limitation leads to learning instability. A possible 
source of mode collapse is because of the use of KL in GAN 
training [25].   

To overcome mode collapse, the authors in [25] proposed 
the Wasserstein GAN (WGAN), which uses the Wasserstein 
distance instead of KL to measures the distance between the 
original sample and the created sample. WGAN enhances the 
stability of learning and overcomes the difficulty of mode 
collapse. The Wasserstein distance is defined as : 

𝑊2𝑃A, 𝑃D7 = inf
G∈I(,-,,J)

𝐸(*,K)~G [‖𝑥 − 𝑦‖] (2) 

where Π(𝑃A, 𝑃D) represents the set of all joint distributions 
𝛾(𝑥, 𝑦) and the distance to transform the distribution 𝑃A into 
the distribution 𝑃D  is represented by 𝛾(𝑥, 𝑦) . Because the 
Wasserstein distance is intractable in practice, the 
Kantorovich-Rubinstein duality can be used instead as an 
approximation [25]:  

𝑊(𝑃A, 𝑃P) = sup
	∥(∥U	VW

Ε	[𝐷(𝑥) − 𝐷(𝑔P(𝓏))] (3) 

where 𝑠𝑢𝑝  is the least upper bound and 𝐷  is the set of 
Lipschitz continuous functions that follow this constraint:  

|𝐷(𝑥W) − 𝐷(𝑥_)| ≤ |𝑥W − 𝑥_| (4) 
The WGAN objective is obtained as: 

min	max	
'							(∈U

E
*~,-

[𝐷(𝑥)] − E
*b~,J

𝐷(𝐺(𝑥b))] (5) 

In order to apply the Lipschitz constraint on the 
discriminator, which is also called the critic in WGAN, the 
authors suggest implementing the parameter to clip the 
weights of the discriminator. The weights of the discriminator 
have to be within a specific range [-c, c], where c is controlled 
hyperparameters [25].  

A major variance between WGAN and original GAN is 
the role of D [28]. The D purpose in GAN is applied as a 
binary classifier, which differentiates between real and 
generated samples. However, the function of D in WGAN is 
to estimate the Wasserstein distance between the generated 
and the actual data distribution, which is a regression task. 

Hence, in the last layer of D, in the WGAN, the sigmoid 
function is eliminated. 

III. METHOD 

A. Data Processing   
In our study we consider two different types of input data 

to evaluate our proposed models: raw input (e.g. direct 
accelerometer or gyroscope derived readings), and feature 
data (extracted handcrafted features from the raw data, such 
as the mean over a sliding window). 

 Fig.1 shows the pre-processing pipeline for each of the 
two types of data. For both, the first step is to low-pass filter 
the data using a 3rd-order Butterworth filter. We then 
calculate the root-sum-squared magnitude (c𝑥_ + 𝑦_ + 𝑧_) 
for each 3-axis sensor to ensure the data is invariant to 
shifting orientation of the smartphones. The data is then 
segmented into non-overlapping windows, or frames. For the 
raw data, each frame is a matrix of size: length of the window 
× the number of sensor channels.  

Five features are calculated over each frame: mean, 
standard deviation, minimum, maximum, and zero crossing 
rate. These features are computationally cheap and proven to 
be effective for HAR [29]. Each frame is then a vector of size: 
number of extracted features	× number of sensor channels.  

Both raw and feature data is then scaled using min-max 
normalization [30]. 
 

 
 

Figure 1.  PIPELINES FOR RAW (TOP) & FEATURES (BOTTOM) 
 

Finally, the dataset is split into training, validation and 
testing sets (70 % for training, 15 % for validation and 15 % 
for testing), using the stratified split data method from scikit-
learn [31]. This method balances the number of data samples 
of the classes in each split. We used Python [31] and Keras 
[32] to implement our models. 

