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Abstract—
This paper explores the use of wearable eye-tracking to detect

physical activities and location information during assembly
and construction tasks involving small groups of up to four
people. Large physical activities, like carrying heavy items and
walking, are analysed alongside more precise, hand-tool activities,
like using a drill, or a screwdriver. In a first analysis, gaze-
invariant features from the eye-tracker are classified (using Naive
Bayes) alongside features obtained from wrist-worn accelerom-
eters and microphones. An evaluation is presented using data
from an 8-person dataset containing over 600 physical activity
events, performed under real-world (noisy) conditions. Despite the
challenges of working with complex, and sometimes unreliable,
data we show that event-based precision and recall of 0.66
and 0.81 respectively can be achieved by combining all three
sensing modalities (using experiment-independent training, and
temporal smoothing). In a further analysis, we apply state-of-
the-art computer vision methods like object recognition, scene
recognition, and face detection, to generate features from the
eye-trackers’ egocentric videos. Activity recognition trained on
the output of an object recognition model (e.g., VGG16 trained
on ImageNet) could predict Precise activities with an (overall
average) f-measure of 0.45. Location of participants was similarly
obtained using visual scene recognition, with average precision
and recall of 0.58 and 0.56.

Keywords–Wearable sensors; Machine learning; Activity recog-
nition; Feature extraction; Computer vision.

I. INTRODUCTION

Self organizing teamwork – when a task is not assigned to
individuals but to a group of people – is a common phenomena
in the professional sector. Examples of this occur in many
situations, for example on construction sites, in rescue teams,
or in hospitals. The current work is a development of our
earlier contribution on eyetracking for activity recognition
[1], and forms part of a wider project that aims to study
teamwork in industrial settings, and how the interactions and
collaborations of individuals can characterize such teams.

One possible approach for understanding a group’s pro-
cesses and structures is to recognize the activity of each
person and detect signs of interactions between the team
members. This low level information can be fed into higher
level recognition modules e.g., for semantic analysis [2] or col-
laboration recognition. Obtaining accurate information about
an individuals’ activities in a real world environment is a

challenging task, one which most likely requires a variety
of different wearable sensors and sensing modalities. These
sensors have to be unobtrusive, accurate and scalable (both in
price and availability). As mobile eyetrackers become cheaper
and more widespread, they might be used for purposes other
than simply gaze tracking. In this work we aim to expand their
usage towards detecting physical activities.

Eyetracking provides a useful insight into a person’s atten-
tion. Attention in turn can provide useful indications of that
person’s activity. Previous work has explored the idea of using
mobile eyetrackers for activity recognition [3]. To date the vast
majority of this research has concentrated on activities directly
related to visual attention and cognition (reading, watching
TV, etc.) [4][5]. Our current investigation uses eye movement
information, alongside camera images, to recognize physical
activities, specifically activities related to an assembly and
construction task. In doing so, we don’t intend to develop
highly specialized methods, optimized to perform well only in
the selected scenario, but rather showcase the possibilities of
the approach by using a collection of ”off the shelf” methods.

In our earlier work we described how wearable eye tracking
devices can be used to provide useful informations about
physical activities that are outside the mainstream eye-tracking
application domain [1]. Here we add to this in two important
ways. Firstly, we deepen our evaluation methodology by
using a wider range of features, a range of different window
durations, and add an additional, post-classification, temporal
smoothing filter. Secondly, we apply state-of-the-art computer
vision methods to the task of classifying activity and location
using only egocentric camera images. This adds an extra layer
of context to the activity classification, and points towards a
promising sensor-fusion based approach for future work in this
area.

In Section II, we provide an overview of recent articles and
methods in our research field. In Section III, we describe the
performed experiments, sensor setup and the datasets including
the ground truth labels used during the evaluation. Section
IV contains the overview and in-depth description of our
methodology. The results for activity recognition using eye
data are presented in Section V. In Section VI, we discuss
possible use-cases of the egocentric videos recorded by the
eyetracker devices. In Section VII, we highlight open questions
for future work and conclude our findings.



II. RELATED WORK

As sensing technology continues to shrink in size and cost,
an increasing number of researchers are turning their focus
towards sensor-based activity recognition. One prominent re-
search direction is using sensors embedded in the environment.
A popular application of this approach is towards assisted
living and smart homes. Methods for detecting activities of
daily living are presented for example in [6], [7] and [8].

In workplace scenarios, like the one examined in the
current paper, the sometimes dynamic and mobile nature of
a task makes wearable sensing the best option for capturing it.
Many studies deploy distributed body-worn or mobile inertial
sensors to recognize a wide-range of physical activities (see
[9] for an overview).

Sound is another common sensing modality. In [10], Lu
et al. introduce a mobile-phone based system for classifying
ambient sound, voices and music. Previous works use multiple
streams of audio to recognize social situations [11][12], or to
infer collocation and social network information [13].

Combined sound and movement data obtained from the
smartphones of groups was used to analyses pedestrian con-
gestion at busy thoroughfares, making use of changes in
people’s step-intervals and ambient audio [14]. Wrist-worn
microphones and accelerometers were first used together to
detect hand-tool activities in a wood workshop scenario [15].
More recently, these sensors were used to recognize physi-
cal collocation and collaboration of co-workers performing a
group task [16].

A. Eye-based activity recognition
Eye tracking is a widely used technique in human computer

interaction (HCI). It can be used for example in assistive
technologies for people with limited motor skills (e.g., by
Barea et al. [17]). Typically, researchers are interested in the
object of a user’s gaze – what it is that the user is looking at –
e.g., in areas such as marketing research [18], or user interface
design [19], [20], [21]. A different approach is to analyze
the patterns created by eye movement in various situations.
To detect reading activities while walking, Bulling et al. used
patterns of eye fixation and saccadic movement recorded from
changes in the eye’s electrical activity (electrooculography, or
EOG) [3]. Later, this work was extended to detect activities
such as writing, reading, watching a video, etc. [22]. An
advantage of a pattern-based approach is that no calibration
is needed with a worldview video.

