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ABSTRACT 12 

Humans automatically detect events that, in deviating from their expectations, may signal prediction 13 

failure and a need to reorient behaviour. The pupil dilation response (PDR) to violations has been 14 

associated with subcortical signals of arousal and prediction resetting. However, it is unclear how the 15 

context in which a deviant occurs affects the size of the PDR. Using ecological musical stimuli that we 16 

characterised using a computational model, we showed that the PDR to pitch deviants is sensitive to 17 

contextual uncertainty (quantified as entropy), whereby the PDR was greater in low than high entropy 18 

contexts. The PDR was also positively correlated with unexpectedness of notes. No effects of music 19 

expertise were found, suggesting a ceiling effect due to enculturation. These results show that the 20 

same sudden environmental change can lead to differing arousal levels depending on contextual 21 

factors, providing evidence for a sensitivity of the PDR to long-term context. 22 

 23 

Introduction  24 

The experience of surprise is very common in the sensory realm and often triggers automatic changes 25 

in arousal and attentional states that are fundamental to adaptive behaviours. Music is a ubiquitous 26 

and ecological example of a situation where changes in listeners’ arousal and attention are 27 

intentionally manipulated. Composers may, for example, modulate the predictability of musical 28 

passages in order to achieve differing levels of tension in a listener. A great deal of empirical work has 29 

shown that surprising sounds are recognised by listeners in an effortless and automatic fashion 30 

(Pearce, 2018). This process is thought to be supported by a mismatch between the current 31 

unexpected input and the implicit expectations made possible by schematic and dynamic knowledge 32 

of stimulus structure (Huron, 2006; Krumhansl, 2015; Tillmann, Bharucha, & Bigand, 2000; Vuust & 33 

Witek, 2014). However, there is still rather little research examining mismatch responses under 34 

different degrees of uncertainty during passive listening.  35 

Evidence of listeners experiencing events in music as unexpected comes from studies investigating 36 

behavioural (Marmel, Tillmann, & Delbé, 2010; Omigie, Pearce, & Stewart, 2012; Tillmann & Lebrun-37 

Guillaud, 2006) and brain responses to less regular musical events (Bianco, Novembre, Keller, Kim, et 38 
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al., 2016; Carrus, Pearce, & Bhattacharya, 2013; Koelsch, 2016; Koelsch, Gunter, et al., 2002; Maess, 39 

Koelsch, Gunter, & Friederici, 2001; Miranda & Ullman, 2007; Omigie, Pearce, Williamson, & Stewart, 40 

2013; Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010). With regard to the former, priming 41 

paradigms have shown that a context allows perceivers to generate implicit expectations for future 42 

events, leading to facilitated processing (i.e., priming) of expected events. With regard to the latter, 43 

violation paradigms have shown increased brain responses to deviant events (out of key notes, or 44 

harmonically incongruent chords) within structured contexts as well as events which are musically 45 

plausible but more improbable in the given context. For example, Omigie et al. (2013) tested brain 46 

responses to melodies whose notes were characterised in terms of their predictability by a model of 47 

auditory expectations (Pearce, 2005). They showed that surprising events (more improbable notes) 48 

within melodies elicited a mismatch response – often termed the mismatch negativity, MMN (Garrido, 49 

Kilner, Stephan, & Friston, 2009; Näätänen, Paavilainen, Rinne, & Alho, 2007). This response decreased 50 

in amplitude for progressively more predictable events, as estimated by a computational model of 51 

melodic expectation. A similar parametric sensitivity to note unexpectedness has since also been 52 

observed in subcortical regions like the anterior cingulate and insula (Omigie et al., 2019). Moreover, 53 

sensitivity to music structure violation seems to emerge in all members of the general population that 54 

have had sufficient exposure to a given musical system (Bigand & Poulin-Charronnat, 2006; Pearce, 55 

2018; Rohrmeier, Rebuschat, & Cross, 2011), and this sensitivity is modulated by pre-existing 56 

schematic knowledge of music, as reflected in acquired levels of musical expertise (Fujioka, Trainor, 57 

Ross, Kakigi, & Pantev, 2004; Koelsch, Schmidt, & Kansok, 2002a;  Tervaniemi, 2009; Vuust, Brattico, 58 

Seppänen, Näätänen, & Tervaniemi, 2012).  59 

According to theoretical and empirical work framing perception in the context of predictive processing, 60 

the experience of surprise may be modulated by the predictability of a stimulus structure as it unfolds 61 

