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Abstract. A bottleneck in any evolutionary art system is aesthetic
evaluation. Many different methods have been proposed to automate
the evaluation of aesthetics, including measures of symmetry, coherence,
complexity, contrast and grouping. The interactive genetic algorithm
(IGA) relies on human-in-the-loop, subjective evaluation of aesthetics,
but limits possibilities for large search due to user fatigue and small
population sizes. In this paper we look at how recent advances in deep
learning can assist in automating personal aesthetic judgement. Using
a leading artist’s computer art dataset, we use dimensionality reduction
methods to visualise both genotype and phenotype space in order to
support the exploration of new territory in any generative system. Con-
volutional Neural Networks trained on the user’s prior aesthetic evalua-
tions are used to suggest new possibilities similar or between known high
quality genotype-phenotype mappings.

Keywords: Evolutionary Art · Aesthetics · Aesthetic Measure · Con-
volutional Neural Networks · Dimension Reduction · Morphogenesis.

1 Introduction

Artistic evolutionary search systems, such as the Interactive Genetic Algorithm
(IGA) have been used by artists and researchers for decades [8, 29, 31, 32, 23, 3,
27, 4, 25]. A key advantage of the IGA is that it substitutes formalised fitness
measures for human judgement. The algorithm arose to circumvent the difficulty
in developing generalised fitness measures for “subjective” criteria, such as per-
sonal aesthetics or taste. Hence the IGA found favour from many artists and
designers, keen to exploit the powerful search and discovery capabilities offered
by evolutionary algorithms, but unable to formalise their aesthetic judgement in
computable form.

Over the years, the research community has proposed many new theories
and measures of aesthetics, with research from both the computational aesthetics
(CA) and psychology communities [13]. Despite much effort and many advances,
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a computable, universal aesthetic measure remains elusive – an open problem
in evolutionary music and art [24]. One of the reasons for this is the psycho-
logical nature of aesthetic judgement and experience. In psychology, a detailed
model of aesthetic appreciation and judgement has been developed by Leder and
colleagues [14, 15]. This model describes information-processing relationships be-
tween various components that integrate into an aesthetic experience and lead
to an aesthetic judgement and aesthetic emotion. The model includes perceptual
aesthetic properties, such as symmetry, complexity, contrast, and grouping, but
also social, cognitive, contextual and emotional components that all contribute
in forming an aesthetic judgement. A key element of the revised model [15] is
that it recognises the influence of a person’s affective state on many components
and that aesthetic judgement and aesthetic emotion co-direct each other.

One of the consequences of this model is that any full computational aesthetic
measure must take into account the affective state of the observer/participant,
in addition to other factors such as previous experience, viewing context and
deliberate (as opposed to automatic) formulations regarding cognitive mastering,
evaluation and social discourse. All factors that are very difficult or impossible
for current computational models to adequately accommodate.

How then can we progress human-computer collaboration that involves mak-
ing aesthetic judgements if fully developing a machine-implementable model re-
mains illusive? One possible answer lies in teaching the machine both tacit and
learnt knowledge about an individual’s personal aesthetic preferences so that
the machine can assist a person in creative discovery. The machine provides
assistance only, it does not assume total responsibility for aesthetic evaluation.

In this paper we investigate the use of a number of popular machine learn-
ing methods to assist digital artists in searching the large parameter spaces of
modern generative art systems. The aim is for the computer to learn about an
individual artist’s aesthetic preferences and to use that knowledge to assist them
in finding more appropriate phenotypes. “Appropriate” in the sense that they fit
the artist’s conception of high aesthetic value, or that they are in some category
that is significant to the artist’s creative exploration of a design space. Addi-
tionally, we explore methods to assist artists in understanding complex search
spaces and use that information to explore “new and undiscovered territory”.
Finally, we discuss ways that mapping and learning about both genotype and
phenotype space can inspire a search for new phenotypes “in between” known
examples. These approaches aim to eliminate the user fatigue of traditional IGA
approaches.

1.1 Related Work

In recent years, a variety of deep learning methods have been integrated into
evolutionary art systems. Blair [5] used adversarial co-evolution, evolving images
using a GP-like system alongside a LeNet-style Neural Network critic.

Bontrager and colleagues [6] describe an evolutionary system that uses a
Generative Adversarial Network (GAN), putting the latent input vector to a
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trained GAN under evolutionary control, allowing the evolution of high quality
2D images in a target domain.

