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Abstract—Malicious software is detected and classified by either 
static analysis or dynamic analysis. In static analysis, malware 
samples are reverse engineered and analyzed so that signatures of 
malware can be constructed. These techniques can be easily 
thwarted through polymorphic, metamorphic malware, 
obfuscation and packing techniques, whereas in dynamic analysis 
malware samples are executed in a controlled environment using 
the sandboxing technique, in order to model the behavior of 
malware. In this paper, we have analyzed Petya, Spyeye, 
VolatileCedar, PAFISH etc. through Agent-based and Agentless 
dynamic sandbox systems in order to investigate and benchmark 
their efficiency in advanced malware detection. 
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I. INTRODUCTION 

Malicious software also referred  as a “Malware” in the cyber 

security domain [1] saw a significant increase in number of 

variants. The Internet security report of Symantec concluded 

that 350 million malware variants were developed in 2016 [2], 

while Panda Security indicated that, on average, 160,000 new 

malware programs appeared every day in 2013 [3]. The 

significant growth in malware variants is due to the ubiquitous 

nature of computer systems and networks as well as the 

potential financial benefits of gaining access to computer 

systems and/or their data.  

Although several methods based on shallow architecture 

have been used in the past by AV companies to detect malware 

variants, which are either signature based [4], or heuristic-based 

[5], authors of malware often chose to implement robust, 

stealthy and sophisticated methods, such as obfuscation, 

polymorphic and metamorphic mechanism, in order to impede 

commercial antivirus companies. To cope with the thousands 

of new malware samples that are discovered every day, security 

companies and analysts use different techniques. Malware 

samples are analyzed usually through static and dynamic 

analysis. In the static analysis, the executable binary of 

malware sample is analyzed without executing it. This 

technique is widely used by AV companies to detect malware 

as this technique uses the concept of pattern recognition and 

detect malware signature by using a common sequence of bytes  

in the binary code of a malware. This technique is fast and does 

not need any controlled environment to run samples, but it can 

be easily thwarted through obfuscation, packing, and code 

rearranging techniques and it fails to cover the zero-day malware 

attack [6]. In dynamic analysis malware, samples are executed 

and monitored in the controlled environment in order to 

understand the runtime behavior. This approach is computing 

intensive as it requires running the malware samples in an 

isolated sandbox environment in order to obtain artifacts and 

features, but it tends to have higher accuracy in characterizing 

malware samples. This technique is agnostic to the underlying 

code and can easily bypass code obfuscation and polymorphic 

coding. 

Security analysts widely use different techniques, tools and 

mechanisms to perform behavior analysis. One of the most 

widely used tools for malware behavior modeling is Cuckoo, 

although researchers also prefer tools like VirMon, and 

WINAPIOverride32 to do malware analysis. All these tools 

have their own strength and weakness that ultimately affect the 

feature engineering process and sometimes the distinct features 

of great importance are skipped because of inherent limitations 

of these tools, which result in the poor performance of 

classification systems. In this paper, we aim to compare the 

efficiency and efficacy of agent-based and agent-less sandboxes 

in terms of detecting sophisticated malware variants. We use the 

Cuckoo agent-based sandbox and the VMRay agent-less 

sandbox for behavioral modeling of malware and later on, we 

measure the effectiveness of these tools in terms of detecting 

malicious software in general and, more specifically, 

sophisticated malicious software. 

The remainder of the paper is organized as follows. Section II 

Relevant work, Section III Proposed research work, IV 

Experimental results, In Section V Future work, VI Conclusion 

and in Section VII Acknowledgment. 

II.  RELATED WORK 

Malware detection, clustering, and classification represents 

also a hot topic for academic researchers and industry 



professionals, here we are presenting different approaches 

which have used so far for detecting malware. First, some 

methods, which use static features, are described and then 

dynamic features are explained. Authors of [7] used static 

analysis to detect malware and benign samples by extracting 4-

gram features from portal executable and later on these features 

were used to distinguish a benign sample from the malicious 

sample. In a more recent study, Opcode was used to detect 

malicious files [8]. Malware samples were reverse engineered 

to get an opcode, which is part of machine language instruction 

and depict the operations to be performed. It plays important 

role in distinguishing the legitimate software from malicious 

software. In [9] the authors presented a model to detect 

malware variants on the base of the byte frequency. In this 

model, suspicious malware is detected if its byte frequency is 

similar to some known malware class. In [10], the focus is on 

API sequence, which appears to be more frequently in most of 

the malware files and then applied similarity measure for the 

sequence. In [11], researchers proposed a model to detect 

suspicious samples by calculating frequencies of features for 

e.g. Dynamic link libraries, APIs and PE header, then use the 

information to gain feature selection to mark samples as 

malware or benign. In [12], authors proposed a malware 

classification system based on an n-gram feature vector. 