(Clark, 2013; Dean & Pearce, 2016; Friston, 2005; Ross & Hansen, 2016). Random or high entropic 62 

stimuli hinder the possibility of making accurate predictions about possible upcoming events, whilst 63 

stimuli characterized by familiarity or regular statistics will enable relatively precise predictions by 64 

permitting the assignment of high probability to a few possible continuations. Perceptually, it has been 65 

shown that listeners indeed experience high-entropic musical contexts with greater uncertainty 66 

compared to low entropy ones (Hansen & Pearce, 2014). Moreover, previous work has shown that 67 

neurophysiological signatures associated with auditory surprise display larger responses to a given 68 

deviant event when it is embedded in a low rather than high entropic context (Dean & Pearce, 2016; 69 

Garrido, Sahani, & Dolan, 2013; Hsu, Le Bars, Hamalainen, & Waszak, 2015; Ricardo Quiroga-Martinez, 70 

2018; Rubin, Ulanovsky, Nelken, & Tishby, 2016; Southwell & Chait, 2018). Therefore, research 71 

suggests that to understand whether and how surprising events modulate arousal and re-orient 72 

behaviours, the statistics of the proximal context must be considered.   73 

A vast literature has used pupil dilation response (PDR) as a general marker of arousal, selective 74 

attention, and surprise (Aston-Jones & Cohen, 2005; Sara, 2009). Pupil dilation is associated with the 75 

locus coeruleus-norepinephrine (LCN) system (Laeng, Sirois, & Gredeback, 2012; Widmann, Schröger, 76 

& Wetzel, 2018), the activation of which results in wide spread norepinephrine release in the brain. 77 

Increase of the PDR has been extensively reported in response to violation of expectations or 78 

surprising/salient events in distracted listeners (Damsma & van Rijn, 2017; Liao, Yoneya, Kidani, 79 

Kashino, & Furukawa, 2016; Wetzel, Buttelmann, Schieler, & Widmann, 2016; Zhao et al., 2019), and 80 

when deviants are presented below participants' perceptual threshold (Fink, Hurley, Geng, & Janata, 81 

2018). Furthermore, a relationship between PDR and continuous ratings of surprisal in music 82 

(measured via a continuous slider) has been reported during passive listening (Liao, Yoneya, Kashino, 83 
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& Furukawa, 2018). Other work has specifically associated the PDR to violations of statistical 84 

regularities in the sensory input even when these violations are behaviourally irrelevant (Alamia, 85 

VanRullen, Pasqualotto, Mouraux, & Zenon, 2019; Zhao et al., 2019). These results provide supporting 86 

evidence for a role of norepinephrine in the tracking of abrupt deviations from the current predictive 87 

model of the world, and as a signal of prediction resetting that enables the discovery of new 88 

information (Dayan & Yu, 2006).  89 

Music has the ability to play with our expectations, hence manipulating our arousal and emotions in 90 

an automatic fashion (Laeng, Eidet, Sulutvedt, & Panksepp, 2016; Meyer, 2001; Zatorre & Salimpoor, 91 

2013). Abrupt changes in register, texture and tonality are all examples of instances where the listener 92 

may have to reset or potentially abandon current models about the unfolding music. Such changes 93 

may however appear less surprising if embedded in high entropy contexts.  Here, we use music as an 94 

ecological setting with which to study how the PDR to deviant musical events is modulated by structure 95 

of the stimulus context, specifically by its entropy. The growing field of computational musicology 96 

means that information in melodies can be statistically estimated. One particular model of auditory 97 

expectations – the Information Dynamics of Music, IDyOM (Pearce, 2005) – has been shown to model 98 

listeners’ experience of surprise and uncertainty. This unsupervised Markov model learns and 99 

estimates the conditional probability of each subsequent note in a melody based on a corpus on which 100 

it has been trained (long-term sub-model; extra-opus-learning) and the given melody as it unfolds 101 

(short-term sub-model; intra-opus learning). The model outputs information content and entropy 102 

values, which, respectively, reflect the experienced unexpectedness of a certain note after its onset 103 

and the experienced uncertainty in precisely predicting a subsequent note based on the preceding 104 

pitch probabilities. 105 

We created novel melodies (Figure 1) that adhered to the principles guiding Western tonal melodic 106 

structure. We then created shuffled versions of these melodies to create stimuli that were higher in 107 

entropy albeit matched for pitch range, content and tonal space. The information theoretic properties 108 

of all stimuli were estimated using IDyOM (Pearce, 2005). Listeners were presented with these 109 

melodies either in their standard form or with a pitch deviant whilst PDR was measured. Participants 110 

were not informed about the presence of the pitch deviants, but asked to rate the unexpectedness of 111 

last note of each melody. We expected a larger PDR to deviant notes that are embedded in low rather 112 

than high entropy contexts, and that are higher in their unexpectedness – information content value 113 

