
Computing the Antiperiod(s) of a String

Hayam Alamro1,2, Golnaz Badkobeh3, Djamal Belazzougui4, Costas S.
Iliopoulos1, and Simon J. Puglisi5

1 Department of Informatics, King’s College London, London, UK
{hayam.alamro, costas.iliopoulos}@kcl.ac.uk

2 Department of Information Systems, Princess Nourah bint Abulrahman University, Riyadh,
KSA

3 Department of Computing, Goldsmiths, University of London, UK
g.badkobeh@gold.ac.uk

4 Centre de Recherche sur I’nformation Scientique et Technique, Algeria
dbelazzougui@cerist.dz

5 Department of Computer Science, University of Helsinki, Finland
puglisi@cs.helsinki.fi

Abstract
A string S[1, n] is a power (or repetition or tandem repeat) of order k and period n/k, if it can be decom-
posed into k consecutive identical blocks each n/k letters in length. Powers and periods are fundamental
structures in the study of strings and algorithms to compute them efficiently have been widely studied.
Recently, Fici et al. (Proc. ICALP 2016) introduced an antipower of order k to be a string composed
of k distinct blocks of the same length, n/k, called the antiperiod. Antipowers are a natural converse to
powers, and are objects of combinatorial interest in their own right. In this paper, we describe efficient
algorithm for computing the smallest antiperiod t of a string S of length n in O(n log∗ t) time. We also
describe an algorithm to compute all the antiperiods of S that runs in O(n log n) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases antiperiod, antipower, power, period, repetition, run, string

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Algorithms and data structures for finding repeating patterns or regularities in strings (see, e.g., [6,
14, 19]) are central to several fields of computer science including computational biology, pattern
matching, data compression, and randomness testing. The nature and extent of regularity in strings
is also of immense combinatorial interest in its own right [17].

One of the most fundamental notions of regularity is that of powers (also known as repetitions or
tandem repeats). A power of order k is defined by a concatenation of k identical blocks of symbols,
where k is at least 2. The study of powers began in the early 1900s with the work of Thue [20],
who studied a class of strings that do not contain any substrings that are powers. Powers in various
forms later came to be important structures in computational biology, where they are associated with
various regulatory mechanisms and play an important role in genomic fingerprinting (for further
reading see, e.g., [15] and references therein). More recently it has been shown that the number
of so-called maximal powers (or runs) in a string is less than the length of the string itself [3] —
positively settling a long-standing conjecture [5, 16].

Antipowers are an orthogonal notion to that of powers, that were introduced recently by Fici et
al. in [8, 9]. In contrast to powers, antipowers insist instead on the diversity of consecutive blocks:
an antipower of order k is a concatenation of k pairwise distinct strings of equal length.

© Hayam Alamro, Golnaz Badkobeh, Djamal Belazzougui, Costas S. Iliopoulos, and Simon J. Puglisi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Computing the Antiperiod(s) of a String

In the short period of time following Fici et al.’s work, antipowers have received a great deal of
attention, especially from a combinatorial perspective. In a follow-up article, Fici et al. [9], further
showed that every infinite string contains powers of any order or antipowers of any order. Moreover,
Defant in [7] (see also Narayanan [18]) studied the sequence of lengths of the shortest prefixes of
the Thue-Morse string that are k-antipowers, and proved that this sequence grows linearly in k.
Gaetz [11] has since extended Defant’s results to substrings. Burcroff [4] studied the avoidability of
k antipowers in infintite strings, generalizing Fici et al.’s results.

The algorithmic study of antipowers was initiated recently by Badkobeh et al. [2], who describe
an algorithm that, given a string S of length n and a parameter k, locates all substrings of S that are
antipowers of order k. The algorithm takes Θ(n2/k) time, which the authors show to be optimal in
the sense that there exist strings containing Θ(n2/k) distinct antipowers of order k.

New Results. In this paper, we describe algorithms for computing the smallest antiperiod and
all the antiperiods of a string S of length n. Our definition of antiperiod is slightly more general
than that considered by Badkobeh et al., and we define it formally in the next section. The starting
point for both our algorithms is an efficient and novel solution to the monotone weighted level
ancestor problem, which we describe in Section 3. This leads to an O(n log n) time algorithm for
computing all the antiperiods of a given string, described in Section 4. We then show how to exploit
combinatorial properties of antipowers to obtain an algorithm for computing the smallest antiperiod,
t, of S in time O(n log∗ t).

