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Abstract 

This paper describes Vase Forms: a series of art works created 
using morphogenetic processes. A key motivation for these 
works was exploration of ways of working creatively with 
complex generative processes, such as morphogenetic systems, 
where the desire is to be able to influence the process in 
creative directions whilst achieving desired properties, such as 
fabricability using 3D printing, in a manner that retains rich 
emergence. The paper describes methods used in the creation of 
these works, including directly affecting morphogenetic 
processes using constraints and differential growth rates, 
combined with evolutionary search and machine learning 
algorithms to explore the space of possibilities afforded by the 
system. As well as describing the creation of Vase Forms, 
which have been successfully used to create sculptures, the 
paper looks at the closely related Mutant Vase Forms: an 
additional series of artworks created by accident when the 
system exploited bugs in the rules for the growth system 
resulting in unexpected but aesthetically interesting structures. 
These Mutant Vase Forms are not fabricable as physical 
sculptures with the originally intended methods, but now exist 
as virtual sculptures in stereoscopic installations. 

Introduction 

Morphogenesis and Generative Systems 

Morphogenesis is a theme that has been explored by a number 
of artists. In 1951 Richard Hamilton curated an exhibition at 
the Institute of Contemporary Art (Massey, 1996) of work by 
a number of artists inspired by D’Arcy Thompson’s ‘On 
Growth and Form’ (Thompson, 1917). In more recent years, 
growth has been a subject explored by computational artists 
including Yoichiro Kawaguchi’s ‘GROWTH Model’ 
(Kawaguchi, 1983), William Latham’s evolved forms (Todd 
and Latham, 1992) and Daniel Brown’s series of digitally 
generated flowers (Brown, 2018). Interest by artists in 
morphogenesis, and D’Arcy Thompson specifically, has been 
sufficient for the University of Dundee to receive support 
from Art Fund to create a collection of artwork dedicated to 
this subject (University of Dundee, 2011). 

One question raised by generative systems, such as those 
that use simulation of morphogenesis, is that of how are we to 
work creatively with them? In particular, how should we work 
with systems deliberately designed to encourage emergence: 
complex systems where results are intrinsically difficult to 
predict? There is a strong analogy with plant breeding, where 
we are working with a medium that is naturally rich. Through 

Figure 1: Examples of five Vase Forms 
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experimentation and experience we can develop insights into 
what is possible and how to influence plants to develop in 
ways that give desired properties. We need to discover the 
potentialities of the system we are working with, as well as 
the limits of its capabilities. Which features can be 
independently influenced, and which are co-dependent? 
Whether art, design or architecture, working in this manner 
involves changing our relationship with the computer. 
Traditional top-down design methods are no longer 
appropriate. We need to be open to a process of exploration. 
Participating in a search for rich interesting behavior: 
selecting and influencing rather than dictating results. 

Generative systems are typically based on algorithmic 
processes that are parametrically controlled. Given a set of 
parameter values the process is run to create an output. 
Classic examples include Conway’s Game of Life (Conway, 
1970) and reaction diffusion equations (Turing, 1952). 
Generative systems have been used by a number of artists, 
from pioneering early work by Algorists such as Manfred 
Mohr (Mohr and Rosen, 2014), Frieder Nake (Nake, 2005), 
Ernest Edmonds (Franco, 2017) and Paul Brown (DAM, 
2009a), to more recent work by artists such as William 
Latham (Todd and Latham, 1992), Yoichiro Kawaguchi 
(DAM, 2009b), Casey Reas (Reas, 2018), and Ryoji Ikeda 
(Ikeda, 2018). 

The most interesting systems are generally those that create 
emergent results: genuinely unexpectedly rich behavior that 
cannot be simply predicted from the constituent parts. For 
these systems the relationship between the input parameters 
and the output is often complex and non-linear, with effects 
such as sensitive dependence on initial conditions. This can 
make working with such systems particularly challenging. 

Creative Exploration of Parameter Space 

One problem is that of how to work with systems with large 
numbers of parameters. With a small number, such as two or 
three parameters, the space of results can be relatively easily 
explored by simply varying individual parameter values and 
plotting the effects of different combinations. One common 
technique is to create charts where all the parameters are 
sampled independently at regularly spaced values and results 
are plotted to show the results. What scientists would call a 
phase space plot. This method of parameter exploration can 
be effective and was used by the author for earlier work such 
as for his ‘Aggregation’ (Lomas, 2005) and ‘Flow’ (Lomas, 
2007) series (Figure 2). 

