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Abstract

This thesis addresses the computational notion of aesthetics in the framework of

multi-state two-dimensional cellular automata (2D CA). The measure of complexity

is a core concept in computational approaches to aesthetics. Shannon’s information

theory provided an objective measure of complexity, which led to the emergence of

various informational theories of aesthetics. However, entropy fails to take into ac-

count the spatial characteristics of 2D patterns; these characteristics are fundamen-

tal in addressing the aesthetic problem, in general, and of CA-generated patterns, in

particular. This thesis proposes two empirically evaluated alternative measures of

complexity, taking into account the spatial characteristics of 2D patterns and exper-

imental studies on human aesthetic perception in the visual domain. The measures

are extended to robustly quantify the complexity of multi-state 2D CA-generated

patterns.

The first model, spatial complexity, is based on the probabilistic spatial distri-

bution of homogeneous/heterogeneous neighbouring cells over the lattice of a multi-

state 2D cellular automaton. The second model is based on algorithmic information

theory (Kolmogorov complexity) which is extended to estimate the complexity of

2D patterns. The spatial complexity measure presents performance advantage over

information-theoretic models, specifically in discriminating symmetries and the ori-

entation in CA-generated patterns, enabling more accurate measurement of com-

plexity in relation to aesthetic evaluations of 2D patterns.

A series of experimental stimuli with various structural characteristics and levels

of complexity were generated by seeding 3-state 2D CA with different initial config-

urations for psychological experiments. The results of experimentation demonstrate

the presence of correlation between spatial complexity measures and aesthetic judge-

ments of experimental stimuli. The same results were obtained for the estimations

of Kolmogorov complexity of experimental stimuli.
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1. Introduction

“How lovely, how beautiful!
Your face!

What coyness lies in those eyes

and eyebrows!” [1]
– Dr. Javad Nurbakhsh

Beauty has an affective power encountering it in natural instances initiates an im-

mediate perceptual experience of pleasure and delight. Our attraction to beauty and

innate ability to extract information on the aesthetic qualities of objects drive our

efforts in the creation of various synthetic instances of beauty, either in the forms of

artworks or objects of design.

Human creation of synthetic forms and objects can be traced back to prehistoric

eras. What is known as prehistoric art was created in preliterate period on the

walls of caves or shells using ochre, bone and charcoal for a variety of possible

purposes: communication, recording events or aesthetic purposes. We continue to

engage ourselves with the creation of synthetic forms, exploiting the capabilities of

modern tools made available by technological advances.

While early humans employed organic materials for the creation of their synthetic

forms, nowadays we tend to employ digital tools to create our digital forms on

digital media for almost the same purposes. The introduction of direct graphical

manipulation and interactive tools in the early 1960s transformed human-computer

interaction and made digital machines more accessible to non-technical artists who

did not have the knowledge of punch card programming, and utilised computers to

partially automate artistic processes [2].

Using a computer to partially automate an artistic process has brought

me, a non-artist, some understanding of the effect of certain features on
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the appearance of a face. It is the understanding that can be gained

from computer drawings that is more valuable than mere production of

a drawing for shop use [2, p.110].

The availability of interactive graphical tools along with high level languages

specifically designed for graphic generation created a new form of art known as

computer art, or, according to Max Bense “artificial art” [3].

The partial automation of artistic processes using computers exposes us to a

very distinct visual perceptual space through the experience of synthetic instances

of beauty. As noted by Michael Noll, one of the early pioneers of computer art:

In the computer, man has created not just an inanimate tool but an

intellectual and active creative partner that, when fully exploited, could

be used to produce wholly new art forms and possibly new aesthetic

experiences [4, p.89].

The advancement of computer tools and contributions from techniques developed

in Artificial Intelligence (AI) and Artificial Life (ALife) fields have shifted the au-

tomation of artistic processes towards a more autonomous artistic process where AI

and ALife enabled techniques make decisions within a defined domain in situations

that are not pre-determined.

The autonomy of computer art heavily relies on ALife techniques among others.

The field of ALife is inspired by biological systems and exploits computer technol-

ogy to synthesize and simulate common processes and behaviours of living organisms

based on the principles of bottom-up synthesis. Many ALife techniques (collectively

referred to as generative tools) have been contributed either for the creation of com-

puter art or for addressing problems concerning the autonomy of artistic processes.

Evolutionary computation in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], swarm intelli-

gence in [16, 17, 18], ant colony in [11], Lindenmayer systems [19] in [20, 21, 22, 23]

and reaction-diffusion systems in [24] are some examples of ALife based art synthe-

ses.
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1.1 Aesthetic Automata

Cellular Automata (CA), among other generative tools, have contributed to the

creation of many forms of computer art. In the 1960s the idea of using CA as

an artistic tool emerged from the works of Knowlton and Schwartz, who produced

“Pixillation”, one of the early computer generated animations [25, 26].

The concept of cellular automaton, one of the early biologically inspired systems,

was developed in the late 1940s by John von Neumann and Stanislaw Ulam as a ma-

terial independent framework to simulate the self-replicating behaviour of biological

systems.

Although CA was a known computational paradigm within the computer sci-

ence community and several research efforts followed John von Neumann’s idea of

self-replicating automata [27], it remained neglected for decades [28] until Gardner

published an account of John Conway’s “Game of Life” (GoL) as a “new solitaire

game” in 1970 [29]. The GoL is a simple binary cellular automaton with two states,

0 and 1, which are interpreted as dead or live. But despite its simplicity, the GoL is

capable of generating complex and emergent behaviour. The popularity of the GoL

drew the attention of the wider community of digital artists and designers to the

unexplored potential of CA in generating rich digital content from the iteration of

simple deterministic rules.

The computer arts of Struycken [30] and Brown [31] and evolutionary architec-

ture of Frazer [32] are some examples of CA driven computer arts. Moreover, CA

have been used for music composition, for example, Xenakis [33] and Miranda [34].

The main characteristics of CA that make them particularly interesting to digital

artists are their ability to generate visually appealing and very complex patterns on

the basis of very simple rules. This fact has been noted by Wolfram, who himself

produced some CA art in the 1980s, “even a program that may have extremely simple

rules will often be able to generate pictures that have striking aesthetic qualities-

sometimes reminiscent of nature, but often unlike anything ever seen before.” [35,

p.11].
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1.2 Motivation

Aesthetic qualities are an integral part of the creation of various forms of art (paint-

ing, sculpture, music, dance), product [36] and architectural designs [37], informa-

tion visualization [38], usability studies [39, 40] and human computer interaction

(HCI) [41]. The combined exponential increase in the processing capacity of hard-

ware devices and the richness of software tools available to the research and practice

of computer graphics and visualisation, on one hand, and the application of comput-

ers as an artistic tool along with the significance of aesthetic qualities in developing

graphical contents on other hand, have contributed to the emergence of a new field

called computational aesthetics in computer science.

The notion of computational aesthetics is defined as “the research of compu-

tational methods that can make applicable aesthetic decisions in a similar fashion

as humans can” [42, p.16]. From a merely computational perspective, the research

revolves around developing aesthetic measures as functions which compute the aes-

thetic value of an object [digital object] [43]; however, in a wider perspective it

integrates computer science with philosophy, biology, psychology, and art. Further-

more, the field investigates both tools to enhance the expressiveness of fine and

applied arts, as well as theoretical approaches that further our understanding of

aesthetic evaluation, perception and meaning [44].

The general approach of digital art in visual domains is based on utilising genera-

tive tools to create a large pool of imagery followed by subjective aesthetic evaluation

and selection by the artist. Given that the generative tools can generate thousands

of pieces of imagery with different characteristics in a short period of time, the pro-

cess of aesthetic evaluation and selection would be a time consuming process for

human users. Hence automating the aesthetic evaluation and selection process in a

way which is capable of making aesthetic judgements conforming to human aesthetic

perception is fundamental to computational aesthetics. Therefore, the ultimate goal

of computational aesthetics is to close the loop of generation and evaluation where

both processes are functions of computational methods.

The primary motivation of this research has come from our earlier study with

multi-state 2D CA models where visually appealing behaviours were observed [45].

Although CA with binary states can exhibit complex behaviours, experiments with

multi-state 2D CA models have shown that adding more states significantly increases
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the complexity of behaviour, thus, generating very complex patterns occasionally

with high aesthetic qualities [45].

There have been interesting attempts to develop means of controlling the emer-

gence of aesthetic behaviour in CA [46, 8, 47, 48, 49]. A recent work offers insights

in the production of art works using CA models and intended to inspire artists to

take on cellular automata as their creative tool [50]. Despite the popularity of CA

models among digital artists and a great deal of research conducted on the theoret-

ical and practical areas of CA, the subject of the quantitative aesthetic evaluation

of CA behaviour is left mostly unexplored.

1.3 Objectives and Scope

This study builds its grounds on the theories of aesthetics which associate the aes-

thetic perception with the degree of stimulus complexity. These theories can be

divided (roughly) in two main categorises:

1. Theories which consider inverse relationship between stimulus complexity and

aesthetic preference,

2. Theories which consider direct relationship between stimulus complexity and

aesthetic preference.

The aesthetic measure of Birkhoff [51] is an example of inverse relationship theories

which has influenced most computational notions of aesthetics. Theories consid-

ering direct relationship between stimulus complexity and aesthetic preference are

mostly developed from empirical studies of aesthetics, such as the “arousal theory”

of Berlyne [52].

We assume a direct relationship between stimulus complexity and aesthetic pref-

erence taking into account the findings of experimental studies. In addition, it is

assumed that a decrease in the degree of complexity would lead to some form of

order, whereas an increase would lead to randomness. Therefore, a single measure

of complexity would be sufficient for the computational notions of aesthetics. This

assumption is in contrast with Birkhoff’s separation of order and complexity in his

aesthetic measure.

The scope of this research is limited to (1) multi-state 2D CA and (2) visual

aesthetics. It follows the tradition of parametrising aesthetic objects based on an
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objective measure of complexity. Therefore, the broad aim is to address aesthetic

problems in two dimensions and particularly within the framework of 2D CA by

investigating the possibility of formulating a complexity measure for aesthetic eval-

uation of CA-generated patterns. The measure of complexity is required to meet

the following criteria:

1. The measure uses only information available within the framework of 2D CA,

such as the number of cells and their states, size of lattice and neighbourhood

template. This constraint considers the generated patterns of CA to be internal

objects of CA environment.

2. The measure reflects on the structural characteristics of CA patterns (i.e. ho-

mogeneity/heterogeneity of cells and their spatial distribution over the lattice

of CA).

Given these criteria, informational theories of complexity are capable of parametris-

ing structurally different 2D CA patterns. Despite great debate and differentiation

over the terms “aesthetic”, “beautiful” and “attractive” in philosophy and other

disciplines, these terms are used interchangeably throughout this thesis.
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1.4 Methodological Approach

This research is conducted within two distinctive methods:

(1) Rational Aesthetics: A scientific approach to address aesthetic problems.

(2) Bottom-up Synthesis: Aesthetic as a global behaviour is a result of local

interactions or rules in CA.

In the absence of scientific theories of aesthetics, any methodological approach of

computational aesthetics is inherently empirical and experimental [53]. Therefore,

the validity of the models is assessed by conducting experiments with human subjects

to evaluate the following general hypotheses:

Hypothesis 1: The aesthetic value of a cellular automaton pattern de-

pends on the sum of mean information gains of cells having homoge-

neous/heterogeneous neighbouring cells over the lattice of a cellular au-

tomaton.

Hypothesis 2: The aesthetic value of a cellular automaton pattern de-

pends on the estimation of the Kolmogorov complexity of a cellular au-

tomaton pattern.

1.5 Contributions

This thesis has made a number of contributions to the fields of computer science

and computational aesthetics. These contributions are listed below:

1. The development of a spatial complexity spectrum, taking into account human

intuitive perception of complexity and structural characteristics of 2D patterns.

The model is bound by two extreme points of complete order and disorder. It

facilitates the mapping of the complexity of 2D patterns based on their structural

characteristics between the two extremes.

2. Developing spatial complexity measure, capable of discriminating symmetries

and their orientation in a 2D plane. It also is capable of reflecting on the spatial

distribution of a cell over the lattice of 2D CA. The model is based on information

gain measure in [54, 55, 56].

3. Extending algorithmic information theory of Kolmogorov [57] for estimating

the complexity of patterns in 2D plane.
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1.6 Thesis Structure

The structure of this thesis is organised as follows:

Chapter 2: Cellular Automata and Art

This chapter reviews the historical development of automata and CA. Formal

definitions are then provided, with an analysis of CA behaviour followed by

a review of some applications of CA. Finally, the contributions of various CA

models for the creation of computer arts are reviewed.

Chapter 3: Informational Aesthetics

In this chapter, the relationship between aesthetics and complexity is exam-

ined. The notion of complexity from Shannon’s information theory perceptive

is analysed, and its influence on informational theorises of aesthetics is dis-

cussed.

Chapter 4: Quantifying Spatial Complexity

This chapter covers analysis of entropic approaches for aesthetic evaluation

purposes. An in-depth analysis of entropic measure for 2D patterns with ex-

amples are provided. In the framework of the objectives of this study, a spatial

complexity spectrum is formulated then two models of spatial complexity and

Kolmogorov complexity are developed. The effectiveness of the models in dis-

criminating symmetries and their orientation in 2D plane are then evaluated

using a set of experiments.

Chapter 5: Experiments and Results

This chapter covers the details of the two experiments and their results on the

correlation between entropy, spatial complexity and Kolmogorov complexity

measures with human aesthetic judgement.

Chapter 6: Conclusion

This chapter covers the findings of this thesis by summarising the results of

the experiments and exploring further applications of the developed models.
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2. Cellular Automata and Art

Cellular Automaton is one of the first biologically inspired systems. Decades of re-

search in Cellular Automaton has created a vast amount of literature dealing with

the theoretical and practical aspects of CA. This chapter will not serve as compre-

hensive coverage of literature, but a selective set of relevant and core contributions

to the research of CA which are closely related to the topic of this thesis. It reviews

the historical development of automata and CA. Formal definitions are provided

with an analysis of CA behaviour followed by a review of some applications of CA.

Finally, the contributions of various CA models for the creation of computer arts

are reviewed.

2.1 Behaviour Simulator Automata

Designing and building mechanical automata to perform a range of functions accord-

ing to a predetermined set of instructions have been the subject of many endeavours

since antiquity. The term automaton (pl. automata, automatons) is derived from the

Greek word autómatos meaning “self-acting” formed from the combination of autos

meaning “self” and matos meaning “thinking and animated”. Initially, automata re-

ferred to a mechanical device that is self-operating (acting without human agency)

after it has been set in motion [58].

Designing automata as self-performing mechanical machines generating the be-

haviour of living beings has been the subject of many studies. They were built

to either perform functional tasks (e.g. time keeping and calculations) or for en-

tertainment purposes (e.g. theatrical automata and musical automata). The An-

tikythera mechanism is an example of functional automata and is considered the

earliest known analogue computer, designed between 150 − 100 BC to mechanically
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calculate the positions of astronomical objects [59]. Descartes (1596 − 1650) evalu-

ated the functioning of animals, and much of humans, as being explainable in terms

of the automata of his day (i.e. clockwork and hydraulic automata) but drew a line

at the cognitive functions of the brain [60].

During the 17th century, Pascal (1623 − 1662) designed and built Pascaline, a

mechanical calculator which was capable of performing addition and subtraction.

Leibniz (1646 − 1716), inspired by Pascal’s work, designed Leibnitz’s Wheel which

could perform multiplication and division as well.