2 Preliminaries

Let S = S[1, n] be a string of length |S| = n over an alphabet Σ of size |Σ| = σ. The empty
string ε is the string of length 0. For 1 ≤ i ≤ j ≤ n, S[i] denotes the ith symbol of S, and S[i, j]
the contiguous sequence of symbols (called factor or substring) S[i]S[i + 1] . . . S[j]. A substring
S[i, j] is a suffix of S if j = n and it is a prefix of S if i = 1. A string p is a repeat of S iff p

has at least two occurrences in S. In addition p is said to be right-maximal in S iff there exist two
positions i < j such that S[i, i + |p| − 1] = S[j, j + |p| − 1] = p and either j + |p| = n + 1 or
S[i, i + |p|] ̸= S[j, j + |p|].

The suffix tree T of a string S is a compacted trie built on the set of all the suffixes of S [21].
More precisely, T is built in such a way that its leaves are in bijection with the suffixes of S and its
internal nodes in bijection with the set of right maximal substrings of S. The edges of T are labelled
by substrings in S in such a way that the concatenation of the edges from the root to a leaf gives the
suffix associated with that leaf and the the concatenation of the edges from the root to an internal
node gives the right maximal string associated to that internal node. The locus of a substring p of
S is the only node α of T such that either α is in bijection with p (if such a node exists), or it is
in bijection with a string that has p as prefix and its parent is in bijection with a prefix of p. The
leaves of the suffix tree are ordered left-to-right in increasing order of their associated suffixes. To
each node α in T is also associated an interval of leaves [i..j] (leaves are numbered in left-to-right
order) and a depth d, where [i..j] is the set of leaves that have α as an ancestor (or the interval [i..i]
if α is the i’th leaf in the left-to-right order). The intervals associated with the children of α (if α

is an internal node) will form a partition of the interval associated with α (the intervals are disjoints
sub-intervals of [i..j] and their union equals [i..j]).

A power of order k (or k-power) is a string that is the concatenation of k identical strings. The
period of a k-power of length n is n/k. For example, abaaba is a 2-power (or a square) of period 3.

Our main subject in this paper is a complementary structure to a power, called an antipower,
which we now formally define.

Alamro et al. 3

▶ Definition 1 (Fici et al. [8]). An antipower of order k (or k-antipower) is a string that can be
decomposed into k pairwise-distinct strings of identical length. The anti-period of a k-antipower of
length n is n/k.

For example, ababbabab is a 3-antipower of antiperiod 3.
We now extend the notion of antiperiod to strings that are not necessarily antipowers.

▶ Definition 2. A string s has an antiperiod t if it is a prefix of some k-antipower w = p1p2 · · · pk

whose antiperiod is t.

Note that by this definition every string has antiperiods: ⌊n/2⌋ + 1, . . . , n − 1.

▶ Example 3. Suppose we have the following string:

s = aabbbbaaaabb |s| = 12

t = 6: s is a 2-antipower with antiperiod 6. s = (aabbbb)(aaaabb);
t = 5: s is a prefix of a word, w, that is a 3-antipower with antiperiod 5: w = (aabbb)(baaaa)(bbaaa);
t = 4: s is not a 3-antipower because s = (aabb)(bbaa)(aabb) and it therefore cannot be a prefix of
any antipower with antiperiod 4;
t = 3: s is a 4-antipower with antiperiod 3. s = (aab)(bbb)(aaa)(abb);
t = 2: s is not a 6-antipower because s = (aa)(bb)(bb)(aa)(aa)(bb) and so cannot be a prefix of
any antipower with antiperiod 2.
Therefore, the smallest antiperiod of the string s is 3.