B. WGAN  
Human activities are heterogeneous [2], therefore a 

unified WGAN model might not be enough to learn several 
distributions of different human activities. To counter this, we 
build two different types of activity-specific WGAN model, 
one designed for relatively HMG (e.g. smoking while in a 
group conversation), plus static activities lasting a relatively 
long time (e.g. sitting), and another for more dynamic, short-
term activities (e.g. running).  

We fine-tuned a WGAN model on each activity class to 
find suitable layers of the generator and the discriminator, the 
dimension of the noise vector, learning rate, and epochs. The 
hyperparameters for each model were obtained over a number 



of trials, validated using the validation set. 
 

Figure 2 shows the two models we use. Model-1 has a 
generator based on one LSTM layer with 25 memory cells 
and uses a Tanh activation on its output. The generator’s 
responsibility is to generate data from the noise data that has 
a similar structure to the real sensor data.  

The discriminator has a single 1D CNN layer using 10 
filters with ReLU activation function and a dense layer with 
Tanh activation function. The output layer has a single neuron 
without an activation function. The discriminator’s 
responsibility is to predict if its input is real or not based on 
its Wasserstein distance.  

 
 

Figure 2. WGAN MODEL-1 (left) AND MODEL-2 (right) 
 

Model-2, by contrast, has a generator built based on a 1D 
CNN with 32 filters. The model utilized dense layer with 32 
units and sigmoid activation function. We applied dropout 
with a rate of 50% and a dense layer with 8 units that used 
sigmoid activation function. We then added a batch 
normalization layer and a dense layer with 4 neurons, which 
applied sigmoid activation function. We again applied batch 
normalization layer. The output layer of the generator was 
dense with the Tanh as activation function.  

The discriminator used 1D CNN of 32 kernels with ReLU 
activation and a dense layer of 16 units with Tanh activation 
function. We also added a dense layer of one unit with 
sigmoid activation function. The output layer is a further 
dense layer of one neuron, but without an activation function. 

C. Assessing Synthetic Sensor Data  
To evaluate the synthetic sensor data, we used the GAN-

train and GAN-test methods [33]. GAN-train involves 
training on synthetic sensor data but testing on real sensor 
data. A high performance with this reveals that the GAN is 
capable of producing a realistic and diverse output, and is 
consequently not suffering from mode collapse. Conversely, 
GAN-test is trained on real data and tested on synthesized 
data. This gives a complementary measure of synthesized 
data quality [33]. 

We evaluate two commonly used classifiers: 1D CNN and 
LSTM.  CNNs are formed by stacking several processing 
units, including convolutional layers, pooling layers, and 
fully connected (dense) layers [34]. These stacked layers 
enable CNNs to extract features automatically from raw 
sensor data. As a comparison we also evaluate synthetic 
sensor data in a dynamic RNN-based model. We used LSTM 
which can learn long-term dependencies by using a memory 
cell that is comprised of an input gate, output gate, and forget 

gate. LSTM is specifically designed to model temporal 
dynamics in sequences such as sensor data [35]. 

We used categorical cross-entropy as the loss function for 
training both 1D CNN and LSTM classifiers. The training 
hyperparameters, including the number of epochs, learning 
rates, and optimizer functions, differed between datasets and 
classification tasks. When evaluating classes with a limited 
number of samples, for example, the number of epochs had 
to be limited to avoid overfitting. Some hand-tuning of these 
hyper parameters was therefore required.  

1) 1D CNN Supervised Model 
Figure 3 shows the CNN layout for n sensor streams. Each 

individual input sensor, such as accelerometer magnitude or 
extracted features from accelerator magnitude, is first passed 
to a single 1D CNN layer. The first layer uses 9 filters with 
ReLU activation function. A dropout layer is then added with 
a rate of 50%. We also implemented a max-pooling layer 
(with a kernel of 2). The output of each subnet is then 
flattened, concatenated, and passed to a dense layer with 15 
units with ReLU activation functions. The output SoftMax 
activation layer is finally used for classification [36]. 