In the 18th century Jacques de Vaucanson (1709 − 1789) designed Digesting

Duck, an automaton capable of digestion. Some of the most significant automata of

this period were designed by Pierre Jaquet-Droz (1721 − 1790) by focusing on the

simulation of human behaviour like The Writer, The Musician and The Draughts-

man. His Writer automata was a special case among the others since it was pro-

grammable automata. Charles Babbage’s (1791 − 1871) Difference Engine was an

attempt to build an automaton to remove the errors of human computers on creating

mathematical tables.

In the 20th century, the design of automata shifted towards the simulation of

mankind’s cognitive power by focusing on “information processing automata”. The

purpose was to mechanically automate the task of large scale calculations (e.g. mil-

itary data processing) assigned to human computers . These calculations could

sometimes be very complex and introduce errors with serious consequences. Since

then, automata referred to a class of electromechanical devices that transform infor-

mation from one form into another on the basis of predetermined instructions [58].

Building information processing automata was far more complex than the clas-

sical automata known at the time. This is because it needed to undertake the kind

of tasks which are usually performed by human cognition. There was a gap in the

knowledge for understanding both the biological and logical principles underlying

the operations of the human brain in terms of an information processing automaton.

In addressing Hilbert’s decision problem (i.e. the possibility of solving all mathe-

matical problems using algorithms), Turing invented an abstract machine which he

called automatic machine (now commonly referred to as The Turing Machine) [61].

Turing’s machine laid the foundations for the development of information processing

automata which was exclusive to biological systems.
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2.2 Self-Replicating Automata

On 20 September, 1948 John von Neumann delivered a lecture titled “The General

and Logical Theory of Automata” at the Hixon Symposium in Pasadena, Californa.

In this lecture he outlined a model of an Automaton as a machine that its behaviour

follows logical axioms. This model was abstracted from the observations of living or-

ganisms to conceptualize an artificial automaton. He then used this general model to

address the specific problem of self-replication with reference to Turing’s computing

machine.

For the question which concerns me here, that of “self-reproduction” of

automata, Turing’s procedure is too narrow in one respect only. His

automata are purely computing machines. Their output is a piece of

tape with zeros and ones on it. What is needed for the construction to

which I referred is an automaton whose output is other automata...

The problem of self-reproduction can then be stated like this: Can one

build an aggregate out of such elements in such a manner that if it is put

into a reservoir, in which there float all these elements in large numbers,

it will then begin to construct other aggregates, each of which will at the

end turn out to be another automaton exactly like the original one? This

is feasible, and the principle on which it can be based is closely related

to Turing’s principle outlined earlier [62, p.28].

To achieve a self-replicating automaton, von Neumann explored (1) kinematic

machine, (2) cellular machine, (3) neuron type machine, (4) continuous machine,

and (5) probabilistic machine [63]. His kinematic machine was a physically realised

floating machine in a pool of elements with long sequences of instructions and a

constructor arm to reach necessary elements and assemble an identical copy of itself.

This physical machine needed to address many problems before it could actually

begin assembling a replica of itself.

Stanislaw Ulam was also interested in the concept of self-replication. He would

sit in a coffeehouse in Lwów in 1929, speculating on the possibility of artificial

automata reproducing themselves [64]. At the time, he was working with a lattice

network as a mathematical model to study crystal growth. He suggested the use of

a lattice network as a material independent framework to investigate the possibility
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of self-reproduction [65]. The integration of the lattice network model with the

logic of self-replication formulated the initial model of Cellular Automata. It is fair

to say that the cellular part comes from Ulam, and the automata part from von

Neumann [66].

The machinery of cellular automata (CA) is based on the local interaction of

each automaton (cell) with its immediate neighbourhood automata (cells) accord-

ing to a set of rules. The interaction of automata at a local level generates the

emergent behaviour, sometimes with attractive complexity, at the global level. The

first theoretical model of self-replicating cellular automaton was a 2D lattice of cells

with 29 states for each cell and 5-cell neighbourhood. Later, Longan showed that

a self-replication can be achieved with only 8 states (known as Langton’s Loop [67].

Byl then showed that self-replication is possible with a mere 6 states [68] (known as

Byl’s Loop).

2.3 Mathematical Foundations

Since the mathematics of crystalline structures contributed to the mathematical

foundation of CA with lattice networks model by Ulam, most mathematical formu-

lations in CA are inherited from lattices (order theory), crystallography and finite

state automaton.

Definition 2.1. A deterministic finite state automaton is formally defined [69] as

a quintuple ofM such that:

M =〈Q,Σ, δ, q0, F 〉, (2.1)
1. Q is a finite set of states,

2. Σ is a finite set of symbols as input alphabet,

3. δ : Q× Σ 7→ Q is the state transition function,
4. q0 ∈ Q is the start or initial state,
5. F ⊆ Q is a set of accepting or finial states.

The state transaction function δ takes two arguments as q ∈ Q and an input

symbol a ∈ Σ and then maps them to final state q1 ∈ Q (i.e, δ(q, a) = q1). The term

“deterministic” refers to the fact that for each input there is one and only one state

to which the automaton can be transmitted from its current state.
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Definition 2.2. A lattice L is a regular tiling of space by a unit cell.

The Euclidean plane is considered so the lattice L is over Z2. Lattices can have

square, hexagonal or triangle for their unit cells. A lattice can be infinite with

aperiodic boundary conditions, or finite with periodic boundary conditions. A finite

lattice with periodic boundary conditions where the opposite borders (up and down

with left and right) are connected forms a torus space (Fig. 2.1).

Fig. 2.1. The formation of torus space from a lattice with periodic boundary conditions.

Definition 2.3. A cellular automaton is a regular tiling of a lattice with uniform

deterministic finite state automata.

A cellular automaton A is specified by a quadruple 〈L, S,N , f〉 where:

1. L is a finite square lattice of cells (i, j),

2. S = {1, 2, . . . , k} is set of states. Each cell (i, j) in L has a state s ∈ S,

3. N is neighbourhood, as specified by a set of lattice vectors {ea}, a = {1, 2, . . . , N}.

The neighbourhood of cell r = (i, j) is {r + e1, r + e2, . . . , r + eN},

4. f is state transition function (update rule). f computes the state st+1
1 of a

given cell from the states (s1, s2, . . . , sN) of cells in its neighbourhood: st+1
1 =

f(s1, s2, . . . , sN).

Remark 2.1. A mapping that satisfies f(sq, sq, . . . , sq) = sq where sq ∈ S is called

a quiescent state.

Remark 2.2. A cell is considered to be in its own neighbourhood so that one

of {ea} is the zero vector (0, 0). With an economy of notation, the cells in the

neighbourhood of (i, j) can be numbered from 1 to N ; the neighbourhood states of

(i, j) can therefore be denoted (s1, s2, . . . , sN).
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Remark 2.3. When periodic boundary conditions are applied at the edges of the

lattice, complete neighbourhoods exist for every cell in L.

Remark 2.4. If a lattice is considered as a set, then its elements are deterministic

finite automata such that L = {a1, a2, ..., an}.

The state transition function f maps from the set of neighbourhood states S|N |

where |N | is the cardinality of neighbourhood set, to the set of states S = {s1, .., sN}

synchronously in discrete time intervals of t = {0, 1, 2, 3, ..., N} where t0 is the

initial time of cellular automaton. The state of each cell at time (t + 1) is de-

termined by the states of immediate neighbouring cells (nearest neighbourhood) at

time (t) given a neighbourhood template. Two common neighbourhoods are the five-

cell mapping von Neumann neighbourhood (f : S5 7→ S, {(0, 0), (±1, 0), (0,±1)},

Eq. 2.2, Fig. 2.2(a)) and the nine-cell mapping Moore neighbourhood (f : S9 7→ S,

{(0, 0), (±1, 0), (0,±1), (±1,±1)}, Eq. 2.3, Fig. 2.2(b)).

st+1
i,j = f


st

(i,j+1)

st
(i−1,j) st

(i,j) st
(i+1,j)

st
(i,j−1)

 (2.2)

st+1
i,j = f


st

(i−1,j+1) st
(i,j+1) st

(i+1,j+1)

st
(i−1,j) st

(i,j) st
(i+1,j)

st
(i−1,j−1) st

(i,j−1) st
(i+1,j−1)

 (2.3)

(a) (b)

Fig. 2.2. Illustration of von Neumann (a) and Moore (b) neighbourhood templates.

The collection of states for all cells in L is known as a configuration (C). The

global rule F maps the whole automaton forward in time; it is the synchronous

application of f to each cell. The behaviour of a particular A is the sequence

(c0, c1, c2, . . . , cT−1), where c0 is the initial configuration ( IC ) at t = 0. The

graphical representation of the sequence of configurations as the behaviour of a
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cellular automata by assigning a colour for cell state (cell) over the lattice L is

called a space-time diagram. The space-time diagrams add another dimension as

time to depict the spatio-temporal dynamics of CA behaviour (Fig. 2.3).

c0 c10 c20 c30 c40 c50 c60

Fig. 2.3. The space-time diagram depicts the behaviour of a cellular automaton as a
sequence of configurations.

Remark 2.5. Since the lattice, time intervals and states are all discrete values, a

cellular automaton in this scope can be considered a discrete dynamical system.

The total number of possible state transition functions as the size of rule space

Φ can be obtained from

Φ = |S||S||N| , (2.4)

where |S| is the cardinality of S and |N | is the cardinality of N . For instance, given

a two state (|S|= 2) mapping with a Moore neighbourhood template (|N |= 9),

Φ = 229 = 2512 ≈ 1.3× 10154. In order to put this number in perspective, it can be

noted that the number of atoms in a visible universe is ≈ 1080. This excessively large

number of state transition functions can neither be stored in any modern computer

nor be algorithmically defined. A general approach to overcome this problem is to

define a subset(s) of all possible state transition functions via a formula.

Two commonly applied formulas to generate such subsets are totalistic rules and

outer totalistic rules, where the state of each cell is updated according to the sum

of the states of the neighbouring cells in a given template. Eq. 2.5 and Eq. 2.6 show

the generation of totalistic (tot) and outer-totalistic (outer-tot) rules for a Moore

neighbourhood template. Conway’s GoL is an example of an outer-totalistic Moore

neighbourhood cellular automaton (Table. 2.1).
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Totalistic rules: st+1
i,j = ftot(σ), (2.5)

where

σ =
∑


st

(i−1,j+1) st
(i,j+1) st

(i+1,j+1)

st
(i−1,j) st

(i,j) st
(i+1,j)

st
(i−1,j−1) st

(i,j−1) st
(i+1,j−1)


.

Outer-totalistic rules: st+1
i,j = foutot(σ), (2.6)

where

σ =
∑


st

(i−1,j+1) st
(i,j+1) st

(i+1,j+1)

st
(i−1,j) st

(i+1,j)

st
(i−1,j−1) st

(i,j−1) st
(i+1,j−1)


.

Game of Life Cellular Automaton

N : Moore neighbourhood

f : S9 7→ S

f t
(si,j) = st+1

(i,j) =


1 if st

(i,j) = 1 and σ = 2, 3

1 if st
(i,j) = 0 and σ = 3

0 otherwise



Table 2.1: Update rule of GoL cellular automaton.

Fig. 2.4. All the possible configurations of an outer-totalistic von Neumann neighbourhood.

Fig. 2.5. All the possible configurations of an outer-totalistic Moore neighbourhood.
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Fig. 2.4 illustrates all the possible configurations of an outer-totalistic Moore

neighbourhood and Fig. 2.5 illustrates all the possible configurations of an outer-

totalistic von Neumann neighbourhood. Table 2.2 demonstrates the reduction of

the size of rule space by defining formulas to generate a subset of state transaction

functions.

Rule type von Neumann (5) Moore (9)

All 225 = 232 ≈ 4× 109 229 = 2512 ≈ 1.3× 10154

Totalistic 25 = 32 29 = 512

Totalistic 35 = 243 39 = 19683

Totalistic 45 = 1024 49 = 262144

Outer Totalistic 210 = 1024 218 = 262144

Table 2.2: Comparison of the size of rule spaces for two state 2D CA using formulas.

2.4 Behaviour Analysis

Behavioural studies of CA deal with two kinds problems: (1) forward problems,

where given a cellular automaton rule, determining a corresponding behaviour, and

(2) backward problems, where given the behaviour of a cellular automaton, finding

the corresponding rule(s) [70].

Wolfram noted that the behaviour of one-dimensional CA (1D CA) starting from

a random initial configuration falls into four qualitative classes [71]:

Class 1 Evolution leads to a homogeneous state.
1D CA in this class always evolves to a homogeneous arrangement, with
every cell being in the same state, never to change again.

Class 2 Evolution leads to a set of separated simple stable or periodic structures.
CA in the second class form periodic structures that endlessly cycle through
a fixed number of states.

Class 3 Evolution leads to a chaotic pattern.
CA in the third class form random-like patterns that are a lot like the
static white noise in a bad television channel.

Class 4 Evolution leads to complex localized structures, sometimes long-lived.

CA in the fourth class form complex patterns with localized structure that

move through space in time. The patterns must eventually become homo-

geneous, like Class 1, or periodic like Class 2.
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For the quantitative analysis of CA behaviour, Langton [72] introduced λ parametri-

sation scheme to quantitatively evaluate the behaviour of Wolfram’s four classes [73].

The λ parameter measures how many neighbourhood states are mapped onto a non-

quiescent state by a particular transition function. He considered all of the rules

that defined the mapping from one neighbourhood configuration into another. Some

of these rules will map a cell into the quiescent state, while others will map into the

other states. It is possible to split these two rule types into two distinct sets, with

the union of the sets being all of the rules. Considering that the total number of

entries in the rule table is equal to K2r+l . Letting the number of rules that map to

the quiescent state be Nq, we can define a special parameter as the fraction of all

the rules that map to a non-quiescent state Eg. 2.7. Table 2.3 show how rules space

can be parametrised using λ.

λ = KN −Nq

N
(2.7)

λ all rules chaotic rules complex rules

0 1 0 0

1/8 8 0 0

1/4 28 2 0

3/8 56 4 1

1/2 70 20 4

5/8 56 4 1

3/4 28 3 0

7/8 8 0 0

1 1 0 0

Table 2.3: Parametrising CA rules space by λ parameter.
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2.5 Syntheses with CA

Different CA models have been developed to address a variety of complex problems

not only in computer science but also in other disciplines which heavily rely on

computational tools to devise domain specific solutions. The significance of CA for

computer science and other disciplines can be summarised as: (1) powerful computa-

tional engines, (2) discrete dynamical system simulators, (3) conceptual vehicles for

studying pattern formation and complexity and (4) original models of fundamental

physics [74].

CA can be considered discrete approximations to partial differential equations

and can thus be used as direct models for a variety of natural systems. They can also

be considered discrete dynamical systems corresponding to continuous mappings

on the Cantor set. Finally, they can be viewed as computational systems whose

evolution processes information contained in their ICs [75]. Wolfram considered

2D CA to be important tools for comparisons with many experimental results on

pattern formation in physical systems [76].

A wide range of CA models have been successfully applied to simulate phys-

ical systems [77, 78], chemical systems [79], biological systems [80, 81, 82], eco-

logical systems [83], social dynamics [84], biological pattern formation [85, 86],

fluid dynamics [87, 88, 89], reaction-diffusion systems [90], distribution of galax-

ies [91], pedestrians and crowd [92], cities and urban development [93, 94, 95],

brain tumor growth [96], avalanches [97], traffic [98], earthquakes [99, 100], for-

est fire [101], crystal growth [102, 103], stem cell self-organisation [104] and control

of robots [105]. Additionally, they have been used in computer graphics [106], cryp-

tography [107, 108], image processing [109, 110], data compression [111] and many

more (see [112, 74, 113, 114] for more CA applications).

