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Maximally nonlocal theories cannot be maximally random
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Correlations that violate a Bell Inequality are said to be nonlocal, i.e. they do not admit a local and determin-
istic explanation. Great effort has been devoted to study how the amount of nonlocality (as measured by a Bell
inequality violation) serves to quantify the amount of randomness present in observed correlations. In this work
we reverse this research program and ask what do the randomness certification capabilities of a theory tell us
about the nonlocality of that theory. We find that, contrary to initial intuition, maximal randomness certification
cannot occur in maximally nonlocal theories. We go on and show that quantum theory, in contrast, permits cer-
tification of maximal randomness in all dichotomic scenarios. We hence pose the question of whether quantum
theory is optimal for randomness, i.e. is it the most nonlocal theory that allows maximal randomness certifica-
tion? We answer this question in the negative by identifyinga larger-than-quantum set of correlations capable
of this feat. Not only are these results relevant to understanding quantum mechanics’ fundamental features, but
also put fundamental restrictions on device-independent protocols based on the no-signaling principle.

From a physical perspective, all classical physics is deter-
ministic and any apparent randomness is due to ignorance
therefore not exhibitingintrinsic randomness. Quantum the-
ory is open to such a possibility since it is a fundamentally
probabilistic theory. However, since the early days of quan-
tum theory, its seemingly ‘intrinsic’ unpredictability has been
heavily debated even by some of its founding fathers [1, 2]. A
great advance came when John Bell [3] identified limitations
on any theory founded on the following two basic physical
principles: impossibility of instantaneous signaling between
distant locations (no-signaling principle); and the existence of
a complete set of variables of a system which, if known, would
allow for deterministic predictions. Correlations among a
number of distant parties that satisfy both principles are called
’local’ and are constrained by the now-eponymous Bell in-
equalities. Thus Bell established a fundamental link between
the unpredictability of quantum mechanics with the concept
of nonlocality [3]. In particular, assuming the validity ofthe
no-signalling principle, a violation of a Bell inequality implies
and certifies intrinsic randomness.

Recently, this deep connection between nonlocality and
randomness has been made quantitative and exploited for in-
formation processing tasks [4, 5]. Nonlocality-certified ran-
domness represents an information resource in the now well-
established area of “device-independent quantum information
processing” [6–11]. In a device-independent protocol, no as-
sumption is made about the inner-workings of the devices
used and are thus regarded as black boxes. There is how-
ever a crucial assumption to every protocol and that is the
assumption of the background theory dictating the devices’
behaviour, e.g. whether the devices are quantum mechanical
[10], or just compatible with no-signaling principle [11].

The assumption about the background theory isvital given
that quantum mechanics is not the most nonlocal theory re-
specting the no-signaling principle [12] and therefore capa-
ble of producing intrinsic randomness. Theories allowing for
all nonlocal correlationsonly restricted by the no-signaling
principle are termed “maximally nonlocal” since they pro-
duce the most nonlocality that a non-signalling theory can

produce. Given the eminent role of nonlocality for random-
ness certification, the first intuition is to expect maximally
nonlocal theories to have more powerful randomness certifi-
cation capabilities than other theories. Indeed, there areocca-
sions where maximally nonlocal theories can certify random-
ness and quantum mechanics cannot even certify any random-
ness at all [13]. On the other hand, for the Clauser-Horne-
Shimony-Holt (CHSH) inequality [14], we can certify more
randomness assuming only quantum mechanics (however not
the maximal amount possible) rather than allowing maximally
nonlocal correlations [15].

The main goal of our work is to understand the relationship
between the nonlocality and randomness of a theory and, in
particular, what the randomness capabilities of a theory tell
us about the nonlocality allowed within that theory. Notice
that we do not consider misalignments, preparation errors or
detection efficiencies as those sources of randomness are not
fundamental to the physical theory and can, in principle, be
reduced below any finite threshold. We are hence interested
in studying only the fundamental differences in randomness
certification between theories.

The first result is to show that the previous intuition is
wrong: were the set of achievable physical correlations not
more restricted than what the no-signaling principle allows,
maximal randomness could not be certified in any possible
scenario irrespective of the number of parties, measurements
or outcomes, i.e. maximally nonlocal theories cannot be max-
imally random.

Secondly, we focus on quantum theory and provide, in con-
trast, scenarios with an arbitrary number of parties where
maximal randomnesscan be certified. This should be com-
pared with other works that showed that if maximally nonlocal
theories were permitted in Nature we would have unimagin-
able computational and communicating power [16, 17]. Here,
being in a maximally nonlocal worldlimits our information
processing capabilities. This observation leads us to ask if
the nonlocality of quantum theory is in some sense optimal
for randomness certification. That is, is quantum theory the
most nonlocal theory capable of certifying maximal random-
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ness? Our final result answers this question in the negative:
we identify a set of correlations larger than the quantum set
that also permits the certification of maximal randomness.

Boxes and Bell tests—We use the scenario of a Bell test
to study the correlations observed among space-like separated
measurements on systems within different physical theories.
There areN distant parties and each party makes a choice
of measurement upon their system. These processes are ar-
ranged so that they define space-like separated events. The
N users have no knowledge of how a system or its measure-
ment apparatus are prepared, they can only make measure-
ment choices and observe classical outcomes. We even allow
the possibility that a malicious agent prepared the devicesand
holds information about how they prepared their systems. We
then model these parties as black boxes with the measurement
choice for thejth party (forj ∈ {1, 2, ..., N}) being an input
xj ∈ {0, 1, .., (M − 1)} where there areM possible choices;
the measurement outcome for thisjth party is then the out-
put aj ∈ {0, 1, ..., (d − 1)} where for every party there are
d possible outcomes to the every measurement. Therefore, a
string of “dits” (generalization of bits tod values) is produced
in each round of a Bell test . The Bell test is then labelled by
the parameters(N,M, d).