Changes to the blink rate can indicate different mental
loads corresponding to different types of tasks. In [23], the
authors describe methods for eyelid position and blink detec-
tion. Platforms like Google Glass include the ability to record
blink rate, which when combined with head movement can be
an effective method for recognizing activities [5].

Vidal et al. introduced a calibration-free, gaze interaction
method based on tracking the smooth pursuit movements that
occur when the eye follows a moving target [24]. And in [25] a
commercial, wearable EOG system, the Jiins Meme, was used
as a novel gestural input device based on a similar approach.

Shiga et al. proposed a system based on eyetracker and
first person videos to recognize daily activities [26]. This
work is the closest to our research. However, the authors
focus on activities directly related to gaze (e.g., reading,

video watching), whereas our work is more concerned with
using eye-patterns to recognize physical activities that do not
necessarily involve direct gaze (e.g., using a screwdriver).

B. Computer Vision on First Person Videos
Advances in computer vision, especially in the area of deep

neural networks, have opened up a wide-range of possibili-
ties. Frameworks like Keras [27], or Detectron [28], make it
relatively easy for researchers to apply state-of-the-art vision
algorithms quickly. Deep learning architectures optimized for
recognizing images (e.g., [29] or [30]) are often available
with pre-trained weights, and can be fine-tuning using only
a few samples. Amos et al. presented a general purpose face
detection framework [31] with an accuracy of ca. 93%. These
methods usually support GPU-acceleration and can be used for
real time video processing too.

Based on a day-long, first-person video footage of trips to
an amusement park, Fathi et al. analyzed social structures of
groups and the interactions within them [32]. Ryoo et al. use
first-person perspective cameras to try and understanding how
different people interact with an observer, and to be able to
differentiate between friendly and hostile actions [33]. And in
[34], the authors argue that to detect activities of daily living,
the objects seen and interacted with could play a major role.
Motivated by these results, we investigate the usefulness of
egocentric videos to detect physical activities and to recognize
locations in our dataset.

III. EXPERIMENT

To evaluate our different sensors and algorithms we de-
signed a construction-work-inspired, data-collection experi-
ment, that was initially described in [16]. In the experiment,
groups of up to four people work together on a demanding
physical task (build a large TV wall), but crucially are free
to choose how they go about this - and whether or not to
collaborate with one another. Some of the sub-tasks can be
performed in parallel, while others must be done in sequence.
This led to a complex, highly variable, and noisy, dataset that
closely-mirrors real-world construction scenarios.

A. Scenario
Four participants collaborate to build a 2.5 meter high TV

wall consisting of 8 large LCD screens, 3 base panels, 18
screen spacers, and more than 50 screws. The parts are stored
in containers at a storage area, which is separated by a ca. 25
meter long hallway from the assembly area.

The building phase included the following main steps: 1.)
Unload screens (each screen weights 8 kg.) and other TV parts
from the containers, 2.) Carry items to the assembly area, 3.)
Assemble and place base items, 4.) Lift screens onto the wall,
5.) Fix screens on the wall by tightening the screws. After
the build phase and a short break the participants perform the
process in reverse: 6.) removing the screws, 7.) taking down
the screens and other parts carefully, 8.) carrying back to the
storage area, 9.) put them back into the containers.

Generally, the participants had the freedom to organize and
execute the tasks as they thought it’s best. Since the TV screens
were quite heavy, they divided themselves almost every time
into groups of two to carry and lift the screens. After the first
components were delivered to the assembly area, they had the
option to start with mounting and fixing the screws parallel to



the transportation task. The overall task takes usually from 40
minutes up to 1 hour.

B. Wearable sensors
While performing the tasks, the participants were equipped

with a with a mobile eyetracker, a sound recording device
with two separate microphones and three inertial measurement
units. This setup is shown in Figure 1.

Figure 1. Recording setup for each participant includes an eyetracker
connected to a small recording computer. Additional sensors: IMU on both

arms and head, microphone on the wrist and at the chest.

a) Inertial measurement unit (IMU): For tracking
movements of the participants, they wore IMUs on both
wrists and one on the head. The IMU devices record 3-axis
acceleration, gyroscope, and magnetic field as well as 3D
orientation at approximately 40 Hz.

b) Sound recorder: Each participant wore two micro-
phones: one on the dominant hand’s wrist and a second one
attached on the chest. The microphones were connected to a
voice recorder capable of recording stereo sound and were
saved as the two channels of an audio file.

c) Mobile eyetracker: In our experiment, we used Pupil
Labs eyetracker devices (as described in [35]) with the 100
degrees field of view lenses for the world camera to cover
more of the world’s scene. The eyetracker setup additionally
consists of an Intel Compute Stick with an m5 1.6 GHz
processor (running Ubuntu 16.10) as a recording device for
each person. They were powered by a portable 20100 mAh
battery. This setup is able for mobile recording for ca. 1
hour 30 minutes, before the battery have to be recharged. The
recording itself was done using Pupil Capture (v0.82) software.
We implemented scripts to remotely control and monitor the
recordings. The overall cost of this eyetracker setup is around
1600 Euros, which is significantly lower then many other
commercially available mobile eyetracker solutions.

During our experiments, we observed a lot of issues with
the eyetracker calibration. The main reason for these was the
displacement of the eyetracker’s frame on the head due to
sudden movements and sweating as the participants performed
heavy physical work. In an attempt to overcome these issues,
we integrated the eyetracker’s components into ski-goggles,
which usually sit really tight and fixed on the face. However,
this concept showed improved calibration stability, they were
also more bulky and therefore not suitable for real world
experiments. Also for reproducibility reasons, we later decided
to use the unmodified version.

C. Datasets and Labels
For our testing and evaluation, we used two recordings

of the above described experiment performed by two different
groups of participants. In each dataset, four stationary cameras
recorded the scene additionally to the above mentioned wear-
able sensors (eyetracker, IMU data, sound recordings). Two of
the cameras were recording the assembly area, one the storage
area and one the hallway. The main purpose of these cameras
is to help the annotation process. An important step was the
synchronization of the signal sources and videos. This was
done in a post processing step with the help of predefined
synchronization gestures at the beginning of the experiment.