28



2.6 Mechanism of Pattern Formation

The behaviour of a cellular automaton is sensitive to the IC and to L, S,N and

f . The behaviour is generally non-linear and sometimes highly complex; no single

mathematical analysis can describe, or even estimate, the behaviour of an arbitrary

automaton. The vast size of the rule space, and the fact that this rule space is

unstructured, mean that knowledge of the behaviour of a particular cellular au-

tomaton, or even of a set of automata, gives no insight into the behaviour of any

other CA. In the lack of any practical model to predict the behaviour of a cellular

automaton, the only feasible method is to run a simulation. In other words, there

is no guarantee that for a given automaton rule and a given IC there will be any

adequate formula for predicting the developmental sequence of the automaton since

CA are computationally irreducible [115]. Fig. 2.7 and Fig. 2.8 illustrate the emer-

gence of complex and interesting patterns by seeding automaton 2.5 with 2.6(a) and

2.6(a) ICs.

(a) (b)

Fig. 2.6. A 12 cell square IC used to seed cellular automaton 2.4 an a 5 cell Glider IC
used to seed cellular automaton 2.5.

Cellular Automaton 2.4

L = 24× 24 (576 cells)

S = {0, 1, 2} ≡ {�,�,�}

N : Moore neighbourhood

f : S9 7→ S

f t
(si,j) = st+1

(i,j) =



0 if st
(i,j) = 2 and σ = 5− 8

1 if st
(i,j) = 1,2 and σ = 2, 3

1 if st
(i,j) = 0 and σ = 3

2 if st
(i,j) = 1,2 and σ = 0− 8

0 otherwise


Table 2.4: Update rule of cellular automaton 2.4.
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t=0 t=1 t=2 t=3

t=15 t=20 t=21 t=22

Fig. 2.7. Space-time diagram of the cellular automaton 2.4 with the 12 cell square IC.

Cellular Automaton 2.5

L = 128× 128 (16384 cells)

S = {0, 1, 2} ≡ {�,�,�}

N : Moore neighbourhood

f : S9 7→ S

f t
(si,j) = st+1

(i,j) =



2 if st
(i,j) = 0 and σ = 3

2 if st
(i,j) = 1,2 and σ = 2, 3

1 if st
(i,j) = 1,2 and σ = 0− 8

0 otherwise


Table 2.5: Update rule of cellular automaton 2.5.
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t=10 t=50 t=100 t=200

t=250 t=300 t=350 t=400

t=450 t=500 t=600 t=650

Fig. 2.8. Space-time diagram of the cellular automaton 2.5 with the Glider IC.
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Fig. 2.9. Samples of multi-state 2D CA patterns generated by the author.

Fig. 2.9 illustrates some experimental patterns generated by the author to demon-

strate the capabilities of CA in exhibiting complex behaviour with visually pleasing

qualities.
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2.7 Artistic Applications of CA

Some unique characteristics of CA (e.g. automaton as picture element interacting

with neighbouring automata using simple rules) make them a suitable framework for

generating computer graphics. The significance of a CA-based approach in produc-

ing computer art was outlined by Wolfram in his classical studies on CA behaviours

collected in “A New Kind of Science”.

It seems so easy for nature to produce forms of great beauty. Yet in the

past art has mostly just had to be content to imitate such forms. But

now, with the discovery that simple programs can capture the essential

mechanisms for all sorts of complex behavior in nature, one can imagine

just sampling such programs to explore generalizations of the forms we

see in nature. Traditional scientific intuition–and early computer art–

might lead one to assume that simple programs would always produce

pictures too simple and rigid to be of artistic interest. But looking

through this book it becomes clear that even a program that may have

extremely simple rules will often be able to generate pictures that have

striking aesthetic qualities–sometimes reminiscent of nature, but often

unlike anything ever seen before [35, p.11].

The dynamics of pattern formation in CA, especially with multi-state CA mod-

els has been shown to generate aesthetically pleasing imagery due to the emergence

of novel symmetrical patterns [45]. Martin Nowak employed multi-state CA mod-

els to study pattern formations in biological systems and generate a sequence of

ever-growing “Persian carpets” and “evolutionary kaleidoscope” patterns that had

aesthetic qualities [116]. In addition, combinations of CA with other ALife tech-

niques (e.g. evolutionary computing or L-systems) have been used to explore a set

of rules generating patterns with aesthetic qualities [8, 117, 48]. Guy Birkin has used

CA for digital art practice and investigating the association of visual complexity with

aesthetic perception using CA-generated patterns as test stimuli [118, 119].

A 2D lattice with a periodic boundary provides an endless environment for the

growth of patterns and observation of emergent complex behaviour over the time of

CA evolution. For some rules the periodic generation of patterns creates an animated

sequence of pattern formations over the course of time. This opens up the possibility
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of generating animations based on the development of pattern formation where both

symmetries and the element of surprise coexist. This capability was observed in [120,

p.64], where CA are considered as “self-generating computer graphics movies”.

Because of the neighbourhood relation of cells and the effect of IC, after sev-

eral time steps the behaviour of CA can become very unpredictable; therefore, from

an observer’s point of view the element of surprise becomes intrinsic. Considering

the neighbourhood relations of CA cells and the fact that each automaton can act

as a pixel, pixels communicate with other pixels to define their spatial location in

the next time step. In other words, each pixel is related to another pixel through

the exchange of information. This is a very unique method of generating imagery

which does not have precedent in human culture and there have not been found

any pattern generation technique based on these simple principles [121]. The role

of symmetry in art, architecture and its association with aesthetic preferences is a

well-known concept [122, 123, 124]. The iterative application of a transition func-

tion over IC, especially in multi-state 2D CA can generate complex symmetrical

patterns which are extremely challenging to construct using conventional mathe-

matical methods [125].

In the 1950s, Béla Julesz employed a digital computer to create artificial stereo

images to study binocular depth perception. The images were composed of black

and white square shapes. His work contributed to the idea that 2D patterns can be

generated using simple elements (i.e. square shapes) where patterns contain micro-

patterns (locally organized) and macro-patterns (globally organized) [126]. In 1963,

Ken Knowlton wrote an animation language called Beflix (Bell Flicks), the first

specialised computer animation language for bitmap movie making, producing im-

ages at a resolution of 252 × 184 in eight shades of grey. The scientific orientation

of Beflix towards creating graphics and artists’ limited knowledge of programming

at the time raised a need to develop special program to facilitate artistic processes

with computers. It resulted in the creation of a completely new language, Explor

(EXplicit Patterns, Local Operations and Randomness) in 1970 for generating 2D

patterns, designs and pictures from explicitly provided two-dimensional patterns,

local operations and randomness. It aimed not only to provide the computer novice

with graphic output; but also a vehicle for depicting the results of simulations in

natural (e.g. crystal growth) and hypothetical spaces (e.g. CA), and for the pro-

duction of a wide variety of designs [127, 128]. Knowlton and Lillian Schwartz used
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Explor ’s CA models to generate “Pixillation”, one of the early computer generated

animations [26]. They contested in the Eighth Annual Computer Art Contest in

1970 with two entries, “Tapestry I”, and “Tapestry II”, still frames from Pixillation.

The “Tapestry I” won the first prize for new, creative use of the computer as an

artist’s tool. Their winning entry, “Tapestry I” was published on the front cover of

the computers and automation in August 1970.

Lambert Meertens and Leo Geurts also had an entry in the Eighth Annual Com-

puter Art Contest with “Crystalization”, an experimental computer graphics with

asynchronous updates. Their entries were four drawings intended to generate pat-

terns that combine regularity and irregularity in a natural way using CA [129].

They used majority voting rules (totalistic) with four-cell von Neumann neighbour-

hood for some of their works and for some others, they used larger neighbourhoods

than the immediately adjacent cells. In searching for a contemporary technology for

computer art, Joseph Scala noted Knowlton’s EXPLOR system, which introduced

a new way of generating art using computers. He then created Exploring I, II and

III (multi-state CA patterns) using EXPLOR, a line printer, and painted on with

acrylic paint in 1975 [130]. He found computers as the electronic interface between

human thought and aesthetic expression which would allow human kind to tap into

and communicate those cords of humanity necessary for the continuation of human

existence with and within our scientific-technological culture [130].

Peter Struycken, the Dutch contemporary digital artist, has created many of his

works including “Computer Structures” (1969), “Four Random Drawings for Lien

and Ad” (1972) and FIELDS (1979/1980) with binary and multi-state CA [30, 131].

The SPLASH is a program which allows the exploration of colour patterns. The idea

is inspired by throwing a stone into a pond, causing ripples to emanate from the place

where the stone hits the water (splashdown). The colour changes are controlled by

a number of transitional states between a previously (arbitrarily) established colour

pattern serving as an initial state and another previously (arbitrarily) established

colour pattern which is to be the final state, or target [131]. The FIELDS uses a

square grid with 8-bit colour cells. The transaction function is how the colour of a

cell adapts in the direction of the average colour of the surrounding cells. Repeated

application of the rule thus ends with a uniformly coloured surface. But before this

stable endpoint is reached, the automaton goes through a sequence of configurations

of irregular shapes.
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Paul Brown, the British contemporary digital artist, also applied various CA

rules in his static and kinematic computer art. “Neighbourhood Count” (1991), “In-

finite Permutations V1” (1993-94), “Infinite Permutations V2” ( 1994-95), “SAND

LINES” (1998), “My Gasket”(1998) and “Chromos” (199-2000) [132, 31] are some

of his CA-based works of art.

While investigating CA at the Institute for Advanced Study in Princeton, Wol-

fram developed practical applications of computer science, particularly CA for com-

mercial purposes. He designed and published CA postcards with six different au-

tomata in full colour. On the back of each card was a statement: “The color of

each cell is determined by a simple mathematical rule from the colors of neighboring

cells on the line above it.” [133, p.249]. On the bottom of each card there was the

statement of the mathematical rule that generated the pattern and then a copy-

right notice. Some of the cards included hexagonal cellular snowflake developed by

Norman Packard. The full-colour formation of a snowflake appeared on Wolfram’s

Scientific American article, “Computer Software in Science and Mathematics”, argu-

ing that “The only practical way to generate the pattern is by computer simulation”

[134, p.118].

Nature in October 1984 printed seven full-colour pictures of cellular automata

on its cover, in which Wolfram published an article entitled “Cellular Automata as

Models of Complexity” [135]. Selling postcards of CA patterns initiated a series

of ideas about creating wallpaper patterns and murals. Wolfram did not intend to

apply CA in a full commercial extent but to bring cellular automata to the world .

“One of the things I’ve been meaning to do is to make a bit more of a serious effort

to use cellular automata in some kind of computer art ... built a computer-controlled

spray-painting machine to produce 14 by 48-feet image to make some huge murals

of computer art ... and create a huge cellular automata display which one can put

on the side of a building” [133, p.250]. In the spring of 1986, Wolfram received

a letter inviting him to an art exhibition in New York City, art based on cellular

automata. After attending the exhibition, Wolfram said “It was kind of interesting,

actually. I had expected something rather boring, but in fact the pictures were quite

nice.” [133, p.250].

Paul Hoke regarded CA-generated patterns as Cellular Automata Art. He made

a distinction between local and global viewpoints of CA by arguing that the recursive

application of a simple rule at the local level can generate complex behaviour at the
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global level of a cellular automaton. He experimented with 256-state CA, observing

that “the time evolution of 2D CA would have to be displayed as stacks of planes

(each of which is an element of the automata), this type of cellular automata is

typically shown in an animated fashion; each successive element occupies the screen

as it is generated, giving the impression of animation as cells change color.” [136].

John F. Simon Jr created a series of art projects entitled (Art Appliances) using

CA-based software and LCD panels to exhibit CA pattern formations. Every Icon

(1996), ComplexCity (2000), and Automata Studies (2002) are examples of his CA

art works [137].

Leo Villareal [138], inspired by Conway’s GoL applied CA to control lightings in

architectural installations. He maintains that “central to my work is the element of

chance. The goal is to create a rich environment in which emergent behavior can

occur without a preconceived outcome. I am an active participant, serving as editor

in the process through careful selection of compelling sequences”.

Rafael [139] considers mathematics to be the ultimate abstract art. He gener-

ates his artworks by exploring multi-state CA. Robert J. Krawczyk [140] has used

different 2D and 3D CA models to generate his artworks and architectural designs.

Erwin Driessen and Maria Verstappen created Ima Traveler (1996) and Breed

(1995-2007) based on CA models in 2D and 3D. The Ima Traveller is an inter-

active CA environment for exploring an infinite universe. The underlying cellular

automaton enables the traveller (observer) to make a journey in a real time-space

that develops in the direction that the traveller is moving into, so there is no end

to the journey of the traveller. The experience is like zooming in an endless uni-

verse of infinite size, never reaching any boundaries. The ever-expanding universe

starts with a single cell at the centre of the screen. Then the automaton generates

new generations of cells based on a cell-division process. The new cells are more or

less autonomous cells that are able to define their own colour (hue, brightness and

saturation) by interaction with the surrounding cells.

The Breed is a 3D automaton for generating sculptures. The underlying principle

of the Breed is division of cells. The initial cell, a cube, engenders throughout suc-

cessive stages of cell division to form complex, multi-cellular sculptures. The Breed’s

morphogenetic rules are guided by an evolutionary algorithm in 3D space determin-

ing how the division of a cell occurs, depending on its states and neighbouring cells

surrounding [141].
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Furthermore, some commercial products benefiting from CA-generated patterns

in their designs (e.g. elementary cellular automaton rule 110) are emerging (Fig. 2.10).

Fig. 2.10. Samples of commercial products using CA-generated patterns.

The CA-based artworks reviewed in this chapter are regarded as digital art where

the artist utilises the combined generative capabilities of CA models with their own

creativity and aesthetic perception to produce digital art. These forms of art works

depend on the creativity, aesthetic perception of the artist and generative capabilities

of CA models. It is evident that, this method of digital artwork creation lacks the

automation for selection/evaluation processes in which the computer evaluates the

aesthetic quality of the generated patterns. The automation of the selection process

requires computational models which conform to human aesthetic perception.
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3. Informational Aesthetics

Our fascination with beautiful objects, whether in its natural or synthetic instances,

has contributed to many studies in different bodies of knowledge. Although aes-

thetics has traditionally been a discipline of philosophy, over the past decades other

disciplines have shown interest in addressing questions regarding aesthetic percep-

tion with their own scientific theories and tools.

Where traditional aesthetics in philosophy is a purely theoretical subject, modern

aesthetics has taken a more practical approach with the emergence of disciplines

like Experimental Aesthetics [142, 143, 144] Neuroaesthetics [145] and Evolutionary

Aesthetics [146, 147].

Neuroaesthetics, using brain imaging tools, attempts to identify the neural cor-

relates of human aesthetic experience and has so far shown that the experience of

visual beauty correlates with activities in a specific region of the brain [148]. Fur-

thermore, neurological theories of aesthetics propose 10 universal laws of art; peak

shift, isolation, grouping, contrast, perceptual problem solving, symmetry, abhorrence

of coincidence/generic viewpoint, repetition, rhythm, and orderliness, balance and

metaphor as a framework for understanding aspects of visual art, aesthetics and

design independent of cultural boundaries [149].

The evolutionary theory of aesthetic experience evaluates beauty as a promise of

a high likelihood of survival and reproductive success in the environments of human

evolutionary history, while ugliness is the promise of low survival and reproductive

failure [150]. The studies in this field have shown that the perception of beauty

is innate [151], although aesthetics judgements may be rather variable across peo-

ple, cultures and time, the underlying algorithms and constraints should manifest

themselves as common universal evolutionary origin [152].