After a suitable number of uses of the boxes, the conditional
probabilitiespobs(a|x) for all values ofa = (a1, . . . , aN) and
x = (x1, . . . xN ) that describe the observed process are ob-
tained. These conditional probabilities form a full distribu-
tion Pobs with elementspobs(a|x). In general, we will use an
upper-caseP for a distribution and lower-casep for an ele-
ment of that distribution.

As mentioned, we must make an assumption on thetheory
that governs the workings of our boxes. This has the effect of
indicating whether our observed correlationsPobs belong to a
particular set of possible correlations. For example, if wesay
that our observed correlations result from a classical system
or quantum system then the distributionPobs belongs to the
setC orQ of correlations resulting from all possible classical
and quantum systems respectively. We can also define the set
NS of all maximally nonlocal correlations.

The set of quantum correlationsQ is contained inNS.
This does not imply that the latter is as random as the for-
mer. The important distinction is that by dictating which the-
ory is permitted, we bound the power of the malicious agent
that can, in principle, prepare our devices. Therefore, upon
obtaining our observed statisticsPobs, if we vary the theory
that describes the source of these correlations then we allow
a malicious agent to prepare the devices using different (even
supra-quantum) resources. The agent can then use this knowl-
edge of the preparation to improve their predictive power thus
leading to different implications for randomness certification.

Every set is convex because we can always prepare a con-
vex mixture (by tossing a biased coin) of systems thus giving
a convex mixture of correlations resulting from each system.
So, in addition to the Bell scenario dictated by(N,M, d) we
stipulate the set of correlationsT to which our observed cor-
relations can belong.

Every convex set can be described in terms of its extreme
points. In the case of probability distributionsP , the ex-
treme points are those distributions that cannot be expressed
as a convex combination of other distributions in the set.
An immediate corollary of this property of convex sets is
that the observed correlationsPobs can be written as a con-
vex combination of the extreme points of a setT : therefore
Pobs =

∑

ext qextPext wherePext is an extreme point of the set
T andqext ≥ 0 is a probability distribution over these points
such that

∑

ext qext = 1.
Randomness Certification—In randomness certification we

take the standard approach of using just one particularx0 from
which to obtain a dit-string of lengthN that is hopefully ran-
dom. The (potentially malicious) provider of the boxes knows
this stringx0 in advance however does not knowwhen this
string is input into the boxes. Correlations for the rest of the
inputs{x|x 6= x0}, encapsulated byPobs, are used to certify
that the randomness obtained fromx0 is intrinsically random.
To measure the randomness of the outputs obtained from in-
putx0 given observed correlationsPobs, we require theguess-
ing probabilityGT (x0, Pobs): the probability for a malicious
agent to predict the most likely outcome for inputx0 given
that the agent has complete knowledge of how a box is pre-
pared within a theory with a corresponding set of correlations
T . The larger this guessing probability the less random are the
outputs and thus we have a measure of randomness.

Since the user of the box has no knowledge of how it was
prepared, we must assume that all possible ways of produc-
ing Pobs from extreme pointsPext can be utilized such that
Pobs =

∑

ext qextPext and the malicious agent knowsqext per-
fectly. Indeed, the agent may know what is the most advan-
tageous distributionqext to maximize his chances of guessing
the output. On the other hand, for each of these extreme points
Pext we can evaluate the guessing probability easily since there
is a unique way of preparing this probability distribution (from
the set of correlationsT ). Therefore, the guessing probability
for extreme points isGT (x0, Pext) = maxa pext(a|x0) where
pext(a|x0) is an element ofPext. Collating all of this informa-
tion, we obtain the following optimization:

GT (x0, Pobs) = max
{qext,Pext}

∑

ext

qextG
T (x0, Pext)

subject to:

Pobs =
∑

ext

qextPext, Pext ∈ T. (1)

Immediately we see that for classical correlations (whenT =
C) GC(x0, Pobs) = 1 since maxa pext(a|x0) = 1 for all Pext.
This follows from the well-known fact that any classical cor-
relations can be decomposed as a mixture of deterministic
points. This highlights the need for non-classical, or nonlo-
cal correlations for randomness certification.

It is worth noting that we are explicitly assuming the in-
dependence between the preparation components labelled by
Pexp and the measurement settingsx. This is commonly
known as thefreedom of choiceassumption. Recent work has
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shown that this assumption can even be relaxed by implement-
ing randomness amplification protocols [8, 9, 19].

In what follows we will perform the optimization in (1) for
different sets of correlations, in particular maximally nonlo-
cal and quantum correlations labelledNS andQ respectively.
In particular we ask the question of whether a theory with
correlationsT can certify maximal randomness which exactly
means if for any observed correlationsPobs ∈ T in any sce-
nario(N,M, d), we can obtainGT (x0, Pobs) =

1
dN .

Maximally nonlocal correlations—The setNS of maxi-
mally nonlocal correlations is the set of multipartite correla-
tions solely restricted by the no-signaling principle. Here we
permit any valid normalized probability distributionP with
all elements satisfying1 ≥ p(a|x) ≥ 0 where marginals are
well-defined. That is, the probabilities (correlations) satisfy
∑

a p(a|x) = 1. To prevent instantaneous signaling it is im-
portant that

∑

ak

p(a1, . . . , ak . . . aN |x1, . . . , xk, . . . , xN ) (2)

is independent ofxk for all k.
Now that this set is defined we present our first result.

Result 1: Maximally nonlocal theories can never be maxi-
mally random.

Were the physically achievable correlations solely re-
stricted by the no-signaling principle, the maximum amount
of certifiable randomness in an arbitrary Bell scenario
(N,M, d) would be bounded through the intrinsic predictabil-
ity by

GNS(x0, Pobs) ≥
1

dN − (d− 1)N
, (3)

for any probability distributionPobs ∈ NS and all inputsx0.

To prove this result we only need to consider the random-
ness of the extreme pointsPext of NS as indicated by (1).
Our proof is based on the simple observation that if for a par-
ticular x0 of correlationsp(a|x), n values are equal to zero
thenmaxa p(a|x0) ≥ 1

dN−n . Result 1 then follows from The-
orem1 in the Appendix, which proves that some given non-
signalling correlationsp(a|x) cannot be extreme if there exists
a string of inputsx0 such that the number of termsp(a|x0) that
are equal to zero is smaller than(d− 1)N .