Singh et al. [30] used the feature vector classifier from a Convolutional Neural
Network (CNN) to perform rapid visual similarity search. Their application was
for design inspiration by rapidly searching for images with visually similar fea-
tures from a target image, acquired via a smartphone camera. The basis of our
method is similar in the use of using a large, pre-trained network classifier (such
as ResNet-50) to find visual similarity between generated phenotype images and
a database of examples, however our classifier is re-trained on artist-specific
datasets, increasing its accuracy in automating personal aesthetic judgement.

2 Exploring Space in Generative Design

In the experiments described in this paper, we worked with a dataset of evo-
lutionary art created by award-winning artist Andy Lomas. Lomas works with
developmental morphogenetic models that grow and develop via a cellular devel-
opment process. Details of the technical mechanisms of his system can be found
in [18]. A vector of just 12 real valued parameters determines the resultant form,
which grows from a single cell into complex forms often involving more than one
million cells. The range of forms is quite varied, Figure 1 shows a small selection
of samples. In exploring the idea of machine learning of personal aesthetics, we
wanted to work with a real, successful artistic system3, rather than an invented
one, as this allows us to understand the ecological validity [7] of any system
or technique developed. Ecological validity requires the assessment of creative
systems in the typical environments and contexts under which they are actually
experienced, as opposed to a laboratory or artificially constructed setting. It is
considered an important methodology for validating research in the creative and
performing arts [12].

Fig. 1. Example cellular forms generated by cellular morphogenesis

3 Lomas is an award winning computer artist who exhibits internationally, see his
website http://www.andylomas.com
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2.1 Generative Art Dataset

The dataset used consisted of 1,774 images, each generated by the developmental
form generation system using the software Species Explorer [19]. Each image is
a two-dimensional rendering of a three-dimensional form that has been algorith-
mically grown based on 12 numeric parameters (the “genotype”). The applied
genotype determines the final developed 3D form (the “phenotype”), which is
rendered by the system to create a 2D image of the 3D form.

The dataset also contains a numeric aesthetic ranking of each form (ranging
from 0 to 10, with 1 the lowest and 10 the highest, 0 meaning a failure case where
the generative system terminated without generating a form). These rankings
were all performed by Lomas, so represent his personal aesthetic preferences.
Ranking visual form in this manner is an integral part of using his Species
Explorer software, with the values in the dataset created over several weeks
as he iteratively generated small populations of forms, ranked them, then used
those rankings to influence the generation of the next set of forms.

Lomas has also developed a series of stylistic categorisations that loosely de-
scribe the visual class that each form fits into. This categorisation becomes useful
for finding forms between categories, discussed later. Category labels included
“brain” (245 images), “mess” (466 images), “balloon” (138 images), “animal”
(52 images), “worms” (32 images) and “no growth” (146 images). As each form
develops through a computational growth simulation process, some of the images
fail to generate much at all, leading to images that are “empty” (all black or
all white). There were 252 empty images, leaving 1,522 images of actual forms.
Even though the empty images are not visually interesting, they still hold in-
teresting data as their generation parameters result in non-viable forms. Most
of the category data (1,423 images) had been created at the same time as when
Lomas was working on the original Cellular Forms. The remaining 351 images
were categorised by Lomas as part of this project.

2.2 Understanding the Design Space

As a first step in understanding the design space we used a variety of dimension
reduction algorithms to visualise the distribution of both genotype and pheno-
type space to see if there was any visible clustering related to either aesthetic
ranking scores or categories. We experimented with a number of different algo-
rithms, including t-SNE [20], UMAP [26] and Variational Autoencoders [21], to
see if such dimension reduction visualisation techniques could help artists bet-
ter understand relationships between genotype and categories or highly ranked
species.

As shown in Figure 2, the dimensionally reduced genotype space tends to
have little visible structure. The figure shows each 12-dimensional genotype di-
mensionally reduced to two dimensions and colour-coded according to category
(top) and rating (bottom). In the case of rating, we reduced the ten-point nu-
meric scale to five bands for clarity. The figure shows the results obtained with
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Fig. 2. Plot of genotype distribution in 2 dimensions using t-SNE. Individual genotypes
are coloured by category (top) and by score (bottom).
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the t-SNE dimension reduction, testing with other algorithms (PCA, UMAP and
a Variational Autoencoder) did not result in significantly better visual results.

Although some grouping can be seen in the figure, any obvious overall clus-
tering is difficult to observe, particularly for the categories. While there is some
overall structure in the score visualisation (high ranked individuals tend to con-
centrated in the around the upper left quadrant), discerning any regions of high
or low quality is difficult. In many cases, low and high ranked individuals map
to close proximity in the 2D representation.