  
 

Figure 3. CNN MODEL ARCHITECTURE  
 

2) LSTM Supervised Model 
 

Figure 4 shows the LSTM stacked layers in the second 
classification model. Each sensor stream is also 
independently processed to extract features and to capture 
longer temporary patterns. The LSTM layer uses 15 units and 
a Tanh activation function. We apply a dropout layer with a 
rate of 10%. Another layer of LSTM has 10 units and a Tanh 
activation function. The patterns from the individual 
pipelines are then concatenated together. We use a final 
dropout layer with a rate of 50%, and a dense layer with 8 
neurons and a ReLU activation function. Finally, the output 
layer uses a SoftMax activation function.  

 
 
Figure 4.  LSTM MODEL ARCHITECTURE  
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D. Oversampling Training Set with Synthetic Sensor Data 
After we generate and evaluate the quality of the synthetic 

sensor data produced by WGAN, we use it to oversample the 
minority activity in the training set. We then evaluate the 
entire oversampled dataset using the two classifiers, CNN 
and LSTM. As a baseline comparison, we also run these 
classifiers using the original, imbalanced, data.  

E. Extracting Features from Synthetic Sensor Data 
We extract features (mean, standard deviation, minimum, 

maximum, and zero crossing rate) from the synthetic sensor 
data of the minority class and use these to oversample the 
activity that is least represented in the training set. We refer 
to this as the WGAN-Features method.  

To investigate the efficiency of WGAN-Features, we 
compare it to a commonly used oversampling method, 
SMOTE. SMOTE is used to mitigate the problems caused by 
imbalanced training data by oversampling classes that are less 
well represented. First, SMOTE selects a random data sample 
from a minority activity and determines k nearest neighbors 
for that data sample, typically k = 5. Then, an arbitrarily 
chosen neighbor is selected, and a synthetic data sample is 
generated at a randomly selected point on the line connecting 
the two data samples in feature space [20].  

The study makes three evaluations: an evaluation of 
WGAN-Features, an evaluation using SMOTE, and a 
baseline evaluation using features calculated from the 
original data. As before, we use CNN and LSTM classifiers. 

F. Performance Measures  
Typically, accuracy is used as a measure of classifier 

performance, however, in the case where a dataset is 
imbalanced, accuracy is unsuitable as it is skewed towards 
more common classes [37]. To counter this, we use precision 
and recall for each class, and then the weighted mean of these 
over all classes (the F1 score) [38]. Precision records the 
proportion of class predictions that are correct, and Recall 
records the proportion of actual class instances that are 
correct. The balanced F1 score used here treats classes 
equally, irrespective of how frequently a class appears: 
 

F1	score =
1
𝑚
	 j

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛s ∗ 𝑅𝑒𝑐𝑎𝑙𝑙s
				𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛s + 𝑅𝑒𝑐𝑎𝑙𝑙s
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IV. EXPERIMENT SETUP 

A. Datasets 
Two public datasets are used in this study: the Sussex-

Huawei Locomotion (SHL) [39],  and the Smoking Activities  
Dataset (SAD) [40].  

SHL records real-life activities of three subjects over 
three days, and includes eight different locomotion and 
transportation activities, including walk, run, still, bike, car, 
bus, subway, and train. The subjects carried four smartphones 
at four locations (hand, hip, torso, and bag). Of the 16 
recorded sensor modalities, we use 6: accelerometer, 
gyroscope, magnetometer, linear acceleration, orientation, 
and gravity, from both hand and hip. We use a subset of the 
dataset from the days where the same activities are performed 
by subjects one and three. These activities are walk, run, still, 
bike, and bus. Figure 5 (left) shows the proportion of each 
class in the dataset (with, e.g., run making up 3% of samples). 

SAD was collected from 11 participants over 3 months. 
Each participant wore a smartwatch on the right wrist as well 
as a smartphone in the right pocket to capture data. These 
were embedded with accelerometers and gyroscopes, which 
were the sensors adopted in this study.  