It is worth mentioning two facts. First, this result indi-
cates an important limitation on maximally nonlocal theories.
In fact, the gap between the ideal maximal randomness and
that achievable in maximally nonlocal theories is unbounded.
Second, the derived bound is, in general, not tight. For in-
stance, all extreme non-signaling correlations in Bell test sce-
narios(2,M, 2) were obtained in [21, 22] and in this case
GNS(x0, Pobs) ≥ 1/2 whereas our bound gives1/3. Inter-
estingly, the same difference appears in the(3, 2, 2) scenario:
looking at all the extreme points, classified in [23], the maxi-
mal randomness is equal to1/6, while our bound predicts1/7.

However, in the asymptotic limit ofd → ∞ our bound gives
1

O(dN−1) , which can be shown to be tight by comparing it with
the results in [24]. We now move to randomness certification
in quantum theory.

Quantum Correlations—Let ρ ≥ 0 be some quantum state
andOxj

aj be some measurement operators (technically a posi-
tive operator valued measure, POVM) for inputxj and out-
put aj . We say a probability distributionPobs ∈ Q be-
longs to the quantum set of correlations if it can be written
aspobs(a|x) = tr(ρ

⊗N
j=1O

xj
aj ).

Characterizing the set of correlations achievable in this
way is a great open problem in quantum information theory.
Therefore, in what follows, rather than solving exactly theop-
timization problem (1), we consider a relaxation that provides
a lower bound to the intrinsic randomness. Instead of con-
sidering all convex combinations of extreme points ofQ that
reproduce the observed statistics, we ask for convex combina-
tion of extreme points that give an observed violation of a Bell
inequality. Given that a Bell inequality is just a linear combi-
nation of probabilitiesp(a|x) over all inputsa and outputsx,
let us define the following inner product between correlations
Pobs and Bell inequalityB that computes the Bell violation
B · Pobs ≡

∑

a,x βa,xpobs(a|x) = qobs, where the real coeffi-
cientsβa,x define the Bell inequalityB.

Computing a lower bound to the intrinsic predictability
GQ(x0, Pobs), certified this time by an observed violation of
a Bell inequality, then amounts to solving the following opti-
mization problem, a relaxation of (1):

GQ(x0, Pobs) ≤ max
{qext,Pext}

∑

ext

qextG
T (x0, Pext)

subject to:
∑

ext

qext(B · Pext) = qobs, Pext ∈ Q. (4)

Since we are interested in the maximal amount of randomness
allowed by quantum mechanics, we will restrict our study to
maximal quantum violation of a Bell Inequalityqobs ≡ qmax.
In [25] a method was provided to detect when the maximal
quantum violation of a Bell inequality certifies that the out-
puts are maximally random. The method has the advantage
that it can be easily applied, but unfortunately it only works
under the assumption that the maximal quantum violation
of the inequality is unique. The uniqueness of the maximal
quantum violation is in general hard to prove. However, in
what follows, we consider Bell inequalities for which the
uniqueness of the maximal violation can be proven using the
results of Refs. [26, 27]. This then allows us to apply the
simple method in [25] and prove the following result.

Result 2: Quantum theory is maximally random in all di-
chotomic scenarios.

Assuming the set of physically achievable correlations
to be the quantum set, the maximum amount of certifiable
randomness in the family of Bell test scenarios(N,M, 2) is
maximal:GQ(x0, Pobs) =

1
2N .
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We prove this result in the Appendix by generalizing the
results of [25] to allN via a Bell inequality introduced in [28].
We actually prove Result 2 for the(N, 2, 2) scenario but this
trivially applies to the(N,M, 2) since we can always ignore
(M−2) of the inputs for each party. While our proof does not
apply to the case of two parties, it has been shown in [29] that
for the(2, 2, 2) scenario an amount of randomness arbitrarily
close to the maximum of2 random bits can be certified in
some limit. Additionally, numerical and analytical evidence
indicates that exactly2 bits of maximal randomness can be
attained in the(2, 3, 2) scenario [25]. All of this serves to
show that quantum correlations certify maximal randomness
even if maximally nonlocal theories can never do this.

We have shown the difference for randomness certification
of two sets of correlations; the maximally nonlocal set and
the quantum set. A natural question is whether this contrast
highlights theuniquenessof quantum correlations. Just as var-
ious information theoretic principles aim to highlight single-
out quantum theory [16, 17, 30], isQ the only set capable of
certifying maximal randomness? We now address this ques-
tion.

Supra-quantum Correlations—Navascués, Pironio and
Acı́n introduced a means to approximate the set of quantum
correlations which was an infinite hierarchy of semi-definite
programs [31]. For example, the first non-trivial level of
this hierarchy isQ1 and this set is provably larger than the
set of quantum correlationsQ [34]. Already in the work of
Pironio et al in Ref. [6] these first few levels in the hierarchy
were used to lower bound the amount of randomness certified
for quantum correlations. In the Appendix, we introduce
a modification to the setQ1 in the tripartite setting called
Q1+ABC that is strictly larger than the quantum set. On
the other hand, this set also allows for maximal randomness
certification. This represents the third main result of thiswork.

Result 3: There exist post-quantum theories that can also cer-
tify maximal randomness.

Were the physically achievable correlations those of the
strictly larger than quantum setQ1+ABC , maximal random-
ness could also be certified in the Bell test scenario(3,M, 2)

i.e.GQ1+ABC

(x0, Pobs) =
1
8 .

The proof of this result is presented in the Appendix. The
crucial element in this proof is showing that there is only one
probability distribution in the setQ1+ABC that maximally vi-
olates the Mermin inequality [32] allowing us to use the re-
sults in Ref. [25].