What this analysis reveals is that the genotype space is highly unstructured
in relation to aesthetic concerns, making it difficult to easily evolve high quality
phenotypes. The developmental nature of the generative system, which depends
on physical simulation, means that small parameter changes at critical points
can result in large differences in the resultant developed form.

2.3 Phenotype Space

To visualise the phenotype space we used the feature classification layer of the
ResNet-50 convolutional neural network. Because ResNet was trained on 1.2
million images from the ImageNet dataset [9], it is very good at identifying
image features that humans also recognise. Networks trained on the ImageNet
classification tasks have been shown to work very well as off the shelf image
extractors [28], and show even better results when fine-tuned to datasets for
the task at hand [1]. The network produces a 2048-element vector based on the
features of an input image. This vector is then dimensionally reduced to create
a two-dimensional visualisation of the feature space. Again, we used the t-SNE
algorithm to reduce the dimensionality of the space.

Figure 3 shows the results for both the category (top) and score (bottom)
classifications. As the figure shows, this time structure can be seen in the feature
data. Classifications such as “black” and “balloon” are visible in specific regions.
Similarly, the score distribution shows increasing values towards the upper-right
quadrant in the visualisation.

Such visualisations can therefore potentially assist artists in navigating and
understanding the space of possibilities of their generative system, because they
allow them to direct search in specific regions of phenotype space. A caveat here
is that the dimension reduction process ideally needs to be reversible, i.e. that
one can go from low dimensions to higher if selection specific regions on a 2D
plot. As a minimum, it is possible to determine a cluster of nearby phenotypes in
2D space and seed the search with the genotypes that created them, employing
methods such as hill climbing to search for phenotypes with similar features.

2.4 Parameter Searching and Interpolation

In early work, such as Lomas’ Aggregation [17] and Flow [16] series, the artist
would create plots showing how the phenotype changes depending on parameter
values of the genotype. An example of such a plot can be seen in Figure 4.
In these systems the genotype had a very low number of dimensions, typically
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Fig. 3. Plot of phenotype distribution in 2 dimensions using t-SNE. Individual pheno-
types are coloured by category (top) and by score (bottom).
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Fig. 4. Plot from Aggregation series showing effects of varying genotype parameters

just two or three parameters, which allowed a dense sampling of the space of
possibilities by simply independently varying each parameter in the genotype
over a specified range, running the generative system with each set of parameter
values, and plotting the results in a chart with positions for each image based
on the genotype parameters. One intuition from these plots is that the most
interesting rich and complex behaviour often happens at transition points in the
genotype space, where one type of characteristic behaviour changes into another.
This can be seen in Figure 4 where the forms in the 6th and 7th columns are
particularly richly structured. These changes occur at parameter settings where
the generative system was at a transition state between stability (to the left)
and instability (to the right).

As the number of dimensions increases performing a dense sampling of the
genotype space runs into the “Curse of Dimensionality” [2, 10], where the number
of samples needed increases exponentially with the number of parameters. Even
if enough samples can be taken, how to visualise and understand the space
becomes difficult and concepts such as finding the nearest neighbours to any
point in the parameter space become increasingly meaningless [22]. One potential
approach to make sense of higher dimensional spaces is to categorise different
phenotypes created by the system. By defining categories for phenotypes we can
express searching for transition points in a meaningful way as being the places
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in genotype space where small changes in the genotype result in changing from
one phenotype category to another.

3 Learning an Artist’s Aesthetic Preferences

A ResNet-50 classifier was tested with with the same dataset of 1,774 images
with ratings and categories as described above, using 1,421 images in the training
dataset and 353 images in the validation dataset. Re-training the final classifier
layers of ResNet-50 created a network that matched Lomas’ original categories
in the validation set with an accuracy of 87.0%. We also looked at the confidence
levels for the predictions, based on the difference between the network’s prob-
ability value for the predicted category and the probability level of the highest
alternative category.

Confidence quartile Prediction accuracy

75% to 100% 97.1%
50% to 75% 97.9%
25% to 50% 90.5%
0% to 25% 67.6%

Table 1. ResNet-50 accuracy levels for different confidence quartiles.

Table 1 shows how the prediction accuracy varies depending on the confi-
dence levels. The network has a reliability of over 97% for the images in the
top two confidence quartiles, with 69% of the incorrect categorisations being in
the lowest confidence quartile. A visual inspection of images in the lowest confi-
dence quartile confirmed that these were typically also less clear which category
an image should be put in to a human observer.