▶ Example 4. Suppose we have the following string:

s = ababbbaaaaabaa |s| = 14

t = 7: s is a 2-antipower with antiperiod 7. s = (ababbba)(aaaabaa);
t = 6: s is a prefix of a 3-antipower, w with antiperiod 6. w = (ababbb)(aaaaab)(aaaaaa);
t = 5: s is a prefix of a 3-antipower, w with antiperiod 5. w = (ababb)(baaaa)(abaaa);
t = 4: s is a prefix of a 4-antipower, w with antiperiod 4. w = (abab)(bbaa)(aaab)(aaaa);
t = 3: s is a prefix of a 5-antipower, w with antiperiod 3. w = (aba)(bbb)(aaa)(aab)(aac);
t = 2: s is not a 7-antipower. s = (ab)(ab)(bb)(aa)(aa)(ab)(aa).
Therefore, the smallest antiperiod of the string s is 3.

We study two problems in this paper related to the computation of antiperiods.

▶ Problem 1. Given a string S, find the smallest antiperiod of S.

▶ Problem 2. Given a string S, find all the antiperiods of S.

3 Monotone Weighted Level Ancestor Queries

In this section, we are interested in weighted level ancestor queries over leaves in the suffix tree. We
will use such queries in subsequent sections to obtain efficient algorithms for computing antiperiods.

The string depth of a node in the suffix tree can be defined as the length of the path from the root
to that node (the length of the string obtained by concatenating all the edge labels along that path).
An internal node α spans depth d iff the string depth of α is at least d and string depth of the parent
of α is less than d. A leaf ℓ spans depth d iff the parent of ℓ has string depth less than d.

4 Computing the Antiperiod(s) of a String

Abusing notation we will identify each leaf of T by the unique number ℓ ∈ [1, n] that reflects the
order of the leaf in the left-to-right ordering of the leaves of the tree.

A weighted level ancestor query will consist of a pair (ℓ, d), where ℓ is a leaf in the suffix
tree and d is a string depth. The goal is to return the highest ancestor of ℓ that has string-depth
at least d. Although there exist some solutions to this problem, none of them is satisfactory for our
purpose. The solution described in [13] supports constant time queries, but does not have an efficient
construction algorithm1. All the other solutions to this problem have linear preprocessing time, but
query time O(log log n) [1]. Here we will describe a solution that can be used to efficiently answer
sequences of weighted-level ancestor queries as long as the depth argument of the queries in the
sequence is non-decreasing.

One of the most frequent applications of weighted level ancestor queries is the determination
of the locus of substrings of S. More precisely, the locus of a substring S[i, j] can be determined
as follows: first determine the leaf ℓ that corresponds to suffix S[i, n]. Then, the locus of S[i, j] is
obtained by issuing a weighted level ancestor query with pair (ℓ, j − i + 1).

▶Definition 5. A sequence of weighted-level ancestor queries (ℓ1, d1), (ℓ2, d2) . . . (ℓt, dt) is called
monotone, iff we have that di ≤ di+1 for all i ∈ [1..t − 1].

▶ Definition 6. A split-find data structure is a data structure over the interval [1..n] that starts with
a set of disjoint sub-intervals of [1..n] whose union equals [1..n] (the subintervals form a partition
of [1..n]) and in which the query find(k) will return the only subinterval [i..j] such that i ≤ k ≤ j,
and the update query split([i..j], k) with k ∈ [i..j − 1] will remove the interval [i..j] and insert
intervals [i..k] and [k + 1..j].

Before describing our proposed solution, we will start by stating some useful lemmas.

▶ Lemma 7. A node alpha associated to an interval [iα, jα] is an ancestor of a node β associated
to interval [iβ , jβ] iff [iβ , jβ] ⊆ [iα, jα]

Proof. The lemma is immediate from the definition of the suffix tree and the definition of the
intervals associated to the suffix tree nodes. ◀

▶ Lemma 8. The answer to a weighted-level ancestor query (ℓ, d) is a node α that spans depth d

and has an associated interval [i..j] such that ℓ ∈ [i..j].