As the number of parameters increase, the number of 
samples needed to explore different sets of combinations 
using this type of method increases rapidly. This problem is 
commonly called the ‘Curse of Dimensionality’ (Bellman, 
1961) (Donoho, 2000), where the number of samples that 
need to be taken increases exponentially with the number of 
parameters. One approach is to simply limit the number of 
parameters, but this can be at the expense of overly restricting 
the range of behavior the system is capable of. If we are 
working with richly emergent systems these problems are 
often further compounded: a direct consequence of 
complexity is that parameters that drive the system often work 
in difficult to comprehend, unintuitive ways. Effects are 
typically non-linear, often with sudden tipping points as the 

system goes from one type of behavior to another. In 
particular, in many systems the most interesting emergent 
behavior occurs close to the boundary between regularity and 
chaos (Kauffman, 1996). 
  This raises the idea of working with computers not merely 
as a medium to generate artwork but as active collaborators in 
the process of exploration and discovery. The use of tools to 
help the process of exploration can materially change both the 
creative process and the complexity of systems that we can 
effectively work with. 

One analogy is that of Advanced Chess: a form of the game 
where each human player can actively use a computer to assist 
them to explore possible moves during games (Kasparov, 
2017). Computer chess programs are generally very good at 
quickly detecting whether a proposed move will have 
catastrophic results. The effect of allowing a human player to 
test potential moves with a computer assistant is to make the 
game blunder-free. By removing the stress of making easily 
punished mistakes the human in the collaboration is freed to 
approach the game in a much more actively experimental way. 

Another potentially rich analogy is with fly-by-wire 
systems in aircraft (Sutherland, 1968), that allow designs of 
aircraft to be created which are inherently unstable but can 
perform complex maneuvers beyond the performance 
envelope of conventional aircraft (Stein, 2003). These include 
designs that would be difficult, or even impossible, for a 
human pilot to directly control. Through the use of digital fly-
by-wire technology, where the pilot uses their controls to 
indicate their intent but all the data is passed through a 
computer before being fed to actuators on the control 
surfaces, such aircraft can be flown safely. 

A number of authors have proposed using evolutionary 
methods to allow artists and designers to explore systems with 
large numbers of parameters. Examples include Dawkins’ 
Biomorphs (Dawkins, 1986) and Mutator (Todd and Latham, 
1992). More recent examples, that use collaborative 

Figure 2: Phase Space plot from the Aggregation Series 
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evolutionary interfaces for creation of images and forms, 
include Picbreeder (Secretan et al, 2008) and Endless Forms 
(Clune and Lipson, 2011). A number of systems that use 
interactive evolutionary computation for art and design are 
described in (Bentley, 1999) and (Takagi, 2001). 
 As demonstrated by natural processes, evolutionary 
methods can be effective even with extremely large numbers 
of parameters. One problem, though, can be that these 
methods generally lead to exploring a small number of paths 
within the space of available possibilities. The nature of these 
types of methods are to bias the search towards the most 
successful areas of the parameter space that have already been 
highly sampled. New samples are taken by mutation or cross-
breeding of the gene codes from previous samples that are 
deemed fittest according to a specified fitness function. This 
means that previously highly sampled areas are likely to be 
even more highly sampled in the future as long as they contain 
‘fit’ individuals. This is a good strategy for exploiting the best 
results that have been previously found, but is potentially a 
bad strategy for actively finding novel solutions which may be 
in areas of the landscape that have been very sparsely 
sampled. 

In recent years there have been a number of studies into 
methods to keep diversity when working with evolutionary 
techniques, such as Novelty Search with Local Competition 
(Lehman and Stanley, 2011) and MAP-Elites (Mouret and 
Clune, 2015). These methods generally require the defining of 
a domain specific feature vector that represents the behavior 
of the system to enable a meaningful measure of the distance 
between individuals in behavior space to be calculated. The 
creation of such a function to represent behavior is often not 
easy (Lehman and Stanley, 2008). 

A number of authors have proposed using machine learning 
techniques to assist human designers. In general these are for 
domain specific applications, such as for architectural space 
frame structures (Hanna, 2007), structurally valid furniture 
(Umetani et al. 2012) or aircraft designs (Oberhauser et al. 
2015). In these systems, machine learning is typically used to 
learn about specific properties of the system. This is then used 
to provide interactive feedback for the user about whether an 
object designed by them is likely to have desired properties, 
such as being structurally feasible, without having to do 
computationally prohibitive tasks such as evaluation of 
structural strength using finite element analysis. 