The confusion matrix in Figure 5 shows that the predictions appear to be con-
sistently good across all categories, with the majority of items in each category
predicted correctly. The most confused categories were “mess” and “nogrowth”,
both of which indicate forms that are considered by the artist to be aesthetic
failure cases and sometimes look quite similar.

As well as being used for categorisation, a ResNet-50 network with a scalar
output was trained against the aesthetic ranking using values from 0 to 10 that
Lomas had given the forms. This resulted in a network that predicted the ranking
of images in the validation set with a root mean square error of 0.716. Given that
these ranking are subjective evaluations of images that often have very similar
appearance this appears to be a high level of predictive accuracy.

3.1 Genotype Space

The dataset was tested to see whether predictions of the phenotype category
and aesthetic rank could be obtained from genotype parameters. This is desir-
able as good predictions of phenotype from the genotype values could directly



10 Jon McCormack and Andy Lomas

Fig. 5. Confusion matrix for ResNet-50 (phenotype space) categorisor

aid exploration of the space of possibilities. Techniques such as Monte Carlo
methods could be used to choose new candidate points in genotype space with
specified fitness criteria. We could use the predictions to generate plots of ex-
pected behaviour as genotype parameters are varied that could help visualise the
phenotype landscape and indicate places in genotype space where transitions be-
tween phenotype classes may occur. If meaningful gradients can be calculated
from predictions, gradient descent could be used to directly navigate towards
places in genotype space were one category is predicted to change into another
and transitional forms between categories may exist.

Fast.ai [11], a Python machine learning library to create deep learning neural
networks, was used to create neural net predictors for the category and aesthetic
rank using genotype values as the input variables. The fast.ai Tabular model
was used, with a configuration of two fully connected hidden layers of size 200
and 100. The same training and validation sets were used as previously.

Using these neural nets we achieved an accuracy of 68.3% for predictions of
the category, and predictions of the aesthetic rank had a root mean square error
of 1.88. These are lower quality predictions that we obtained with the ResNet-50
classifier using the phenotype, but this is to be expected given that the ranking
and categorisation are intended to be evaluations of the phenotype and were
done by Lomas looking at the images of the phenotype forms. The results are
also confirmed by the dimensionally-reduced visualisations presented in Section
2.2.

The confusion matrix for the category predictions is shown in Figure 6. Simi-
larly to the results with the ResNet-50 (phenotype space) categoriser, the “mess”
and “nogrowth” categories are often confused, but with the genotype space cat-
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Fig. 6. Confusion matrix for Tabular (genotype space) categoriser

egoriser the “plant” and “brain” categories are also quite frequently confused
with each other. This suggests that it might be worth generating more training
data for the “brain” and “plant” categories to improve predictive accuracy, but
could also be an indication that the “plant” and “brain” categories are closely
connected in genotype space.

The current version of Lomas’ “Species Explorer” software uses a simple k-
Nearest Neighbours (k-NN) method to give predictions of phenotype based on
genotype data [18]. Testing with the same validation set, the k-NN method pre-
dicts categories with an accuracy of 49.8%, and the aesthetic rank with a mean
square error of 2.78. The genotype space neural net predictors give significantly
better predictions than the k-NN predictor.

A new feature was added into Species Explorer that uses the genotype neural
network predictors to generate 2D cross-section plots through genotype space,
showing the predicted categories or rank at different coordinate positions, see
Figure 7. As can be seen, these plots predict a number of potential places where
transitions between categories may occur, which could lead the artist to explore
new regions of the genotype space.

4 Discussion

Our results of incorporating this new search feature into an artist’s creative work-
flow indicate that deep learning based neural nets appear to be able to achieve
good levels of accuracy when predicting the phenotype categories and aesthetic
rank evaluations made by Lomas in the test dataset. The best predictions were
achieved with ResNet-50, a pre-trained convolutional neural network designed
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Fig. 7. Species Explorer user interface, showing 2D cross-section plots through geno-
type space using a neural net to predict the phenotype category at new positions in
genotype space

for image recognition, using phenotype image data as the input. Additionally,
we achieved potentially useful levels of prediction from genotype data using the
fast.ai library’s Tabular model to create a deep learning neural net with two fully
connected hidden layers. Predictions based on the genotype rather than the phe-
notype are particularly interesting as they should allow navigation directly in
genotype space to suggest new points to sample.

One of the main reasons for using IGAs is that the fitness function is un-
known, or may not even be well defined because the artist’s judgement changes
over time. The use of the neural networks in this work can be seen as trying
to discover whether there is a function that matches the artist’s aesthetic eval-
uations with a useful level of predictivity. If such a function can be found it
could be used in a number of ways, such to use monte carlo sampling along with
providing a fitness function for conventional evolutionary algorithms. If the dis-
covered fitness function is sufficiently simple (such as being unimodal) methods
like hill climbing may be appropriate.