The data for each participant was annotated into 6 dif-
ferent activity events (adjust, screwdriver, drill, carry, screen
placement, walk) and no activity (NA). These activities were
then sub-divided for the 2-class (Large vs. Precise activities),
and 1-class (Precise) analyses (details below). To evaluate how
well the eyetracker can detect location and co-location of the
subjects, we additionally labeled each participants positions
throughout the datasets.

The degree of freedom to organize and perform the ex-
periment resulted often in unexpected event flows with many
short interruptions and activity changes. This proved to be a
challenge to label, making low-level event annotation nearly
impossible. On the other hand this makes the data realistic. By
keeping this in mind, we consider each ground truth label as a
rough description of what a participant is mainly doing within
a given time interval (from a few seconds up to a minute). Short
interruptions (e.g., person taking additional screw from the
desk or interacting with other participants) are not represented
in this ground truth. In total, we labeled 606 activity events
with an overall length of ca. 260 minutes. An additional ’No
Activity (NA)’ class was annotated to cover all the instances
where a person is not doing any of the defined activities.

a) Six class problem: The detailed label set includes
six classes (alongside the NA class):

1) Adjust: during these activities the subject is interact-
ing (placing, taking or adjusting) with screws without
any tool.

2) Screwdriver: subject tightens or loosens screws using
screwdriver.

3) Drill: events when a participant tightens or loosens
screws using a power drill with screwdriver attach-
ment.

4) Carry: the times when one or two participants carry
the heavy TV screens to or from the assembly area.

5) Screen placement: segments where screens are taken
out of or placed back into the container or put on or
taken off the TV wall.

6) Walk: person moves between assembly area and
storage area (without carrying heavy objects).

b) Two class problem: With this label set, we want
to investigate the performance of the system for separating
actions involving large, location changing motions and subtle
action requiring subtle movements. Thus, we defined two
classes (in addition to NA):

1) Large: all events containing the above categories
carry, screen placement and walk.

2) Precise: a combined set of the above defined adjust,
screwdriver and drill categories.



c) One class problem: The third set looks only at the
single class of Precise activities, as defined above, against a
catch-all class comprised of everything else.

With the current dataset, it wouldn’t be viable to annotate
accurate 2D or 3D position of the participants. Instead, we
created contextually meaningful location labels such as the
person is at the storage area, on the hallway, on the corridor
or at the assembly area. The layout of the experiment area
including the location labels is showed in figure 2. Based on
these location labels, we derived the co-location of participants.
Co-location is defined here as a pair of participants is in the
same region (has the same location label).

Figure 2. Floor plan of the experiment area with the highlighted location
labels.

d) Location labels:

IV. ACTIVITY RECOGNITION WITH EYE TRACKING DATA

This section describes our workflow and methodology
used during the study. All code for processing the data is
implemented in Python with Numpy.

A. Overview
The exploration space to find good parameter combinations

is large. For example, we wanted to test different window sizes
for the feature extraction on different label sets. We generate
over 3000 feature samples per person per signal source for
each dataset. To calculate one sample, the method selects raw
values inside a window and performs the feature computations.
Depending on the window size and the sampling rate of the
data source, this window can contain more than thousand raw
samples. So, recalculating a feature set can take longer time
periods even on modern processors (usually between 5-20
minutes depending on the signal source). To be able to perform
tests more efficiently and quicker, we divided our process
into two main modules: 1) feature generation, 2) activity
recognition. After a general description of these modules, we
describe each important step in more detail.

1) Feature extraction module: As a first step, this mod-
ule can find and parse the different data sources such as
eyetracking data, measurements of the inertial measurement
units (IMU) or the sound recordings. It can also load the files
containing the ground truth information.

The feature extraction part takes the appropriate input sig-
nals and calculates the selected features (as described below)
in the sliding windows. As a result, we obtain a table for each
person where each row contains the sample’s time, the current
activity label and the feature values.

An overview of the module’s data flow is illustrated on
Figure 3. We run this process for each parameter set (e.g.,
window size 5s, 6 classes, eye data only) and store the resulting

feature matrices. Because of the high amount of data and
number of combinations, this process usually has a longer
runtime (for all combination it can take up to 7 hours).
However, it needs only to be run once as long we don’t
introduce new features.

Figure 3. We first extract and synchronise the raw data, and then implement
a parallelized process to evaluate different parameters (such as window size)

for the selected features.

2) Activity recognition module: This module is designed to
quickly evaluate feature sets and different parameter combina-
tions. Figure 4 shows the flowchart of the module.

Figure 4. For each selected parameter set (window size, train-test split
method, label set), we apply this evaluation process. As a result, we obtain

frame-by-frame as well as event based performance metrics.

At first, it loads the previously generated feature tables for
a selected window size. These are then split up into training
and test sets based on the selected evaluation strategy. The
training set is then used to train a classifier. After that, we test
the classifier’s frame-based performance by comparing the for
the test set’s features predicted labels with their ground truth
labels.

Additionally, the frame by frame prediction results are
then transformed into events. The event generation method
can apply temporal smoothing for merging events close to
each other and removing events that are too short. In the last
step, we calculate event level metrics. The module can produce
visualizations for both frame-based and event-based results.

B. Synchronization
During the recording, due to technical reasons, each device

recorded the measurement values with timestamps based on
their system time. The inertial measurement units and the
eyetrackers use POSIX timestamps, however there can be
offsets between the current system times. Drift during the
experiment is negligible, since all of the systems use quartz
oscillators internally. In case of the stationary cameras and
voice recorders, each frame’s or sample’s time is registered as
the elapsed time from the beginning of the recording.

In the synchronization step, the goal is to bring the different
signal sources to a common time base. For that purpose, as
previously mentioned in III-C, each participant performed a
synchronization gesture at the beginning of the experiment.
The gesture was defined as jumping and clapping with the



hands in front of the recording camera. Patterns of this gesture
can be easily pinpointed on all of the raw signals. For the
eyetrackers (first person video) as well as for the stationary
cameras, we looked up the corresponding frames’ timestamps.