– as estimated by the computational model. Also, we expected entropy of the melodies to predict 114 

subjective ratings of stimulus unexpectedness (Hansen & Pearce, 2014). Finally, based on evidence of 115 

greater brain response to musical violations in musicians than non-musicians (Vuust, Brattico, 116 

Seppänen, Näätänen, & Tervaniemi, 2012b), presumably reflecting expertise-related enhancement in 117 

the accuracy of predictive models, differences due to musical expertise (Müllensiefen et al., 2014) were 118 

also investigated.  119 

Methods  120 

Participants  121 

Forty-seven participants (age: M=26.19, SD=6.24, min.=20, max.=52, 68% female, representing 15 122 

nationalities) took part in the study. The sample scored relatively high on the general musical 123 

sophistication index, GoldMSI (Müllensiefen et al., 2014), with M=87.40, SD=25.24, min.=32, 124 

max.=120. A big sample size was chosen based on a previous experiment using musical stimuli (Laeng 125 

et al., 2016) and to ensure statistical power. As a post-hoc confirmation of the adequacy of our sample-126 
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size, we quantified effect sizes of the difference between PDR to deviants in high vs. low entropy 127 

contexts. The power analysis was conducted in the G*Power software package (version 3.1.9.2) with 128 

the setting p = .05 and N = 42 and confirmed that our sample size was adequate (1 − β > .9). Two 129 

participants reported ophthalmologic concerns or surgery prior to the experiment but were not 130 

excluded from participation as the pupil dilates even in blindsight participants (Weiskrantz, Cowey, & 131 

Barbur, 1999). Technical problems occurred during the recording of four participants, who were 132 

therefore excluded from the analysis. One subject was further excluded as blink gaps were too large 133 

to be interpolated. In sum, forty-two participants’ data were analysed.  134 

Ethical approval for this study was granted by the Research Ethics Committee of Goldsmiths, University 135 

of London. Participants were instructed as to the purpose of the study, and consented to participate 136 

(written informed consent). Participation was remunerated with 5 pounds.  137 

Stimuli  138 

One-hundred-twenty melodies were used in this study (thirty originally composed, thirty matched 139 

‘shuffled’ versions, and sixty corresponding versions with a deviant tone always as the 13th note). The 140 

melodic sequences comprised 20 tones, were 5 seconds long, isochronous (with an inter-onset-interval 141 

of 250 ms, 20/4 bar with 240 bpm), and had constant intensity and timbre (MIDI generated piano 142 

timbre). 143 

The corpus of melodies was composed according to the principles of Western-tonal music and using 144 

all tones of the chromatic scale. Ambitus and tonal space varied across melodies. Interval size did not 145 

exceed a perfect fifth (Narmour, 2015) between adjacent notes. Thus, the original melodies were 146 

characterized by a smooth contour. To generate matched melodies that controlled for potential biases 147 

such as tonal space, pitch class, frequency range or ambitus, high entropy melodies were created from 148 

the original melodies by randomizing the order of constituent notes using MIDI processing tools (Eerola 149 

& Toiviainen, 2004). Our manipulation of entropy, whereby notes in original melodies were randomly 150 

shuffled without constraint, necessarily resulted in the mean absolute interval size being greater in 151 

high entropy than in low entropy melodies [L vs. H: t(58) = -2.644, p-value = .01]. Corpus studies of 152 

western tonal music  show that large interval sizes are much less common than small ones (Huron, 153 

2001). Thus, we anticipated that the presence of such large intervals would lead to the higher entropy 154 

levels desired for the high entropy condition.  155 

Deviant notes were inserted in all 60 melodies (original and shuffled version) at the onset of the 13th 156 

note (3000ms on the salient onbeat) in order to create the corresponding set of deviant melodies (Fig. 157 

1). The deviant note was integrated into the second half of the melody in order to allow the 158 

establishment of an expectation-forming context before its occurrence. To ensure that differences in 159 

the PDR to the deviant notes between low and high entropy condition were not attributable to 160 

difference in the just preceding event, but to the context, the interval size between the deviant and 161 

the preceding 12th note was the same in matched pairs of high and low entropy melodies (see Fig. 1). 162 