Computational Aesthetics, a fairly new discipline of computer science, aims to
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bridge the analytic and synthetic by integrating aspects of computer science, phi-

losophy, psychology, and the fine, applied and performing arts. It seeks to facilitate

both the analysis and the augmentation of creative behaviours. Computational Aes-

thetics also investigates the creation of tools that can enhance the expressive power

of the fine and applied arts and furthers our understanding of aesthetic evaluation,

perception and meaning [44].

The field addresses evaluation problems of exiting works of art and the creation

of digital forms of art or objects of design having aesthetic qualities. It is “the

research of computational methods that can make applicable aesthetic decisions in

a similar fashion as humans can” [42, p.16]. Some major aspects of the discipline

are (1) developing computational methods for aesthetic decisions, (2) taking human

perception into account, and (3) focusing on aesthetics in form and particularly

objects of design, in order to guarantee immediate application [42]. A chronological

account covering various research activities that invoke the term aesthetics in a

computational setting with focus on the problem of making numerical assessments

of the aesthetic content of works of art is provided in [153].

There is a sizeable body of literature on various computational approaches to

aesthetics. They can be categorized from mathematical, communicative, struc-

tural, psychological and neuroscientific perspectives or from their computational

approaches (evolutionary, neural, etc.). A thorough review of various models and

methodologies from different perspectives are provided in [154, 155, 156].

The review in this chapter mainly focuses on models derived from Birkhoff’s

aesthetic measure [51] and informational theories of aesthetics since these models

are directly related to this work given the scope of research.
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3.1 Aesthetics as Science of Sensation

The 17th and 18th centuries are known as the age of enlightenment. It was a time

when the influential figures like Descartes (1596 -1650) and Leibniz (1646 -1716)

revolutionised science and philosophy by applying mathematics and reasoning to

qualitative subjects.

Descartes’s distinction between ‘clear and distinct ideas’ and ‘obscure and con-

fused ideas’ in human sensory perception [157] influenced Bumegartn (1714 -1762),

a German philosopher, to establish aesthetics as a new science dealing with human

sensation and the perception of beauty in nature and art [158], separating it from the

classical metaphysical and theological treatment inherited from Plato and Aristotle.

Baumgarten argued that since thought and intellect types of cognition are dealt

with logic and reasoning, the perception and sensory types of cognition should be

dealt with a new science of sensory perception which he called aesthetics, deriving

it from the Greek word aesthanesthai (to feel or perceive) for ‘things perceived by

the senses’, as opposed to ‘things known by the mind’ [159].

Aesthetics is currently defined as the theory of perceptibility, appreciation, re-

sponsiveness, and enjoyment of the beauty in art and nature. It comprises two

aspects: (1) the philosophical or theoretical, dealing with the nature of beauty and

art, and (2) the pragmatic or practical, discussing the standards of art appreciation

and evaluation [160].

3.1.1 Measuring Sensations

Aesthetic judgements have long been hypothesised to depend on the order and com-

plexity of stimuli. Weber (1795 -1878), Fechner (1801 -1878) and Wundt (1832 -1920)

contributed to the foundations of Experimental Aesthetics by examining the rela-

tions of order and complexity in aesthetic judgements. They studied these relations

through experimental studies, drawing quantitative models to measure human sen-

sation and perception across various sensory systems including vision.

Weber studied the minimum amount of changes needed in a stimulus to generate

a noticeable change in sensation. From the analysis of empirical data, he proposed

a model known as Weber’s law which states that the sensitivity of the sensory re-

sponse to the changes in stimuli depends on the difference threshold or just noticeable

difference (JND) of the stimuli (Eq. 3.8)
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∆I
I

= k (3.8)

where I is the intensity of the standard, ∆I is the increase in the intensity for

a JND, and k is a constant (Weber’s constant). In another words, Weber’s Law

states that the size of the JND (i.e., delta I) is a constant proportion of the original

stimulus value. He approximated JNDs of light intensity (k = 0.01) and sound

intensity (k = 0.15) in vision and hearing.

Empirical studies on art and aesthetic preferences with the aim of addressing

aesthetic problems was initiated by Fechner. He tried to derive the conditions that

determine what is aesthetically pleasing (aesthetic preferences) not from a higher

ideal of beauty but from below using systematic empirical methods. In his ex-

periments with simple shapes he found that some intermediate degree of stimulus

complexity is perceived to be more aesthetically pleasing, while very high degrees

of simplicity or complexity are less aesthetically pleasing [142].

Fechner assumed not only that a JND is a constant fraction of stimulus intensity,

but also that one JND is perceptually equal to any other JND. He then provided

further extension to Weber’s law by assuming that (1) two stimuli will be discrim-

inable if they generate a visual response that exceeds some threshold (2) the visual

response S to an intensity I is given by Eq. 3.9 [161].

S = k log I (3.9)

Wundt postulated that there is a relationship between stimulus complexity and

appraisal. He then carried out a number of empirical studies on the aesthetic judge-

ment of human subjects and showed that physiological arousal and subjective stim-

ulus complexity are related and that the relationship is in the form of an inverted-U

shape curve [162]. That is to say, aesthetic pleasure is maximal at intermediate

degrees of complexity. This relationship is known as the Wundt Curve (Fig. 3.11).
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Fig. 3.11. The inverted-U curve illustrating the relationship between stimuli complexity
and appraisal.

Berlyne, inspired by Wundt, suggested that the aesthetic value and pleasurable-

ness of a stimulus starts at a relatively indifferent level, then increases as a function

of complexity up to a certain level, after which it decreases and becomes more un-

pleasant as complexity increases (Fig. 3.12) [52]. For Berlyne, aesthetic preference

(“hedonic value”) is determined by the average arousal potential, usually somewhere

midway between being arousing/exciting (novel) and dull (very familiar).

This principle explains the general dominance of stimuli or artworks that are

not too simple yet not too complex. It also explains a preference for stimuli or

artworks that are moderately familiar. This reflects the fact that aesthetic value

can be enhanced by an increase in complexity or by an increase in order and the

fact that extremely low complexity or order will make a form displeasing [52]. Later

experimental studies supported the aesthetic preference in relation to the complexity

of visual and auditory stimuli conforming to an inverted-U curve [163, 164, 165].
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Fig. 3.12. Schematic plot of the relationship between complexity and pleasantness of
stimuli adapted from Berlyne.

Stevens suggested a power function to describe the intensity of a sensation based

on two assumptions that: (1) the Fechner law is a valid relation, and (2) psychologi-

cal intensity is appropriately measured in units of JNDs [166](Eq. 3.10). The power

function implies that perceived psychological magnitude (Ψ) is a power function of

physical magnitude (Φ):

Ψ = Φr (3.10)

where r is an exponent which is approximated empirically for each sensory modal-

ity.

These models are known as psychophysical laws, which explain the relation be-

tween the intensity of a stimulus and its perceived sensation based on empirical

data. Two conclusions can be drawn from these laws: (1) there is a non-linear re-

lation between stimulus intensity and its perceived sensation. The judgements of

the magnitude of sensory stimuli are not linearly scaled. Therefore, if a continuum

between perceptual and cognitive processes exists, numerical representations should

also be scaled on non-linear models [167]; (2) there is a direct relation between

stimulus intensity and its perceived sensation. In terms of aesthetic perception of

visual stimuli, Berlyne, from analysis of empirical data, showed that there is a direct

relationship between complexity and aesthetic perception [168].
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3.2 Computing Aesthetic Sensation

Birkhoff’s aesthetic measure is a well-known theory in the field of computational

aesthetics. Birkhoff attempted to create “a general mathematical theory of the fine

arts, which would do for aesthetics what had been achieved in another philosophical

subject, logic, by the symbolisms of Boole, Peano, and Russell” [169, p.127]. He

proposed a formula for the aesthetic evaluation of objects and then illustrated its

application with the analysis of polygons and vases. He concluded that aesthetic

experience can be considered as a process involving three successive phases:

1. A preliminary effort of attention, which is necessary for the act of perception,

and which increases in proportion to what we shall call the complexity (C) of

the object;

2. The feeling of value or aesthetic measure (M) which rewards this effort; and

finally

3. A realization that the object is characterized by a certain harmony, symmetry,

or order (O), more or less concealed,which seems necessary to the aesthetic

effect.

Birkhoff argued that aesthetic feelings arise primarily because of an unusual

degree of harmonious inter relation within the object. More specifically, if we regard

M,O, and C as measurable variables, we are led to write:

M = O

C
. (3.11)

This embodies in a basic formula the conjecture that the aesthetic measure is de-

termined by the density of order relations in the aesthetic object [51, 170].

The aesthetic measure (M) (Eq. 3.11), influenced by the principle of “unity in

variety”, is a function of order (O) and complexity (C), with order contributing

positively and complexity negatively to the aesthetic value of objects in the same

class (e.g. vases, ornaments, polygonal forms, poetry and melodies) [51].

For polygonal form, Birkhoff separated order into five elements of order:

O = V + E +R +HV − F (3.12)
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where V is vertical symmetry, E is equilibrium, R is rotational symmetry, HV is

relation to a horizontal-vertical network, and F is unsatisfactory form, involving too

small distances from vertices to vertices, angles that are too near 0◦ or 180◦, and

other ambiguities. The complexity of polygonal forms is defined as the number of

indefinitely extended straight lines that contain all the sides of the polygon.

He then provided measurement of M for set of 90 polygons forms with a max-

imum aesthetic measure calculated for a square shape (Fig. 3.13). Therefore, the

formula favoured simplicity and orderliness as an indicator of the beauty of an ob-

ject [171].

M = 1.50 M = 0.90 M = 0.50 M = 0.62

Fig. 3.13. Aesthetic measures of sample polygonal forms.

Staudek extended Birkhoff’s model by defining a length tolerance as the char-

acteristic network distances (ε) and angle tolerance (ζ) (the relations among the

characteristic tangents) and then defined M(ε, ζ) as the sum of the partial orders

divided by the complexity (Eq. 3.13).

M(ε, ζ) = H(ε) + V (ε) + P (ε) + T (ζ)
C

(3.13)

where H(ε) is horizontal order, V (ε) is vertical order, P (ε) is proportional order,

and T (ζ) is tangent order. The complexity (C) is determined from the number of

its characteristic points. Staudek then applied the extended model to the formal

aesthetic evaluation of regular geometrical objects, namely Chinese vases [172, 173].

The validity of Birkhoff’s model and his approach in measuring order and com-

plexity has been challenged by empirical studies in [174]. Eysenck conducted a

series of experiments to test Birkhoff’s model with inconclusive results [175, 176]

and suggested that: (1) a better expression of a aesthetic evaluation function would

be to consider a direct relationship to stimulus complexity rather than an inverse

one (Eq. 3.14), (2) the measures of order and complexity should be approximated

empirically [177].

M = O × C (3.14)
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3.2.1 Informational Theories of Aesthetics

Even though the validity of Birkhoff’s approach to the relationship and definition of

order and complexity has been challenged, the notion of complexity and objective

methods to quantify it remained a prominent parameter in later proposed aesthetic

evaluation models.

Shannon’s information theory was developed in order to address a reliable com-

munication over an unreliable channel [178]. The notion of Entropy is at the core of

this theory, providing a measurable quantity of information contained in a message

transmitted through a channel with a certain measurable capacity [179]. In this

sense, the semantic aspects of a message are irrelevant and information is simply

a measure of freedom of choice when one selects a message, while the amount of

information is defined to be measured by the logarithm of the number of available

choices [178]. Let X be discrete alphabet, X a discrete random variable, x ∈ X a

particular value of X and P (x) the probability of x. The entropy, H(X), is then:

H(X) = −
∑
x∈X

P (x) log2 P (x). (3.15)

The quantity H is the average uncertainty in bits, log2(1
p
) associated with X.

Entropy can also be interpreted as the average amount of information needed to

describe X. The value of entropy is always non-negative and reaches its maximum

for the uniform distribution, log2(|X |):

0 6 H 6 log2(|X |). (3.16)

Remark 3.6. We assume that 0 log2 0 = 0.

The lower bound of relation (3.16) corresponds to a deterministic variable (no

uncertainty), while the upper bound corresponds to a maximum uncertainty asso-

ciated with a random variable. Another interpretation of entropy is as a measure

of order and complexity. A low entropy implies low uncertainty, so the message is

highly predictable, ordered and less complex. By contrast, a high entropy implies

high uncertainty, less predictability, highly disordered and highly complex. These

interpretations of entropy provided a quantitative means to measure human sensory

perception including measures of order and complexity of objects in relation to their

aesthetic value.
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In a series of studies in the late 1950s influenced by information theory and the

development of computers, it was argued that human psychological and cognitive

processes (e.g. human sensory perception) are information-processing models, rather

than organisms, that are simply conditioned to respond to external stimulus; these

processes are then simulated by developing programs with a computer [180].

Franke put forward an aesthetic perception model by making a distinction be-

tween the amount of information being stored and the rate of information flowing

through a channel as information flow measured in bits/sec [181]. Staudek’s multi-

criteria approach (informational and structural) as exact aesthetics, an extension of

Birkhoff’s measure, applied information flow I ′ by defining it as a measure assessing

principal information transmission qualities in time [173].

Moles [182], Bense [183, 184, 185] and Arnheim [143, 186, 187] were pioneers in

the application of entropy to quantify order and complexity in Birkhoff’s formula

by adapting statistical measure of information in aesthetic objects.

Moles made a distinction between value judgements and scientific aesthetics

where information measure is a tool for scientific aesthetics. He argued that the

human mind cannot absorb more that 16 − 20 bits/sec of information. In order

for a message to be perfectly understood, it should carry information in this range.

Beyond these limits, either the mind rejects the message because of too much infor-

mation or it loses interest due to too little information [182].

Bense combined Birkhoff’s model, information theory and Chomsky’s generative

grammar for the aesthetic analysis of the English language. He argued that aes-

thetic objects are “vehicles of aesthetical information” where statistical information

can quantify the aesthetical information of objects. From the analysis of art ob-

jects on a micro-aesthetic level, the macro-aesthetic values of aesthetic objects are

quantifiable [183]:

MB = Hmax −H
Hmax

= 1−H (3.17)

where H quantifies the entropy of the selection process from a determined reper-

toire of elements and Hmax is the maximum entropy of a predefined repertoire of

elements [185]. He also drew a line between the generation process and evalua-

tion of artworks [188]. Bens’s informational aesthetics is founded on there basic

assumptions: (1) Objects are material carriers of aesthetic state, and such aesthetic
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states are independent of subjective observers, (2) A particular kind of information

is conveyed by the aesthetic state of the object (or process) as aesthetic information,

and (3) an objective measure of aesthetic objects is related with the degree of order

and complexity in an object [189]. Berlyne also adopted an information-theoretic

approach in his psychological experiments to determine humans’ perceptual curios-

ity of visual stimuli, demonstrating a direct relationship between complexity and

aesthetic perception [168].

Gunzenhäuser suggested viewing order as the relative redundancy (R) and com-

plexity as the average statistical information (H) in Birkhoff’s formula to form an

informational model of aesthetics (Eq. 3.18) [190]:

MG = R

H
=

1− H
Hmax

H
= 1
H
− 1
Hmax

. (3.18)

Machado and Cardoso [191] proposed a model based on Birkhoff’s approach

revolving around the ratio of image complexity to processing complexity, arguing that

images with high visual complexity are processed easily, so they have the highest

aesthetic value. Adapting Bense’s informational aesthetics to different approaches of

the concepts of order and complexity in an image in [192], three measures based on

Kolmogorov complexity, Shannon entropy (for RGB channels) and Zurek’s physical

entropy were introduced. The measures were then applied to analyse the aesthetic

values of several paintings (Mondrian, Pollock, and van Gogh).

