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Abstract. Stochastic diffusion search (SDS) is a global Swarm Intel-
ligence optimisation technique based on the behaviour of ants, rooted
in the partial evaluation of an objective function and direct communi-
cation between agents. Although population based decision mechanisms
employed by many Swarm Intelligence methods can suffer poor conver-
gence resulting in ill-defined halting criteria and loss of the best solution,
as a result of its resource allocation mechanism, the solutions found by
Stochastic Diffusion Search enjoy excellent stability.
Previous implementations of SDS have deployed stopping criteria derived
from global properties of the agent population; this paper examines new
local SDS halting criteria and compares their performance with ‘quorum
sensing’ (a termination criterion naturally deployed by some species of
tandem-running ants). In this chapter we discuss two experiments in-
vestigating the robustness and efficiency of the new local termination
criteria; our results demonstrate these to be (a) effectively as robust as
the classical SDS termination criteria and (b) almost three times faster.

Keywords: Collective Decision Making; Ant Nest Selection; Stochastic
Diffusion Search; Swarm Intelligence; Global Search.

1 Introduction

In recent years there has been growing interest in Swarm Intelligence (SI), a dis-
tributed mode of computation utilising interaction between simple agents [37].

? This paper offers extended discussion of results first presented at ICCCI 2016
(Halkidiki) and published in the conference proceedings [11].
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Such systems have often been inspired by observing interactions between social
insects: ants, bees, termites (cf. Ant Algorithms and Particle Swarm Optimis-
ers) see Bonabeau [12] for a comprehensive review. SI algorithms also include
methods inspired by natural evolution such as Genetic Algorithms [29] [33] or
indeed Evolutionary Algorithms [5]. The problem solving ability of SI methods
emerges from positive feedback reinforcing potentially good solutions and the
spatial/temporal characteristics of their agent interactions.

Independently of these algorithms, Stochastic Diffusion Search (SDS), his-
torically positioned as the first Swarm Intelligence meta-heuristic, was initially
described in 1989 as a population-based, pattern-matching algorithm [8] [7]. Un-
like stigmergic communication employed in Ant Algorithms, which is based on
modification of the physical properties of a simulated environment, SDS uses a
form of direct communication between the agents similar to the tandem running
mechanism employed by some species of ants (e.g. Temnothorax species, [23]).

SDS is an efficient probabilistic multi-agent global search, optimisation and
decision making technique [42] that has been applied to diverse problems such as
site selection for wireless networks [74], mobile robot self-localisation [6], object
recognition [9] and text search [7]. Additionally, a hybrid SDS and n-tuple RAM
[1] technique has been used to track facial features in video sequences [9] [31].
Previous analysis of SDS has investigated its global convergence [51], linear time
complexity [52] and resource allocation [50] under a variety of search conditions.
For a recent review of the theoretical foundations, and applications of SDS see
Al-Rifaie and Bishop [2].

In arriving at a ‘decision’ - halting - standard implementations of SDS ex-
amine the stability of the agent population as a whole; in this manner halting
is defined as a global property of the agent population. However such global
mechanisms are both less biologically/naturally plausible and more complex to
implement on parallel computational systems, than local decision making mech-
anisms.

The organisation of this paper is as follows. Firstly we outline Swarm In-
telligence meta-heuristic and against the background of communication in the
social insects. Next we describe how collective decision making occurs in nature
by analysing the behaviour of house-hunting ants. We subsequently introduce
the Stochastic Diffusion Search.

SDS has subsequently been thoroughly mathematically explored; it is not
appropriate to include its full analysis herein (see [9], [51], [52], [50], [55] for
detail), however a simplified description (under-pinning that suggested in [31])
and based on the ‘practical’ characterisation4 from Myatt et al. [48] is included.
Together these analyses make SDS one of the best characterised of all the SI
meta-heuristics.

Finally this paper examines the local quorum sensing behaviour observed in
some natural (ant) systems and uses this as the inspiration for two new local

4 The simplifying assumption is that, by considering only the mean transition of agents
between different clusters of agents, rather than the full probability distribution (as
investigated in [51]), a sufficiently accurate model of SDS may be obtained.
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termination mechanisms - one mechanism, ‘independent termination’, seeks to
implement a protocol in SDS that is as close as possible to the quorum sensing
method used by real ants; a second method - confirmation termination - aims
to implement a mechanism closely related to quorum sensing on a more conven-
tional SDS architecture; both halting criteria are algorithmically outlined and
their performance experimentally evaluated.