However, interval size of the deviant varied between maj7 up/down, min9 up/down and aug11 163 

up/down as those intervals sound particularly unusual within a melodic progression. Larger interval 164 

size of the deviant was assigned to matched pairs with lower entropy differences. This allowed for a 165 

variety of deviant interval sizes (a range of unexpectedness) while ensuring salience of deviants even 166 

in melodies showing relatively smaller entropy differences.  167 

Entropy values were assigned by the IDyOM model to each note of the melodies. The IDyOM model 168 

considered one pitch viewpoint, namely ‘cpitch’, whereby chromatic notes count up and down from 169 
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the middle pitch number (C=60) (Pearce, 2005). Through a process of unsupervised learning, the model 170 

was trained on a corpus (903 Western tonal melodies) comprising songs and ballads from Nova Scotia 171 

in Canada, German folk songs from the Essen Folk Song Collection and chorale melodies harmonised 172 

by J.S. Bach. The probability of each note of the stimulus used here were then estimated based on a 173 

combination of the training set’s statistics and those of the given melody at hand. The model outputs 174 

information content and entropy values. In mathematical terms, information content is inversely 175 

proportional to the probability of an event xi, with IC(xi) = −log2 p(xi) (MacKay, 2003), while the 176 

maximum entropy is reached when all potential events xi are equally probable, with p(xi) = 1/n, where 177 

n equals the number of stimuli. In psychological terms, information content represents how surprising 178 

each subsequent note is based on its fit to the prior context  (Pearce & Wiggins, 2006). In contrast, 179 

entropy refers to the anticipatory difficulty in precisely predicting a subsequent note. Mean entropy 180 

values, obtained by taking the mean entropy of all notes, were used to characterise the predictability 181 

of each melody. Given our manipulation, mean entropy was largely, but not entirely, explained by the 182 

mean interval size of melodies (rho = .474, p < .001). These values were then used to predict subjective 183 

inferred uncertainty (measured as unexpectedness of last note) about each melody, and to categorise 184 

melodies into low and high entropy groups. By controlling that the interval preceding the deviant note 185 

was identical across high and low entropy condition, we predicted that a greater PDR to deviant notes 186 

in low than high entropy melodies should be attributable to the difference in the context.  187 

Procedure  188 

The experiment was presented using the Experiment Builder Software and pupil diameter was 189 

recorded using EyeLink 1000 eye-tracker at a 250Hz sampling rate (SR Research, www.sr-190 

research.com/experiment-builder). Prior to the data acquisition, a three-dot calibration was 191 

conducted to ensure adequate gaze measurements. Participants were further allowed to adjust the 192 

sound volume to a comfortable level and were asked to reduce head movements to a minimum 193 

throughout the recording session. As no differences were anticipated between the left and right pupil, 194 

the left pupil was recorded in ten and the right pupil in 32 participants depending on the participants’ 195 

dominant eye. To reduce motion artefacts, the head was stabilized using the SR Research Head Support 196 

chinrest placed 50 cm from the presentation screen.  197 

During the experiment, the 120 melodies were presented binaurally through headphones in a 198 

randomized order. Each trial was triggered by the experimenter on the control computer when the 199 

fixation was stable at less than two arbitrary gaze units away from the fixation point. When recording 200 

was enabled, a white fixation dot on the grey screen turned black to prepare participants for the onset 201 

of the melody. The fixation cross was displayed for 7 seconds after stimulus onset. Each trial was 202 

preceded by a 400 ms baseline period and followed by a 2000 ms post stimulus offset. The melody was 203 

5000 ms long and participants were instructed not to blink or move but to fixate during that whole 204 

period. Participants were allowed to take breaks to avoid fatigue effects at their convenience. A re-205 

calibration procedure using the 3-dot-calibration was applied after each break. 206 

Participants were instructed to carefully listen to the melody while fixating on the fixation point in the 207 

centre of the screen throughout the recording period. They were not informed about the deviant 208 

manipulation. After each trial, participants rated the final note on a Likert-scale ranging from 1 (not at 209 

all unpredictable) to 7 (extremely unpredictable) in a forced-choice task on the presentation screen. 210 

Data on the subjects’ musical expertise and sociodemographic background was collected at the end of 211 

each experiment using the GoldMSI (Müllensiefen et al., 2014). The whole study lasted approximately 212 

one hour. 213 
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Data pre-processing  214 

Blinks were identified and removed from the signal using MATLAB R2017b. These were characterized 215 

by a rapid decline towards zero from blink onset, and a rapid rise back to the regular value at blink 216 

offset. 100ms of the signal was removed before and after the missing data points (Troncoso, Macknik, 217 

& Martinez-Conde, 2008) and missing data were interpolated: four equally spaced time points were 218 

used to generate a cubic spline fit to the missing time points between blink onset (t2) and blink offset 219 

(t3) of the unsmoothed signal, with t1= t2-t3+t2 and t4= t3-t2+t3 (Mathôt, Fabius, Van Heusden, & Van 220 

der Stigchel, 2018). Trials containing more than 15% missing data were excluded from the analysis (M= 221 