Leder [193] proposed an information-processing stage model of aesthetic process-

ing, derived from an analysis of the appreciation of modern art. According to the

model, aesthetic experiences involve five stages: perception, explicit classification,

implicit classification, cognitive mastering, and evaluation. The model also differ-

entiates between aesthetic emotions and aesthetic judgements as two distinct types

of outputs.

Although informational theories of aesthetics have all considered that the human

observer and the artist play a crucial role in the process of artistic appreciation

and creation, they incorrectly invoke information theory in a situation where the

“symbols” that constitute aesthetic stimuli (and natural images more generally) are

unknown. Indeed, the “true” entropy of an image is a perceptual quantity, and

cannot therefore be characterized with only image statistics [194].
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4. Quantifying Spatial Complexity

Despite the dominance of entropy as a measure of order and complexity in compu-

tational aesthetics, it fails to reflect on the structural characteristics of 2D patterns.

The main reason for this drawback is that it measures the distribution of symbols,

not their arrangements.

This fact was noted by Arnheim, who stated that “entropy theory is indeed a

first attempt to deal with global form; but it has not been dealing with structure.

All it says is that a large sum of elements may have properties not found in a smaller

sample of them” [195, p.18].

Fig. 4.14 illustrates the measurements of entropy for CA-generated 2D patterns

with various structural characteristics. Fig. 4.14(a) and 4.14(b) generated by a

cellular automaton. Fig. 4.14(a) is a fully symmetrical pattern, Fig. 4.14(b) is

a pattern with local structures and Fig. 4.14(c) is a fairly structureless random

pattern.

(a) (b) (c)

H = 1.68385 H = 1.68385 H = 1.68385

Fig. 4.14. The measurements of H for structurally different patterns.
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The comparison of the structural characteristics of these patterns with their

corresponding entropy values shows that despite their structural differences, all of

the patterns have the same entropy value. This clearly demonstrates the failure of

entropy to discriminate structurally different 2D patterns. In other words, entropy

is invariant to the spatial arrangement of the composing elements of 2D patterns.

This is in contrast to our intuitive perception of the complexity of patterns. For the

purpose of measuring the complexity of CA behaviour, particularly with multi-state

structures, it would be problematic if only entropy measure was applied.

4.1 Conceptual Model

Considering our intuitive perception of complexity and the structural characteristics

of 2D patterns, a complexity measure must be bounded by two extreme points of

complete order and disorder. It is reasonable to assume that regular structures, irreg-

ular structures and structureless patterns lie between these extremes, as illustrated

in Fig. 4.15.

order regular structure | irregular structure | structureless
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ disorder

Fig. 4.15. The spectrum of spatial complexity.

A complete regular structure is a pattern of high symmetry, while an irregu-

lar structure is a pattern with some structure, though not as regular as a fully

symmetrical pattern; finally a structureless pattern is a random arrangement of

elements [125].

4.2 Spatial Complexity Measure

Although Shannon further provided definitions of joint and conditional entropies

in the framework of information theory [178, p.52], its applications in measuring

structural complexity of dynamical systems remained unrecognised until studies

in [54, 55, 56, 196] showed its merits.

A measure introduced in [54, 55, 56], known as information gain, has been pro-

posed as a means of characterising the complexity of dynamical systems and of 2D
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patterns. It measures the amount of information gained in bits when specifying the

value, x, of a random variable X given knowledge of the value, y, of another random

variable Y ,

Gx,y = − log2 P (x|y). (4.19)

P (x|y) is the conditional probability of a state x conditioned on the state y. The

mean information gain (MIG), GX,Y , is the average amount of information gain

from the description of all possible states of Y :

GX,Y =
∑
x,y

P (x, y)Gx,y = −
∑
x,y

P (x, y) log2 P (x|y) (4.20)

where P (x, y) is the joint probability, prob(X = x, Y = y). G is also known

as the conditional entropy, H(X|Y ) [179]. Conditional entropy is the reduction in

uncertainty of the joint distribution of X and Y given knowledge of Y , H(X|Y ) =

H(X, Y )−H(Y ). The lower and upper bounds of GX,Y are

0 6 GX,Y 6 log2|X |. (4.21)

Fig. 4.16 shows details of the calculations of Gr,s for a 2D pattern composed

of two different cells S = {white, black}, so the set of all possible 2-tuples are

{ww,wb, bb, bw}. Considering the mean information gain from Eq. 4.2 and given

the relative position matrix M in Eq. 4.23, the calculations can be performed as

follows:

In white − white, case G measures the homogeneity and spatial configurations

where P (w, s(i,j+1)) is the joint probability that a cell is white and has a neighbour-

ing cell at its (i, j + 1) position, P (w|w(i,j+1)) is the conditional probability of a

cell is white given that it has a white neighbouring cell at its (i, j + 1) position,

P (w,w(i,j+1)) is the joint probability that a cell is white and has a neighbouring cell

at its (i, j + 1) position, G(w,w(i,j+1)) is information gain in bits from specifying a

white cell where it has a white neighbouring cell at its (i, j + 1) position.

The same calculations are performed for the rest of the cases; black − black,

white− black and black − white.
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(a) (b)
white− white

P (w, s(i,j+1)) = 5
6

P (w|w(i,j+1)) = 4
5

P (w,w(i,j+1)) = 5
6 ×

4
5 = 2

3

G(w,w(i,j+1)) = 2
3 log2 P (4

5)

G(w,w(i,j+1)) = 0.2146 bits

white− black

P (w, s(i,j+1)) = 5
6

P (w|b(j+1)) = 1
5

P (w, b(i,j+1)) = 5
6 ×

1
5 = 1

6

G(w, b(i,j+1)) = 1
6 log2 P (1

5)

G(w, b(i,j+1)) = 0.3869 bits

(b) (c)
black − black

P (b, s(i,j+1)) = 1
6

P (b|b(i,j+1)) = 1
1

P (b, b(i,j+1)) = 1
6 ×

1
1 = 1

6

G(b, b(i,j+1)) = 1
6 log2 P (1)

G(b, b(i,j+1)) = 0 bits

black − white

P (b, s(i,j+1)) = 1
6

P (b|w(i,j+1)) = 0
1

P (b, w(i,j+1)) = 1
6× 0

G(b, w(i,j+1)) = 0 bits

G(S, S(i,j+1)) = G(w,w(i,j+1)) +G(w, b(i,j+1)) +G(b, b(i,j+1)) +G(b, w(i,j+1))

G(S, S(i,j+1)) = 0.2146 + 0.3869 = 0.6015 bits

Fig. 4.16. Calculations of Gr,s for a 2D pattern composed of black and white cells.

Definition 4.4. A spatial complexity measure G, of a cellular automaton configura-

tion is the sum of the mean information gains of cells having homogeneous/heterogeneous

neighbouring cells over a lattice.

For a cellular automaton configuration, G can be calculated by considering the

distribution of cell states over pairs of cells r, s,

Gr,s = −
∑
sr,ss

P (sr, ss) log2 P (sr, ss) (4.22)
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where sr, ss are the states at r and s, respectively. Since |S|= N , Gr,s is a value

in [0, N ].

The vertical, horizontal, primary diagonal (�) and secondary diagonal (�)

neighbouring pairs provide eightGs; G(i,j),(i−1,j+1), G(i,j),(i,j+1), G(i,j),(i+1,j+1), G(i,j),(i−1,j),

G(i,j),(i+1,j), G(i,j),(i−1,j−1), G(i,j),(i,j−1) and G(i,j),(i+1,j−1). The relative positions for

non-edge cells are given by matrix M :

M =


(i−1,j+1) (i,j+1) (i+1,j+1)

(i−1,j) (i,j) (i+1,j)

(i−1,j−1) (i,j−1) (i+1,j−1)

 . (4.23)

Correlations between cells on opposing lattice edges are not considered. The

result of this edge condition is that Gi+1,j is not necessarily equal to Gi−1,j.

In addition, the differences between the horizontal (vertical) and two diagonal

mean information rates reveal left/right (up/down), primary and secondary orien-

tation of 2D patterns. So the sequence of generated configurations by a multi-state

2D cellular automaton can be analysed using the differences between the vertical

(i, j ± 1), horizontal (i± 1, j), primary diagonal (Pd ) and secondary diagonal (Sd)

mean information gains by means of:

∆Gi,j±1(∆GV ) = |Gi,j+1 −Gi,j−1|, (4.24a)

∆Gi±1,j(∆GH) = |Gi−1,j −Gi+1,j|, (4.24b)

∆GPd
= |Gi−1,j+1 −Gi+1,j−1|, (4.24c)

∆GSd
= |Gi+1,j+1 −Gi−1,j−1|. (4.24d)
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4.3 Kolmogorov Complexity of 2D Patterns

From an information theory perspective, the object X is a random variable drawn

according to a probability mass function P (x). If X is random, then the descriptive

complexity of the event X = x is log 1
P (x) , because dlog 1

P (x)e is the number of bits

required to describe x. Thus, the descriptive complexity of an object depends on

the probability distribution [179].

Kolmogorov attributed the algorithmic (descriptive) complexity of an object to

the minimum length of a program such that a universal computer (universal turing

machine) can generate a specific sequence [57]. Thus, the Kolmogorov complexity of

an object is independent of the probability distribution. Kolmogorov complexity is

related to entropy (H(X)), in that the expected value ofK(x) for a random sequence

is approximately the entropy of the source distribution for the process generating the

sequence. However, Kolmogorov complexity differs from entropy in that it relates

to the specific string being considered rather than the source distribution [197, 179].

Kolmogorov complexity can be described as follows, where ϕ represents a universal

computer, p represents a program, and x represents a string:

Kϕ(x) =
{

min
ϕ(p)=x

l(p)
}

(4.25)

Random strings have rather high Kolmogorov complexity - on the order of their

length, as patterns cannot be discerned to reduce the size of a program generating

such a string. On the other hand, strings with a high degree of structure have fairly

low complexity. Universal computers can be equated through programs of constant

length, thus a mapping can be made between universal computers of different types.

The Kolmogorov complexity of a given string on two computers differs by known

or determinable constants. The Kolmogorov complexity K(y|x) of a string y, given

string x as input is described by the equation below:

Kϕ(y|x) =


min

ϕ(p,y)=y
l(p)

∞, if there is no p such that ϕ(p, x) = y


(4.26)

where l(p) represents program length p and ϕ is a particular universal computer

under consideration. Thus, knowledge or input of a string x may reduce the com-
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plexity or program size necessary to produce a new string y. The major difficulty

with Kolmogorov complexity is that it is uncomputable. Any program that produces

a given string is an upper bound on the Kolmogorov complexity for this string, but

it is not possible to compute the lower bound.

Lempel and Ziv defined a measure of complexity for finite sequences rooted in

the ability to produce strings from simple copy operations [198]. This method,

known as LZ78 universal compression algorithm, harnesses this principle to yield

a universal compression algorithm that can approach the entropy of an infinite

sequence produced by an ergodic source. As such, LZ78 compression has been used

as an estimator for K. Kolmogorov complexity is the ultimate compression bound

for a given finite string and, thus, a natural choice for the estimation of complexity

in the class of universal compression techniques. In order to estimate the K value

of 2D configurations generated by multi-state 2D CA, we generate linear strings of

configurations by means of six different templates illustrated in Fig. 4.17.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

(a) (b) (c) (d) (e) (f)

Fig. 4.17. Six different templates applied for the estimation of K in 2D plane.

1. A horizontal string Sh = {1, 2, 3, 4, 5, 6, 7, 8, 9} (Fig. 4.17(a))

2. A vertical string Sv = {1, 4, 7, 2, 5, 8, 3, 6, 9} (Fig. 4.17(b))

3. A diagonal string Sd = {1, 2, 4, 3, 5, 7, 6, 8, 9} (Fig. 4.17(c))

4. A reverse diagonal string Srd = {3, 2, 6, 1, 5, 9, 4, 8, 7} (Fig. 4.17(d))

5. A spiral string Ss = {1, 2, 3, 6, 9, 8, 7, 4, 5} (Fig. 4.17(e))

6. A continuous spiral string Scs = {1, 4, 2, 3, 5, 7, 8, 6, 9} ( Fig. 4.17(f))

Then, using the LZ78 compression algorithm, the upper bound of K is esti-

mated as the lowest value among the six different templates. The comparison of

the measurements of H, Gs, ∆Gs and K for structurally different patterns is illus-

trated in Fig. 4.18. It is evident from the measurements, K is able to discriminate

the complexity of patterns; however, it fails to discriminate the spatial orientations.
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Fig. 4.18 demonstrates the merits of G in discriminating structurally different pat-

terns for the sample patterns in Fig. 4.18. As can be observed, the measures of H

are identical for structurally different patterns; however, Gs and ∆Gs reflect both

the complexity of patterns and the spatial distribution of their constituting elements

(µGs(a) = 1.51946 > µGs(b) = 1.55110 > µGs(c) = 1.68396).

(a) (b) (c)

H = 1.68385

Gi,j+1 = 1.10365

Gi,j−1 = 1.10365

∆GV = 0

Gi−1,j = 1.10365

Gi+1,j = 1.10365

∆GH = 0

Gi−1,j+1 = 0.75235

Gi+1,j−1 = 0.75235

∆GPd
= 0

Gi+1,j+1 = 0.75235

Gi−1,j−1 = 0.75235

∆GSd
= 0

µGs = 1.51946

K = 0.08425

H = 1.68385

Gi,j+1 = 1.10486

Gi,j−1 = 1.10410

∆GV = 0.00076

Gi−1,j = 1.10548

Gi+1,j = 1.10512

∆GH = 0.00036

Gi−1,j+1 = 0.70165

Gi+1,j−1 = 0.70123

∆GPd
= 0.00042

Gi+1,j+1 = 0.69028

Gi−1,j−1 = 0.68917

∆GSd
= 0.00111

µGs = 1.55110

K = 0.08281

H = 1.68385

Gi,j+1 = 1.10941

Gi,j−1 = 1.10956

∆GV = 0.00015

Gi−1,j = 1.10845

Gi+1,j = 1.11022

∆GH = 0.00177

Gi−1,j+1 = 1.11006

Gi+1,j−1 = 1.10843

∆GPd
= 0.00163

Gi+1,j+1 = 1.10821

Gi−1,j−1 = 1.11014

∆GSd
= 0.00193

µGs = 1.68396

K = 0.11460

Fig. 4.18. The measurements of H, Gs, ∆Gs and K for structurally different patterns.
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4.4 Experiments and Results

A set of experiments was designed to examine the effectiveness of G and K in

discriminating the particular configurations that are generated by a multi-state 2D

cellular automaton. The experimental rule (Table 4.6) maps four states, represented

by white, red, blue and orange; the quiescent state is white.

Cellular Automaton 4.6

L = 65× 65 (4225 cells)

S = {0, 1, 2, 3} ≡ {�,�,�,�}

N : Moore neighbourhood

f : S9 7→ S

f(si,j)(t) = si,j(t+ 1) =



3 if s(t+1)
i,j = 0 and σ = 1

2 if s(t+1)
i,j = 1-3 and σ = 2

1 if s(t+1)
i,j = 1-3 and σ = 3

0 otherwise


Table 4.6: Update rule of cellular automaton 4.6.

The experiments were conducted with four different ICs:

1. All cells are quiescent except for a single cell (Fig. 4.19(a))

2. A right oriented 5-cell (Fig. 4.19(b))

3. A left oriented 5-cell (Fig. 4.19(c))

4. A random configuration with 2112 white quiescent cells covering ≈ 50% of the

lattice, 749 red, 682 blue and 682 orange cells (Fig. 4.19(d))

The experimental rule was iterated synchronously for 200 successive time steps.