Proof. The fact that α needs to span d is immediate from the definition of the query. The fact that
[i..j] needs to include ℓ follows from the definition of the query and from Lemma 7. ◀

▶ Lemma 9. The collection of intervals associated to the set of nodes that span level d will form a
partition of the interval [1, n]

Proof. We will first prove that the intervals are disjoint and then prove that their union equals [1, n].
We will prove that by showing that every leaf is included in exactly one interval that spans level d.
Suppose that a leaf ℓ is included in two intervals [iα, jα] and [iβ , jβ], then one of the nodes α or β

is an ancestor of the other (by Lemma 7), which means that it has depth less than d thus does not
span d. We will now prove that ℓ is included in at least one interval. Suppose that the parent of ℓ has
depth less than d. Then, ℓ spans d and thus the interval [ℓ, ℓ] is in the collection. Otherwise, clearly
one of the ancestors of ℓ spans d and its corresponding interval includes ℓ. ◀

We will now prove the following lemma.

1 Although not specifically analysed in [13], preprocessing time is O(n log4(n)) [12].

Alamro et al. 5

▶ Lemma 10. The collection of intervals corresponding to nodes that span depth d + 1 can be
obtained from the collection of intervals that corresponds to nodes that span level d by replacing the
intervals that correspond to internal node at depth d with intervals of their children.

Proof. First of all, observe that each node that spans depth d + 1 either spans level d or has a parent
that spans level d. Thus generating all nodes that span depth d + 1 amounts to consider all (intervals
of) nodes that span level d and for each such node either add it (its interval) to the output set or add
(intervals of) its children. We will now look at all nodes that span depth d. Observe that a node α

that spans depth d will have depth at least d. Consider now two cases:

1. If α has string depth more than d, then it will clearly also span depth d+1, since it obviously has
depth at least d + 1 and its parent has depth less than d and thus less than d + 1. It thus suffices
to keep the interval that corresponds to α.

2. If α has depth exactly d, then the depth of all its children is at least d + 1. Those children will
obviously span d, since their depth is at least d + 1 and the depth of their parent α is d < d + 1.
It thus suffices to replace the interval of α with the intervals of its children.

◀

We are now ready to prove the main theorem of this section.

▶ Theorem 11. Suppose that we have a split-find algorithm over n elements in the interval [1..n]
that has initialization time O(n) and that supports the find operation in constant time and any
sequence of k split operations in amortized O(1 + n

k) time per operation. Then we can use such
an algorithm to support any sequence of t monotone weighted-level ancestor queries over a suffix
tree with n leaves in amortized O(1 + n

t) time per query.

Proof. We assume depth d1 ≥ 1 (level ancestor queries for depth 0 are trivial — the returned node
is the root). To each node α in the suffix tree we can associate an interval of leaves [i..j] (leaves
are numbered in left-to-right order) and a depth d, where [i..j] is the set of leaves that have α as
an ancestor. We initialize the weighted level ancestor query data structure in time O(n) with the
intervals associated with the children of the root. We will store an auxiliary table P [1..n] which will
store the data associated with each interval.

More precisely, the data associated with interval [i..j] will be stored in the cell P [i], and in our
case will consist of a pair (P1, P2), where P1 is a pointer to the suffix tree node associated with the
interval [i..j] and P2 is a pointer to the internal representation of the interval [i..j] in the split-find
data structure. We also preprocess the suffix tree, and store a table L[1..n − 2], where L[d] points
to the list of all nodes at string depth d (nodes that are in bijection with strings of length d). This
preprocessing can clearly be done in O(n) time (by traversing all nodes in the tree).

We now describe the algorithm. We proceed in n − 2 update steps numbered from 2 to n − 1.
These steps are intermingled with the queries. More precisely, if we have di > di−1 for some pair
of consecutive queries (ℓi−1, di−1), (ℓi, di), we proceed to all steps di−1 + 1, . . . , di, thus preparing
the split-find data structure for the next queries. At update step number u ∈ [di−1 + 1, di], we will
induce the collection of intervals of nodes that span level u from the collection of intervals that span
level u − 1. Following Lemma 10, we traverse the list of nodes L[u − 1] and for every node α

with associated interval [i..j] we split the interval [i..j] in the split-find structure by using the pointer
P [i].P2 that points to the internal representation of the interval in the split-find representation. The
interval of α will be replaced with the intervals of its children. If α has k children, then [i..j] will
be split into k subintervals [i..i1], . . . , [ik−1 + 1..j]. This can be done by successively splitting [i..j]
into [i..i1] and [i1 + 1..j], then split [i1 + 1, j] into [i1 + 1, i2] and [i2 + 1, j] and so on, until
we have completed the splitting of the interval [ik−2 + 1, j] into k subintervals [ik−2 + 1, ik−1] and

6 Computing the Antiperiod(s) of a String

[ik−1 +1, j] (each time using and updating cells P [i], P [i1 +1] . . .). At the end the cells P [i], P [i1 +
1] . . . P [ik−1 +1] will point to the suffix tree nodes with associated intervals [i..i1], . . . , [ik−1 +1..j].