.3, SD = .9 trials across subjects). Data were cleaned of artefacts using Hampel filtering (median filtered 222 

data; Pearson, Neuvo, Astola, & Gabbouj, 2016), and smoothened using a Savitzky-Golay filter of 223 

polynomial order 1 over the entire trial epoch. Finally, data were z-scored, and then baseline-corrected 224 

by subtracting the median pupil size of 400 ms baseline before melody onset. To analyse the time-225 

window after deviant onset, data were baselined from 400 ms before deviant onset. The normalized 226 

pupil diameter was time-domain-averaged across trials of each condition.  227 

Experimental design and statist ical  analysis  228 

We estimated a single time series for each sequence type: low or high entropy with either standard or 229 

deviant note type (S-Low/D-Low/S-High/D-high) by averaging across trials and participants. Statistical 230 

analysis was performed using Fieldtrip's cluster-based permutation test (Maris & Oostenveld, 2007), 231 

with a significance threshold at 5% to control family-wise error-rate (FWER). This analysis revealed the 232 

time windows showing significant difference between the compared time series.  233 

We first compared responses to deviant notes in the low and high entropy contexts with the 234 

corresponding standard notes using signals recorded across the entire melody duration (baselined 400 235 

ms before melody onset). This ensured that differences between deviant and corresponding standards 236 

were not due to differences in the immediately preceding note. Then, to determine how the deviant 237 

PDR is affected by the entropy of the melodic context, we focussed on the time window from deviant 238 

onset to the end of the melody (3000 to 5000 ms epochs). We thus baselined to 400 ms before deviant 239 

onset, and we tested for an interaction of the deviant and context manipulation: (D-Low – S-low) vs. 240 

(D-High – S-High). Further, we compared the responses to standard tones in the two contexts (S-Low 241 

– S-High) to ensure that any differences were not driven simply by the standard notes (the control 242 

conditions). 243 

To assess a potential influence of expertise on the PDR to deviants (data between 3000 and 5000 ms 244 

baselined to 400 ms before deviant onset), we computed the mean PDR to deviant trials as D-Low – S-245 

Low for deviants in low entropy context, and D-High – S-High for deviants in high entropy context. 246 

Participants were split into two groups of musical experts and non-experts based on GoldMSI scores 247 

(Mdn=96). An ANOVA with within-subject factor context (low/ high entropy) and expertise as between-248 

subject factor (expert/non-expert) was computed. 249 

Results 250 

Stimuli characterization. Analyses were carried out to clarify the nature of all differences in information 251 

theoretic properties of the different stimuli. Figure 1B (left panel) shows the mean entropy values for 252 

all conditions (D-Low: M = 2.96, SD = .18; D-High: M = 3.09, SD = .19; S-Low: M = 2.86, SD = .19; S-High: 253 

M = 3.03, SD = .23). An ANOVA with context (low/ high entropy) and note type (deviant / standard) as 254 

between-group factors yielded a main effect of context [F(1,116) = 15.20,  p < .001, np2 = .12], 255 
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indicating higher entropy in High than Low entropy melodies [t(58) = 2.85, p = .006]. A significant main 256 

effect of note type [F(1,116) = 5,  p = .027, np2 = .04], was not supported by a further post hoc 257 

comparison [t(58) = -1.641, p = .11]. No interaction was found between the two factors [F(1,116) = .25,  258 

p = .617, np2 < .01].  259 

Figure 1B (right panel) shows that the unexpectedness of deviant notes, as reflected by information 260 

content values, was comparable between low and high entropy melodies. An ANOVA with between 261 

group factors context (low / high entropy) and note type (deviant / standard) yielded a main effect of 262 

note type [F(1,116) = 239.02, p < .001, np2 = .67], a non-significant main effect of context [F(1,116) = 263 

.42,  p = .517, np2 = .01], and no interaction between the two factors [F(1,116) = .00,  p = .714, np2 < 264 

.01] – thus indicating higher information content in deviant than standard notes regardless of the 265 

context in which they were embedded [t(58) = -12.321, p < .001]. The similar IC levels of deviant for 266 

the two entropy conditions may be due to fact that in both low and high entropy contexts, deviants 267 

were similar in being characterised by very large interval departures away from the melodic contour 268 

(as opposed to the relatively naturalistic events that occurred in real melodies (Dean & Pearce, 2016). 269 

Critically, that deviant IC levels are similar for the two entropy conditions, supports our suggestion that 270 

stimulus context (and not just the IC level an incoming event) has the ability to modulate the PDR.  271 

IC was positively predicted by interval size between the 12th and 13th note (rho = .862, p < .001), in 272 

line with research showing that amongst multiple psychological representations of pitch (e.g., height, 273 

contour, etc.), interval exerts a major contribution to perception of surprise (Levitin & Tirovolas, 2009; 274 