At first, this result may seem disappointing but there are
other examples of limitations to recovering quantum correla-
tions from information principles. For example it is known
that we need truly multipartite principles [33]. It has also
been shown that other information principles will never re-
cover quantum mechanical correlations [34] and our work fits
squarely within this foundational research program.

Discussion—We have shown that correlations in maximally

nonlocal theories and quantum theory have drastically differ-
ent consequences for randomness certification. Therefore,if
we assume Nature does not abide by a nonlocality-restricted
theory such as quantum theory it could severely limit its ran-
domness capabilities. One can see this as a result of maxi-
mally nonlocal correlations having correlations between the
outputsfor all inputs, but quantum theory cannot produce
such strong correlations.

Let us illustrate this point by revisiting the CHSH scenario
of (2, 2, 2). Here all extremal correlations in maximally non-
local theories are equivalent to the so-called Popescu-Rorhlich
(PR) box [12]. This box always fulfils the condition:x1 ·x2 =
a1 ⊕ a2 mod 2 [36]. Therefore, knowing the inputs and one
of the outputs, we canperfectly determinethe other output.
Quantum correlations, however, cannot produce these perfect
correlations thus introducing more randomness.

These results are not only of foundational interest but have
application in randomness extraction, certification and ampli-
fication. For example, in Ref. [6] a lower bound on certi-
fiable randomness was obtained using only the no-signaling
principle, and this bound has found applications in other pro-
tocols (e.g. Ref. [35]). An interesting follow-up questionis
to determine theexactmaximum randomness allowed just by
the no-signalling principle, a fundamental number providing
a quantitative link between randomness and no-signalling.

We also showed that certain supra-quantum correlations
can also exhibit maximal randomness. This last result indi-
cates that quantum theory is not so special from an informa-
tion theoretic perspective (cf. Ref. [34]). The set of quantum
correlations is notoriously difficult to define but maximally
nonlocal theories have a simple description. The fact that
there exists a set of correlations that has a relatively simple
description but facilitates maximal randomness certification
provides a “third way” for the design and analysis of future
protocols.
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Appendix

Proof of Result 1

In this section we show that it is impossible for maximally nonlocal theories to produce maximal randomness, or more
specifically Result 1 in the main text. Result 1 follows from the following Theorem, which provides a bound on the number of
non-zero entries in extreme non-signaling correlations.

Theorem 1. Let p(a|x) be an extreme probability distribution in the setNS in an arbitrary Bell test scenario(N,M, d).
For a given combination of settingsx0, denote byn(x0) the number of probabilitiesp(a|x0) that are equal to zero and define
n = minx0 n(x0). Then,n ≥ (d− 1)N .

Proof: The proof of the result follows from a relatively simple counting argument. First we introduce some useful notation
to describe the marginals of a probability distribution. Ifwe have a distributionP with elementsp(a|x) and we have a set
J ⊆ {1, 2, ..., N} of theN parties then the probability distribution only over these parties inJ is p(aJ |xJ ) =

∑N
aj |j /∈J p(a|x)

whereaJ andxJ area andx consisting only of elementsaj andxj respectively for allj ∈ J . Following a simple generalization
of Ref. [20], a probability distribution (for any inputx0) satisfying the no-signalling principle can be parametrized byp(aJ |xJ )
for all possible setsJ . What is more, due to normalization we only consider(d − 1) outputs for each party in all of these
distributions. Therefore the probabilityp(a|x) is a function ofp(aJ |xJ ) for all J but the elementsaj of aJ only range over
(d − 1) values. Apart from whenJ contains allN parties, every other marginal probabilityp(aJ |xJ ) will result from another
probability distributionp(a|x′) for x′ 6= x0 by summing over outputs of the appropriate parties. Therefore the values of these
marginals are fixed by probabilities for inputsx′ 6= x0 and the only free parameters definingp(a|x0) are the(d−1)N probabilities
whenJ contains allN parties.

Clearly, the space of thisdN -outcome probability distributionsp(a|x0) is convex. Moreover, ifp(a|x0) is not an extreme point
in this space, neither are the original correlationsp(a|x) in the original non-signalling space. As mentioned, when restricted to
the specific settingx0, there are(d − 1)N free parameters. Now, the hyperplanes defining this convex space correspond to the
positivity constraints defined by thedN probabilitiesp(a|x0). An extreme point in this space of dimension(d− 1)N should then
be defined by the intersection of(d− 1)N hyperplanes. This implies that a necessary condition for the correlationsp(a|x) to be
extreme is that at least(d− 1)N probabilitiesp(a|x0) are zero for each value ofx0. This completes the proof.�
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Proof of Result 2

In this section we show that it is possible to obtainN bits of global randomness for allN . In Ref. [25] it was shown how
to achieve and certifyN bits of global randomness for all oddN . Here, we show that there is a Bell inequality in the(N, 2, 2)
setting for allN (which is a generalization of the Mermin inequality first studied in [28]) which if maximally violated, givesN
bits of global randomness. We use the tools developed in Ref.[25] to obtain maximal randomness based on the symmetries of
the inequality we use.

First, we need to introduce some notation. As standard in theliterature, we introduce then-party correlators wheren ≤ N .
Take a subsetJn ⊆ {1, 2, ..., N} of n parties from allN parties. Then associated with this subset and a string of inputs
xJn

= (xj , xj′ , ..., xk) and a string of outputsaJn
= (aj , aj′ , ..., ak) wherej, j′, k ∈ Jn and a marginal probability distribution

p(aJn
|xJn

). We then define the correlators to be

〈xJn
〉 := 2





∑

aJn

αp(aJn
|xJn

)



− 1, (5)

with α = 1 +
∑

k∈Jn
ak mod2. We can define the full joint probabilities in terms of these correlators as

p(a|x) =
1

2N

∑

Jn

(−1)
∑

k∈Jn
ak〈xJn

〉, (6)

where we take a sum over all2N subsets ofN parties (including the empty set).
The Bell inequality that will concern is the following inequality discussed in Ref. [28]:

∑

x

(−1)f(x)δ
g(x)
0 〈xJn

〉 ≤ ǫ < 2N−1, (7)

wheref(x) =
∑N−1

j=1 xj

(

∑N
k=j+1 xk

)

mod2 andg(x) =
∑N

j=1 xj mod2. As indicated the upper-bound for local hidden

variablesǫ is strictly less than2N−1, the number of terms in the sum. Crucially, quantum mechanics can violate this inequality
and achieve the algebraic upper bound of2N−1 as shown in Ref. [28] using a Greenberger-Horne-Zeilinger state. Also, there
is only one probability distribution that maximally violates this inequality as can be shown by applying the techniquesof Ref.
[26] or by a self-testing argument due to [27]. In Ref. [25] this property ofuniquenessof a probability distribution maximally
violating an inequality was used to prove that global randomness can be generated from a Bell test.