Notice that after step di, the subintervals stored in the split-find data structure will precisely form
the collection of nodes that span depth di. It is clear that this set of nodes is precisely the set of nodes
that can be answers to weighted level ancestor queries for depth di. Moreover answering a query
(ℓi, di) amounts to finding the subinterval [i..j] such that i ≤ ℓi ≤ j and from there retrieve the
pointer to the suffix tree node pointed by P [i].

It remains to analyze the amortized time queries to the weighted-level ancestor query data struc-
ture. The total time, can be decomposed into four components: the preprocessing time, the uptdate
time and the query time. The preprocessing time is dominated by the construction of lists L which as
argued above is O(n). The update time is dominated by the updates to the split-find data structure.
We argue that the total time for the updates (between queries)is O(n) assuming that the union-find
data structure supports a sequence of k updates in amortized time O(1 + n/k) which in total gives
O(n + k). It is clear that the total number of split operations is upper bounded by the number of
children of internal nodes in the suffix tree, since we perform t − 1 update operations for an internal
node with t children. The total number of children of all internal nodes is clearly upper bounded by
the total number of nodes in the suffix tree which is 2n − 1. We thus conclude that the total time for
all updates is O(n + 2n − 1) = O(n).

Finally the amortized query time is constant for each query, since it is dominated by the query
time of the split-find data structure which is constant time amortized. Thus the sum of all query
times is O(k). We thus conclude that the total time for preprocessing, updates and queries is O(n)
and thus the amortized time per operation is O((n + k)/k) = O(1 + n/k). ◀

Since there exists a split-find algorithm over n elements that has initialization time O(n), uses
space O(n) working over the interval [1..n], that supports the find operation in constant time and
any sequence of t split in amortized constant O(1 + n

t) time per operation [10], we can state the
following corollary.

▶ Corollary 12. Given a suffix tree T with n leaves, we can, in O(n) time, build a data struc-
ture that supports any sequence of monotone weighted-level ancestor queries over T in O(1 + n

t)
amortized time.

4 Computing All the Antiperiods of a String

In the smallest antiperiod problem, we are given a string S of length n and have to find the smallest
t such that the string S is a prefix of some string p0p1 . . . pk, where |pi| = t for all i ∈ [0..k] and
pi ̸= pj for all i ̸= j.

This problem can be solved using the suffix tree of S by making use of the following observation:

▶ Lemma 13. Two substrings S[i, i + d − 1] and S[j, j + d − 1] are equal iff they have the same
locus in the suffix tree of S.

The algorithm proceeds in (at most) ⌊n/2⌋ phases, where in phase i, it is tested whether value
t = i is an antiperiod of S. Such a test can be carried out via ⌈n/i⌉ monotone weighted level-
ancestor queries. That is, in phase i, we compute weighted level ancestor queries for (weighted)
level i for the leaves labeled with positions 1, i + 1, 2i + 1, 3i + 1, and so on. If at any point we
visit the same node (i.e. ancestor) a second time, then S cannot have antiperiod i because at least
two of the substrings of length i starting at the tested positions are equal. On the other hand if all
ancestors are unique so are the corresponding substrings of length i (at positions tested), implying i

is an antiperiod.

Alamro et al. 7

Let t be the first phase in which all ancestor nodes returned by the monotone level ancestor
queries are unique. t is thus the smallest antiperiod of S. The ith phase involves n/i level ancestor
queries. Therefore if we stop the algorithm at phase t, the total number of queries will be N =
O(

∑t
i=1 n/i) = O(n log t). We now bound the total time taken by all queries. First of all, notice

that queries have the monotonicity property, which means that we can apply Theorem 11. Now,
by Theorem 11, each of the N query is supported in amortized O(1 + n

N) = O(1) time per query
which means that the total time for all N queries is O(N) = O(n log n). We have thus obtained the
following theorem.