Pearce, 2018; Quiroga-martinez et al., 2019).  275 

 276 

 277 

Fig. 1. Experimental design. Participants listened to the melodies of 20 notes and had to rate how 278 

unexpected they found the last note on a seven-step Likert scale (– 1 equal ‘not at all unpredictable’ 279 

and 7 ‘extremely unpredictable’). The design included two factors: Contextual entropy (low/high) and 280 

Note type (standard/deviant). Melodies containing deviant notes where 50% of the trials and the 281 

deviant notes occurred always at the 13th position. B) Characterization of the stimuli. A model of 282 

musical expectations was used to characterise the stimuli: Mean entropy was larger for high than low 283 

entropy melodies regardless of the presence of deviant (yellow) or standard (blue) tones. Mean 284 
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information content of deviants (yellow) was larger than standard (blue) tones regardless of the 285 

entropy of the context.  286 

PDR characterization. Figure 2A shows the time course of the PDR across conditions (S-Low = standard 287 

low entropy, S-High = standard high entropy, D-Low = deviant low entropy, D-High = deviant high 288 

entropy) baselined 400 ms before melody onset. A comparison between S-Low and S-High showed no 289 

difference in the PDR as a function of entropy levels of the melody, whilst the PDR to deviants (D-Low 290 

vs. D-High) was greater in predictable than unpredictable contexts (diverging at .56 s from deviant 291 

onset). The response to deviants in the predictable contexts was greater than the relative standard 292 

condition (D-Low vs. S-Low: p = .029), significantly diverging from S-Low between 3.57 and 5.64 s after 293 

melody onset. Conversely, the response to deviants in unpredictable contexts did not differ from the 294 

relative standard condition (D-High vs. S-High), despite their high information content (see Figure 1B, 295 

middle panel).  296 

Figure 2B shows the PDR to deviants baselined 400 ms before deviant onset. We show the conditions 297 

D-Low and D-High following subtraction of the relative standard conditions. The comparison between 298 

the two time-courses confirmed that D-Low evoked a larger response than D-High starting at .59 s from 299 

deviant onset (p = .007) and ending at 1.5 s. Intrinsic noise in the baseline may explain the very early 300 

divergence between the curves, which however was not significant. Importantly, this pattern was 301 

observed in 67% of the participants (Figure 2C).  302 

We run a post hoc analysis (Figure 3B) to investigate the relationship between the PDR related to the 303 

13th note (including both standard and deviant notes) and associated information content for low and 304 

high entropy melodies. For each subject and for each melody, the average PDR to the 13th note was 305 

computed from the pre-deviant baseline (as in Figure 2B). A linear model with the factor context (Low 306 

/High) and information content as continuous variable was run to predict the PDR. This analysis yielded 307 

no main effect of context [F(1,116) = .005,  p = .941, np2 < .001] and a main effect of information 308 

content [F(1,116) = 4.911,  p = .029, np2 = .041] and a no significant interaction [F(1,116) = 3.274,  p = 309 

.073, np2 = .027]. This suggests that the PDR is sensitive to a large range of unexpectedness levels. 310 

We further investigated potential influences of expertise on the mean PDR to deviants (computed as 311 

D-Low – S-Low for deviants in low entropy contexts, and D-High – S-High for deviants in high entropy 312 

contexts on the data between 3000 and 5000 ms baselined to 400 ms before deviant onset as in Figure 313 

2B). The ANOVA examining the effect of musical expertise on the mean PDR to deviants yielded a main 314 

effect of context [F(1,40) = 5.09, p = .03, np2 = .11]. The main effect of expertise was not significant 315 

[F(1,40) = 3.72, p = .061, np2 = .09], and no interaction between the two factors  was seen [F(1,40) = 316 

2.18, p = .147, np2 = .05]. This confirmed that the mean PDR to deviants was greater in low than high 317 

entropy contexts although no considerable difference between experts and non-experts was observed.  318 

Finally, we showed that the model reliably predicted subjective uncertainty levels (inferred entropy) 319 

of the melody progressions (Hansen & Pearce, 2014) (Figure 3A). The measure of the unexpectedness 320 

of the last note was collected after participants listened to each melody. We found that the mean 321 

ratings for each melody strongly correlated with the information content of the last note of the melody 322 

(rho = .355, p < .001), and with the mean IDyOM entropy values for that melody (rho = .400, p < .001). 323 

This analysis validated our categorization of melodies based on the IDyOM output. 324 
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 325 

Fig. 2. A) The PDR for all conditions from melody onset (S-Low = standard low entropy, S-High = 326 

standard high entropy, D-Low = deviant low entropy, D-High = deviant high entropy).  The PDR to 327 

deviants compared to standard tones (D-Low vs. S-Low) in low entropy contexts diverged between 328 