One thing that needs consideration is that creative work 
with generative systems often needs different phases of 
exploration, with the intent of the artist or designer changing 
over time. Initially they may be actively experimenting: trying 
to get a feel for the capabilities of the system they are working 
with. Once they have done some initial experiments they may 
want to continue to explore broadly, but with a general focus 
on regions that seem to have promise. When some particularly 
interesting results have been found they may wish to further 
refine them into presentable artefacts, or want to switch to 
actively looking for novel results that are significantly 
different to those they have found so far. These considerations 
mean that if a computer is being used to assist them explore 
the space of possibilities they may want it to work in different 
ways depending on their current intent. 

Motivation 

The author is a practicing computational artist, whose work 
explores how complex organic forms can be created through 
digital simulation of morphogenetic processes. Inspired by 
Alan Turing’s use of simple equations to create rich self-
organizing patterns (Turing, 1952), the author’s work focuses 
on creating simplified models of growth at the level of 
individual cells and exploring the emergent forms that can be 
created for these low-level rules (Lomas, 2014) (Figure 3). To 
explore the space of possibilities the author uses a hybrid 
system that combines several techniques, including 
evolutionary design search methods and lazy machine 
learning, to discover and fine-tune parameter combinations 
that appear to create particularly interesting results (Lomas, 
2016). 

The motivation behind the work described in this paper was 
how the cellular growth system used for works such as 
Cellular Forms (Lomas, 2014) could be modified to direct it 
towards the more specific goal of creating three dimensional 
structures that could be turned into physical sculptures. In 
particular, it was desired that the forms could be physically 
realized using computationally controlled additive fabrication 
techniques such as 3D printing using fused filament 
fabrication, or at larger scales using robots that deposit 
sequential layers of molten material. It was also desired that 
the sculptures created could potentially be suitable for use as 
the supports for tables, so should have flat bases and tops and 
potentially be strong enough to be load bearing. 

One of the main restrictions with fused filament fabrication 
is that every layer to be printed needs to be supported by the 
previous layers. This means that overhang areas in the 
structures have to be within maximum size and angular limits 
or additional support structures have to be printed and 
removed after fabrication. The aim in this work was to explore 

Figure 3: Examples of Cellular Forms 
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how the structural needs for physical fabrication could be 
combined with aesthetic goals when working with a 
morphogenetic system to create forms that, though completely 
synthetic, exhibit complex detailed organic structures such as 
are typically found in natural forms. 

Methods 

Cellular Growth System 

The generative system for this work was based on the model 
of growth using cellular division that the author created for 
his Cellular Forms work (Lomas, 2014). This system uses a 
simple particle spring model (Reeves, 1983), with each cell 
represented by particles with links to a number of other 
connected cells. The topology of connection between cells 
means that they form a sheet-like structure embedded in three-
dimensional space, with the sheet free to fold into complex 
geometrical shapes. Interactions between connected cells are 
implemented using spring-like rules. The key elements of the 
system are: 

• Rules for the generation of food, with rates for the 
spontaneous generation of food by all cells, and for the 
generation of food by simulated photosynthesis by firing 
light rays at cells and generating food in each cell 
proportional to the number of rays that hits it. 
• Rules for whether cells are ‘greedy’ and directly 
accumulate the food they generate themselves or are 
‘cooperative’ and share the food they generate with the 
other cells they are connected to. 
• A threshold for how much food a cell needs to 
accumulate before it is selected for dividing into two cells. 
• Rules for the direction that a cell splits in, which can be 
influenced by factors such as the curvature of the sheet of 
cells, the local direction of most tension in the surface, or 
in a randomly selected direction. 
• Forces that try to maintain a constant rest-length 
separation between linked cells. 
• Forces that tend to make the sheet of cells bulge 
outwards if that local area of the sheet is in compression 
(cells packed together closer than the rest-length). 
• A relaxation rule that tends to move cells towards the 
average of their neighbors. 

The system aims to be sufficiently simple to enable the 
simulation of morphogenesis to be implemented using 
massively parallel processing on consumer level graphics 
processing units, with simulations that can scale to tens of 
millions of cells and tens of thousands of simulation steps 
using conventional PC hardware. The code for the simulation 
engine is implemented in C++ and CUDA. For more details of 
the algorithms and implementation see (Lomas, 2014). 