We need to use an inputx′ that does not appear in the left-hand-side of (7), since the outputs of measurements for inputs in
(7) will be highly correlated, and thus not random. We need to show that for inputx′, the probabilityp(a|x′) in (6) is equal to
1
2N for all a. This occurs if all correlators satisfy〈xJn

〉 = 0 for all (non-empty) subsetsJn and〈xJn
〉 = 1 for Jn = ∅, the empty

set whenn = 0. The aim of this section is to show that this is true.
To do this, we utilize the tools in Ref. [25] where we perform transformations on the data obtained in a Bell test that do

not affect the correlators that appear in the Bell inequality of (7). These transformations affect correlators that do appearin
the inequality. If we take the unique probability distribution that maximally violates (7) then, under these transformations,
it still violates the same inequality maximally. If we call the original probability distributionP with elementsp(a|x) and
the transformed distributionP ′, thenP = P ′, and so all correlators resulting from these two distributions must be equal as
well. If one of these symmetry transformations is to flip an outcome of a measurement depending on the choice of input
then this can alter correlators, e.g.a1 → a1 ⊕ x1, then all correlators〈xJn

〉 that containx1 = 1 have their sign flipped as
α = 1 +

∑

k∈Jn
ak mod2 → 2 +

∑

k∈Jn
ak mod2. However, due to uniqueness of quantum violation this implies that the

correlators before and after the transformation are equal,so in the case that the transformation flips the sign of the correlator
then〈xJn

〉 = −〈xJn
〉 = 0. This thus demonstrates a way to show that correlators are zero for particular distributions.

For clarity we introduce the notation to show when a correlator’s sign is flipped. Our symmetry operations are captured byan
n-length bit-strings, where if thejth elementsj is zero, then we flipaj for the choice of inputxj = 0, and ifsj = 1, then we
flip aj for choice of inputxj = 1. Then the correlator〈xJn

〉 under the symmetry transformation described bys is mapped to
(−1)N−H(x,s)〈xJn

〉 whereH(x, s) is the Hamming distance between the bit-stringss andx: the number of timesxj 6= sj for
bit-stringsx, s. Another way of writing the Hamming distance is

H(x, s) =
N
∑

j=1

xj + sj mod2 =

N
∑

j=1

xj + sj − 2sjxj . (8)
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We now return to the Bell inequality in (7) and focus on evenN . We applyN transformations described by the bit-stringss:
(0, 0, ..., 0) (the all-zeroes bit-string) and the(N − 1) bit-stringss that all havesN = 1, and only one other element being equal
to one, e.g.(1, 0, 0, ..., 1) or (0, 1, 0, ..., 1). All of these bit-strings have an even number of ones, therefore

∑N
j=1 sj = 2k for

k ∈ {0, 1}. For correlators in the inequality of (7), the inputsx satisfy
∑N

j=1 xj mod2 = 0, so that
∑N

j=1 xj = 2k′ for k′ being

some integer. Therefore all the correlators〈x〉 that appear in (7) are mapped to(−1)2(k+k′−
∑N

j=1
sjxj)〈x〉 = 〈x〉 and thus the

transformation does not alter the inequality.
To obtainN bits of global randomness for evenN , we choose the inputx′ = (1, 1, ..., 1, 0), the bit-string of all-ones except

x′N = 0. This input does not appear in (7) and indeed
∑N

j=1 xj = 2k′+1 for some integerk′, therefore the above transformations

map〈x′〉 to (−1)1+2(k+k′−
∑N

j=1
sjxj)〈x′〉 = −〈x′〉. Due to the uniqueness of the probability distribution maximally violating

the Bell inequality,〈x′〉 = −〈x′〉 = 0.
We now need to show that all correlators〈x′Jn

〉 wherex′Jn
is the string ofn < N elements fromx′ = (1, 1, ..., 1, 0) for a sub-

setJn. We consider the Hamming distanceH(x′Jn
, sJn

) betweenx′Jn
and the corresponding stringsJn

of elements ofs where
sj is in sJn

if j ∈ Jn. Immediately we see that for at least one stringsJn
, the Hamming distance isH(x′Jn

, sJn
) = (n − 1).

Therefore, there is at least one transformations that maps〈x′Jn
〉 to (−1)n−(n−1)〈x′Jn

〉 = −〈x′Jn
〉 for all Jn. Again, given that

all correlators should be equal after the transformation wehave that〈x′Jn
〉 = −〈x′Jn

〉 = 0.
To summarize, we have shown that all correlators that appearin (6) for the inputx′ = (1, 1, ..., 1, 0) are equal to zero if the

probability distribution that produces them maximally violates the inequality in (7). This therefore implies thatp(a|x′) = 1
2N

for all a and for all evenN . For this inputx′ we obtainN bits of global randomness. We can use another inequality to obtain
N bits of global randomness for oddN as shown in Ref. [25]. Therefore, we can obtainN bits of global randomness for allN .
We have used the fact that there is a uniquequantumviolation of the inequality in (7). However, for more general theories this
may not be the case.

Proof of Result 3

We present a proof that it is possible to certify3 bits of global randomness for a set of correlations that is strictly larger than
the quantum setQ. We call this setQ1+ABC in the terminology of the multipartite generalization of the Navascués-Pironio-Acı́n
hierarchy of correlations that can be characterized through semi-definite programming [31]. We prove this result utilising the
tripartite Mermin inequality [32], so we are therefore in the (3, 2, 2) scenario.