3.57 and 5.64 s from melody onset (.57 s from deviant onset), but did not differ in high entropy 329 

contexts. Also, the PDR to deviants was greater in low than in high entropy contexts (D-Low vs. D-High) 330 

(diverging at 3.056 s from melody onset), but there was no significant context-dependent difference 331 

between the standard tones (S-Low and S-High).  Shaded regions around the curves represent standard 332 

error in the mean estimated with bootstrap resampling (1000 iterations; with replacement). B) 333 

Interaction effect of deviant and context entropy on the PDR after deviant onset. The difference 334 

between the PDR to deviant and standard tones was greater in low than in high entropy contexts. This 335 

effect emerged .59 after deviant onset and ended at 1.5 s. C) The relationship between the PDR for D-336 

High – S-High and D-Low – S-Low conditions. Each data point represents an individual participant. Dots 337 

above the diagonal reveal that 67% of participants showed a greater PDR to deviants in low compared 338 

with high entropy contexts.  339 

 340 

 341 
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 342 

Fig. 3. A) The stimulus entropy was computed by the IDyOM model, and validated by participants’ self-343 

reports about the overall unexpectedness of each melody. Each dot represents one of the 120 344 

melodies. Red and orange dots represent each of the low and high entropy melodies, respectively (N 345 

= 120). Shading represents s.e.m. B) The unexpectedness of the 13th notes (deviants and standards) 346 

was estimated by the IDyOM model and showed a positive correlation (Spearman) with the mean 347 

evoked PDR. Blue and yellow dots represent each of the standard and deviant notes. Shading 348 

represents s.e.m. 349 

Discussion 350 

We report that pupil dilation response (PDR) to behaviourally irrelevant deviants occurs when deviants 351 

are embedded in predictable rather than unpredictable melodies. We showed that the amplitude of 352 

the response is predicted by the information content (or unexpectedness) of the musical deviants. We 353 

also replicate the previous finding that listeners’ experience of uncertainty is predicted by the entropy 354 

of the music (Hansen & Pearce, 2014). These results show that the same sudden environmental change 355 

leads to differing levels of arousal depending on whether it occurs in low or high states of uncertainty. 356 

Our results suggest that the more stable predictions formed in predictable rather than unpredictable 357 

contexts may be more abruptly violated by surprising events, possibly leading to greater changes in 358 

the listeners’ arousal state.  359 

The observed modulatory effect of context predictability on the PDR to deviants is consistent with a 360 

body of electrophysiological work showing context effects on mismatch like responses at the cortical 361 

level (Garrido et al., 2013; Quiroga-Martinez et al., 2019; Southwell & Chait, 2018). Here we show a 362 

similar pattern but in autonomic markers of arousal, as reflected by the PDR. Pupil response is thought 363 

to be driven by norepinephrine activity in the locus coeruleus (LC) (Joshi, Li, Kalwani, & Gold, 2016). 364 

This is a key subcortical nucleus which widely connects to the brain (Sara, 2009) to signal unexpected 365 

and abrupt contextual changes (Alamia et al., 2019; Damsma & van Rijn, 2017; Zhao et al., 2019). It has 366 

been hypothesised (Zhao et al., 2019) that MMN-related brain systems (Garrido et al., 2009; Hsu et al., 367 

2015; Southwell & Chait, 2018) may trigger norepinephrine-mediated updating or interruption of 368 

ongoing top-down expectations. In line with this hypothesis, Alamia et al. (2019) have shown a 369 

correlation between pupillary response and MMN-like response evoked by violations of expectations, 370 

providing evidence of a link between the sources of these two responses. Top-down expectations 371 

about unfolding sensory signals have been associated with the temporo-frontal network in music-372 

violation paradigms, which is thought to link present and past information to generate predictions 373 

about forthcoming events (Bianco, Novembre, Keller, Seung-Goo, et al., 2016; Koelsch, Gunter, et al., 374 

2002; Tillmann, Janata, & Bharucha, 2003). Based on this existing evidence and in line with a model 375 

resetting hypothesis, our results suggest that listeners generate stronger predictive models (in the 376 

predictable melodies). These may be supported by temporo-frontal cortical regions, and require a 377 

greater signal (greater PDR) to be interrupted. 378 

Albeit indirectly, our results also establish a link between subcortical and cortical activity in response 379 

to unexpected events under different states of uncertainty. Increased MMN response under low states 380 

of uncertainty (Quiroga-Martinez et al., 2019; Southwell & Chait, 2018) are replicated in the pupil 381 

response, reflecting a general increase in arousal. A possible interpretation, in line with the predictive 382 

coding theory (Friston, 2005), is that more stable expectations, representative of a strong predictive 383 

model, are reflected in precision-weighing of the prediction error, and hence a stronger response when 384 
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the input mismatches the current predictions. Conversely, in high entropic contexts predictive models 385 

are weak, and the prediction error attenuated. This mirroring pattern between cortical (MMN) and 386 

subcortical (as reflected by the PDR) responses may have important behavioural advantages. 387 