Then the sequence of configurations were analysed using Eq. 4.24a, 4.24b, 4.24c, 4.24d

and K. Fig. 4.20, 4.22, 4.24 and 4.30 illustrate a sample of time steps starting from

the four different ICs (Appendix A illustrates the full space-time diagrams).

(a) (b) (c) (d)

Fig. 4.19. Four different ICs used to seed cellular automaton 4.6.
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t=20 t=40 t=60

t=80 t=100 t=120

t=140 t=160 t=180

Fig. 4.20. The space-time diagram of cellular automaton 4.6 for a sample of time steps
starting from the single cell IC (4.19(a)).

20 40 60 80 100 120 140 160 180 200

−0.5

0

0.5

1

Time step t

M
ea

su
re

m
en

ts
in

bi
ts

∆GV

∆GH

∆GPd

∆GSd

Fig. 4.21. The measurements of ∆Gs for 4.19(a) (single cell) IC.
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The behaviour of a cellular automaton from the single cell IC is a sequence of

symmetrical patterns (Fig. 4.20). This fact is reflected on the measurements of

∆Gs (Fig. 4.21), where they are constant for all 200 time steps (∆GV = ∆GH =

∆GPd
= ∆GSd

= 0). This is an indicator of the development of complete sym-

metrical patterns in four directions for each of the 200 configurations generated by

experimental cellular automaton 4.6. However, the measurement of entropy starts

from H
4.19(a)
0 = 0.00319 and reaches H4.19(a)

200 = 1.35548 by the end of the runs

(Fig. 4.26).

t=20 t=40 t=60

t=80 t=100 t=120

t=140 t=160 t=180

Fig. 4.22. The space-time diagram of the cellular automaton 4.6 for a sample of time
steps starting from 4.19(b) IC.
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20 40 60 80 100 120 140 160 180 200

0

0.01

0.02

Time step t
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∆GV

∆GH

∆GPd

∆GSd

Fig. 4.23. The measurements of ∆Gs for 4.19(b) IC.

t=20 t=40 t=60

t=80 t=100 t=120

t=140 t=160 t=180

Fig. 4.24. The space-time diagram of the cellular automaton 4.6 for a sample of time
steps starting from 4.19(c) IC.
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20 40 60 80 100 120 140 160 180 200

0

0.01

0.02

Time step t

M
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su
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ts
in

bi
ts

∆GV

∆GH

∆GPd

∆GSd

Fig. 4.25. The measurements of ∆Gs for 4.19(c) IC.

The two 5-cell ICs (4.19(b) and 4.19(c)) generate sequences of symmetrical pat-

terns with different orientations (Fig. 4.22 and Fig. 4.24). The measurements of

H for these two sequences of structurally different but symmetrical configurations

are identical from t = 0 to t = 200, where H
4.19(b)
0 = H

4.19(c)
0 = 0.01321 and

H
4.19(b)
200 = H

4.19(c)
200 = 1.42028 (Fig. 4.26). On the other hand, the measurements

of ∆Gs, particularly ∆GPd
and ∆GSd

, reflect the differences in the orientations

of the symmetrical configurations (Fig. 4.27 and Fig. 4.28). This is further illus-

trated in Fig. 4.29, where the measures of H, Gs and ∆Gs are compared for two

configurations generated at t = 40 from two different 4.19(b) and 4.19(c) ICs.

20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

Time step t

M
ea
su
re
m
en
ts

in
bi
ts

H - 4.19(a) IC

H - 4.19(b) IC

H - 4.19(c) IC

H - 4.6(d) IC

Fig. 4.26. The measurements of H for 4.19(a), 4.19(b), 4.19(c) and 4.19(d) ICs.
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20 40 60 80 100 120 140 160 180 200

0

0.01
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Time step t
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ts

∆GPd
- 4.19(b) IC

∆GPd
- 4.19(c) IC

Fig. 4.27. Comparison of the measurement of ∆GPd
for 4.19(a) and 4.19(b) ICs.

20 40 60 80 100 120 140 160 180 200

0

0.01

0.02

Time step t
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∆GSd
- 4.19(b) IC

∆GSd
- 4.19(c) IC

Fig. 4.28. Comparison of the measurement of ∆GSd
for 4.19(a) and 4.19(b) ICs.
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(a) (b)

H = 1.42929 H = 1.42929

G↑ = 1.36140 G↑ = 1.36140

G↓ = 1.36538 G↓ = 1.36538

∆GV = 0.00398 ∆GV = 0.00398

G← = 1.36140 G← = 1.36538

G→ = 1.36538 G→ = 1.36140

∆GH = 0.00398 ∆GH = 0.00398

G↖ = 1.36634 G↖ = 1.37148

G↘ = 1.37431 G↘ = 1.37148

∆GPd
= 0.00797 ∆GPd

= 0

G↙ = 1.37148 G↙ = 1.37431

G↗ = 1.37148 G↗ = 1.36634

∆GSd
= 0 ∆GSd

= 0.00797

K = 0.15929 K = 0.16118

Fig. 4.29. The comparison of H, Gs, ∆Gs and K for cellular automaton 4.6 conforma-
tions at t = 40 for 4.19(b) and 4.19(c) ICs.
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t=20 t=40 t=60

t=80 t=100 t=120

t=140 t=160 t=180

Fig. 4.30. The space-time diagram of the cellular automaton 4.6 for a sample of time
steps for the random IC (4.19(d)) .
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Fig. 4.31. The measurements of ∆Gs for 4.19(d) IC.
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The development of configurations from the random IC results in a sequence of

irregular structures (Fig. 4.30). The formation of patterns with local structures has

reduced the values of ∆Gs until a stable oscillating pattern is attained (Fig. 4.31).

This is an indicator of the development of irregular structures. However, the patterns

are not random since the maximum four-state value of log2(4) = 2 (Eq. 4.21). The

measurement of H for H4.19(d)
0 = 1.79195 and for H4.19(d)

200 = 1.43572 also reflects the

reduction of entropy, indicating the formation of less random patterns compared to

IC at t = 0.

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

Time step t

E
st
im
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s
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K

K - 4.19(a) IC

K - 4.19(b) IC

K - 4.19(c) IC

K - 4.19(d) IC

Fig. 4.32. The estimations of K for 4.19(a), 4.19(b), 4.19(c) and 4.19(d) ICs.
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µGs - 4.19(b) IC

µGs - 4.19(c) IC

µGs - 4.19(d) IC

Fig. 4.33. The measurements of µGs for 4.19(a), 4.19(b), 4.19(c) and 4.19(d) ICs.

In addition, the relationship between K and Gs are examined using the Pearson

correlation coefficient (r) test. Table 4.7 shows the calculations of r for different

directional Gs. Since the values of r are ≈ 0.99, there is a strong positive correlation

between K and Gs.
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rKG↑
= 0.9985 rKG↓

= 0.9985 rKG←
= 0.9985 rKG→

= 0.9985

rKG↖
= 0.9975 rKG↘

= 0.9975 rKG↗
= 0.9975 rKG↙

= 0.9975

Calculations of r for 4.19(a) IC.

rKG↑
= 0.9996 rKG↓

= 0.9995 rKG←
= 0.9996 rKG→

= 0.9995

rKG↖
= 0.9996 rKG↘

= 0.9996 rKG↗
= 0.9994 rKG↙

= 0.9995

Calculations of r for 4.19(b) IC.

rKG↑
= 0.9996 rKG↓

= 0.9995 rKG←
= 0.9995 rKG→

= 0.9996

rKG↖
= 0.9995 rKG↘

= 0.9996 rKG↗
= 0.9996 rKG↙

= 0.9996

Calculations of r for 4.19(c) IC.

rKG↑
= 0.9854 rKG↓

= 0.9842 rKG←
= 0.9874 rKG→

= 0.9838

rKG↖
= 0.9885 rKG↘

= 0.9879 rKG↗
= 0.9794 rKG↙

= 0.9831

Calculations of r for 4.19(d) IC.

Table 4.7: Calculations of r for different ICs.

These experiments demonstrate that a cellular automaton rule seeded with dif-

ferent ICs leads to the formation of patterns with structurally diverse characteristics.

The gradient of the mean information rate along lattice axes is able to detect the

structural characteristics of patterns generated by this particular multi-state 2D cel-

lular automaton. From the comparison of H with ∆Gs in the set of experiments, it

is clear that entropy fails to discriminate between the diversity of patterns that can

be generated by various CA.

The structured but asymmetrical patterns emerging from the random IC are

clearly distinguished from the symmetrical patterns, including their orientation. It

is evident from the results of the experiments, the measures of H are identical for

structurally different patterns; however, the measure of Gs and ∆Gs reflect not

only the complexity of patterns but their spatial arrangements (i.e. orientation of

symmetries) as well.
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4.5 Summary

Entropy, one of the most commonly applied measures of complexity, is based on the

probability distribution of symbols, not their arrangements. Despite the dominance

of entropy as a measure of order and complexity, it fails to reflect the structural

characteristics of 2D patterns and of CA configurations.

However, spatial complexity measure takes into account conditional and joint

probabilities between pairs of cells and, since it is based on correlations between cells,

holds promise for patterns discrimination. Kolmogorov’s algorithmic complexity is

another measure of complexity which can be used to estimate the complexity of 2D

configurations generated by a cellular automaton.

In this chapter, a set of experiments with a cellular automaton were conducted

using four different initial conditions, leading to the formation of patterns with struc-

turally diverse characteristics. The potential of spatial complexity measure and Kol-

mogorov complexity for distinguishing multi-state 2D CA patterns is demonstrated.

The measures appear to be particularly good at distinguishing different types of ran-

dom patterns from non-random patterns. Furthermore, spatial complexity measure

is also able to discriminate the orientation of symmetries.
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5. Experiments and Results

This chapter details two experiments and their results on the correlation between

three measures, namely spatial complexity measure (µ(G)s), Kolmogorov complexity

(K) and entropy (H), and human aesthetic judgement. For the first experiment,

252 experimental stimuli patterns were adopted from an empirical study of human

aesthetic judgements of 2D symmetrical and asymmetrical patterns reported in [199].

The main reason for this adoption is that the patterns have been ranked based on

their aesthetic judgements by humans thus making it possible to investigate the

relationship between human aesthetic judgement and the measurements of µ(G)s,

K and H. For the second experiment, a set of 2D patterns with various structural

properties were generated by seeding CA, then a survey was designed and used to

compare their aesthetic values with the measurements of µ(G)s, K and H.

5.1 Objectives

The purpose of experimentations in this chapter is to investigate the relationship

between human aesthetic judgement and the measurements of µ(G)s, K and H,

with the purpose of evaluating the following set of hypotheses:

H1: The measurement of µ(G)s for a 2D pattern is linearly related with human

aesthetic judgement.

H2: The estimation of K for a 2D pattern is linearly related with human aes-

thetic judgement.

H3: The measurement of H for a 2D pattern is linearly related with human

aesthetic judgement.

Thus µ(G)s, K and H are the independent variables for the present experimen-

tations.
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5.2 Experiment I

This section starts by summarising the research and results reported by Jacobsen

and Höfel [199]. The details in the subsequent sections of Method, Material, Proce-

dure and Results are directly adopted from [199]. An extended study is provided,

where the 250 experimental stimuli were adopted from their empirical study of hu-

man aesthetic judgements of symmetrical and asymmetrical patterns to evaluate the

effectiveness of µ(G)s, K and H.

5.2.1 Method

Fifty-five young adults (15 males and 45 females) participated in the experiment for

course credit or partial fulfilment of course requirements. All were first or second-

year psychology students at the University of Leipzig. None of them had received

professional training in the fine arts or participated in a similar experiment before.

All participants reported normal or corrected-to-normal visual acuity.

5.2.2 Material

A set of 252 stimuli were constructed. Each consisted of a solid black circle (6.4

cm in diameter) showing a centred, quadratic, rhombic cut-out (4 cm) and an ar-

rangement of 86 to 88 basic graphic elements (small black triangles). These were

positioned within the rhombus according to a grid and resulted in a graphic pattern.

The basic elements were arranged such that geometric figures like triangles, squares

rhombuses, and horizontal, vertical, or oblique bars of different sizes were created.

Using this collection of basic elements, the overall luminance was identical for all

stimuli. Half of the patterns (130) were symmetrical, that is a maximum of two

mirroring operations giving four possible symmetry axes were permitted. The other

half of the stimuli were not symmetrical. Stimulus complexity was manipulated by

varying the number of elements composing a pattern. Fig. 5.34 depicts a sample of

constructed stimuli patterns.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Fig. 5.34. Samples of stimuli patterns adopted from Jacobsen and Höfel.

5.2.3 Procedure

Participants responded to 252 stimulus patterns in individualised randomised order.

They were instructed to judge each pattern according to the pattern’s aesthetic

value. They were instructed to use the words “beautiful” and “not beautiful” for

their aesthetic judgements. They were also instructed to anchor their judgement to

the present stimuli set and not to take any irrelevant objects or classes of objects,

like paintings, works of design, or any other works of art, into consideration for their

aesthetic judgements of beauty. Participants were told to take their time and spread

the patterns out in front of them so that they could have a good overall impression

of the stimulus set before they made their judgements. They were instructed to

create three bins:

1. one of at least 75 “beautiful” patterns,

2. one of at least 75 “not beautiful” patterns,

3. a third possible category of “indifferent” patterns.

The last bin could form the largest one (up to 102 stimuli) but could also con-

tain no elements, if that was preferred. This procedure was chosen to give par-

ticipants some freedom of choice while still limiting them to using the three bins.

The post-experimental interviews indicated that participants had no difficulties in

distinguishing aesthetic and non-aesthetic patterns.
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5.2.4 Results

Symmetry was the most important stimulus feature predicting participants’ aes-

thetic judgements. In general, participants showed agreement that the symmet-

rical patterns were more beautiful than the asymmetrical ones. In summary, the

judgement analysis supported the hypothesis that symmetry and complexity are

important factors in aesthetic judgements.

5.2.5 Procedure for the Extended Study

All the 252 stimuli patterns were 453×453 pixels (S = {white, black}) and the black

circular background was replaced by a square in order to reduce aliasing errors. The

patterns were ordered from the highest to the lowest mean aesthetic ratings. For

example, Fig. 5.34(1) had the highest mean aesthetic rating, 74.73 (ranked 1st),

Fig. 5.34(2) had a mean aesthetic rating of 73.73 (ranked 2nd) . . . , and Fig. 5.34(10)

was left with the lowest mean aesthetic rating, 28.58 (ranked 252nd).

The mean aesthetic ratings of stimuli patterns with their ranking are plotted in

Fig. 5.35. The spatial complexity, µ(G)s, K and H, were then calculated. A sample

of calculations are detailed in Fig. 5.36.
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Fitted Line y = −0.18258 · x+ 73.13

Fig. 5.35. Mean aesthetic judgements of stimuli patterns and their ranking.
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(1)

Rank = 1

Rating = 74.73

H = 0.88290

G↑ = 0.08771

G↓ = 0.08771

∆GV = 0

G← = 0.08096

G→ = 0.08096

∆GH = 0

G↖ = 0.10003

G↘ = 0.10003

∆GPd
= 0

G↙ = 0.10003

G↗ = 0.10003

∆GSd
= 0

µGs = 0.09218

K = 0.01138

(2)

Rank = 252

Rating = 28.58

H = 0.87780

G↑ = 0.07002

G↓ = 0.07002

∆GV = 0

G← = 0.05791

G→ = 0.05791

∆GH = 0

G↖ = 0.07349

G↘ = 0.07349

∆GPd
= 0

G↙ = 0.08426

G↗ = 0.08426

∆GSd
= 0

µGs = 0.07142

K = 0.00952

Fig. 5.36. A sample of the calculations of spatial complexity, µ(G)s, K and H for two
stimuli patterns.