The SAD dataset is divided into three subsets according 
to the activities performed. Here we use only one of these 
(Subset 2) because it includes more activities and participants 
Figure 5 (right) shows the imbalanced activity distributions 
for SAD. Participants performed 8 activities, divided into 
complex and simple. Complex activities include: smoking 
while standing (SmokeST), smoking while sitting (SmokeSD), 
smoking while in a group conversation (SmokeGP), drinking 
while standing (DrinkST), drinking while sitting (DrinkSD). 
The simple activities are stand, sit, and eat.  

Both datasets were preprocessed using the pipeline 
described above. The SHL data is low-pass filtered, using a 
3rd-order Butterworth filter with a corner frequency 20Hz. 
This was then segmented using a 3s window [41]. The SHL 
dataset is sampled at 100Hz, the length of the window size 
was 3 seconds, and there are 12 sensor channels, so the raw 
matrix size for each frame is (300,12). When we extract 
feature from each frame the shape of the vector becomes 
(5,12). The total dataset size is 15280 frames (~13 hours). 

 

Figure 5.  DISTRIBUTION FOR SHL (LEFT) AND SAD (RIGHT)  
 

The SAD dataset is sampled at 50 Hz. We adjust the low-
pass filter with a corner frequency of 10Hz, with segment 
windows of 9s (to capture the longer-term complexities of 
activities). Given the 4 sensor channels, each raw data frame 
is sized (450, 4). The feature-extracted vector is then (5,4). 
The total dataset size for SAD is 11776 frames (~30 hours). 

B. Evaluation Setup 
We evaluate our approach in three stages: first we 

generate and evaluate the quality and diversity of the 
synthetic data. Then we evaluate the raw synthetic data when 
used to oversample imbalanced datasets. Finally, we evaluate 
the synthetic data when it is converted into features.  

1) Evaluation of Synthetic Data 
We assess the quality and diversity of our synthetic data 

in two ways: by using generated data to train our classifiers, 
which we then evaluate using real test data (GAN-train), and 
using real data to train, which we then evaluate on generated 
data (GAN-test). Because we are interested in producing the 
best quality data for each class, separate WGAN models were 
fine-tuned to match each minority class of interest. For 
relatively long-term static data in both datasets, like still and 
bus (in SHL), and smokeGP and stand (in SAD), the WGAN 
Model-1 worked best. The faster-changing data of run (SHL) 
was better characterized using Model-2. TABLE 1 and 
TABLE 2 show the parameters used for each class model. 

Bike
32%

Walk
32%

Bus
6%

Still
27%

Run
3%

DrinkSD    
14%

DrinkST    
14%

SmokeST    
14%

Sit        
14%Eat        

14%

SmokeSD    
14%

SmokeGP    
14%

Stand       
2%



The SHL activity generator produced 100 frames of 
synthetic sensor data for bus, still, and run. The SAD activity 
generator produced 50 frames of synthetic data for two 
activities: smokeGP and stand.  

 
TABLE 1.  SHL HYPERPARAMETERS FOR WGAN MODELS  

 
TABLE 2.  SAD HYPERPARAMETERS FOR WGAN MODELS  

 
TABLE 3. HYPERPARAMETERS FOR MODELS ASSESSING THE 
QUALITY OF SYNTHETIC DATA FOR BOTH DATATSETS 

Classifier  1D – CNN LSTM 
Optimizer SGD ADAM 

Learning Rate 0.00001 0.0001 
Epochs  15 15 
 

Once generated the data is evaluated using the two 
classifiers, 1D-CNN and LSTM, with the respective 
hyperparameters shown in TABLE 3.  

2) Raw Data Oversampling Evaluation 
We evaluate how our method might be used in a real-

world situation. We use the WGAN models to oversample 
each minority activity in the training set (run in SHL, stand 
in SAD), and we use the new, oversampled, datasets to 
compare classifier performance. As a baseline, we also 
calculate the performances without oversampling.  