Based on the known times of the gestures for each source,
we could calculate the offset with the following simple equa-
tion:

∆tA−B
offset = tAsync − tBsync (1)

where A and B are references to signal sources (e.g., P4’s
eyetracker and main video). tAsync and tBsync refer to the same
synchronization event’s time on respectively A or B’s system
time. With the known offset, we can convert times from one
signal’s time to the others using the following formula:

tAi = tBi + ∆tA−B
offset (2)

By applying this method, we converted each source channel’s
timebase to the main video’s time for easier referencing.

C. Feature Extraction
All of the below described features are calculated with the

sliding window method over the evaluation time. This means
that, we take the raw signal(s) between the start and end of
the current window and calculate the source specific features.
The window is then shifted forward until it reaches the end
of the experiment. In this analysis, we use the center of the
window to look up the activity label of the participants and
also to combine feature rows from different sources (IMU, eye
data or sound).

1) Eye features (eye): In each window, we calculated 14
statistical features on different eye related events and proper-
ties. These are:

• mean (µ) and standard deviation (σ) of the fixation
length during the window

• µ and σ of the gap’s duration between fixations
• µ, σ and zero-crossings (ZC) of the eye’s spheric

coordinates (θ and φ)
• µ and σ of the pupil size
• µ and ZC of eye position estimator’s confidence value.

ZC, a simple measure of dominant signal frequency, is cal-
culated by counting the zero-crossings on each window after
subtracting µ.

Based on our initial findings, we expect the length of the
fixations and the gap between two fixations to be a good
indicator for increased attention. Information about the 3D
orientation of the eyeball can help us to distinguish between
different type of eye activities. The pupil size, could help
to distinguish dark and bright environments. Accommodation
(change of viewing distance) can also cause changes of pupil
size. Changes in the confidence of the eye position estimator
correlate usually (if no displacement, loss of calibration or
other problems) with the blink rate of the person. Blink rate
can vary very much from person to person, but can also be
related to specific type of activities (e.g., when focusing, blink
rate drops).

We calculated eye features using window sizes of 3, 5, 10,
15, 30, 45 and 60 seconds.

2) Accelerometer features (ACC): Only the accelerometer
signals (ACC) from each person’s right-wrist IMU are used
in this study. These 3-axis accelerometer signals (x,y,z) are
combined to give a single orientation-invariant reading by the
formula:

a =
√
x2 + y2 + z2 (3)

For each of these readings five standard features are calcu-
lated across a 1 second rolling window, these are: mean (µ),
standard deviation (σ), short-term energy (E), zero-crossing
rate (ZC) and skewness (γ).

3) Sound features (snd): Sound signals from each partici-
pant’s dominant wrist, sr (all were right-handed), and head, sh,
are downsampled from the recording rate of 44.1kHz to 8kHz
(16 bit). In the first step, two features are extracted for each of
these across a rolling window of 40 milliseconds: short-term
energy, E, and zero-crossing rate, ZC. These features were
chosen because of their widespread use in low-cost speech
and audio analysis [36]. In a second step, we re-sampled these
features using a window of 1 second for smoothing.

4) Fusion of features (acc+snd and all): One of our goals
is to evaluate how well a combination of different data sources
performs on the task of detecting physical activities compared
to the baseline performance. For this purpose, we use the
approach of combining feature matrices and training a new
classifier with the merged matrix.

When merging feature matrices, we look up the corre-
sponding row of the new matrix for each row of the original
matrix by selecting the one with the closest sample time. If no
feature row can be found with a smaller sample time difference
than a threshold of one second, we skip this row (new feature
cells have then non-valid values).

Figure 5. Merging of feature matrices. To eliminate the issue of missing data
blocks in different sources, we simply remove all rows from the feature

matrix and label vector, which consist non-valid values.

One of the challenges here is that in many cases data is not
available or corrupt for a time period on one of the sources.
Figure 5 shows the selected approach to handle missing data.
When any row of the merged feature matrix includes any
corrupt or non-existing values, we simply remove this line from
the matrix. This also means that these rows are not considered
in the evaluation.

In this work, we used combinations of:

1) ACC and sound features for comparing eye features
with other modalities (acc+snd)

2) eye, ACC and sound features to see, if the eyetracker
data can improve the overall recognition rate (all)

D. Classifier training
For all evaluations, we used a Naive Bayes classifier with

a One vs. Rest training strategy. This means training one



classifier for each class, where positive samples are taken from
training instances of the current class, and negative samples
from all other classes. This strategy typically achieved 1-
2 percent better results than the One vs. One strategy that
we used in our earlier work [1]. We also experimented with
different classifier methods, but found the Naive Bayes to be
sufficient for the purposes of the current work. All methods
for training and testing are implemented on Python using the
scikit-learn toolkit [37].

E. Event generation
In the prediction phase, the classifier produces one label per

sample (row of the feature matrix). We refer to these as frame-
based or frame-by-frame predictions. When the same label is
returned in a sequence, we can combine them into an event by
saving the time of the first occurrence as the event’s start and
the last as the event’s end. If there is only one single frame
in the sequence detecting a class, we use the sample distance
as the event’s length to avoid zero length events, which is 1
second in our case.

We implement a temporal smoothing on event level to
reduce the number of false detections. In a first step, if an event
follows a previous event of the same class within a specified
time, they will be merged into one event. We used a threshold
of 10 seconds for the event merging. Finally, events with a
duration smaller than a threshold of 1.5 seconds are removed.
Figure 6 shows the event generation and filtering concept.

Figure 6. Event generation process. Frame-based results are transformed into
events, events following each other in a close distance can be merged and

very short events can be removed.

F. Evaluation
1) Train-test split: By using dataset A and B, we defined

four evaluation runs, two for dataset dependent and two for
dataset independent. Dependent 1 strategy uses only data from
experiment A for training and testing. Dependent 2 does the
same on dataset B. For independent 1 strategy, we use dataset
A for training and dataset B for testing. In case of independent
2, the classifier is trained on data from B and tested on data
from A.

a) Experiment dependent evaluation: For experiment
dependent evaluation, data from one dataset (dataset A or B)
were split into training and test sets by the leave one person out
method. For example, data of P1, P2 and P3 participants were

used to train the classifier and data of P4 to test it. The method
is therefore person independent. The method was applied for
all four combinations of an experiment independently and the
results were averaged. With this approach, the test data is
always unseen for the classifier and at the same time we get
an estimation about the generalization error.

b) Experiment independent evaluation: A second ap-
proach for the evaluation is to use one dataset for training and
the other one for testing. Both for training and test, we include
data from all participants of the corresponding dataset. These
tests usually indicate how well the system can generalize the
results and handle later datasets without any additional training
effort.