5.2.6 Results and Analysis

Two sets of calculations were performed. The first set of calculations was the mea-

surement of µ(G)s, K and H for stimuli patterns ordered based on their ranking.

The results of these calculations are plotted in Fig. 5.37. The second set of calcula-

tions was the measurement of µ(G)s, K and H for stimuli patterns ordered based

on their ratings. The results of these calculations are plotted in Fig. 5.38. Then the

relationship between the independent variables of µ(G)s, K, H and the patterns’

ranking and mean aesthetic ratings were examined using the Pearson correlation
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coefficient (r) test. Table 5.8 summarises the results of the correlation test between

µ(G)s, K, H and pattern ranking and their mean aesthetic ratings.
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Fig. 5.37. The measurement of µ(G)s, K and H for stimuli patterns ordered based on
their ranking.
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Fig. 5.38. The measurement of µ(G)s, K and H for stimuli patterns ordered based on
their ranking.
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µGs K H

Patterns Ranks −0.1846 0.0085 0.1086

Mean Aesthetic Ratings 0.1724 −0.0105 −0.1023

Table 5.8: The results of Pearson correlation coefficient test between µGs, K, H and
pattern ranking along with mean aesthetic ratings of the 252 stimuli patterns.

The results of the calculations are as follows:

The value of r for µGs is −0.1846 with y = 0.0877 for pattern ranks. This

indicates a negative linear correlation; also, the relationship between µGs and

pattern ranks is only weak,

The value of r for K is 0.0085 with y = 0.0104 for patterns ranks. This

indicates a positive linear correlation and the relationship between K and

pattern ranks is weak,

The value of r for H is 0.1086 with y = 0.8797 for patterns ranks. This

indicates a positive linear correlation, and the relationship between H and

pattern ranks is weak,

The value of r for µGs is 0.1724 with y = 0.0877 for pattern ratings. This

indicates a positive linear correlation, and the relationship between µGs and

pattern ratings is weak,

The value of r for K is −0.0105 with y = 0.0104 for patterns ratings. This

indicates a negative linear correlation, and the relationship between K and

pattern ratings is only weak,

The value of r for H is −0.1023 with y = 0.8797 for patterns ranks. This

indicates a negative linear correlation, and the relationship between H and

pattern ratings is only weak.

Considering the values of r for the Pearson correlation coefficient test and re-

gression analysis, it is evident that there are no statistically significant correlations

between µGs, K, H and patterns’ ratings and ranking. Therefore, all the hypothe-

ses (H1, H2 and H3) are rejected for the experiment conducted with the adopted

252 stimulus patterns. These results indicate that the measurement of µ(G)s, K

and H do not conform to the aesthetic ranking of the 252 stimuli.
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Given that the measures are primarily developed for CA environment and for

CA-generated patterns, there are intrinsic relationship between the cells, update

rule and neighbouring cells; the measures fail to distinguish the complexity of 252

stimuli in relation to their aesthetic rankings. In other words, the measures do not

accurately measuring the complexity of non-CA generated patterns.

5.3 Experiment II

5.3.1 Method

An online survey was conducted using SurveyMonkey, a web-based survey platform

where registered users are paid for participating in the surveys. A total of 100

participants aged between 18 and 60 in the USA participated in the survey.

5.3.2 Material

For this experiment, 10 patterns with various structural characteristics reflecting the

spectrum of spatial complexity (4.15) were generated by seeding 3-state CA with dif-

ferent ICs. Fig. 5.40 illustrates the generated experimental patterns. The patterns

fall in three categories, namely regular structures (Fig. 5.40(1),(2),(3),(4),(5)), irreg-

ular structures (Fig. 5.40(6),(7),(8),(9)), and structureless patterns (Fig. 5.40(10)).

Grey scale colours were used for the colour assignments of the CA states to elimi-

nate possible individual colour preferences in aesthetic judgements (S = {0, 1, 2} ≡

{�,�,�}). The size of lattice for all the patterns was L = 65× 65 (4225 cells) with

an image size of 651× 651 pixels.

order regular structure | irregular structure | structureless
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ disorder

Fig. 5.39. The spectrum of spatial complexity considered for the generation of 10 experi-
mental patterns .
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Fig. 5.40. Generated patterns with various structural characteristics reflecting the spec-
trum of spatial complexity 4.15.

The spatial complexity measure, µ(G)s, K and H, were then calculated for all

the patterns. Fig. 5.41, 5.42, 5.43, 5.44, 5.45 show the details of these calculations

and Fig. 5.46 shows the measurements of µ(G)s,K andH for the generated patterns.
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(1)

H = 1.01633

G↑ = 1.00948

G↓ = 1.00948

∆GV = 0

G← = 1.00948

G→ = 1.00948

∆GH = 0

G↖ = 0.58810

G↘ = 0.58810

∆GPd
= 0

G↙ = 0.58810

G↗ = 0.58810

∆GSd
= 0

µGs = 0.79879

K = 0.09420

(2)

H = 1.11255

G↑ = 1.09434

G↓ = 1.09240

∆GV = 0.00194

G← = 1.08993

G→ = 1.09054

∆GH = 0.00061

G↖ = 1.02205

G↘ = 1.02062

∆GPd
= 0.00135

G↙ = 1.01699

G↗ = 1.01564

∆GSd
= 0.00143

µGs = 1.05530

K = 0.13538

Fig. 5.41. The measurements of spatial complexity measure, µ(G)s, K and H for the
generated patterns with various structural characteristics.
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(3)

H = 1.03815

G↑ = 1.02822

G↓ = 1.02822

∆GV = 0

G← = 1.02822

G→ = 1.02822

∆GH = 0

G↖ = 0.86511

G↘ = 0.86511

∆GPd
= 0

G↙ = 0.86511

G↗ = 0.86511

∆GSd
= 0

µGs = 0.94666

K = 0.12142

(4)

H = 1.14569

G↑ = 1.12644

G↓ = 1.12366

∆GV = 0.00278

G← = 1.12442

G→ = 1.12413

∆GH = 0.00029

G↖ = 1.03548

G↘ = 1.03244

∆GPd
= 0.00304

G↙ = 1.02297

G↗ = 1.02558

∆GSd
= 0.00261

µGs = 1.07690

K = 0.13538

Fig. 5.42. The measurements of spatial complexity measure, µ(G)s, K and H for the
generated patterns with various structural characteristics.
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(5)

H = 0.92648

G↑ = 0.92483

G↓ = 0.92483

∆GV = 0

G← = 0.92483

G→ = 0.92483

∆GH = 0

G↖ = 0.90643

G↘ = 0.90643

∆GPd
= 0

G↙ = 0.90643

G↗ = 0.90643

∆GSd
= 0

µGs = 0.91563

K = 0.12331

(6)

H = 1.29257

G↑ = 1.26551

G↓ = 1.26833

∆GV = 0.00282

G← = 1.26517

G→ = 1.26762

∆GH = 0.00245

G↖ = 1.18740

G↘ = 1.19340

∆GPd
= 0.00600

G↙ = 1.19600

G↗ = 1.19562

∆GSd
= 0.00038

µGs = 1.22990

K = 0.14888

Fig. 5.43. The measurements of spatial complexity measure, µ(G)s, K and H for the
generated patterns with various structural characteristics.
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(7)

H = 1.04381

G↑ = 1.04021

G↓ = 1.03945

∆GV = 0.00076

G← = 1.03945

G→ = 1.04029

∆GH = 0.00084

G↖ = 0.49065

G↘ = 0.49073

∆GPd
= 0.00008

G↙ = 0.49055

G↗ = 0.49217

∆GSd
= 0.00162

µGs = 0.76544

K = 0.08260

(8)

H = 0.97108

G↑ = 0.96149

G↓ = 0.96415

∆GV = 0.00266

G← = 0.95605

G→ = 0.95589

∆GH = 0.00016

G↖ = 0.95349

G↘ = 0.95574

∆GPd
= 0.00225

G↙ = 0.95974

G↗ = 0.95691

∆GSd
= 0.00283

µGs = 0.95793

K = 0.12521

Fig. 5.44. The measurements of spatial complexity measure, µ(G)s, K and H for the
generated patterns with various structural characteristics.
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(9)

H = 1.07796

G↑ = 1.06625

G↓ = 1.06625

∆GV = 0

G← = 1.06625

G→ = 1.06625

∆GH = 0

G↖ = 0.93292

G↘ = 0.93292

∆GPd
= 0

G↙ = 0.93292

G↗ = 0.93292

∆GSd
= 0

µGs = 0.99959

K = 0.12663

(10)

H = 1.49686

G↑ = 1.49746

G↓ = 1.49641

∆GV = 0.00105

G← = 1.49454

G→ = 1.49560

∆GH = 0.00106

G↖ = 1.49703

G↘ = 1.49728

∆GPd
= 0.00025

G↙ = 1.49602

G↗ = 1.49841

∆GSd
= 0.00239

µGs = 1.49659

K = 0.17373

Fig. 5.45. The measurements of spatial complexity measure, µ(G)s, K and H for the
generated patterns with various structural characteristics.
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Fig. 5.46. The plot of µ(G)s, K and H for the generated survey patterns.

5.3.3 Procedure

An online survey was designed with the 10 generated patterns ordered according to

Fig. 5.47. A five-point Likert scale [200] was used to obtain quantitative measure-

ments of the aesthetic judgements of respondents. The patterns were presented one

at a time to the 100 participants with the following instructions:

The following 10 images have been generated by computers.

Please rate them in terms of their aesthetic appeal.

The participants were asked to rate how well they agreed with the following

statement:

This image is aesthetically pleasing (beautiful).

The five-point Likert scale consisted of “Strongly Disagree (SD)”, “Disagree (D)”,

“Neutral (N)”, “Agree (A)” and “Strongly Agree (SA)” rates.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Fig. 5.47. The order of patterns used in the survey.
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5.3.4 Results and Analysis

The online survey yielded 68 valid responses consisted of 25 males and 43 females

with an age group distribution illustrated in table 5.9 and table 5.10 summarises

the results of the survey.

Age Group Gender

18 - 29 30 - 44 45 - 59 60 Male Female Total

17 16 26 9 25 43 68

Table 5.9: The distribution of age groups and genders for 68 collected valid responses.

Pattern SD D N A SA Total

1 7 21 17 17 6 68

2 23 35 10 0 0 68

3 4 14 19 26 5 68

4 22 37 8 1 0 68

5 19 5 20 20 4 68

6 25 33 8 2 0 68

7 5 24 20 13 6 68

8 7 30 19 11 1 68

9 4 9 20 26 9 68

10 30 22 13 3 0 68

Table 5.10: The results of survey.

Since Likert scale data are ordinal data (i.e. they only show that a rating is

higher/lower than another and not the distance between the scales), the data must

be aggregated across the collected data to ensure an accurate estimation of each

scale’s value for the patterns. In order to get an aggregated score (AScore) of the

ratings, each of the scales were assigned a weight according to table 5.11.

Scale SD D N A SA

Weight 1 2 3 4 5

Table 5.11: Assigned weight to each scale.
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The following formula was used to calculate the aggregated score of the five-point

Likert scale for the survey:

AScore = 1
5

∑
N.W, (5.27)

where N is the total number of ratings for each scale and W is the assigned

weight to each scale. The highest possible aggregated score for a five-point Likert

scale is 5×N , while the lowest possible score is 1×N . For example, given the total

number of participants’ responses to the statement of the survey from Table 5.10,

assigned weight to each scale from table 5.11 and Eq. 5.27, the following calculation

was performed to obtain the aggregated score for pattern one:

AScore for pattern one = 1
5{(7∗1) + (21∗2) + (17∗3) + (17∗4) + (6∗5)} = 39.6.

Fig. 5.49 shows the individual aggregated scores for each of the 10 patterns and

Fig. 5.48 illustrates the total ratings and the plot of the aggregated scores for the

patterns. Fig. 5.50 shows the survey pattern arranged based on aesthetic judge-

ment from the most aesthetically appealing (Fig. 5.50(1)) to the least aesthetically

appealing (Fig. 5.50(10)).

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Survey Pattern

SD D N A SA AScore

Fig. 5.48. The total ratings and the aggregated scores for the patterns.
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(1) (2) (3) (4) (5)

AScore = 39.6 AScore = 24.6 AScore = 43.6 AScore = 24.8 AScore = 37.8

(6) (7) (8) (9) (10)

AScore = 24.6 AScore = 39 AScore = 34.6 AScore = 46.2 AScore = 25

Fig. 5.49. The aggregated scores of survey patterns.

(1) (2) (3) (4) (5)

AScore = 46.2 AScore = 43.6 AScore = 39.6 AScore = 39 AScore = 37.8

(6) (7) (8) (9) (10)

AScore = 34.6 AScore = 25 AScore = 24.8 AScore = 24.6 AScore = 24.6

Fig. 5.50. The arrangement of patterns in descending order of their aggregated scores.

Due to the ordinal nature of data, a non-parametric Spearman rank correlation

(rs) [201] was applied for the analysis of data with a significance level of α = 0.05.

Table 5.12 shows the results of the rank correlation test between the aggregated

scores and the measurements of µGs, K and H.
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µGs K H

AScore −0.6383 −0.6859 −0.5288

p 0.04702 0.02852 0.11599

Table 5.12: The results of Spearman rank correlation test (rs) between µGs, K, H and
the aggregated scores of survey patterns.

The value of rs for µGs is −0.6383 and the 2-tailed p = 0.04702 < 0.05. Thus,

there is a negative linear correlation between µGs and the aggregated scores and

the association between the two variables is statistically significant. The value of rs

for K is −0.6859 and the 2-tailed value of p = 0.02852 < 0.05. Therefore, there is a

negative linear correlation between K and the aggregated scores and the association

between the two variables is statistically significant. The value of rs for H is −0.5288

and the 2-tailed value of p = 0.11599 > 0.05. As such, the association between the

two variables is not statistically significant. Considering the values of rs for the

Spearman rank correlation and regression analysis, the following conclusions can be

drawn:

There is a statistically significant relationship between the measurement of

µ(G)s for CA-generated patterns and human aesthetic judgement and the

direction of the relationship is negative.

There is a statistically significant relationship between the estimation of K for

CA-generated patterns and human aesthetic judgement and the direction of

the relationship is negative.

There is no statistically significant relationship between the measurement of

H for CA-generated patterns and human aesthetic judgement.

Therefore, hypotheses H1 and H2 are accepted and hypothesis H3 is rejected

for the experiment conducted with CA-generated patterns.
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5.4 Discussions

One of the major challenges in computational notions of aesthetics and generative

art is the development of a quantitative model which conforms to human intuitive

perceptions of aesthetic. As discussed in Chapters 3 and 4, informational theories of

aesthetics based on the measurements of entropy have failed to discriminate struc-

turally different patterns in a 2D plane. Consequently, spatial complexity (G) and

Kolmogorov complexity (K) were suggested for quantifying the spatial complexity

of 2D patterns.

The main purpose of the experimentations in this chapter was to examine the

relationship between the measurements of G andK and human aesthetic judgement.

Since entropy (H) has emerged as a dominant measure of order and complexity in

computational notions of aesthetics, we compared its relation with human aesthetic

judgement as well. Three hypotheses were evaluated by conducting two sets of

experimentations (I and II).