Additional Constraints and Influences 

For this work the cellular division system previously 
described was augmented with a number of additional 
constraints and influences to steer the growth system to create 
structures with desired properties. 

As previously described, the aim was to create forms that 
could be fabricated as sculptures that could also potentially be 

used as supports for tables. With this in mind, a decision was 
made to create forms with the topology of a tubular structure 
with open edges at the top and bottom. The initial 
configuration of cells was a simple cylinder (Figure 4). 

To make the top and bottom of the structure stay flat, so 
that the form should stand on the ground and to potentially 
support a table top, the cells along the open edges were 
constrained to horizontal planes so that these cells were only 
allowed to move in two dimensions within those planes. The 
constraining planes were maintained at a constant separation 
distance from each other. When cells divide, a test was run to 
check whether the resulting cells were in one of the open 
edges of the sheet. If so, they were added to the sets of 
constrained cells. 

Since the horizontal constraining planes were kept at a 
constant separation distance, as the cells in the sheet grow 
there could be a tendency to over crowd the space between the 
planes if the rest-length between cells was kept constant. To 
prevent this from happening a rule was added to the system 
which adaptively reduced the rest-length between cells by a 
constant factor each time step. The value of this factor was 
one of the parameters used to drive the system. 

Finally, a number of differential growth rates were added to 
the system which affect the rate of cell division in different 
parts of the structure. An analogy can be made with 
controlling the growth of plants by the selective application of 
nutrient in certain areas and a growth retardant in others. 
Differential growth rates were implemented by modifying the 
rate at which food is generated and accumulated in cells, 
hence controlling the rate at which they divide. Three 
different factors were allowed to affect growth rates: 

Vertical Growth Influence. This allowed the position of the 
cell along the vertical axis to affect the growth rate, 
with cells closer to the top of the structure growing 
faster than cells lower down. The aim was to 
encourage the formation of generally vase-like forms 
that are wider at the top than the bottom. 

Radial Growth Influence. To stop structures growing too 
large horizontally, the radial distance from the 
central vertical axis was also allowed to affect 
growth rates, retarding the growth of cells further 
away from this axis. 

Figure 4: Initial configuration, constraints and influences 
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Overhang Growth Influence. As previously described, one 
of the main limitations of using fused filament 
fabrication is that structures can only have limited 
overhangs if they are to be made without the 
generation of additional support structures. To try to 
naturally encourage the growth of forms within 
overhang limits the local angle between the sheet of 
the cells and the vertical axis was also allowed to 
affect the growth rate, reducing the rate of growth if 
it exceeded a threshold angle. 

This set of influences using differential growth rates was 
selected to work with the requirements of this specific system, 
but this approach should be suitable to be generalized to give 
creative influence over a number of other similarly 
morphogentically based generative systems.  

Parameter Selection 

With the addition of these constraints and influences the 
simulation system for generating Vase Forms had 29 
parameters, each of which could be set independently. As 
described in the introduction, having a system with this 
number of parameters raises challenges of how to explore the 
space of possibilities of the system in order to find parameter 
combinations that produce desired results. 

In response to these issues, the author has developed a 
program called Species Explorer (Figure 5) to assist the 
process of generating parameter values to be used with 
generative systems. The initial requirement for such a system 
came from the number of parameters that the author found he 
needed when he was developing the simulation engine for his 
Cellular Forms work (Lomas, 2014), but is designed to work 
in general with systems driven by a fixed number of 
parameters, and provides a framework for various methods to 
be used to assist in exploring the landscape of possibilities. 
 The software provides an interface for the user to specify 
the programs that need to be run to generate each individual. 
Once a set of parameter values has been chosen the system 
writes out a ‘creation script’ (Linux shell script, Windows 
batch file or Python script) that can be executed on the 
computer to run the generative system with the specified 
values. Once an individual has been generated the user can 
then use the interface to rate and categorize the results. 

The software allows the user to select from a variety of 
‘creation methods’ each of which use different techniques to 
generate sets of new parameter values to try. Examples of the 
creation methods the user can select from include: 

• Simple random selection of parameter values from 
uniform distributions within a specified range. 
• Evolutionary search methods using mutation and cross-
breeding between the parameters used for previous 
individuals. 
• A ‘fitness landscape’ method where parameter values are 
selected using lazy machine learning to estimate how the 
user would rate and categorize individuals at new 
coordinates in parameter space. The system implements 
two different options for lazy machine learning: nearest k-
neighbors and interpolation using radial basis functions. 