2) Performance Metrics:
a) Frame based evaluation: Each item of the classifier’s

prediction output is compared to the corresponding ground
truth labels for the frame based evaluation. For that, we use the
standard convention, where each predicted label is considered
as true positive (TP) if its equal to the samples ground truth
label or as false positive (FP) otherwise. A ground truth label
is a false negative (FN) if the predicted label for the same
sample is different.

We calculate then precision and recall values as defined by
the standard definition. That is for precision:

P =
TP

TP + FP
(4)

and for recall:
R =

TP

TP + FN
(5)

Accuracy score is calculated by:

A =
TP + TN

TP + TN + FP + FN
(6)

with TN for the true negatives.
b) Event based evaluation: In the event based evalu-

ation, we compare detection events with the ground truth. A
detected event is considered as a true positive (TPdet) if it has
an overlap with a ground truth event of the same activity (for
the same participant) or as a false positive (FPdet) otherwise.
Similarly, ground truth events are labeled as true positives
(TPgt) if they are detected at least once otherwise as false
negatives (FNgt).

We calculate the event-based precision (P) and recall (R)
analogous to the standard frame-based definitions, with the
addition of the events’ durations as weight factor:

Pe =
TPdet · ∆TTP

det

TPdet · ∆TTP
det + FPdet · ∆TFP

det

(7)

and,

Re =
TPgt · ∆TTP

gt

TPgt · ∆TTP
gt + FNgt · ∆TFN

gt

(8)

Additionally, we calculate scores specially designed for
event based evaluation [38]. The approach is designed to ac-
knowledge the fact that event-based recognition is not as clear-
cut as true/false, positive/negative-based evaluations imply.
Real-world recognition can be fragmented in time, or multiple
events can be merged together. The evaluation methodology



used works by labeling both ground truth events and prediction
events into separate error categories.

Error categories that are applied to the ground truth include:

• Deletions (D): when a ground truth event is not
detected at all, practically the same as a false negative

• Fragmented (F): a ground truth event is detected by
multiple (at least 2) true positive fragments

• Fragmented and Merged (FM): the ground truth event
is detected in multiple (at least two) fragments, and at
least one of the detections also overlaps with another
ground truth event

• Merged (M): a detection event covers more than one
(true positive) ground truth events

Error categories that are applied to the detected events
include:

• Insertions (I’): equivalent of false positives, when a
detection event has no overlap with a ground truth
event at all

• Merging (M’): detection events that overlap with more
than one ground truth events

• Fragmenting and Merging (FM’): a detection event,
which overlaps with at least two ground truth events,
where one of them at least is also covered by another
detection event

• Fragmenting (F’): when an event is detected during
a ground truth event that is also covered by other
detection events

Finally, one category can be applied to both ground truth
and detected event output:

• Correct (C): a ground truth event corresponds to one
true positive detection event

In our tests, we used the open source Python implementa-
tion of this scoring mechanism and associated metrics [39].

V. RESULTS

This section contains the summary of our most important
results regarding the usage of eye movement features and it’s
combination with acceleration and sound features for physical
activity recognition.

A. Window size for eye features
In a first step, we evaluated the influence of the eye

features’ window size on the classification results. Features
for each person in both datasets were generated using eight
different window sizes ranging from 3 seconds to 60 seconds.
We performed tests with these features on all three label sets
(one-, two-, six-class problem) and using all four evaluation
strategies.

Results for the window size evaluations for the different
label sets are presented on Figure 7. The y axis on these figures
represents the accuracy value as defined in Equation 6. The
six class problem’s results are displayed on Figure 7-A. In
this case, the overall accuracy seems to be very similar across
different evaluation strategies (dependent, independent), espe-
cially at small window sizes. With an increasing window size,
two of the strategies perform worse. For the poor performance

Figure 7. Activity recognition accuracy scores (frame-based) for eye features
calculated with different window sizes on the six class problem (A), on the

two class problem (B) and on the one class problem (C)

in independent 1 and dependent 2, probably the missing data
points in dataset B are responsible.

For the two class problem (Figure 7-B) and the one class
problem (Figure 7-C), the different strategies perform very
similarly to each other. As going from the six class problem
towards the one class problem, as expected, the overall accu-
racy of the classifier improves significantly and is always better
than random guessing. The average accuracy across strategies
for the ten second window is for the six class problem 0.37,
0.56 for the two class and 0.71 for the one class problem.

In the further analysis, we use the ten second window size
to extract eye features, because it performed fairly good on
each label set. Larger window sizes tend to be more sensitive
about the distribution of the training and test data as we could
observe on Figure 7-A.

B. Results for six classes
The confusion matrix on Figure 8-A shows the frame based

results using the eye features extracted in ten seconds windows.
The classifier was evaluated using the independent 1 strategy.
However, single classes not recognized very well (but still
better than random guessing), they point out two major groups
in the data. This two groups are defined as Large and Precise
class in the two class problem.

Figure 8 show the results using the same strategy, but with
the combination of all features into a single feature matrix.
The results are still not perfect, but the improvement is visible
and the two categories can still be observed.

The results on Figure 7 show us that different evaluation
strategies perform similarly. However, it varies from label set
to label set, which one is better, the other results are typically
in a range of ± 5 percent. That’s why and for a better overview,
we decided to provide in the following the performance values
only for the independent 2 strategy.

Table I shows all frame-based results of the six class
problem. For each feature set (eye: using only eye based



Figure 8. Confusion matrices for six the class problem using eye-based features only (A) and using all features (B) with 10 seconds window for dataset
independent training 1. These frame-based results implicate that some classes should be merged together (see two class problem).

