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ABSTRACT

fzeron~ is a monophonic, wavelet-based, real-time fun-
damental estimation object released as part of the standard
Max 6 distribution. It was designed to provide usable
results in a large variety of cases with a minimum of
parameter modification by the user. It implements a
Fast Lifting Wavelet Transform (FLWT) using the Haar
Wavelet. The object provides an efficient estimation of
the fundamental frequency in a large variety of real-world
situations.

1. INTRODUCTION

The fundamental frequency (fp) of a musical sound is one
of its defining parameters and is key to the perception
of pitch and melodyp_-] The usefulness of quickly and
reliably estimating fo has been demonstrated by numer-
ous musical works and research papers, but fundamental
estimation is still a difficult engineering problem and real-
time implementation is non-trivial for musicians.

MaxE] is a popular visual, or data-flow programming
language for music and media. Max programs are com-
monly referred to as patches, and they are programmed
by connecting basic functions, called objects, on a visual
canvas. The use of the term object in the context of Max,
and in this paper, should not be confused with object-
oriented programming. Max objects are self-contained
functions that communicate to the rest of the environment
via data inlets and outlets. Max comes with a library
of standard objects and can be extended by third party
objects, written in C.

The MSP library of objects was introduced to Max
about 15 years ago, adding audio capabilities to the
programming environment. Since then, many excellent fo
and pitch tracking objects have been developed (see §1.2).

'The term fundamental frequency is used in this paper to refer to
the empirical value of the lowest partial in a harmonic waveform, while
pitch is used to describe the perceptual phenomenon. Often, these terms
are interchangeable.
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However, identifying the best object and configuration to
use in a specific musical context is still challenging for
many users. Musicians often use the £iddle~ object, a
pitch follower that can decompose a signal into sinusoids,
which works well many cases. However, when fiddle~
does not generate accurate results it can be difficult to
understand why and adjust accordingly. Although there
are multiple adjustable parameters in the object, finding
an optimal trade-off between efficiency and accuracy can
be elusive, and it is very hard to develop an intuition
for the parameters and behaviour of FFT-based pitch
analysis. Consequently, we felt there was an open niche
in the Max environment for a simple, general-purpose fy
estimation tool to supplement the existing objects and act
as a starting point for musicians. The object described
in this paper, fzero~, has been included as part of the
standard distribution since Max version 6.

1.1. Design principles for the object

Discussions when designing this object were primarily
concerned with the user experience rather than specific
mathematics. Although we chose a pitch tracking al-
gorithm that was not represented in previous Max pitch
detectors, scientific novelty was not the goal.

The motivation was to create an object whose default
behavior was acceptable in a large range of scenarios, and
that didn’t require extensive manipulation to yield usable
results. Specifically, we wanted an object that provided

e default fj estimation results that are musically use-
ful for a variety of source sounds, even noisy ones;

e intuitive control for musicians with presets for com-
mon musical instrument sources, and the ability to
balance accuracy with latency in a straightforward
way;

e basic onset detection;

e cfficient, real-time performance.

3Efficiency was not specifically defined at this point, but was


mailto:mzed@cycling74.com
mailto:zicarelli@cycling74.com
mailto:colleccr@ccrma.stanford.edu
http://cycling74.com/products/max/

It wasn’t clear if one pitch tracking algorithm could fulfill
all of these goals in a wide variety of cases, or if we
would need to develop a hybrid approach with different
algorithms for different instruments or conditions. Typical
pitch tracking patches will often include filters to remove
noise outside of the desired frequency range, and other
processing to compensate for dynamic variation. We
considered building these features into the object, perhaps
applying them dynamically. Our first step was to survey
the existing field of fundamental estimation algorithms for
Max and identify their strengths and shortcomings.

1.2. Existing pitch detectors

Miller Puckette has written a series of pitch trackers
using FFT feature detection that have been ported to
Max. The oldest of these is pt~, written for Max/FTS
on the IRCAM Signal Processing Workstation [13]], as
were the later objects pitch~ and jack~. These
objects have been superseded by fiddle~ [12], and
more recently sigmundn~ These objects have been
widely adopted by Max users, and are effective in a wide
range of circumstances. They also output information
about partials other than fp.

As the name “fiddle” suggests, this object is excellent
for tracking violin signals. But frequency resolution
and general performance suffer below about 200 Hz, the
frequency of the lowest string on a violin. This is problem
common to FFT-based approaches: poor low frequency
resolution, a natural consequence of insufficient samples
in a given window. At a sampling rate of 44.1kHz, a
2048-sample FFT window has a frequency resolution of
approximately 11 Hz. While this is less than a semitone
at 200 Hz, it is more than a whole step at 82 Hz —
approximately the bottom string of a guitar in standard
tuning. Also, Dobrian [6] notes that fiddle~ has
difficulty in cases where the music is not “conceptually
organised as discrete notes each having a single stable
fundamental pitch.”