2 Swarm Intelligence

Natural examples of swarm intelligence systems that exhibit such forms of collec-
tive interactions and decision-making are: fish schooling, bird flocking, bacterial
growth, animal herding, nesting and foraging in the social insects etc. and in
recent years, abstractions of such natural behaviour have suggested several new
meta-heuristics for use in modelling collective intelligence. The simple and often
successful deployment of these new meta-heuristics on traditionally difficult op-
timisation problems has in turn generated increasing interest in the nascent field
of swarm intelligence algorithms: nature-inspired algorithms instantiating dis-
tributed computation via the interaction of simple agents and their environment
(e.g. ant algorithms [20] [21] and particle swarm optimisation [38] etc).

In this paper we will illustrate Stochastic Diffusion Search - in which inter-
actions between agents cause a population of agents to evolve towards potential
solution states - and show that it shares many of the characteristics and be-
haviours of classical swarm intelligence algorithms; furthermore, we show that
core stochastic diffusion processes are illustrated in the behaviours of some social
insects (e.g. bees in identifying potential new food sources and ants in choosing
a new nest site location) in the following sections of the paper (Sections 2.1 and
2.2); we explore SDS in this context.

2.1 Communication in Social Insects

In the study of interaction in social insects, two key elements are the individuals
and the environment, which results in two modes of interaction: the first defines
the way in which individuals interact with each other and the second defines
the interaction of individuals with the environment [13]. Interaction between
individual agents is typically carried out via agent recruitment processes and it
has been demonstrated that various recruitment strategies are deployed by ants
[15] [32] and honey bees [30] [67]. These recruitment strategies may be used, for
example, to attract other members of the population to gather around one or
more desired areas in the search space, either for foraging purposes or in order
to facilitate a colony relocation to a better nest site.

It has been observed that recruitment strategies in social insects may take the
form of: localised or global recruitment; one-to-one or one-to-many recruitment;
and may operate stochastically or deterministically. The nature of information
exchange also varies in different environments and with different types of social
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insects. Sometimes the information exchange is quite complex and, for exam-
ple, might communicate data about the direction, distance and suitability of
the target; or sometimes the information sharing is relatively simple, for exam-
ple, a stimulation forcing a particular triggered action. Nonetheless, what all
recruitment and information exchange strategies have in common is an ability
to distribute useful information across their community [42].

2.2 Methods of Communication

Chemical communication through pheromones forms the primary method of re-
cruitment in many species of ants; however, in certain species a ‘tandem running’
mechanism (one-to-one communication) is used [23]. In this process, the scouting
ant that finds the resource location attracts a single recruit upon its return to
the nest (tandem calling) and physically leads the recruit to the resource (tan-
dem running); by this action the location of the resource is physically publicised
[75] to the population.

Conversely in group recruitment, one ant summons a group of ants, leading
them to the resource location. Group recruitment may entail laying a pheromone
trail from the resource to the nest; a more complex process in which the recruiting
ant is no longer necessarily in physical contact with the recruited ants.

The largest-scale ant recruitment mechanism is called ‘mass recruitment’ [76];
in this mechanism, worker ants both follow the pheromone trail and incremen-
tally add an amount of pheromone on their journeys to and from the resource
location. In such ‘mass recruitment’, the concentration of pheromone plays an
important role in attracting other ants to the resource trail.

Different recruitment and communication algorithms thus induce differing
search performances. Ants communicating through group recruitment are faster
than tandem running ants, and similarly, ants utilising mass recruitment are
more efficient in their performances than the former recruitment strategies [15].
Ant algorithms have been successfully applied to hard optimisation and search
problems such as travelling salesman problem and the quadratic assignment
problem [22].

However, as mentioned in [17], the success of the ants in reaching the food
they have been recruited to obtain, varies from one species to another. In another
form of communication, indirect or stigmergic communication, the exchange of
information is based on modifying the physical properties of the environment
and its success lies in spatial and temporal attributes of mass recruitment and
the positive feedback mechanism it employs. In this mode, which is based on
using pheromone, short routes are loaded with more pheromone (because of the
shorter time it takes the ants to travel back and forth between the source and
target [34]).

An ant-like task allocation has been investigated in [35] where robots were
used to simulate different non-communication and communication strategies,
concluding that ant-inspired techniques of decentralised control, namely tandem
running recruitment mechanism [75] shows better results than single robots doing
the same task. This technique of information exchange is an instance of a broader
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type of recruitment strategy utilised in stochastic diffusion search [42], which will
be discussed in more detail, later in this paper.