Specifically, strong predictive models can suddenly be abandoned when they are revealed to be 388 

erroneous, thus allowing speedy reorienting behaviours and quicker engagement with new potentially 389 

relevant stimuli.  One limitation with regard to this possible interpretation is the nature of the deviant 390 

events used here, whereby the deviating event was a single note that did not lead to any long-lasting 391 

changes in the statistics of the unfolding sequence. Further studies combining cortical and pupil 392 

response measurements in continuously changing stimuli are necessary to corroborate our working 393 

hypothesis.  394 

The absence of difference between high and low entropic contexts in the sustained pupil response (in 395 

the first half of the melodies) suggests that the pupil is relatively unresponsive to slowly unfolding 396 

stimulus structures, at least when listeners are not required to actively track them (Alamia et al., 2019; 397 

Zhao et al., 2019). Whilst cortical responses have been shown to be sensitive to the statistics of the 398 

unfolding stimulus structure (Barascud, Pearce, Griffiths, Friston, & Chait, 2016; Sohoglu & Chait, 2016; 399 

Southwell et al., 2017), subcortical responses may be less sensitive. This suggests they may be more 400 

vulnerable to stimulus properties and tasks demands (Zhao et al., 2019). 401 

We also found that the PDR mismatch response is positively predicted by unexpectedness of incoming 402 

notes (in line with electrophysiological studies (Omigie et al., 2013; Quiroga-martinez et al., 2019), but 403 

it seems not to be modulated by degree of musical expertise. Larger MMN responses have been shown 404 

for musicians in a range of studies examining electrophysiological correlates of expectancy violation in 405 

music (Koelsch, Schmidt, & Kansok, 2002b; Oechslin, Van De Ville, Lazeyras, Hauert, & James, 2013; 406 

Tervaniemi, Tupala, & Brattico, 2012). One possibility is that this reflects a ceiling effect whereby the 407 

rather salient deviants used here were relatively easy to detect (given their large interval departures 408 

away from the melodic contour). Future studies examining the PDR to more subtle differences in 409 

musical structure may be expected to show similar expertise effects to those reported in previous 410 

studies. 411 

Finally, our results provide evidence of music’s usefulness in investigating the neural mechanisms 412 

underlying processing of stimuli statistical properties in a common, highly structured, and ecologically 413 

valid type of auditory stimulus, as music. While our work here focused on pitch expectations, previous 414 

studies have shown that music-induced temporal expectations are also tracked by the PDR (Damsma 415 

& van Rijn, 2017). Future experiments could address, for example, how introducing rhythm to 416 

concurrent melodic lines may affect the PDR to unexpected events. Similarly, that music induced chills 417 

– high arousal physiological responses associated with subjective pleasure – are associated with 418 

increased PDR (Laeng et al., 2016) suggest a usefulness of music in examining the relationship between 419 

stimulus information theoretic properties and reward processing. Whilst the IDyOM model used here 420 

is only able to deal with monophonic MIDI music, the development of the model for polyphonic music 421 

is underway (https://psyarxiv.com/wgjyv/) and it is expected that the approach we take here will be 422 

beneficial in a wider range of contexts in future years. By showing that predictive uncertainty can be 423 

used to modulate prediction-error related arousal, our findings have implications for understanding 424 

the variety of forms listeners’ aesthetic appreciation of music may take. However, considering, more 425 

generally, the tight coupling between the error-related norepinephrine system and the reward-seeking 426 

dopaminergic pathway (Laeng et al., 2016; Xing, Li, & Gao, 2016; Zatorre & Salimpoor, 2013), our 427 

results emphasize that measuring the PDR may be useful for investigating the reward value of 428 

information across a range of modalities and domains.  429 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpsyarxiv.com%2Fwgjyv%2F&data=02%7C01%7C%7Ce2563911f4384ef38fdb08d726d73403%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C0%7C637020578051033371&sdata=6Pd%2FCKV9tt1VOaoP%2B7%2FSydc0KwX7F5QDyVsW4ZAeyTg%3D&reserved=0
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In sum, we show that pupillometry in the auditory domain can reliably track the effect of context 430 

uncertainty on responses to sudden environmental change and independently from overt behavioural 431 

responses. Given the tight interplay between cortical and subcortical mechanisms involved in precision 432 

weighted anticipatory processing, a first milestone is set towards the non-invasive quantification of 433 

related arousal responses. 434 
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