Dynamic analysis was done to get network level artifacts and 

then from these artifacts, n-gram feature vector was 

constructed and later on used for classification of malware. 

Authors in this paper claim to achieve 80% accuracy in 

classification by using a number of machine learning 

algorithms. Researchers in [13], analysed the system states 

changes, such as the number of new processes created, file 

written etc. The proposed method was evaluated on unseen 

malware variants whose signature was not available at the time 

and used a tree structure based on single linkage clustering to 

measure similarity among the various groups of malware. 

In [14], the authors tried to address a problem related to the 

packing of malware, a technique based on obfuscation method 

to hide malware code in software. To address this problem, 

authors propose a technique that generates the signature of 

every packed malware. The dataset for analysis was divided 

into two parts. The first part is used for constructing between 

different systems entities, which include processes, system 

register etc. and other part for testing and evaluation. Authors 

in [15] propose a detection system based on a quantitative data 

flow model and then use graphs to depict the communication 

between different systems entities, which include processes, 

system register etc. Researchers in [16] concluded that there 

are repetitive actions on data sequence that malware mostly do,  

such as loops performing decryption or encryption, and this 

can be addressed through iterative system calls pattern mining. 

In [17], it was assumed that behavior of each executable can be 

represented by the values of register contents in its run-time.  

Researcher in [18] used 4-grams to model API call sequences. 

By comparison of the average confidence  of all 4-grams, 

samples are classified as malware or benign class. 

 

 

 

 [19] introduced a model sample behavior based on 2-gram 

features through system calls and their arguments by using 

prioritizing arguments. It successfully identified novel classes of 

malware with similar behavior and assigning unknown malware 

to these discovered classes. Researchers in [20] removed the 

function libraries constructed by benign files from those which 

appeared in malware as segment threat, calculated segment 

entropy and extracted 3-grams Opcode for each segment. 

In [21], in contrast to traditional techniques, the authors used 

iterative pattern mining to detect malware based on the 

assumption that malware do repetitive action on data sequence 

ranging from running infections to running loops, which perform 

a decryption/encryption process. The authors of the study break 

down the overall process into five steps. In the first step, they 

gathered malware samples and in next step, they captured PE 

interaction with operating system APIs by running these samples 

in the controlled virtual environment for e.g. VMWARE and 

Qemu are used. In this step API, call logs are used to construct 

the dataset and furthermore, in this, they see iterative API 

patterns that occur more than a minimum threshold. In the last 

step, they use pattern features as a dataset to classify malware. 

Different algorithms are used to train model for e.g. SVM, 

Random Forest etc. and they claim to achieve 95% accuracy with 

98.4% detection rate. 

III. PROPOSED RESEARCH WORK 

As summarized in section II, prior research led to capable 

platforms for dynamic analysis of malware. These are two 

types: Basic dynamic analysis and advance dynamic analysis 

platform. Dynamic analysis tools such as Capture-Bat, 

Regshot, APATE DNS, PEID, PE explorer, or Sysinternal were 

used to carry out the analysis, whereas advanced dynamic 

analysis tools like Virmon, Cuckoo, WINAPIOverride32 were 

used to model the behavior of malware. Most of the advanced 

dynamic analysis platforms are agent-based, and they usually 

drop their agent on the analysis machine to capture the features 

of malicious software, but current malware are intelligent 

enough to circumvent analysis when they find themselves being 

analyzed by the agent base sandbox and detonate themselves 

before being analyzed. In this research, we have taken both 

agent-based and agent-less sandbox and executed the malware 

sets in these environments in order to find which one is the best 

for capturing sophisticated malware features as shown in  fig.1.    

 
Fig 1. Conceptual model 



     TABLE I 
COMPARISON OF PROPOSED MALWARE CLASSIFICATION METHODS WITH CURRENT STUDY. 