TABLE I. FRAME BASED PRECISION AND RECALL VALUES FOR THE SIX
CLASS PROBLEM, DATASET INDEPENDENT TRAINING

class eye ACC+snd all
P R P R P R

no activity 0.45 0.63 0.44 0.44 0.47 0.60
Walk 0.32 0.04 0.48 0.60 0.49 0.42
Carry 0.32 0.15 0.23 0.04 0.27 0.19
Screen pl. 0.14 0.09 0.27 0.01 0.40 0.29
Adjust 0.00 0.00 0.00 0.00 0.00 0.00
Screwdriver 0.26 0.29 0.35 0.23 0.39 0.33
Drill 0.32 0.14 0.12 0.62 0.26 0.70

features, ACC+snd: combination of accelerometer and sound
features, all: combination of all three feature sources), it
presents precision (P) and recall values (R).

One important observation is that for almost every class,
the combined feature set (all) outperforms the other two
baselines. In some cases (Screwdriver, Screen placement), the
combination is clearly better for both recall and precision
value. In contrast, the Walk activity’s recall is higher (0.60)
using ACC+snd features and is reduced in combination (0.42).
Recognition of the Adjust activity doesn’t work, most proba-
bly, because it is not well represented in the training samples
(due to missing data, the activity’s sample instances were cut
out by chance). In some other training-test split strategies, it
can be detected (as seen on Figure 8-A).

TABLE II. EVENT BASED PRECISION AND RECALL VALUES FOR THE SIX
CLASS PROBLEM, DATASET INDEPENDENT TRAINING

class eye ACC+snd all filter
Pe Re Pe Re Pe Re Pe Re

Walk 0.54 0.45 0.46 0.92 0.53 0.67 0.67 0.54
Carry 0.52 0.48 0.19 0.40 0.39 0.66 0.68 0.51
Screen pl. 0.42 0.52 0.22 0.09 0.50 0.61 0.51 0.41
Adjust 0.10 0.02 0.00 0.00 0.00 0.00 0.00 0.00
Screwdriver 0.19 0.53 0.40 0.88 0.42 0.90 0.49 0.78
Drill 0.22 0.61 0.14 1.00 0.26 0.61 0.30 0.53

Results of the event-based analysis for the six class problem
are presented in Table II. For the evaluation of the first three
columns (eye, ACC+snd, all) no event filter or merging is
applied. The fourth column named ”filter” merges events that
are closer than 10 seconds and removes events shorter than 1.5
seconds based on the combined (all) features’ event detections.

Most important observations in the event-based results are:

• for some classes (carry, screen placement) eye features
work best, while for other events (e.g., walk, screw-
driver) the accelerometer and sound combination work
best

• the merged features (all) achieves overall better results
• as expected, by using the event merging and filtering,

the precision of the event classifiers could be increased
(at the cost of a lower recall)

To understand the nature of the errors, we analyzed the
results of the combined feature set and event filtering (filter)
with the event analysis diagrams proposed by [38]. Figure 9
illustrates the detailed event score distribution for different
classes for the dataset independent training. According to
this analysis, 60% of Walk events are successfully detected.
However, detected events for Screwdriver and Drill classes are
mainly dominated by insertions (I’). These activities are easily
mistaken for one another (as can also be seen in Figure 8),
which can help account for the low precision values obtained,
too.

C. Results for two classes
We expect the classifier to perform significantly better for

the two class problem, as many of the errors reported above
are due to confusions between similar activities (again, see
Figures 8 A and B).

TABLE III. FRAME BASED PRECISION AND RECALL VALUES FOR THE
TWO CLASS PROBLEM, DATASET INDEPENDENT TRAINING

class eye ACC+snd all
P R P R P R

no activity 0.50 0.43 0.43 0.57 0.48 0.52
Large 0.62 0.45 0.61 0.36 0.69 0.48
Precise 0.47 0.74 0.38 0.45 0.55 0.73

Frame by frame results of the two class problem are in
Table III. The values in this table confirm our expectations.
Using only data from the eyetracker (10 second window, inde-
pendent training) Large class can be detected with a precision
and recall of 0.62 and 0.45, meanwhile the classifier achieves
0.47 precision and 0.74 recall for Precise class. Similarly to the



Figure 9. Event analysis diagram for the six class problem (class Adjust had
zero detections), dataset independent training. (C denotes correct events, D

deletions, I’ insertions)

TABLE IV. EVENT BASED PRECISION AND RECALL VALUES FOR THE
TWO CLASS PROBLEM, DATASET INDEPENDENT TRAINING

class eye acc+snd all filter
Pe Re Pe Re Pe Re Pe Re

Large 0.74 0.83 0.54 0.86 0.80 0.72 0.80 0.61
Precise 0.57 0.96 0.39 0.99 0.62 0.98 0.63 0.76

six class problem, the combined feature set has an improved
overall performance compared to the baselines.

Figure 10 presents a perfect example while the pure frame-
based evaluation is not sufficient in our application. The
temporal distribution of the detections is also very important.
The figure shows the ground truth and detected events for
person 2 over the dataset A. It can be observed that the majority
of the detections for a class is around the real activity. Using
event filters as described above, we also can filter out some of
the wrong detections.

Table IV shows the actual event length weighted precision
and recall values for all four categories (eye features only,
using ACC+snd, using all features, using event filter as well).
For Precise events, the classifier has a precision of 0.62 with
a recall of 0.98 when using the combined feature set.

The event analysis diagram (EAD) of the two class problem
is shown in Figure 11. For both Large and Precise classes many
of the correctly detected events are merged with other ground
truth events. This merging together of correct events might not
be strictly incorrect for some applications, but it does indicate
ill-defined event borders. The Precise class events perform
slightly better in terms of number of correctly discovered
events. However, this result is dominated by insertion errors,
which are likely responsible for the lower precision value.

D. Results for one class
Instance of the Precise class are important for the high level

analysis, since this activity category is typically performed

alone. It is characterized by, small precise movements over
a longer time period. In this evaluation, we test the classifier
to spot these events against the empty class (’no activity’).