Tristan Jehan has written a family of analysis objects
that are based on fiddle~ and suffer from the same
characteristics listed above. The analyzer~ object
includes pitch tracking and other perceptual information
such as loudness, brightness, and noisiness. Jehan’s
pitch~ object outputs a subset of that data, including
the pitch and amplitude of fj and higher partials [8].

The yin~ fj estimator uses autocorrelation and can-
cellation to estimate the frequency [2]]. This approach has
been shown by Obin [11]] to be very robust for plucked
or struck strings. An implementation is available through
IRCAM’s online forum P

Two other objects deserve mention, although they fall
outside of the category of monophonic pitch detectors.
Arsia Cont’s transcribe~ object [3] tackles poly-
phonic pitch detection by using non-negative decompo-

understood as using a relatively small (less than 10%) amount of the
CPU on a typical laptop.

4http://crca.ucsd.edu/ tapel/software.html
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sition techniques. iana~, by Todor Todoroff, uses a
frequency-domain approach derived from Terhardt and
reports a large amount of spectral data about the incoming
signal. It has been used effectively for real-time analysis
and resynthesis [[14]. Both of these are also available
through the IRCAM forum.

Each of these objects has strengths and performs best
under the circumstances for which is was designed. An
expert user should desire access to many tools that solve
a wide range of musical problems. But to the more
common user of Max, the choices can be overwhelming
and implementing the best choice requires some finesse.
Furthermore, inclusion of objects outside of the standard
Max distribution in either a musical composition or a
teaching environment make that piece or lesson more
difficult to share and preserve, which is a serious consider-
ation for computer musicians. This problem is heightened
if the included objects are not cross-platform, or not freely
available.

In summary, the most commonly used objects (fiddlen,

yin~) implement either FFT-based feature detection or
autocorrelation. In addition to these known approaches,
two other methods that had not yet been explored in Max
held promise for us: wavelet transforms and multiple
FFT methods (e.g. cepstrum, modulation spectrum, or
“Fourier of Fourier transforms”). When this project
began in 2009, Marchand’s “FFT of FFT” approach [10]
was explored. Although this still looks promising, it
was determined to be too computationally expensive for
our applications. Wavelet transforms, although relatively
untested in Max, offered the potential to meet all of our
design principles while also introducing a new tool to the
array of Max analysis objects.

2. OBJECT DESIGN

The design of the fzero~ max object can be described
from two perspectives: the implementation of the under-
lying algorithm and the presentation of the algorithm’s
functions to the user. Although this paper goes into details
of the algorithm, it is important to our design that deep
knowledge of the underlying algorithm is unnecessary for
the end user.

2.1. Algorithm

The underlying mathematics for £ zero~ can be found in
Larson and Maddox [9]] and is echoed below in §2.1.1 and
§2.1.2. This algorithm stood out because

o the wavelet transform has shown promising results
elsewhere [7]],

e it has good low-frequency resolution (limited by the
need to fit at least two periods of fj into a buffer),

e it shows resistance to noise (Larson reports good
results up to a SNR of 20-25 dB),

e it can be effective on signals with relatively weak
fundamentals,
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o there was potential for computational efficiency and
hence real-time implementation.

The following subsections list the components of the
algorithm, step by step. The analysis is performed on a
buffer of samples with a default size of 2048. The sample
rate in Max is configurable by the user separately from
this object. Each step is repeated at each iteration of the
transform. The object is set to run up to five levels of
analysis, although it will stop analyzing if no peaks are
detected in the signal.

2.1.1. FLWT

The first step in the fy estimation algorithm is a Fast
Lifting Wavelet Transform, using a Haar wavelet. In the
jargon of wavelets, this transform splits the signal into
approximation and detail components written d(n) and
a(n). Respectively, these components are equivalent to a
downsampling low-pass (approximation) and upsampling
high-pass (detail) filter. The transform can be re-applied
to the approximation, further isolating fy. The equations
used are from Daubechies and Sweldens [5]:

do(n) = x(2n+1) (1)
ap(n) = x(2n) (2)
di(n) = do(n)—ao(n) 3
aln) = a(m+ 2 @

2

where x(n) is the original signal, a;(n) the first approx-
imation, and d;(n) the first detail. Since we are not
concerned with the high-pass characteristics, the detail
component d (n) is ignored. The approximation compo-
nent is equivalent to a first-order, downsampling low-pass
filter, derived from the equations above:

x(2n+1) +x(2n)
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Figure 1. The impulse response of the Haar approximation
component aj (n).

Iterating this transform multiple times on the resulting
signal allows the algorithm to focus on the fundamen-
tal frequency and to discard noise and higher partials.
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Figure 2. The frequency response of the Haar approximation
component A (z), a simple lowpass filter. Above, F; = 27.Therefore, the
maximum frequency component is equivalent to Fy/4, half the Nyquist
frequency due to downsampling.