We first recall from Ref. [31] that correlationsp(a1, a1, a3|x1, x1, x3) are contained in the setQ1+ABC if there exists a pure
quantum state|ψ〉, and projectors{Ea1

x1
, F a1

x1
, Ga3

x3
} labelled by inputsxj ∈ {0, 1} and outputsaj ∈ {0, 1}, such that

1. (Hermiticity)– (Ea1
x1
)† = Ea1

x1
, (F a1

x1
)† = F a1

x1
, and(Ga3

x3
)† = Ga3

x3
for all xj andaj

2. (Normalization)–
∑

a1
Ea1

x1
= I,

∑

a1
F a1
x1

= I, and
∑

a3
Ga3

x3
= I for all xj

3. (Orthogonality)–Ea1
x1
E

a′

1
x1

= δa1

a′

1

Ea1
x1

, F a1
x1
F

a′

1
x1

= δa1

a′

1

F a1
x1

, andGa3
x3
G

a′

3
x3

= δa3

a′

3

Ga3
x3

for all xj ,

such that probabilities arep(a1, a1, a3|x1, x1, x3) = 〈ψ|Ea1
x1
F a1
x1
Ga3

x3
|ψ〉. In addition to these general constraints, linear combi-

nations of these probabilities are elements of a positive semidefinite matrixΓ1+ABC � 0. We choose a specific positive semidef-
inite matrix with elements[Γ1+ABC ]ij = 〈ψ|O†

iOj |ψ〉 whereOl ∈ {I, {Ai}, {Bj}, {Ck}, {AiBjCk}} for Ai = E0
i − E1

i ,
Bj = F 0

j − F 1
j andCk = G0

k − G1
k. Therefore the matrixΓ1+ABC is a 15-by-15 matrix with eachOl labelling a row or

column. We can now make several observations:OlOl = I for all Ol therefore(Ol)
† = Ol; 〈x1x1x3〉 = 〈ψ|Ax1

Bx1
Cx3

|ψ〉;
〈x1x1〉 = 〈ψ|Ax1

Bx1
|ψ〉; 〈x1x3〉 = 〈ψ|Ax1

Cx3
|ψ〉; 〈x1x3〉 = 〈ψ|Bx1

Cx3
|ψ〉; 〈x1〉 = 〈ψ|Ax1

|ψ〉; 〈x1〉 = 〈ψ|Bx1
|ψ〉; and

〈x3〉 = 〈ψ|Ax3
|ψ〉. Here we utilized the notation introduced in the previous section. Finally, the set of quantum correlationsQ

is a subset ofQ1+ABC since the former can be recovered from the latter by imposingmore constraints on the projectors. It can
also be shown thatQ is a strict subset ofQ1+ABC for all possible scenarios(N,M, d).

Now that we have defined the setQ1+ABC of correlations that concerns us, we return to the issue of randomness certification.
We wish to show that for correlations in this set that maximally violate the tripartite Mermin inequality [32]

〈001〉+ 〈010〉+ 〈100〉 − 〈111〉 ≤ 2, (9)

p(a|x0) = 1
8 for all a for a particular inputx0. We choose this input to bex0 = (0, 0, 0) but it will turn out that we could choose

any inputx that does not appear in the Mermin inequality. The maximal violation of the Mermin inequality is4 and because
this violation is achievable with quantum mechanics [32] and Q ⊆ Q1+ABC , it is achievable inQ1+ABC also. Therefore,
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ascertaining the maximal probabilityp(a|000) compatible with this violation and for correlations inQ1+ABC is an optimization
of the form:

maximizep(a|000)

subject to〈001〉+ 〈010〉+ 〈100〉 − 〈111〉 = 4,

p(a|000) ∈ Q1+ABC . (10)

Given our construction of correlations inQ1+ABC , we can rephrase this optimization in terms of a semidefiniteprogram:

maximize
1

2
tr(MΓ1+ABC)

subject to
1

2
tr(BΓ1+ABC) = 4,

Γ1+ABC � 0,

1

2
tr(DiΓ1+ABC) = 0, i ∈ {1, 2, ...,m}, (11)

whereM , B andDi are real, symmetric15-by-15 matrices such that12 tr(MΓ1+ABC) = p(a|000) and 1
2 tr(BΓ1+ABC) =

〈001〉 + 〈010〉 + 〈100〉 − 〈111〉. Due to (6), we can impose the former equality on12 tr(MΓ1+ABC). Them matricesDi just
impose constraints on elements ofΓ1+ABC such that they are compatible withQ1+ABC .

We now fix the particular representation ofΓ1+ABC with elements[Γ1+ABC ]ij = 〈ψ|OiOj |ψ〉 such that for both rowsi and
columnsj we write the ordered vector of operatorsOi with i increasing from left to right:

(O1, ...,O15) = (I, A0, A1, B0, B1, C0, C1, A0B1C1, A1B0C1, A1B1C0, A0B0C0, A1B0C0, A0B1C0, A0B0C1, A1B1C1).
(12)

Immediately we observe that the diagonal elements of the matrix [Γ1+ABC ]ii = 1 and thus the magnitude of all elements of the
matrix |[Γ1+ABC ]ij | ≤ 1 are bounded if the matrix is positive semidefinite. For example, given this representationB = C+CT

whereC =
( v
0̃

)

for 0̃ being a14-by-15 matrix of zeroes andw = (0, 0, ..., 0, 1, 1, 1,−1).
There is a unique solution to the problem in (11) if instead of the probability distribution being inQ1+ABC it is constrained to

be inQ. As mentionedQ ⊆ Q1+ABC , so we can write this solution as a matrix of the formΓ1+ABC , and we call this solution
matrixΓM and define it as follows:

Definition 1. The only solution matrixΓM to (11) that can be realized in quantum theory has elements

1. [ΓM]ij = 1 if i = j, [ΓM ]ij ∈ {〈001〉, 〈010〉, 〈100〉} and [ΓM ]ij ∈ {〈ψ|P(P ′)†|ψ〉, 〈ψ|(P ′)†P|ψ〉} whereP , P ′ ∈
{A0A1, B0B1, C0C1} andP 6= P ′;

2. [ΓM]ij = −1 if [ΓM]ij = 〈111〉 and [ΓM ]ij ∈ {〈ψ|PP ′|ψ〉, 〈ψ|P ′P|ψ〉} whereP , P ′ ∈ {A0A1, B0B1, C0C1} and
P 6= P ′;

3. [ΓM]ij = 0 otherwise.