TABLE V. FRAME BASED PRECISION AND RECALL VALUES FOR THE ONE
CLASS PROBLEM, DATASET INDEPENDENT TRAINING

class eye ACC+snd all
P R P R P R

no activity 0.89 0.64 0.75 0.74 0.90 0.70
Precise 0.43 0.78 0.35 0.23 0.50 0.80

Results of the frame-based analyses are in Table V. As
expected, using only eye based features results in better per-
formance then using the accelerometer and sound combination.
The best performance is produced again by the all combined
feature set with a precision of 0.5 and recall of 0.8 percent.

TABLE VI. EVENT BASED PRECISION AND RECALL VALUES FOR THE ONE
CLASS PROBLEM, DATASET INDEPENDENT TRAINING

class eye ACC+snd all filter
Pe Re Pe Re Pe Re Pe Re

Precise 0.59 0.96 0.35 0.97 0.64 0.98 0.66 0.81

The event based results in Table VI show the same im-
provement characteristics as observed for the other label sets.
However, the accelerometer and sound based recognition has
a high recall, but a poor precision value for a single class
problem. Using only the eye features results in a fairly good
0.59 and 0.96 precision and recall. These values are further
improved when using the combined feature set with 0.64
precision and 0.98 recall. When applying event filters, we get
higher precision (0.66) on cost of the recall value (0.81).

The event analysis diagram (EAD) (see Figure 12) of the
one class problem shows less deletions and insertions for the
Precise class compared to the two class problem’s figure (see
Figure 11). The majority of the ground truth events are detected
merged with other events. The reason for this is probably, as
seen on Figure 10, that, many occurrences of the Precise class
(ground truth) occur close to each other.

VI. COMPUTER VISION ON EGOCENTRIC VIDEOS

In addition to the eye-feature based activity recognition,
we also explored the possibility of using the world camera
images as an information source. Specifically, we wanted
to find out how ”off the shelf” machine vision tools might
be used to automatically process the camera data. In this
section, we describe our findings on the use of automatic face
detection, object recognition around the gaze point, and scene
recognition.

A. Objects of interest
The initial idea is based on the assumption that a person

looks at specific objects more often if these are related to
his or her current task. One such example is the activity of
fixing screws with a screwdriver. We would expect that it is
more likely to find a screwdriver in the egocentric video of
the person doing this task, than it would be in the video of
someone who was doing something else. If we can detect the
objects that the person looked at during specific activities, we
can train a classifier using this information and use it to later
recognize the same activity again.



Figure 10. Ground truth events and detections for the two class problem for person two in dataset A without (top) and with (bottom) event filtering and
merging. The classifier was trained using all features combined and only with data from dataset B.

Figure 11. Event analysis diagram for the two class problem, dataset
independent training

Figure 12. Event analysis diagram for the one class problem, dataset
independent training

To test the feasibility of this idea, we implement the
following workflow:

1) Crop each frame of the eyetracker’s world video
around the gaze point with a radius of ± 200 pixels
horizontally and vertically to obtain the region of
interest (ROI).

2) Use deep learning models pretrained on 1000 classes
of the ImageNet database to obtain prediction weights
on the ROI. We tested the Keras implementation
of the following models: InceptionV3, ResNet50,
VGG16, VGG19 and Xception.

3) We calculated the average of the weights in one
second windows over the dataset and stored as a
feature matrix.

4) Using the activity ground truth label and the fea-
ture matrix generated from the prediction weights,
we trained a Naive Bayes classifier with the same

methods and training strategies as for the eye based
features.

Figure 13. F-measure of activity classifiers trained on prediction weight
features of different models with dataset independent 2 training for six class

problem (top) and two class problem (bottom)

Results for the activity recognition using the prediction
weight based features are presented on Figure 13 for the six
class problem (top) and for the two class problem (bottom).
The figure displays the f-measure, that can be interpreted as a
weighted harmonic mean of the precision and recall, for each
class. The values represented on the figures are from a dataset
independent training. The dataset identical trainings showed
nearly identical results without much improvement.

On Figure 13, we can see that using the ResNet50, the
VGG16 or the VGG19 models, the classification result for
Walk and Screwdriver are comparable with eye features or the
all feature combination from above. InceptionV3 and Xception
models are not working well on these datasets. Detection
results for the two class problem (Figure 13) are worse than
the performance of the eye features on the same two classes,
but still better then random guessing of the class though.



Figure 14. Top ten classes for scene recognition on first person camera images at different locations using a VGG16 model trained on the Places365 dataset.
As expected, the predictions are very similar, but the weights’ distributions are slightly different.

Motivated by these results, we merges the object recogni-
tions features with the eye, accelerometer and sound features
from earlier in the paper using the same merging method as
before. The merged features are then evaluated using the same
strategies and concepts as above.

Table VII and VIII contains frame- and event-based eval-
uation values for two feature combinations:

1) eye features extracted with a 10 second window
together with object recognition features (eye+obj)

2) eye, ACC and sound features combined with the
object recognition features (all+obj)

In both cases, we use the VGG19 pretrained model to obtain
the object recognition features and use independent evaluation
strategy 2. By comparing Table VII with the above results in
Tables I and II, the values are slightly worse than before. For
the two class problem however, this approach brings a minor
improvement on frame-by-frame as well as on event level for
both feature sets (see Table VIII vs. Tables III and IV).

TABLE VII. EVALUATION RESULTS FOR COMBINATIONS WITH THE
OBJECT RECOGNITION FEATURES USING THE PRETRAINED VGG19 FOR

THE SIX CLASS PROBLEM, DATASET INDEPENDENT TRAINING

Frame-based Event based
eye+obj all+obj eye+obj all+obj

class P R P R P R
no activity 0.53 0.33 0.52 0.45 - - - -
Walk 0.25 0.74 0.43 0.44 0.48 0.86 0.55 0.77
Carry 0.25 0.02 0.34 0.15 0.37 0.07 0.59 0.61
Screen Pl. 0.21 0.2 0.34 0.33 0.33 0.59 0.51 0.56
Adjust 0.00 0.00 0.06 0.01 0.00 0.00 0.00 0.21 0.02
Screwdriver 0.24 0.33 0.32 0.27 0.42 0.77 0.46 0.82
Drill 0.08 0.12 0.21 0.76 0.14 0.47 0.21 0.56

TABLE VIII. EVALUATION RESULTS FOR COMBINATIONS WITH THE
OBJECT RECOGNITION FEATURES USING THE PRETRAINED VGG19 FOR

THE TWO CLASS PROBLEM, DATASET INDEPENDENT TRAINING

Frame-based Event based
eye+obj all+obj eye+obj all+obj

class P R P R P R
no activity 0.53 0.36 0.52 0.39 - - - -
Large 0.66 0.67 0.69 0.55 0.66 0.70 0.83 0.80
Precise 0.53 0.73 0.52 0.84 0.63 0.97 0.60 0.74

B. Face detection
For analyzing interactions in the group, an important infor-

mation source could be if we are able to detect if the person
looks on another participant’s face. Additionally, co-location
information can be important to recognize collaboration events.