However, high pitched fundamentals are either discarded
or the period becomes an unusably small number of
samples after downsampling. In practice, this imposes
an effective upper frequency limit of detectable pitches
at about 5% of the sample rate. We had success tracking
pitches up to 2500 Hz at a 44.1kHz sample rate, which
is approximately the highest note for a Western, concert
flute. Although higher pitches are occasionally used in
musical performance, the trade-off is increased resolution
in the lower frequency ranges (compared to FFT-based
analyses) where fundamentals are more likely to occur.

2.1.2. Finding local maxima and peak-to-peak distances

After each level of transformation, the algorithm detects
local minimum and maximum peaks in the signal. First
a DC blocking filter is applied, then direction changes
over a specified amplitude threshold are recorded. The
thresholds are set at 75% of the maximum and minimum
amplitude of the buffer, and are used to reject low-
amplitude noise and partials from the peak detection
process. This parameter is not exposed to the user.
Direction changes are not considered to be peaks unless
they occur more than a specified number of samples
0 from the previous peak, which is determined by the
maximum frequency attribute F and the wavelet level i:

F
5:max<{2iFJ,l>. 6)

Once peaks have been found, the number of samples
between a given peak and each of three subsequent peaks
is determined. Each distance between peaks is a candidate
for the period of fy; every occurrence of a particular dis-
tance is stored for evaluation in the next step. Inclusion of
distances between peaks that have one or two intervening
peaks helps to correctly identify fy in cases where a higher
partial is creating peaks between those which represent
fo. Higher partials and their peaks are filtered out in
later analysis levels. If no peaks are detected, the analysis



stops. This saves CPU cycles in cases where fj has been
filtered out of the approximation.

A potential problem for many analysis methods is
when a note begins or changes in the middle of the buffer.
By “buffer,” we mean window or frame as the terms are
used in a windowing function such as the Short Time
Fourier Transform. This has been somewhat mitigated
in fzero~ by analyzing peaks starting from the most
recent sample and moving toward the oldest, stopping

when an adequate number of peaks have been detectedE]

Many cases that were initially difficult, such as samples
that come from an attack transient, reverberation, or a note
that has ended, are now effectively suppressed.

2.1.3. Estimating the fundamental for the current level

Once the peak-to-peak distances have been calculated,
they are analyzed to determine the number of samples
between peaks that best corresponds to fp at current
level of analysis. Each distance is given a score based
on the number of similar distances that are identified;
distances are considered similar if they are equal or within
0 samples of one another. If present, the fj estimate from
the previous full analysis is used to distinguish between
close cases, biasing the selection toward the previous
value. In the case of a tie involving one distance that is
twice as long as a another, the longer distance is chosen.
This favors lower octaves in the final result.

At higher frequencies, the period of the fundamental
is a relatively small number of samples (2500 Hz is 17.64
samples at a 44.1kHz sample rate). To increase resolution,
the mean of the distances within 0 of highest scoring
distance is used as final estimate for a particular analysis
level. This has negligible effect at lower frequencies.

2.1.4. Checking against previous level

The results from the first pass of the transform are re-
analyzed following the same procedure, up to a maximum
of five levels. After the first level, the algorithm checks at
this point to see if the fundamental estimate for the current
level (after adjusting for downsampling) is the same as
that of the previous level. If so, that is taken that to be the
period of the signal and it is converted into a frequency
and reported. Otherwise, the algorithm moves to the next
level and starts the process again. If the level limit is
exceeded, it is assumed that the signal is unpitched and no
result is reported. Also, the analysis stops if no peaks are
found, which is often the case for high frequency inputs.

We initially considered that the maximum number of
levels would be a user-configurable feature. However, we
discovered that the algorithm did a good job of determin-
ing how many levels to run based on the input signal.
Exposing this parameter would have added complexity for
the user with little or no benefit.

%Based on our testing, 16 maxima and 16 minima were more than
enough to return the correct result.

2.1.5. Onset detection

The first version of fzero~ did not include onset detec-
tion, but early testers convinced us that this is a necessary
function. The object looks for changes in amplitude or
estimated pitch, and reports an onset when either criterium
is met. The object then waits for configurable number of
samples (default=1024) before it will report a new onset,
suppressing onsets triggered by vibrato or tremolo. This
method is effective and relatively unsophisticated.

The exact moment when a note starts is problem-
atic for pitch detection because many instruments have
frequency-rich attack transients that obscure an emergent
fundamental frequency. This particular algorithm, like
many others, requires a few periods of fj to be buffered
before it can be properly identified, so while knowing the
exact onset time is very useful musically, this feature has
the side effect of occurring at moments where the analysis
does not perform optimally.