We now present the main theorem of this section.

Theorem 2. The only possible solution matrixΓ1+ABC to the semidefinite program in(11) is ΓM .

This immediately leads to the following corollary that is relevant for randomness certification. That is, since the solution to
the semidefinite program in (11) is the quantum solution we inherit the result of Dhara et al [25] that shows that we obtain three
random bits if we maximally violate the Mermin inequality [32]. We state this result more formally in the following corollary.

Corollary. The maximal value of the objective function1
2 tr(MΓ1+ABC) = p(a|000) in the semidefinite program(11) is equal

to 1
8 for all a.

Proof – First we observe that, as obtained from the definition of matrix ΓM, 〈0〉 = 0 for every party’s single-body correlator,
and equally〈00〉 = 0 for all two-body correlators between the three parties, and〈000〉 = 0. Substituting these values into
(6), we then obtainp(a|000) = 1

8 for all a. SinceΓM is the only possible solution to (11), this is the only possible probability
distribution overa. �

To prove theorem2 we require two lemmas that will be introduced and proved in the sequel. The first lemma describes the
structure of the feasible matricesΓ1+ABC , i.e. the matrices that satisfy all of the constraints in (11). The second lemma just says
that matricesΓ1+ABC of this form are positive semidefinite if and only if they are equal toΓM . We now present and prove these
lemmas. For simplicity we utilize the notation for the notation 〈O〉 = 〈ψ|O|ψ〉 with O ∈ {Aj, Bj , Cj |j ∈ {0, 1}}.
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Lemma 1. MatricesΓ1+ABC are feasible (satisfy all constraints therein) for the semidefinite program (11) if and only if they
are of the form:

Γ1+ABC =









1 q1 q2 q3

qT
1 W X Y

qT
2 XT D O

qT
3 YT O D









, (13)

with

q1 = (〈A0〉, 〈A1〉, 〈B0〉, 〈B1〉, 〈C0〉, 〈C1〉) ,

q2 = (0, 0, 0, 0) ,

q3 = (1, 1, 1,−1) ,

W =





I C B

CT I A

B
T

A
T

I



 ,

X =

















−〈A1〉 〈A1〉 〈A1〉 〈A1〉
−〈A0〉 〈A0〉 〈A0〉 〈A0〉
〈B1〉 −〈B1〉 〈B1〉 〈B1〉
〈B0〉 −〈B0〉 〈B0〉 〈B0〉
〈C1〉 〈C1〉 −〈C1〉 〈C1〉
〈C0〉 〈C0〉 −〈C0〉 〈C0〉

















,

Y =

















〈A0〉 〈A0〉 〈A0〉 −〈A0〉
〈A1〉 〈A1〉 〈A1〉 −〈A1〉
〈B0〉 〈B0〉 〈B0〉 −〈B0〉
〈B1〉 〈B1〉 〈B1〉 −〈B1〉
〈C0〉 〈C0〉 〈C0〉 −〈C0〉
〈C1〉 〈C1〉 〈C1〉 −〈C1〉

















,

D =









1 1 1 −1
1 1 1 −1
1 1 1 −1
−1 −1 −1 1









,

O being a4-by-4 matrix of all-zeroes, withA =
( 〈A1〉 〈A0〉
〈A0〉 −〈A1〉

)

, B =
( 〈B1〉 〈B0〉
〈B0〉 −〈B1〉

)

, C =
( 〈C1〉 〈C0〉
〈C0〉 −〈C1〉

)

andI =
(

1 0
0 1

)

.

Proof – Vectorsq1 andq3 are trivially obtained if the constraints in (11) are satisfied.
We now use the observation that for all feasible matricesΓ1+ABC , the elements[Γ1+ABC ]ij ∈ {〈001〉, 〈010〉, 〈100〉} are all

equal to1 and when[Γ1+ABC ]ij = 〈111〉 the element is equal to−1. This is due to the fact that this is the only combination
of values compatible with maximal violation of the Mermin inequality. This fact implies that〈ψ|R|ψ〉 = 〈ψ|ψ〉 for R ∈
{A0B0C1, A0B1C0, A1B0C0} and〈ψ|A1B1C1|ψ〉 = −〈ψ|ψ〉 and by normalization,

A0B0C1|ψ〉 = |ψ〉,

A0B1C0|ψ〉 = |ψ〉,

A1B0C0|ψ〉 = |ψ〉,

A1B1C1|ψ〉 = −|ψ〉. (14)

This implies that〈ψ|PR|ψ〉 = 〈ψ|P|ψ〉 for R ∈ {A0B0C1, A0B1C0, A1B0C0} and〈ψ|PA1B1C1|ψ〉 = −〈ψ|P|ψ〉 whereP
is anyOj as described above forj ∈ {1, 2, ..., 15}. Utilising this observation we obtain the sub-matrixD in (1) if P is equal to
any of theR described above. Also forP ∈ {Ai, Bj , Ck} for all i, j, k, we again utilize this observation to obtainY and certain
elements ofX. The elements ofX that are obtained via this observation are those where〈ψ|OiOj |ψ〉 = 〈ψ|PR|ψ〉 with P and
R being as described above.