Using the interface, different creation methods can be used for 
each generation and fitness functions (such as for use with 
evolutionary search or lazy machine learning) can be 

customized using a simple Python based expression syntax. 
One feature of these expressions is that they can include the 
distance in parameter space to the nearest previous sample 
that has already been taken, which allows a simple 
implementation of methods to maintain diversity in the 
genotype space. 

The use of a variety of creation methods provides the 
flexibility to allow the user to explore the space of 
possibilities in different ways depending on their intent (such 
as focused refinement based on some previous samples, or an 
active exploration for potentially novel results). The software 
also provides a framework for plugins to implement new 
creation methods, so the user can specify custom ways for 
how parameters for new individuals are chosen. For more 
technical detail about Species Explorer see (Lomas, 2016). 

Results 

Mutant Vase Forms 

The initial results from the system were genuinely 
unexpected: instead of creating structures that were likely to 
be fabricable using 3D printing, the system would often create 
forms with finely detailed approximately horizontally-oriented 
branching structures (Figure 6). This was the exact opposite of 
the type of structure the author was hoping to create by 
differentially adjusting growth rates to slow down cell 
division in regions with high overhang angles. 

Analyzing the results led to the realization that these 
unexpected results were due to bugs in how the system had 

Figure 6: Mutant Vase Forms 

Figure 5: Species Explorer user interface 
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been implemented: 
• As previously described, during the growth simulation 
the rest-length between cells was reduced by a constant 
factor each time step. However, in the code for generating 
food by light rays hitting cells, the spheres used to 
represent the cells were being left at their initial size instead 
of using the modified rest-length to adjust their radius. The 
result was that the cells were effectively a lot larger than 
they should have been, meaning that cells that stuck out 
further than their neighbors were struck by all the light rays 
and became the places that all the food from photosynthesis 
was generated.  
• The code for differentially adjusting growth rates was 
initially implemented by affecting the size of time steps, 
which was also affecting the physics simulations governing 
how the cells move. This meant that areas of low growth 
were also areas where structures became ‘frozen’, so if a 
region developed an overhang this feature would become 
geometrically fixed position-wise in space. 

The effect of these two bugs was to accidentally create a 
recipe for generating horizontally oriented structures with 
growth focused at the tips. Though this wasn’t what was 
originally intended, the author considered the results to be 
surprisingly aesthetic, particularly when they create structures 
with multiple filigree branches. The results can also be seen as 
genuinely emergent: they are the consequence of bugs in a 
system which has sufficient complexity so that changes to the 
rules can lead to rich unexpected consequences. 

Though the resulting forms were not suitable for 3D 
printing using fused filament fabrication, the author 
considered that the results were sufficiently interesting to 
make them into a series of artworks in their own right: the 
‘Mutant Vase Forms’. These have been exhibited using 
stereoscopic installations so that they can be experienced as 
animated three-dimensional forms (Figure 7) (Lomas, 2017). 

Vase Forms 

After investigating the reasons behind the initial unexpected 
results, the simulation code was  modified to fix the bugs 
previously described. This resulted in the generation of forms 
with more expected properties: generally vase like structures, 
broader nearer the top, narrow at the base, and with flat 
regions at both the top and the base (Figure 1). Though the 
forms often have overhangs, these are typically within angular 
limits or are of a sufficiently small size to allow 3D printing 
using fused filament fabrication methods without the need for 
additional support structures. 
 The generated Vase Forms appear to exhibit an interesting 
range of morphologies, with structures reminiscent of coral 
and plant-like forms. Structures often have complex ridges 
and folds, which as well as being aesthetic have the potential 
to have useful structural performances. There are also often 
structures that have surprised the author, such as the 
spontaneous generation of canopy-like structures at certain 
height ranges, which are probably the results of the 
differential growth rates. Many forms exhibit a variety of 
different surface patterns, from regions where the surfaces are 
relatively smooth, to other sections where the sheet of cells is 
folded into complex structures. 