 
Author Name Year Technique used Features Representation 
L. Bilge and T. 2014 Dynamic analysis communication between different system entities (processes, sockets, Data Flow Graph 
Dumitras   files or system registries)  

Mohaisen et al 2014 Dynamic analysis N-gram feature of the network artifacts N-gram 
Ahmadi et al 2013 Dynamic analysis executables’ API call Graph 
Ghiasi et al 2013    Dynamic analysis register values The binary vector of 

Features 
Ravi and 2012 Dynamic analysis API call sequences N-gram 
Manoharan     

Rieck et al 2011 Dynamic analysis system calls and their arguments N-gram, Binary vector of 
    Features 

Tahan et al 2012 Dynamic analysis API calls and their parameters The binary vector of 
Features 

Mansour Ahmadi 2013 Iterative pattern API, call logs API,call logs 

et al  mining   

 

 For conducting this research, we have used two different 

testbeds one with Cuckoo Sandbox and another with VMRay 

analyzer Sandbox. Cuckoo Sandbox is an open source widely 

used platform to model the behavior of malware in a controlled 

environment. It was developed as a summer project in 2010 in 

Google sponsored summer code project. The propose of this 

malware analysis system is to provide automatic analysis of 

malware for e.g. files created, deleted, API calls, argument and 

there return values etc. Cuckoo mainly focus on DLL, PDF, 

office documents, and different executables for windows and 

further consider Java files. VMRay Analyzer is agentless 

dynamic behavior analysis tool for malware. Unlike other 

established sandbox solutions in the market, it is embedded in 

the hypervisor in order to monitor the behavior of malware and 

overcome the problem in tradition sandboxes, thus malware 

could not able to detect that it is being detonated in control 

environment One reason for choosing VMRay analyzer is that 

it overcome the advance evasion techniques and another 

reason for choosing is its significant features for e.g. Evasion 

Resistance,  Customizable Yet Automated, Easy Deployment, 

VMRay’s Reputation Engine and Seamless Integration as 

shown in Table II.    

In the first one, we used VMware workstation version 

(12.5.9) virtual environment, where we set up a virtual 

machine of Ubuntu (16.04 LTS) with Cuckoo sandbox 

installed on it to carry out the dynamic analysis of malware in 

order to get the artifacts of malicious software for 

understanding the behavior of malware. To execute malware 

in control environment in Ubuntu we have set up VBox with a 

Windows XP-SP3 machine, furthermore, the cuckoo agent 

was installed on the XP virtual machine along with some other 

software so that it can effectively capture the behavior of 

malicious variants when they are executed. In the second 

testbed, we have used VMRay analyzer, which was hosted on 

the VMRay cloud environment and we were been given 

special access by VMRay analyzer company for 30 days to 

perform our experiments. The testbed environment in the 

cloud was configured with almost all versions of Windows 

ranging from Windows XP (SP1, SP2, and SP3), Windows 7, 

Windows 8 and Windows 10 (with all service packs),  

 

 

 

 

Moreover, in order to understand the behavior more clearly 

these machines were configured with all necessary software for 

e.g. MS Office 2007,2010,2013, Acrobat Reader version 

9,10,12 etc. In our proposed conceptual model, we have used 

Cuckoo and VMRayanalyzer  as shown in the fig. 2 and fig.3 

to do a comparison of artifacts extracted by both the Sandboxes 

as shown in Table II. 

 
Fig. 2. Agent-based sandbox 
 

 

 

 
 Fig. 3. Agent-less sandbox 

 

 



TABLE II 
DIFFERENCE BETWEEN CUCKOO AND VMRAY ANALYZER 

 

 

Cuckoo ×                          ×                                              ×   √     √ √      

VMRay 
Analyzer 

√                          √                                              √                                              √                         √                       √ 

    

 

IV. EXPERIMENTAL RESULTS 

We have taken malicious samples from different sources such 

as contagion dump and Zoo and executed these samples in both 

environments. Here we are mentioning the results of few of 

them, including The Ransomware Petya, Spyeye, Volatile 

Cedear, Dyre, and PAFISH. These samples were executed in 

both Agent-based and Agentless environment on a different 

version of Windows for e.g. Windows 7 (SP-1 32 bit and 64 

bit), Windows 8(64bit) and Windows 10(64 bit) respectively as 

shown in the fig. 4. The behavior and actions of malicious 

samples were analyzed through dynamic analysis mechanisms 

using two different types of sandboxes: i) Agent-based sandbox 

and ii) Agentless sandbox tools. We performed empirical 

analysis by executing different samples of malware in both 

Agent-based and Agentless sandbox environments and find that 

agentless sandbox is more efficient in detecting sophisticated 

malware, which bypasses or crash themselves on finding 

themselves being detected by sandbox agent. The motivation 

behind this research is to model the behavior of those malware 

variants, which are able to thwart the agent base sandboxes and 

as a result, they are not detected.  
 