To obtain the remaining elements ofX that do not satisfy the above condition, we utilize another consequence of the conditions
of (14). That is, sinceOiOi = I, any element ofΓ1+ABC equal to〈ψ|S|ψ〉 for S ∈ {AiBj, AiCk, BjCk} is equal to±〈ψ|S ′|ψ〉
for S ′ ∈ {Ai, Bj , Ck} only if SS ′ ∈ {A0B0C1, A0B1C0, A1B0C0, A1B1C1}. The sign in front of〈ψ|S ′|ψ〉 is determined by
the productSS ′. We also use this observation to obtain matricesA, B andC.
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It remains to be shown how the vectorq2, the matrixO and the submatricesI in W are obtained. We first observe that
q2 = (w, x, y, z) wherew = 〈ψ|A0B1C1|ψ〉, x = 〈ψ|A1B0C1|ψ〉, y = 〈ψ|A1B1C0|ψ〉, andz = 〈ψ|A0B0C0|ψ〉. Utilising
the relations in (14), we obtain

O =









w w w −w
x x x −x
y y y −y
z z z −z









. (15)

We now observe thatO can be defined in an equivalent way sinceOiOi = I for allOi. Using this observation and〈ψ|OiOj |ψ〉 =
〈ψ|OjOi|ψ〉 for Oi, Oj ∈ {Ai, Bj , Ck} andOi 6= Oj , we obtain

O =









w 〈C0C1〉 〈B0B1〉 〈A0A1〉
〈C0C1〉 x 〈A0A1〉 〈B0B1〉
〈B0B1〉 〈A0A1〉 y 〈C0C1〉
〈A0A1〉 〈B0B1〉 〈C0C1〉 −z









, (16)

where again we are using the notation〈ψ|OiOj |ψ〉 = 〈OiOj〉 for brevity. Since the matrix in (15) and (16) have to be equal
to each other, the only possible solution is thatO is a 4-by-4 matrix of zeroes. This also implies thatq2 = (0, 0, 0, 0) and
〈A0A1〉 = 〈B0B1〉 = 〈C0C1〉 = 0, thus completing the matrixW. This also completes our proof.�

We now present our final lemma that will complete the proof of theorem2.

Lemma 2. The matrixΓ1+ABC described by (1) is positive semidefinite if and only ifΓ1+ABC = ΓM .

Proof – We can use the Schur complement ofΓ1+ABC in (1) and thatD = qT
3 · q3 andY = qT

1 · q3 to show thatΓ1+ABC is
positive semidefinite if and only if

(

W′ X

X
T

D

)

� 0, (17)

whereW′ = W− qT
1 · q1. For example, for the matrixΓM , the corresponding submatrixΓ′

M from (17) is

Γ′
M =

(

I 0̄
0̄T D

)

, (18)

whereI is the6-by-6 identity matrix and̄0 is a6-by-4 matrix of zeroes. This submatrix ofΓM is positive semidefinite if and only
if D � 0 which is indeed true.

Since the space of positive semi-definite matrices is convex, the set of feasible matricesΓ1+ABC for the semidefinite program
(11) is a convex set. Therefore, if there is a submatrixΓ1 of the form (17), we can obtain another submatrixΓ2 of the form
(17) that is a convex combination ofΓ1 andΓ′

M . We assume thatΓ1 has elements corresponding to some non-zero values
{〈Ai〉, 〈Bj〉, 〈Ck〉}, therefore completely unlikeΓM . We now show that there exist matrices of the formΓ2 that are not positive
semidefinite which implies that any matrixΓ1 as described is not positive semidefinite. This in turn implies that the only positive
semidefinite matrix of the form (17) is Γ′

M.
We chooseΓ2 such that

∑1
j=0 |〈Aj〉| + |〈Bj〉| + |〈Cj〉| ≪ 1 but at least one of the elements of the set{〈Ai〉, 〈Bj〉, 〈Ck〉}

is non-zero. As mentioned before, since the space of solution matricesΓ1+ABC is convex we can always choose such a matrix
without loss of generality. Therefore, the matrix in (17) is positive semidefinite if and only if

(

W̄′ X̄

X̄
T

D

)

−
1

(1− 〈A0〉2)

(

sT

rT

)

·
(

s r
)

� 0, (19)

whereX =
( r
X̄

)

wherer = (−〈A1〉, 〈A1〉, 〈A1〉, 〈A1〉) is the first row ofX, W̄′ is W′ without the first column and first row,
ands is the first row ofW′ excluding the element[W′]11. Since every diagonal element of̄W′ − 1

(1−〈A0〉2)
sT · s is positive

by construction, then the matrix in (19) is positive semidefinite if and only ifE = D − 1
(1−〈A0〉2)

rT · r � 0. Note that every

diagonal element ofE is equal to1 − 1
(1−〈A0〉2)

〈A1〉
2. However, the element[E]12 = 1 + 1

(1−〈A0〉2)
〈A1〉

2. For a matrix to
be positive semedefinite off-diagonal elements have a magnitude that is bounded by the diagonal terms, therefore forE to be
positive semidefinite we must satisfy〈A1〉 = 0.

We can now repeatedly apply the same analysis to subsequent bottom-left submatrices of (19) where the matrix in (17) is
positive semidefinite if and only ifE′ = D − 1

α r’ T · r’ � 0 whereα < 1 is some positive real number andr’ is any row ofX.
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For every matrixE′ the diagonal elements are1 − 1
α 〈P〉2 whereP ∈ {Ai, Bj , Ck} but there are off-diagonal terms inE′ that

take the value1+ 1
α 〈P〉2. Therefore for allΓ1+ABC described by (1), 〈P〉 = 0 for P ∈ {Ai, Bj, Ck} for all i, j, k. This matrix

thus corresponds toΓM and completes our proof.�

Combining the two lemmas above we then obtain our proof of Theorem2. This concludes our observation that maximally
random numbers can be certified within a set of correlations that is not the quantum set. Our proof is analytic and makes concrete
the numerical observations in Dhara et al [25]. It would be interesting to extend this proof to other scenarios even though we
have used a lot of the structure of the Mermin inequality and the(3, 2, 2) scenario.