The author has printed a number of Vase Forms using an 
Ultimaker 2+ 3D printer, with conventional PLA filament. For 
exhibition the works have been presented as a combination of 
40cm high final sculptures (which needed to be printed in two 
parts due to the build volume restrictions of the Ultimaker 2+) 
together with series of smaller 20cm high maquettes that show 
a number of different stages of development of each form 
from its initial configuration of a small number of cells in a 
cylindrical shape to the final structure with several million 
cells (Figure 8). These ‘developmental series’ can be seen as 
echoing the models illustrating embryo development that are 
commonly seen in natural history museums. Typical final 
forms used for fabrication have between 5 million and 20 
million cells. 

As well as the sculptures 3D printed using fused filament 
fabrication, the author has been able to fabricate a larger 60cm 
high form in polyamide using selective laser sintering. This is 
a process that requires less constraints on the shapes that can 
be fabricated due to overhang limits or the need for support 
structures. 

The author has also used computer rendered image files 
from data at different timesteps during the growth simulation 
to create animations showing the process of forms growing by 
cell division (Lomas, 2018). In a number of exhibitions these 
animations have been shown together with the physical 
sculptures (Figure 9), giving another view into the story of 
how simulation of morphogenesis was used to create the 
forms. 

Figure 7: Mutant Vase Forms Stereoscopic Installation 

Figure 8: Vase Forms Developmental Series 
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Discussion 

The creation of Vase Forms, and the accidental creation of the 
closely related Mutant Vase Forms, has been an exploration in 
trying to take an unruly, but potentially interesting, system of 
generating structure using morphogenesis and steer it in 
directions with both aesthetic and functional goals. The 
combination of using constraints and specific modifications to 
the growth rules, together with the use of evolutionary and 
machine learning methods to discover parameter 
combinations that give desired results, appears well suited to 
working with morphogenetic systems. 

The work can be seen as a case study of engaging with rich 
emergent systems, emulating the way that nature works 
through evolution and natural selection but with a design 
intent. The use of influences that affect growth rates in 
different parts of the structure were designed for the specific 
needs of the Vase Forms, but should be generalizable to give a 
degree of creative influence over other similar morphogenetic 
systems. 

The discovery of parameter combinations to create the final 
exhibited forms used a hybrid set of methods including 
interactive evolutionary computing and machine learning. One 
thing that needs to be considered for creative tools is the 
different needs of artists or designers that are committed to an 
extended process of exploration, but whose intention changes 
during the course of the development of a work, and more 
casual users, such as gallery visitors or visitors to a website, 
who are probably only going to engage with a system for a 

limited amount of time and for whom a simple interface that 
offers a single mode of interaction is probably more suited. 
For an artist or designer developing their own work, issues of 
user fatigue and perceived loss of control can be important, 
but we can also assume an extended commitment over time. 
Having a range of customizable tools that allow the user to 
direct the exploration with different intents can be important. 

Conclusion 

The aim with this work was to create sculptural forms that 
could be fabricated without the need for extensive support 
structures, while avoiding overly constraining the system and 
losing the potential for rich emergence. This appears to have 
been successful, creating vase-like structures that have a 
surprisingly natural appearance even though they have been 
completely synthetically generated and fabricated. The project 
can be seen as having genuinely emergent results, particularly 
with the Mutant Vase Forms where bugs in the algorithm used 
to generate structures resulted in completely unexpected, but 
aesthetically interesting, consequences.  

The Vase Forms have been well received, including an 
invitation to feature in a special exhibit at the Victoria and 
Albert Museum for the 2018 London Design Festival (London 
Design Festival, 2018). The work has also been shown 
together their closely related siblings, the Mutant Vase Forms, 
in a number of exhibitions, including ‘bubble, bulge, bleb’ 
(LifeSpace, 2017), an exhibition celebrating the centenary of 

Figure 9: Vase forms exhibit for the London Design Festival at the V&A Museum, London 
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the publication of D’Arcy Thompson’s ‘On Growth and 
Form’. 

With the advent of new techniques, such as multi-material 
fabrication and the control of structure at microscopic levels, 
morphogenetic systems that can produce rich continually 
varying complex patterns and forms have the potential to 
contribute novel solutions beyond those that can be created by 
conventional assembly out of discrete parts. The question of 
how to appropriately steer morphogenetic systems, allowing 
humans to creatively engage with them, whilst keeping rich 
emergent behavior deserves further study. Working with such 
systems using a combination of ‘hard constraints’ and ‘soft 
influences’, such as differentially influencing growth rates, 
appears to be fruitful. 
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