Lomas has been using a k-Nearest Network in Species Explorer to give predic-
tion based on position in genotype space. As the numbers of dimensions increase
k-NN performance generally becomes significantly less effective [22], while deep
neural networks can still be effective predictors with higher dimensional inputs.
This means the deep neural networks have the potential to allow useful levels
of prediction from genotype space in systems with high numbers of genotype
parameters.

It is likely that with more training data we will be able to improve the
predictions from genotype space. This raises the possibility for a hybrid system:



Understanding Aesthetic Evaluation using Deep Learning 13

if we have a convolutional neural network that can achieve high levels of accuracy
from phenotype data we could use this to automate creation of new training data
for a genotype space predictor. In this way, improving the ability of a genotype
space based predictor may be at least partially automated.

There is a lot of scope for trying out different configurations of deep neural
networks for genotype space predictions. The choice of a network in this study,
with two fully connected hidden layers with 200 and 100 neurons, was simply
based on the default values suggested in the fast.ai documentation of their Tab-
ular model. A hyper-parameter search would likely reveal even better results.

An important part of this process is how to make ranking and categorisa-
tion as easy for a creative practitioner as possible. The aim should be to allow
the artist to suggest new categories and ways of ranking with as few training
examples as are necessary to get good levels of prediction. It should also facili-
tate experimentation, making the process of trying out new ways of ranking and
different ways of categorising behaviour as simple as possible.

In both authors’ experience, it is often only after working with a generative
system for some time, typically creating hundreds of samples, that categories
of phenotype behaviour start to become apparent. This means that manually
categorising all the samples that have already been generated can become sig-
nificantly laborious. This has meant that although Lomas’ Species Explorer soft-
ware allows phenotype samples to be put into arbitrary categories, and data from
categorisation can be used to change fitness functions used to generate new sam-
ples, for the majority of systems Lomas has created he hasn’t divided phenotype
results into categories and has relied on aesthetic rank scores instead. This is
one area where pre-trained network classifiers, such as ResNet-50, may be useful.
If we can reliably train a neural network to classify different phenotypes with
only a small amount of training data it could make the process of creating and
testing different ways of categorising phenotypes significantly easier.

We modified the existing user interface in Species Explorer so that predictions
of how a classifier would divide data into classes can be shown, together with
placement and colouring of the outlines of thumbnails based on the confidence
levels of predictions, see Figure 8. This allows a simple evaluation of the quality
of prediction, and helps indicate samples that might be good to add to the
training set (such as incorrect predictions that the classifier has done with high
confidence) to improve the quality of predictions.

The tests with dimensionally reduced plots in phenotype space using t-SNE
on the feature vectors of ResNet-50 appear to show meaningful structure which
may be useful to help divide samples into categories. In particular, this tech-
nique may be useful both to help initial categorisation, broadly dividing samples
in phenotype space into categories, and to help sub-divide existing categories
that the user wants to explore separating into different classes. The use of plots
such as these may actively help experimentation, allowing the creative users to
modify existing classification schemes and quickly try out different ideas of how
to categorise phenotypes.
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Fig. 8. Species Explorer user interface, showing predicted categorisations from a
ResNet-50 network. The items are ordered based on the confidence levels for the pre-
dicted category, with the highest confidence level predictions to the left of each group

5 Conclusions and Future Work

The aim of this research was to progress machine-assisted aesthetic judgement
based on an artist’s personal aesthetic preferences. We worked with an estab-
lished artist’s work to give ecological validity to our system. While the results
are specific to an individual artist, it is worth emphasising that the methods dis-
cussed generalise to any multi-parameter generative system whose phenotypes
can be expressed as 2D images. Indeed, the Species Explorer software sepa-
rates the creative evolution process from the actual generative system, allowing
Species Explorer to work with any parameter based generative system.

The research presented here shows that deep learning neural networks can
be useful to predict aesthetically driven evaluations and assist artists to find
phenotypes of personally high aesthetic value. As discussed, these predictors are
useful to help explore the outputs of generative systems directly in genotype
space.

There is still more research to be done however. More testing is now needed
to see how productive this is in practice when working with systems that often
have high dimensional parameter spaces. We have shown the neural networks
can categorise and rank phenotypes with a high accuracy in a specific instance,
the next step would be to see if this approach generalises to other artists and
their personal aesthetics.
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