If we can detect specific person’s face on the egocentric
video, this can be a clear sign of co-location. As an initial
exploration towards these goals, we tested the face detection
library OpenFace [31]. The authors report an accuracy of ca.
0.93 with their default model on the LFW benchmark [40].

Figure 15. Examples for face detection using the OpenFace library on our
dataset. It spots faces robustly throughout the experiment. (Image quality

artificially reduced here)

We run the face detection on each frame of the eyetracker
videos an saved position, bounding box size and face features
together with the corresponding timestamp into a feature file
for later processing. Figure 15 illustrates some examples of the
detected faces in a sequence.

We performed a statistical analysis of the temporal distri-
bution of the face detections compared with activity labels.
We found that during activities of the Precise category (using
screwdriver, drill or adjust) the average number of face de-
tections per second is much lower (0.05) than during Large
activities (0.26). The reason behind this statistical difference
is, that these activities are typically performed independently
from other participants, meanwhile the persons are physically
connected for many Large activities especially during the Carry
event. Also they used the time e.g., during carry event for
social interactions. Another interesting observation we made,
was that two of the participants look at each other much more
often than other ones. We found that meanwhile these two
knew each other well from before the experiment, they had no
or little prior relations to the other ones, suggesting that this
kind of data could be used for analyzing social structures in
the group, as also done by [32]. But further analysis of this
topic is outside the scope of the current work.

Lastly, we compared temporal distribution of the face
detections against co-location of the participants. Figure 16
shows a scatter plot with the number of faces detected in a 15
seconds window against the ratio if the person is co-located
with one or more other participants during this window. On
the x-axis, zero means that during the window the person is



completely alone, 100 percent means that during the whole
time he or she is co-located with exactly one other participant.

The distribution of the sample points suggests a correlation
between a high number of faces detected and co-location.
However, this feature alone is not sufficient to predict co-
location. Even if all four participants are at the same location,
they do not necessarily look in each other’s direction. This
explains the sample points on the figure that have zero or very
few faces detected even during higher values of co-location.

Figure 16. Number of faces detected in a window of 15 seconds versus the
time spent co-located with another participants during this window. Values

above 100% mean that the subject is co-located with more than one
participant at the same time.

C. Location detection with scene recognition
Finally, we investigate location detection using egocentric

video. Our assumption is that deep learning models trained
to recognize different scenes can extract useful features for
distinguishing locations in our dataset.

To test this assumption, we used the Keras implementation
[41] of an VGG16 model trained on the Places dataset [42].
This model tries to predict a scene description for the input
image. Figure 14 shows example predictions (top 10 for each)
for three different locations in our dataset. As expected, the
predictions are similar (are parts of the same building), but the
order (and also the weight distribution) is different for each.

We calculated the output weights (predictions) of the
network for each video frame from the eyetrackers and saved
them into feature matrices. We also experimented to cut the
network at an earlier stage (not the final class predictions),
but that didn’t improved our results and introduced higher
computational needs. On the generated feature set and location
labels, we evaluated the concept with a nearest neighbor
classifier using only one person’s data for training and every
other participant’s data for testing. Precision and recall values
were computed and then averaged for all four combinations of
dataset A. For the four location classes, the classifier achieved
and averaged precision and recall of 0.5774 and 0.558, well
above random values. Considering the difficulty of the task
(image quality, similarity of the places, in many cases bad
lighting as visible on Figure 14), it’s a promising result and
could be an useful input for a high level decision making
system.

VII. CONCLUSION AND FUTURE WORK

We evaluated the use of data from wearable eye trackers
as part of a multi-sensor system for recognizing real-world
physical activities. In the two datasets we used, participants
perform (sometimes heavy) physical construction tasks in an
unrestricted order over a duration of around 90 minutes. Due

to the realistic data collection setup, data is in many cases
unavailable or unreliable.

Despite the challenging conditions, we show in this work
that it is still possible to obtain useful recognition results using
eye tracking. Although the gaze point may not be correct, due
to factors such as loss of calibration during the experiment, we
can nonetheless successfully recognize key activity categories
by utilizing calibration free eye features (based on non-gaze
eye properties and movements). The results additionally show
that recognition can be achieved in both a person and dataset
independent way. That means that we can expect the system to
work on future datasets without any additional training effort.

The combination of eye features with simple acceleration
(measured on the right wrist), and sound features, produces
even more reliable results especially on an event level. Addi-
tional event filtering can further reduce the number of false
positive outputs. For detecting the broader classes of Large
activities (involving full body movement) and Precise activi-
ties (involving smaller hand-tool manipulations), we achieved
event-based (duration weighted) precision and recall values of
0.74 and 0.83 using only eye features, and 0.57 and 0.96 using
the combination of eye, acceleration and sound features.

Exploration of the image processing methods on egocen-
tric videos showed promising results despite the challeng-
ing dataset (bad lighting, blurry images caused by sudden
movements, etc.). Although the initial results for location, co-
location detection, or activity recognition using recognized
objects are not perfect, they point towards potentially valuable
areas upon which future research on this topic might be
focused.

We aim to further explore the combination possibilities of
eye features with visual object detection and scene analysis.
Additional topics for investigation are the combination of
sound analysis with face detection to recognize interactions
within the group, and hand detection on egocentric videos for
object manipulation detection.
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