3) Feature Data Oversampling Evaluation  
We evaluate our oversampling method when applied to 

features extracted from the raw data. We compare three 
approaches. First, we extract features from the oversampled 
synthetic sensor data produced by our WGAN method (we 
call these WGAN-Features). Second, we compare these 
against those obtained using the, state-of-the-art, SMOTE 
method. Third, we evaluate a baseline using features from the 
imbalanced dataset. 

C. Classifier Setup 
Both the raw data and feature data oversampling 

evaluations are carried out using 1D-CNN and LSTM 
classifiers. TABLE 4 and TABLE 5 show the hyperparameters 
for the classification models on SHL data and SAD, 
respectively. 

 
TABLE 4. SHL HYPERPARAMETERS FOR CLASSIFICATION  

Classifier 1D - CNN LSTM 

Input data Raw Input Feature 
Input Raw Input Feature 

Input 
Optimizer SGD SGD ADAM ADAM 

Learning Rate 0.001 0.001 0.001 0.0001 
Epochs 20 50 35 50 

 
TABLE 5. SAD HYPERPARAMETERS FOR CLASSIFICATION 

Classifier 1D - CNN LSTM 

Input data Raw Input Feature 
Input Raw Input Feature 

Input 
Optimizer SGD SGD ADAM ADAM 

Learning Rate 0. 0001 0.01 0.001 0.001 
Epochs 20 100 50 100 

V. RESULTS  

A. Evaluating the Synthetic Data 
TABLE 6 and TABLE 7 show the GAN-train classifier 

results used to assess the diversity and quality of the new 
sensor samples (trained on synthetic, tested on real). On the 
SHL data, the F1 score using 1D-CNN was 0.76, but for 
LSTM it was 0.59. On the SAD data, the F1 score for 1D-
CNN was 0.75, and for LSTM it was 0.99. The equivalent 
GAN-test results, measuring how well the synthesized 
samples match the real distributions, all returned perfect F1 
scores (1.00) across all datasets and classes. These results 
reveal that the characteristics of the synthesized data strongly 
match real data, and that the samples are relatively diverse – 
with the exception of the run and still classes when using 
LSTM. 

 
TABLE 6. CLASSIFIER PERFORMANCE FOR GAN-TRAIN (SHL) 

Classifier  1D - CNN LSTM 
Activity  Recall Precision Recall Precision 

Bus 0.98 0.87 0.99 0.63 
Run 0.95 0.36 0.75 0.43 
Still 0.69 1.00 0.29 1.00 

F1 Score   0.76 0.59 
 

TABLE 7. CLASSIFIER PERFORMANCE FOR GAN-TRAIN (SAD) 
Classifier  1D - CNN LSTM 
Activity  Recall Precision Recall Precision 

SmokeGP 0.91 0.98 1.00 1.00 
Stand 0.77 0.44 0.97 1.00 

F1 Score   0.75 0.99 

B. Rebalancing the Training Set with Raw Data 
TABLE 8 shows the SHL dataset results for CNN using 

raw sensor data. The baseline F1 for this is 0.85, which 
increases to 0.95 after oversampling the minority class, run. 
Note that, by adding 100 synthetic samples of run to the 
training set, the recall of this class rises dramatically from 
0.20 to 0.71. Similarly, on the SAD results, shown in  

Table 9, oversampling the minority class, stand, creates a 
jump in stand’s recall from 0.25 to 0.83, and a 7%  increase 
in overall F1 score. This is achieved by adding only 50 new 
samples. 
 

TABLE 10 and TABLE 11 show the equivalent results for 
each dataset when the LSTM classifier is used. Unlike the 
CNN case, no improvement is had here from oversampling 
the minority classes. However, here LSTM performs much 
better on the baseline cases than CNN. 

C. Rebalancing the Training Set with Features  
TABLE 12 includes the results obtained using CNN on 

features extracted from SHL data. The baseline (no 
oversampling) F1 score is 0.93. By oversampling the 
minority run activity using SMOTE, the F1 falls to 0.92. But 
using WGAN-Features, the F1 rises to 0.94. The equivalent 
results, shown in TABLE 13, for SAD, where stand is 
oversampled, reveal an F1 increase from 0.88 (baseline), 
through 0.93 (SMOTE), to 0.94 for WGAN-Features. 