▶ Theorem 14. We can find the smallest antiperiod of a string of length n in O(n log t) time,
where t is the length of the antiperiod.

Clearly, if instead of stopping at the point at which we have computed the smallest anti-period we
continue to run the algorithm up to phase ⌊n/2⌋, we will compute all the antiperiods of the string,
obtaining the following theorem.

▶ Theorem 15. We can find the all the anti-periods of a string of length n in O(n log n) time.

5 Faster Computation of the Smallest Antiperiod

If our goal is to compute only the smallest antiperiod of a string we can make use of the algorithm
of the previous section to obtain it in O(n log t) time. In this section we show how to obtain a
faster algorithm for the smallest antiperiod problem via the following two easily proved properties
of antiperiods.

▶ Lemma 16. If t is a an antiperiod, then any multiple of t is also an antiperiod.

▶ Lemma 17. If t is the smallest antiperiod, then 1, 2 . . . , t − 1 are not antiperiods.

Using the two observations above, we can improve the solution described in the previous section.
More precisely, we can reduce the time down to O(n log log t) as follows.

Let us denote f(i) = i⌈log2 i⌉. For increasing values of i = 2, 3, . . ., we test antiperiod i′ =
f(i). We stop whenever we find a value i′ that is not an antiperiod. Clearly this first step takes time:

O(n) +
∞∑

i=1
O(n

i⌈log2 i⌉
) = +O(n + n

∞∑
i=1

1
i⌈log2 i⌉

) = O(n).

This is because the series
∑∞

i=1 1/(i log2 i) converges to a constant. Now, for any j ∈ [2..i − 1], we
have the following two facts:

1. f(j) is multiple of j.
2. f(j) is not an antiperiod.

By Lemma 16, these two facts imply that j is not an antiperiod. We thus have proved that the smallest
antiperiod is in the range [i..f(i)]. Then we test all antiperiods between i and f(i) (in increasing
order), taking time:

O(n) +
i′∑

j=i

O(n

j
) = O(n +

i′∑
j=1

n

j
−

i−1∑
j=1

n

j
) = O(n + n(log i′ − log(i − 1))) = O(n log log i).

Clearly we have that t ∈ [i..i′] and so O(n log log i) ∈ O(log log t). We thus have proved the
following theorem

▶ Theorem 18. We can find the smallest antiperiod t of a string of length n in time O(n log log t).

8 Computing the Antiperiod(s) of a String

5.1 Recursive solution

By recursing on the solution described above multiple times we get total time O(n log∗ t) to find the
smallest antiperiod. That is, as the second step, instead of testing all antiperiods between i and i′, we
instead test every ℓ = ⌈(log log i)2⌉ value, spending total time O(n). That is, we test the antiperiods
i · ℓ, (i + 1) · ℓ, . . . , ⌈ i′

ℓ ⌉ · ℓ. The complexity is this time:

O(n) +
⌈ i′

ℓ ⌉∑
j=i

O(n

jℓ
) = O(n + n

ℓ
·

⌈ i′
ℓ ⌉∑

j=i

1
j

) ∈ O(n + n

ℓ
·

i′∑
j=i

1
j

)

= O(n + n

ℓ
· (log(i′) − log(i − 1)) = O(n + n

ℓ
· (log log i)) = O(n).

In the formulae above, the O(n) terms in the beginning is due to the monotone weighted-level
ancestor data structure At the end of this second step we will have determined an interval [i′′, ·i′′ℓ].
In third step, we continue doing the tests but testing every ℓ2 = ⌈log log log i⌉ value as a candidate
anti-period. We continue that way, until we get into an interval [i(k)..i(k) · ⌈log(k)(i)⌉], such that
log(k)(i) ≤ 3. Here log(k)(x) denotes the logarithm function iterated k times. Clearly the number
of steps is the number of times we apply the logarithm function to the number i before we get a
constant. This number is denoted by log∗ i. We also have log∗ i = O(log∗ t). Now, since we have
log∗ t steps and each step takes O(n) time, the total execution time of our algorithm is O(n log∗ t).