 

Fig. 4 Ransomware Wannacry 

 

 

During the analysis, we closely monitored the changes 

occurring in the operating resource for e.g. DNS requests, 

HTTP requests, file related activities, registry related 

activities, API calls and their return values, service activities, 

 

 

 

 

 

 

 IRC commands, and process tree we have seen during our 

experiment that whenever we try to execute some of the 

advance malware for e.g. Wanna Cry, Petya in Cuckoo it 

usually gives us very limited features and was unable to 

produce features which are helpful in understanding the 

behavior of malware. 

In our view, the reason behind this is that almost of all 

advance malware usually monitor the running environment 

when they are executed and on finding the analysis platform 

they usually stop their execution or in some case give only 

insignificant features, whereas in contrast when these advance 

malware were executed in Agentless Sandbox the results were 

totally opposite and we were able to capture some of the 

features of significant importance for e.g. Zero-day detection, 

visualization of relationship between parent and child processes 

of malware etc. as shown in Table II, moreover we find that 

these features will play an important role in designing advance 

threat detection and mitigation platform and we will prove the 

significance of these features in our future work, so from our 

analysis we came to this conclusion that agentless sandboxes 

are more effective and robust in terms of capturing intelligent 

malware and in extracting their features.  

V. FUTURE WORK 

This session discusses our future work and framework 

comprising three stages: the monitoring phase, feature-

engineering phase, and learning stage. 

A. Monitoring stage 

 
Fig. 5 Indigenous Sandbox for Dynamic analysis 

In the monitoring stage, we will take malware samples from 

different classes and then will execute them to control the the 

environment in order to model the behavior of malicious 

software. For behavior analysis, we will use our indigenous in-

house made agentless sandbox or some open-source Agentless 

sandbox as shown in the fig.5. and the reason behind using this 

Sandbox Zero Day  Visualization of parent-child Evasion of Anti-analysis technique Files related Registry related API  

 Detection relationship Possible or not? activities activities calls  

 



tool is that we have found from experiments that Agentless 

Sandboxes are evasion resistance and nowadays sophisticated 

malware and APTs can detect it is being observed, therefore, as 

a result, they stop their executions. Also features used in [23] 

will be taken into consideration so we can collect as much 

information as possible from the execution of the malware.  

B. Feature Engineering stage 

In this phase, feature sets will be created based on API calls 

and their argument as this is done by extracting string 

information from the text files generated by our indigenous tool 

or open source tool. Once we get the features, we will apply 

feature selection techniques to get significant feature sets and. 

In the last stage of this phase different NLP techniques for e.g. 

n-grams will be used to convert features into binary vectors, 

which are, later on, feed to deep learning algorithm for training 

purpose as shown in the fig. 6. 

C. Learning and verification stage 

In this stage, the binary vector will be given to Learning 

algorithm as shown in fig. 6. In our case, we will use generative 

algorithms and our focus will be on deep belief network DBN 

and the reason behind using this is that they are very good at 

creating invariant 

 

 
Fig. 6. Cyber Intelligent System for Malware detection 

 

representations of objects even if the specific object changes 

its size, contrast, angle etc. and they had produced very 

promising results in a number of image classification projects, 

moreover possess high accuracy. Moreover, the use of game 

theoretic models and trust will be explored [24]. 

VI. CONCLUSION 

In this paper we reviewed past approaches for detecting 

malware through either static or through dynamic analysis, 

furthermore, we found that dynamic analysis is an effective 

approach for the behavioral analysis of malware. Dynamic 

analysis is usually carried out in sandbox environment, in our 

research we find that traditional sandboxes are not evasive 

resistance because they hook data by dropping their agent in 

control environment which can be detected by intelligent 

malware and as a result they don’t unpack or execute 

themselves on finding agent, so in our research we find that 

Agentless Sandbox is the best solution for dynamic analysis. 
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