The LSTM results, however, are not improved by 
oversampling. On the SHL dataset, shown in TABLE 14, 
WGAN-Features is equivalent to the baseline (0.89 F1), with 
SMOTE showing a marginal improvement (to 0.90 F1). With 
SAD, displayed in TABLE 15, again WGAN-Features is 

Activity Noise 
Vector 

Learning 
Rate 

Epochs WGAN 
Model  

Bus 10 0.0005 1000 1 
Run 5 0.03 1000 2 
Still 10 0.0005 1000 1 

Activity Noise 
Vector 

Learning 
Rate 

Epochs WGAN 
Model  

SmokeGP 10 0.0005 1000 1 
Stand 10 0.0005 1000 1 



equivalent to baseline (0.95 F1), while SMOTE performs 
slightly worse (0.93 F1).  
TABLE 8. CNN PERFORMANCE ON SHL DATA, COMPARING 
BASELINE VS. WGAN OVERSAMPLING.  

Activity 
Baseline 

 
Oversampled with  

WGAN 
Recall Precision  Recall Precision 

Bike 0.99 0.93 0.98 0.97 
Bus 0.96 0.99 0.96 0.99 
Run 0.20 1.00 0.71 0.97 
Still 1.00 1.00 1.00 1.00 

Walking 0.99 0.95 0.99 0.94 
F1 Score 0.85 0.95  

 
TABLE 9. CNN PERFORMANCE ON SAD, COMPARING BASELINE 
VS. WGAN OVERSAMPLING.  

Activity Baseline Oversampled with  
WGAN 

Recall Precision Recall Precision 
DrinkSD 0.88 0.67  0.88 0.73 
DrinkST 0.77 0.73  0.83 0.74 

Eat 0.29 0.59  0.29 0.62 
Sit 0.96 1.00  0.96 1.00 

SmokeGP 0.78 0.67 0.79 0.66 
SmokeSD 0.85 0.89 0.85 0.90 
SmokeST 0.77 0.69 0.76 0.69 

Stand 0.25 1.00 0.83 1.00 
F1 Score   0.70 0.77 

 
TABLE 10. LSTM PERFORMANCE ON SHL DATA, COMPARING 
CLASSIFER FOR BASELINE VS. WGAN OVERSAMPLING 

Activity Baseline Oversampled with  
WGAN 

Recall Precision Recall Precision 
Bike 0.99 0.99 0.98 0.99 
Bus 0.99 0.96 0.97 0.99 
Run 0.82 1.00 0.84 0.81 
Still 0.96 0.99 1.00 1.00 

Walking 0.98 0.97 0.99 0.95 
F1 Score   0.96 0.95 

 
TABLE 11. LSTM PERFORMANCE ON SAD, COMPARING 
CLASSIFER FOR BASELINE VS. WGAN OVERSAMPLING 

Activity Baseline Oversampled with  
WGAN 

Recall Precision Recall Precision 
DrinkSD 0.94 0.73 0.90 0.78 
DrinkST 0.73 0.67 0.82 0.68 

Eat 0.18 0.60 0.08 0.54 
Sit 0.97 1.00 0.96 1.00 

SmokeGP 0.78 0.57 0.68 0.52 
SmokeSD 0.78 0.99 0.81 0.82 
SmokeST 0.78 0.65 0.78 0.62 

Stand 0.88 1.00 0.96 1.00 
F1 Score   0.74 0.72 

 

VI. DISCUSSION  
Using raw synthetic sensor data, produced by WGAN, to 

oversample minority activities in imbalanced training data 
can boost classifier performance. Extracting features from 
this synthetic data also has the potential to boost performance, 
however the choice of classifier plays a role in how well this 
may work.  