The first experiment, in which 252 symmetrical and asymmetrical stimulus pat-

terns were adopted from an empirical study of human aesthetic judgement reported

in [199], showed that there were no statistically significant correlation between µGs,

K, and H and the 252 symmetrical and asymmetrical stimulus patterns. The cur-

rent results of experiment I are in contrast to our previous study in [202], which

showed a strong positive correlation between µGs and mean aesthetic judgements.

The main reason for this discrepancy is the number of available stimulus patterns

(12 patterns) for the measurements of µGs at the time of previous experimentation.

For the second experiment, a set of CA-generated patterns with various struc-

tural properties reflecting the spectrum of spatial complexity (section 4.1), was used

to examine the relationship between the measurements of µ(G)s, K and H and

human aesthetic judgement. The results of the survey showed that there is a statis-

tically significant negative linear relationship between the measurement of µ(G)s and

K for CA-generated pattern and human aesthetic judgement. On the other hand,

the results of experiment II failed to show any statistically significant relationship

between the measurement of H and human aesthetic judgement for CA-generated

patterns.
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6. Conclusion

This chapter summarises the work of the thesis in relation to the objective of inves-

tigating computational notions of aesthetics in the framework of multi-state 2D CA.

The broad aim of this thesis was to address aesthetic problems within the framework

of 2D CA by investigating the possibility of formulating a complexity measure for

aesthetic evaluation of CA-generated patterns.

A review of the findings is presented where we summarise the avenues that have

been provisionally investigated as exploratory steps for further research in the broad

domain of informational theories of aesthetics and quantifying spatial complexity

utilising several measures, including spatial complexity measure and Kolmogorov

complexity. Additionally, possibilities for future research and applications are also

presented.

This thesis lays the foundation of the work by providing a literature review

into the various aspects of generating interesting imagery with 2D CA, cellular

automata art, and informational theories of aesthetics. This is then followed by

several experiments demonstrating the aims of the thesis.

The concept of cellular automaton, one of the early biologically inspired systems,

has contributed to the creation of many forms of computer art. The popularity of

the GoL drew the attention of the wider community of digital artists and design-

ers to the unexplored potential of CA in generating rich digital content from the

iteration of simple deterministic rules. The machinery of CA is based on the local in-

teraction of each automaton with its immediate neighbourhood automata according

to a set of rules. The interaction of automata at a local level generates the emer-

gent behaviour, sometimes with attractive complexity, at the global level. The main

characteristics of CA that make them particularly interesting to digital artists are

their ability to generate visually appealing and very complex patterns on the basis
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of very simple rules. Also, the lattice of CA represents each automaton as picture

element interacting with neighbouring automata making them a suitable framework

for generating computer graphics with unique characteristics.

Chapter 2 covered the historical development of automata devices and CA. For-

mal definitions provided with an analysis of CA behaviour followed by a review

of some applications. Chapter 3 covered a review of historical background on ex-

perimental aesthetics, the association of the order and complexity of stimuli with

aesthetic judgements, the computational models derived from Birkhoff’s aesthetic

measure and informational theories of aesthetics.

In Chapter 4 by comparing the structural characteristics of CA patterns with

their corresponding entropy values, we showed that despite their structural differ-

ences, all of the patterns had the same entropy value. In other words, entropy was

invariant to the spatial arrangement of the composing elements of 2D patterns.

Although Shannon’s entropy is dominant in computational notions of aesthetics,

it failed to accurately discriminate structurally different patterns in two dimensions.

The failing of entropy, as a measure of order and complexity, to reflect the structural

characteristics of 2D patterns, is caused by its inclination to measure the distribu-

tion of symbols and not their arrangements. Therefore, it was possible to generate

radically different patterns (structurally different 2D patterns) with the same en-

tropy.

This observation was in contrast to our intuitive perception of the complexity of

patterns. Therefore, taking into account our intuitive perception of complexity and

the structural characteristics of 2D CA patterns, we proposed a conceptual model as

spectrum of spatial complexity (4.15). Then we argued that a complexity measure

must be bounded by two extreme points of complete order and disorder. Also,

we assumed that regular structures, irregular structures and structureless patterns

lie between these extremes. The conceptual model facilitated the mapping of the

complexity of 2D patterns based on their structural characteristics between the two

extremes of order and disorder.

order regular structure | irregular structure | structureless
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ disorder

Fig. 6.51. The spectrum of spatial complexity.

For the purpose of measuring the complexity of CA behaviour, particularly with

multi-state structures, we developed the spatial complexity measure and extended
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the algorithmic information theory of Kolmogorov for estimating the complexity of

patterns in 2D plane.

The spatial complexity measure based on information gain and has been pro-

posed as a means of characterising the complexity of dynamical systems and of 2D

patterns [54, 55, 56]. We defined spatial complexity measure as the following:

A spatial complexity measure of a cellular automaton configuration is the

sum of the mean information gains of cells having homogeneous/heterogeneous

neighbouring cells over a lattice.

Kolmogorov attributed the algorithmic complexity of an object to the mini-

mum length of a program such that a universal computer can generate a specific

sequence [57]. Kolmogorov complexity is related to entropy (H(X)), in that the

expected value of K(x) for a random sequence is approximately the entropy of the

source distribution for the process generating the sequence. However, Kolmogorov

complexity differs from entropy in that it relates to the specific string being con-

sidered rather than the source distribution [197, 179]. Random strings have rather

high Kolmogorov complexity - on the order of their length, as patterns cannot be

discerned to reduce the size of a program generating such a string. On the other

hand, strings with a high degree of structure have fairly low complexity. The main

difficulty with Kolmogorov complexity is that it is uncomputable. Any program

that produces a given string is an upper bound on the Kolmogorov complexity for

this string, but it is not possible to compute the lower bound.

Lempel and Ziv defined a measure of complexity for finite sequences rooted in

the ability to produce strings from simple copy operations [198]. This method,

known as LZ78 universal compression algorithm, harnesses this principle to yield

a universal compression algorithm that can approach the entropy of an infinite

sequence produced by an ergodic source. As such, LZ78 compression has been

used as an estimator for K. In order to estimate the K value of 2D configurations

generated by multi-state 2D CA, we generated linear strings of configurations by

means of six different templates (Fig. 4.17). Then, using the LZ78 compression

algorithm, the upper bound of K was estimated as the lowest value among the six

different templates.

A set of experiments was conducted to examine the effectiveness of the models

in discriminating the particular configurations that were generated by a multi-state
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2D cellular automaton. The results of experiments exhibited the potential of spa-

tial complexity measure in discriminating symmetries and the orientation of CA

generated patterns, making more accurate measurements of complexity in relation

to aesthetic evaluation functions. Furthermore, it was observed that K is able to

discriminate the complexity of patterns; however, it failed to discriminate the spa-

tial orientations. In addition, the experiments showed a strong positive correlation

between Kolmogorov complexity and spatial complexity measures.

In Chapter 5, details of two experiments and their results on the correlation

between three measures, namely spatial complexity measure (µ(G)s), Kolmogorov

complexity (K) and entropy (H), and human aesthetic judgement were reported.

In the first experiment, 252 experimental stimulus patterns were adopted from an

empirical study of human aesthetic judgement of 2D symmetrical and asymmetrical

patterns ranked based on their aesthetic judgements. This paved the way for an

exploration of any possible relationship between human aesthetic judgement and the

measurements of µ(G)s, K and H. The benchmark of 252 experimental stimulus

patterns, established symmetry as the most important stimulus feature predicting

participants’ aesthetic judgements.

Participants exhibited a general agreement that the symmetrical patterns were

more beautiful than the asymmetrical ones. Therefore, the judgement analysis sup-

ported the hypothesis that symmetry and complexity are important factors in aes-

thetic judgements. Using the same set of experimental stimulus patterns, this time

fed into the aforementioned measurements, it is demonstrated that there are no sta-

tistically significant correlations between µGs, K, and H and the 252 symmetrical

and asymmetrical stimulus patterns. Given that the measures were primarily devel-

oped for CA-generated patterns, the measures failed to distinguish the complexity

of 252 stimuli in relation to their aesthetic rankings.

For the second experiment, a set of CA-generated patterns with various struc-

tural properties reflecting the spectrum of spatial complexity, was used to examine

the relationship between the measurements of µ(G)s, K and H and human aesthetic

judgement. The experiment furthers the above mentioned analysis by using an on-

line survey designed and used to compare the aesthetic values of a set of 2D patterns

with various structural properties generated by seeding CA with the measurements

of µ(G)s, K and H.
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There is a statistically significant relationship between the measurement of

µ(G)s for CA-generated patterns and human aesthetic judgement and the

direction of the relationship is negative.

There is a statistically significant relationship between the estimation of K for

CA-generated patterns and human aesthetic judgement and the direction of

the relationship is negative.

There is no statistically significant relationship between the measurement of

H for CA-generated patterns and human aesthetic judgement.

The result of this experiment highlighted the presence of a statistically significant

negative linear relationship between the measurement of µ(G)s and K for CA-

generated pattern and human aesthetic judgement. On the other hand, the result

of second experiment failed to show statistically significant relationship between the

measurement of H and human aesthetic judgement for CA-generated patterns.

The implications of these findings is that both spatial complexity measure and

Kolmogorov complexity are conforming to the human aesthetic judgement but with

an inverse direction. It contradicts the assumption of this thesis where we considered

direct relationship between stimulus complexity and aesthetic preference. However,

it confirms the validity of theories which consider inverse relationship between stim-

ulus complexity and aesthetic preference (i.e. Birkhoff’s aesthetic).

Furthermore, considering the general hypotheses of this thesis (section 1.4), we

can accept both of the hypotheses and draw the following conclusions:

1. The aesthetic value of a cellular automaton pattern depends on the sum

of mean information gains of cells having homogeneous/heterogeneous neigh-

bouring cells over the lattice of a cellular automaton.

2. The aesthetic value of a cellular automaton pattern depends on the estima-

tion of the Kolmogorov complexity of a cellular automaton pattern.

In addition, the proposed models of complexity were able to meet the following

criteria:

The measure uses only information available within the framework of 2D CA,

such as the number of cells and their states, size of lattice and neighbourhood
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template. This constraint considers the generated patterns of CA to be internal

objects of CA environment.

The measure reflects on the structural characteristics of CA patterns (i.e. ho-

mogeneity/heterogeneity of cells and their spatial distribution over the lattice

of CA).

These results could potentially provide researchers with a direction for future

aesthetics analysis of CA-generated patterns using µ(G)s and K, both of which ex-

hibited a noticeable relationship with human aesthetic judgement. The proposed

models can be applied for the aesthetic evaluation of other types of imageries with

applications in the area of image processing, image aesthetic enhancement, multi-

media content creation, computer generated aesthetics and art.
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6.1 Further Directions

The following are identified amongst possible future research topics:

The work of this thesis was limited to 2D models of CA with square cells. Other

models, such as 3D CA or CA with different primitive cells (e.g. hexagonal

cells) can be explored for the generation of patterns and evaluation of their

aesthetic qualities with proposed models of complexities.

The generated experimental stimuli were limited to grey scale colours to isolate

colour preferences in aesthetic judgements. Colour preference theories can

be utilised to evaluate the aesthetic qualities of polychromatic CA-generated

patterns.

The models of CA which were used in this thesis were limited to 8-cell neigh-

bourhoods. Other neighbourhood templates (e.g. 4, 5, 9 cells ) with asyn-

chronous and stochastic updates can be used for the generation of pattern and

then evaluated for their aesthetic values using spatial complexity measure and

Kolmogorov complexity measure.

The automation of aesthetic evaluation and selection processes in a way which

is capable of making aesthetic judgements conforming to human aesthetic

perception is fundamental to computational notions of aesthetics. And the

ultimate goal of computational aesthetics is to close the loop of generation

and evaluation where both processes are functions of computational methods.

Since the spatial complexity and Kolmogorov complexity measures conformed

to some degree to human aesthetic judgement, these models have the poten-

tial to be integrated with generative tools to partially “replace humans” in the

process of generation and in the evaluation of computational aesthetics.
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A Space-Time Diagrams of Cellular Automaton 4.6

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23) (24) (25)

(26) (27) (28) (29) (30)
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(31) (32) (33) (34) (35)

(36) (37) (38) (39) (40)

(41) (42) (43) (44) (45)

(46) (47) (48) (49) (50)

(51) (52) (53) (54) (55)

(56) (57) (58) (59) (60)
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(61) (62) (63) (64) (65)

(66) (67) (68) (69) (70)

(71) (72) (73) (74) (75)

(76) (77) (78) (79) (80)

(81) (82) (83) (84) (85)

(86) (87) (88) (89) (90)
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(91) (92) (93) (94) (95)

(96) (97) (98) (99) (100)

(101) (102) (103) (104) (105)

(106) (107) (108) (109) (110)

(111) (112) (113) (114) (115)

(116) (117) (118) (119) (120)
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(121) (122) (123) (124) (125)

(126) (127) (128) (129) (130)

(131) (132) (133) (134) (135)

(136) (137) (138) (139) (140)

(141) (142) (143) (144) (145)

(146) (147) (148) (149) (150)
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(151) (152) (153) (154) (155)

(156) (157) (158) (159) (160)

(161) (162) (163) (164) (165)

(166) (167) (168) (169) (170)

(171) (172) (173) (174) (175)

(176) (177) (178) (179) (180)
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(181) (182) (183) (184) (185)

(186) (187) (188) (189) (190)

(191) (192) (193) (194) (195)

(196) (197) (198) (199) (200)

Fig. A.1. The space-time diagram of cellular automaton 4.6 for 200 time steps starting
from the single cell IC (4.19(a)).
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(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23) (24) (25)

(26) (27) (28) (29) (30)
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(31) (32) (33) (34) (35)

(36) (37) (38) (39) (40)

(41) (42) (43) (44) (45)

(46) (47) (48) (49) (50)

(51) (52) (53) (54) (55)

(56) (57) (58) (59) (60)
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(61) (62) (63) (64) (65)

(66) (67) (68) (69) (70)

(71) (72) (73) (74) (75)

(76) (77) (78) (79) (80)

(81) (82) (83) (84) (85)

(86) (87) (88) (89) (90)
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(91) (92) (93) (94) (95)

(96) (97) (98) (99) (100)

(101) (102) (103) (104) (105)

(106) (107) (108) (109) (110)

(111) (112) (113) (114) (115)

(116) (117) (118) (119) (120)
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(121) (122) (123) (124) (125)

(126) (127) (128) (129) (130)

(131) (132) (133) (134) (135)

(136) (137) (138) (139) (140)

(141) (142) (143) (144) (145)

(146) (147) (148) (149) (150)
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(151) (152) (153) (154) (155)

(156) (157) (158) (159) (160)

(161) (162) (163) (164) (165)

(166) (167) (168) (169) (170)

(171) (172) (173) (174) (175)

(176) (177) (178) (179) (180)
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(181) (182) (183) (184) (185)

(186) (187) (188) (189) (190)

(191) (192) (193) (194) (195)

(196) (197) (198) (199) (200)

Fig. A.2. The space-time diagram of cellular automaton 4.6 for 200 time steps starting
from 4.19(b) IC.
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(181) (182) (183) (184) (185)

(186) (187) (188) (189) (190)

(191) (192) (193) (194) (195)

(196) (197) (198) (199) (200)

Fig. A.3. The space-time diagram of cellular automaton 4.6 for 200 time steps starting
from 4.19(c) IC.
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(161) (162) (163) (164) (165)
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(181) (182) (183) (184) (185)

(186) (187) (188) (189) (190)

(191) (192) (193) (194) (195)

(196) (197) (198) (199) (200)

Fig. A.4. The space-time diagram of cellular automaton 4.6 for 200 time steps starting
from the random IC (4.19(d)).
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