▶ Theorem 19. We can find the smallest antiperiod t of a string of length n in O(n log∗ t) time.

6 Concluding remarks

We have described the first non-trivial algorithms for computing the antiperiods of a string. For a
string of length n we can compute all its antiperiods in O(n log n) time, or alternatively compute its
smallest antiperiod t in O(n log∗ t) time. Furthermore, we showed how to use a split-find algorithm
that has initialization time O(n) and uses work space O(n) over n elements to support any sequence
of k monotone weighted level ancestor queries over a suffix tree with n leaves in amortized time
O(1 + n

k), which may be of independent interest. The most obvious open questions we leave is
whether linear time algorithms exist for either of the antiperiod problems considered here.

Acknowledgements

This work was supported by the Academy of Finland under grant 319454.

References

1 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static
pattern matching. ACM Trans. Algorithms, 3(2):19, 2007.

2 Golnaz Badkobeh, Gabriele Fici, and Simon J. Puglisi. Algorithms for anti-powers in strings.
Information Processing Letters, 137:57–60, 2018.

3 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and Kazuya
Tsuruta. The “Runs” Theorem. SIAM J. Comput., 46(5):1501–1514, 2017.

4 Amanda Burcroff. (k, λ)-anti-powers and other patterns in words. Electronic Journal of Combin-
atorics, 25(4):#P4.41, 2018.

5 Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The "runs" conjecture. Theor. Comput. Sci.,
412(27):2931–2941, 2011.

6 Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific, 2002.

Alamro et al. 9

7 Colin Defant. Anti-Power Prefixes of the Thue-Morse Word. Electronic Journal of Combinatorics,
24(1):#P1.32, 2017.

8 Gabriele Fici, Antonio Restivo, Manuel Silva, and Luca Q. Zamboni. Anti-powers in infinite
words. In 43rd International Colloquium on Automata, Languages, and Programming, (ICALP),
volume 55 of LIPIcs, pages 124:1–124:9. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016.

9 Gabriele Fici, Antonio Restivo, Manuel Silva, and Luca Q. Zamboni. Anti-powers in infinite words.
J. Comb. Theory, Ser. A, 157:109–119, 2018.

10 Harold N Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint
set union. Journal of computer and system sciences, 30(2):209–221, 1985.

11 Marisa Gaetz. Anti-power j-fixes of the Thue-Morse word. https://arxiv.org/abs/

1808.01528.
12 Paweł Gawrychowski. Personal Communication, 2018.
13 Paweł Gawrychowski, Moshe Lewenstein, and Patrick K Nicholson. Weighted ancestors in suffix

trees. In European Symposium on Algorithms, pages 455–466. Springer, 2014.
14 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational

Biology. Cambridge University Press, 1997.
15 Roman M. Kolpakov, Ghizlane Bana, and Gregory Kucherov. mreps: efficient and flexible detection

of tandem repeats in DNA. Nucleic Acids Research, 31(13):3672–3678, 2003.
16 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear time.

In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999,
New York, NY, USA, pages 596–604, 1999.

17 M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 2002.

18 Shyam Narayanan. Functions on antipower prefix lengths of the Thue-Morse word. https:

//arxiv.org/abs/1705.06310.
19 W. F. Smyth. Computing Patterns in Strings. Pearson Addison Wesley, United Kingdom, 2003.
20 Axel Thue. Uber unendliche zeichenreihen. Norske vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana,

7:1–22, 1906.
21 Peter Weiner. Linear pattern matching algorithms. In Switching and Automata Theory, 1973.

SWAT’08. IEEE Conference Record of 14th Annual Symposium on, pages 1–11. IEEE, 1973.

https://arxiv.org/abs/1808.01528
https://arxiv.org/abs/1808.01528
https://arxiv.org/abs/1705.06310
https://arxiv.org/abs/1705.06310

	Introduction
	Preliminaries
	Monotone Weighted Level Ancestor Queries
	Computing All the Antiperiods of a String
	Faster Computation of the Smallest Antiperiod
	Recursive solution

	Concluding remarks