The CNN-based evaluation reveals just how well our 
synthetic data oversampling method can work, both when 
working on raw data and on feature data. When trained on 

the baseline case of imbalanced raw data, the CNN classifier 
tends to miss under-represented classes (see the low baseline 

recall rates for run in TABLE 8 and stand in  
Table 9). However, performance improves considerably 

when these classes are oversampled using WGAN – with the 

recall for run rising from 0.20 to 0.71, and stand from 0.25 to 
0.83.  

 
TABLE 12. CNN PERFORMANCE ON SHL DATA FEATURES, 
COMPARING BASELINE, SMOTE, AND WGAN OVERSAMPLING.  

Activity Baseline Oversampled 
with SMOTE 

Oversampled with 
WGAN-Features 

Recall Precision Recall Precision Recall Precision 
Bike 0.98 0.96 0.99 0.95 0.97 0.95 
Bus 0.98 0.98 0.96 0.97 0.96 0.98 
Run 0.59 1.00 0.59 1.00 0.67 1.00 
Still 0.99 0.98 0.97 0.96 0.99 0.97 

Walking 0.99 0.97 0.98 0.98 0.99 0.98 
F1 Score   0.93 0.92 0.94 

 
TABLE 13. CNN PERFORMANCE ON SAD FEATURES, COMPARING 
BASELINE, SMOTE, AND WGAN OVERSAMPLING 

Activity Baseline Oversampled 
with SMOTE 

Oversampled with 
WGAN-Features 

Recall Precision Recall Precision Recall Precision 
DrinkSD 0.86 0.96 0.93 0.97 0.92 0.95 
DrinkST 0.95 0.88 0.98 0.88 0.98 0.87 

Eat 0.92 0.90 0.96 0.93 0.94 0.93 
Sit 0.94 0.98 0.94 1.00 0.95 1.00 

SmokeGP 0.93 0.71 0.97 0.83 0.96 0.91 
SmokeSD 0.70 0.93 0.83 0.99 0.93 0.95 
SmokeST 0.87 0.86 0.89 0.95 0.89 0.97 

Stand 0.83 1.00 0.92 0.96 0.92 1.00 
F1 Score   0.88 0.93 0.94 

 
TABLE 14. LSTM PERFORMANCE ON SHL DATA FEATURES, 
COMPARING BASELINE, SMOTE, AND WGAN OVERSAMPLING 

Activity Baseline Oversampled 
with SMOTE 

Oversampled with 
WGAN-Features 

Recall Precision Recall Precision Recall Precision 
Bike 0.92 0.95 0.93 0.94 0.92 0.96 
Bus 0.95 0.91 0.94 0.91 0.94 0.92 
Run 0.53 1.00 0.61 1.00 0.53 1.00 
Still 0.93 0.94 0.93 0.95 0.94 0.93 

Walking 0.98 0.94 0.97 0.94 0.98 0.93 
F1 Score   0.89 0.90 0.89 

 
TABLE 15. LSTM PERFORMANCE ON SAD FEATURES, 
COMPARING BASELINE, SMOTE, AND WGAN OVERSAMPLING 

Activity Baseline Oversampled 
with SMOTE 

Oversampled with 
WGAN-Features 

Recall Precision Recall Precision Recall Precision 
DrinkSD 0.91 0.97 0.88 0.99 0.91 0.97 
DrinkST 0.95 0.93 0.90 0.93 0.96 0.91 

Eat 0.95 0.97 0.92 0.98 0.96 0.95 
Sit 0.98 1.00 0.98 0.99 0.99 0.99 

SmokeGP 0.98 0.87 0.98 0.83 0.96 0.89 
SmokeSD 0.92 0.97 0.88 0.96 0.93 0.97 
SmokeST 0.94 0.95 0.96 0.85 0.92 0.94 

Stand 0.96 1.00 0.92 1.00 0.92 1.00 
F1 Score   0.95 0.93 0.95 

 
When trained on feature data, CNN performs slightly 

better than when trained on raw data. This is likely due to the 
inclusion of features that capture signal dynamics, like zero-
crossing rate – which is particularly useful at capturing short-
term periodicity (or lack of) in classes like run. 