2.2. Max Object

As previously stated, the goal of fzero~ is to present
users with a simple interface that works “out of the
box.” In most cases, it should work well with the default
settings. The following parameters have been exposed for
advanced users and/or exceptional cases.

2.2.1. Outputs

The fzero~ object has three outputs. From left to right,
these are:

e a floating-point value in Hertz when a fundamental
within the specified parameters has been detectedﬂ

e peak, linear amplitude of the last analysis buffer
(range 0.0-1.0),

®a banf] when a new onset has been detected or a list
of the pitch and amplitude that triggered the onset
report.

2.2.2. Object attributes

fzeron~ analyzes a circular buffer of samples, the size of
which is set by the size attribute (in samples, the default
= 2048). The buffer size affects latency and efficiency,
as well as the minimum possible fy. Larger buffers
generally provide a more accurate analysis, especially for
low fundamental frequencies, with a penalty in efficiency
and latency. These penalties are minimized by the self-
scaling aspects of the algorithm.

The period attributeﬂ (in samples, the default = 256)
determines how often the analysis is run. It is usually
fewer samples than the buffer size, allowing the object to

7We considered that this output should be in MIDI note values, but
this conversion is trivial with Max’s £t om object.

8 A “bang” is a special Max message that generally initiates an event.

9The denotation of “period” here is equivalent to “hop size” in a
windowing function.
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Figure 3. Screenshot of the help file for zero, showing outputs in the left pain and available attributes in the right.

reduce the time between analysis results while retaining
the accuracy of a large buffer.The FLWT is not re-run
on the entire buffer; it is only performed on samples that
have arrived since the previous analysis. However, the
peak detection and subsequent steps must be run on the
whole buffer for every period. A shorter analysis period
has lower latency, but is less efficient. Also, analyzing
more frequently decreases the length of time a previous
estimate will influence the current results. The results are
more prone to jitter with smaller periods, as in the piano’s
timbre with overtones that sustain while the fundamental
disappears. Increasing the period to at least 512 samples
yields a smoother result, which might be desirable in some
cases.

The threshold (linear amplitude, default = 0.1), fre-
gmin (default = 20 Hz), and freqmax (default = 2500
Hz) parameters limit the cases where f zero~ will output
a result. If the peak amplitude of the buffer does not
exceed the specified threshold, the object will not do
an analysis. This filters out meaningless estimates from
a noisy signal. Freqmax sets the minimum distance
between peaks (see equation (3)), limiting the maximum
analyzed frequency and making the calculation more
efficient. Freqmin filters out low frequency results, but
has no effect on the calculations.

Onsetamp (linear amplitude, default = 0.1), on-
setpitch (default = 0.25 semitones), and onsetperiod
(default = 1024 samples) affect the onset detector. The
first two parameters set the amplitude threshold and the
amount of pitch deviation (respectively) that would trigger
an onset report. Onsetpitch is set in floating point MIDI
values, allowing for a consistent perceptual distance over
the whole frequency range. Optionally, the onsetlist at-

tribute causes the object to report the pitch and amplitude
that triggered the onset report.

2.2.3. Extra information in the help file

The quality of any fundamental estimation algorithm is
highly dependent on the quality of the input signal, so
helping users is as important as a sophisticated algorithm.
The fzero~ object is effective at suppressing noise and
adapting to varying input amplitudes, but it still performs
best with pitched, monophonic input. The final section
of the help file provides practical tips on microphone
placement and choices for better results.

We added a collection of common western instrument
ranges into the help file to make it easier for users to set
the correct range of analyzed frequencies. Originally, we
thought that the object might accept instrument names as
messages and use them internally to set multiple parame-
ters. However as the object developed, fewer parameters
needed adjusting. Setting the desired frequency range was
deemed adequate and adding this information to the help
file exposes it to be reused across the entire application.

3. CONCLUSIONS & FUTURE WORK

It was beyond the scope of this project to run empirical
tests of all the current fundamental detection algorithms
against a broad array of instrument, microphone, and
acoustic situations. Empirical data comparing many of
the objects cataloged in this paper would be of great use
to the community and future developers. In an informal
survey of users, most reported CPU usage of 1-2% of the
audio thread in their normal performance configuration.
The worst machine was a 32-bit, MacBook Pro, 2GB Core



Duo, where fzero~ consumes 7-9% of CPU cycles with
normal settings.

Currently, fzero~ assumes that a fundamental de-
tected in the previous frame is accurate and useful for
determining the current estimate. The effect is usually
beneficial, but can also serve to reinforce bad estimates.
Development in this area might be fruitful. Furthermore,
the onset detection algorithm implemented fzero~ is
quite basic. Improvements could be made with a more
sophisticated approach. Additional features such as off-
set (end of note) detection and discrimination between
pitched and unpitched or voiced and unvoiced signals are
under consideration.
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