Oversampling the minority classes and then generating 
features improves the results even further, as demonstrated 
by the higher recall rates using CNN for both run and stand 
in TABLE 12 and TABLE 13. In both datasets, the proposed 
WGAN-Features method produces superior results to 
SMOTE. 

As an aside, the usefulness of hand-crafted features can 
also be seen in the vastly improved performance of 
recognising the eat activity when comparing  

TABLE 9 (raw) with TABLE 13 (features). This shows a 
recall/precision rise from 0.29/0.59 to 0.92/0.90 for raw data 



versus features on the baseline imbalanced case. This 
improvement is largely due to the dynamic information 
provided by the features.  

The LSTM-based evaluation results are not as clear-cut as 
they are for CNN. As a starting point, LSTM is better able to 
capture the dynamics of activities like run and stand directly 
from raw data, without the need for features as was the case 
with CNN. Thus, the LSTM baseline results are already quite 
high (e.g. the recall of run in TABLE 10 starts at 0.82). (One 
caveat to this is that LSTM fails to adequately classify the eat 
activity without the help of features, as shown in TABLE 11. 
Because the eat activity is not as repetitive over short 
timescales as dynamic activities (like walk and run), it may 
be the case that using a longer window size might help LSTM 
on raw eat activity data.)  

The addition of extra samples using WGAN on the raw 
data with LSTM has only a modest effect on some classes 
(e.g. run) while reducing the performance on others (e.g. 
stand), but overall there is a 1% to 2% drop in F1 score.  And 
on feature data, WGAN-Features has almost identical 
performance as the baseline. SMOTE has a mixed result, with 
a 1% improvement in F1 score on the SHL data, but a 2% 
drop compared to baseline on SAD. 

Further analysis needs to be done to ascertain why the 
performance of our WGAN-based oversampling is poorer 
when LSTM is used as the classifier versus CNN.  

When evaluated using CNN, oversampling minority 
classes using WGAN can reap great improvements to 
classification performance. It can even outperform the state-
of-the-art SMOTE method. Also, unlike SMOTE, it can 
perform just as well generating raw sensor data as well as 
derived features. And unlike other GAN-based oversampling 
methods, WGAN has the benefit of improved stability during 
training [25].  

In future work, we plan to investigate the computational 
complexity, and potential overheads of using WGAN-based 
oversampling. WGAN uses potentially more processing 
power than alternatives like SMOTE. However, we would 
argue that for such a small number of data channels, as is 
typical in HAR, as opposed to the thousands typically used 
with, say, video, then this overhead is negligible.  

The two datasets used here are relatively diverse and 
cover a fairy wide range of human activities. However here 
we only consider 5 minority classes. In a further study, we 
plan to explore the use of this method on a wider variety of 
classes and datasets. 

VII. CONCLUSION 
In this study, we introduce the use of a Wasserstein 

Generative Adversarial Network (WGAN) to generate sensor 
data for human activity recognition. We investigated WGAN 
on 5 different classes of human activity that were under-
represented across 2 publicly available datasets. We 
evaluated the diversity and quality of the generated synthetic 
sensor data, and found F1-scores of over 75% when a CNN 
classifier is trained on synthetic and tested on real data, and 
100% when it is trained on real data and tested on synthetic. 
We also oversampled imbalanced training sets using 
synthetic data and found overall F1 performance 
improvements of between 7% and 10% (again using CNN 
classifiers on raw data). More modest improvements (1% to 
2%) were found when comparing CNN-classified WGAN-

features against features produced using SMOTE. However, 
similar evaluations using LSTM found no immediate 
advantage from our method. As there are currently no widely 
recognized approaches or frameworks to evaluate synthetic 
sensor data, the work in this paper makes some promising 
steps, upon which we will explore further in future work. 
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