In honeybees, group recruitment is performed by means of waggle dances,
in which the angle of the dance relative to gravity shows the direction of the
resource, and the duration of the central part of the dance represents the distance
to the target area. Each scouting bee can choose one of the dancing bees as a
guide to a food source or a new nest.

3 Collective decision-making in house hunting ants

Quorum sensing is widespread throughout biological systems. When a collective
decision is required, a quick and effective way of moving from an information-
gathering phase to an implementation phase is to use a quorum threshold. A
quorum response can be said to occur when an individual’s probability of ex-
hibiting a behaviour (e.g. choosing a given option) is a sharply nonlinear function
of the number of other individuals already performing this behaviour (or having
chosen that option) [72]. Quorum sensing is used by biological systems as diverse
as bacteria, insects, fish, and primates - including humans [44], [73], [71], [43]. A
model system for collective decision-making and the use of quorum thresholds is
provided by the process of house-hunting in social insects, such as honeybees and
cavity-nesting ants. Ants that nest in fragile cavities in rocks or twigs have only
limited scope to modify their nest-site, and readily relocate their entire colony
when the need arises. The processes by which cavity-nesting ant colonies of the
genus Temnothorax decide whether to emigrate, choose their new nest and im-
plement that choice have been well-explored, both empirically and theoretically,
as they provide a key model of animal collective decision-making.

The stages of an emergency emigration by a colony of cavity-nesting ants are
summarised in Figure (1). Even when no emigration is needed, scouts survey the
surrounding area for potential new nest sites [25] [70]. If the home nest cavity
is damaged or degraded, then scouts leave the home nest and both visit the
sites they already know and also search for new nest sites. Scouts assess the
available nests across a number of metrics using a weighted additive strategy
[27]. If a nest is judged as unsuitable, a scout continues searching; if a nest is
assessed as suitable by a scouting ant (Scout A), this scout will return towards
the home nest and recruit a second scout (Scout B) from in or near the home
nest [64]. Scout A will lead Scout B to the new nest by a slow tandem-running
process whereby Scout A moves slowly, with Scout B walking behind, making
contact with its antennae and learning the route [23]. Scout B will then make an
independent assessment of the nest, and will either reject it and keep searching, or
accept the nest and spend some time in it, before returning home and recruiting
a further scout. By this process of positive feedback, a good quality nest will
accumulate ants [61], [63]. Different ants appear to have differing thresholds for
accepting a nest and starting to recruit; this means that even low quality nests
can attract some ants, but scouts will accumulate more quickly and to a higher
level at higher quality nests [70] [62]. This assessment and recruitment process
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is terminated when a nest reaches a quorum of scouts. When scouts sense that
a nest site has reached quorum, they change into a ‘post-quorum’ behavioural
state [59]. From this point on they stop leading other scouts by tandem-running,
and are no longer willing to be recruited by tandem-running themselves. Instead,
they transport brood, queen, nest workers and other scouts to the chosen site.
Transported workers do not learn the route between the home nest and the new
nest, so are unable to return home, and thus cannot challenge the decision that
has been implemented [59]. Transported ants therefore contribute strongly to
the quorum by staying in the new nest, so once a few scouts have moved into
a ‘post-quorum’ state and started transporting, other scouts will quickly follow
suit.

4 Quorum sensing in house hunting ants

The sensing of a quorum threshold is clearly central to the decision-making pro-
cess, as it marks the transition from information-gathering and assessment, to
implementation. Terminating information-gathering promotes cohesion, which is
very important for ant colonies that only have one reproductively active queen.
For cavity-nesting ants, quorum thresholds appear to be based on direct en-
counter rate, rather than any indirect cue such as pheromone concentration [61].
Scouts spend 1-2 minutes in a nest assessing the number of workers present
via their encounter rate [58]. Quorum threshold as a proportion of colony size
is remarkably constant across a range of colony sizes (3.5%) [19], and this is
intriguing, because the relationship between colony size and cavity size is not
simple positive correlation: although larger colonies do inhabit larger cavities in
the wild, in laboratory tests both small and large colonies prefer larger cavities,
presumably to allow for growth [60], [14], [39] & [45].

Quorum sensing is a separate process from quality assessment and recruit-
ment. This means that the quorum sensing process in effect detects an average
quality assessment across many scouts, and has the potential to smooth out dif-
ferences in individual nest acceptance thresholds (or indeed, artificially-induced
fluctuations in nest quality) [28]. Once quorum is reached and transport has
begun, scouts do not re-assess quorum on subsequent visits - they will continue
to bring brood even if the nest is artificially emptied of ants [58]. The quo-
rum threshold itself is not modulated depending on the quality of the new nest
[57]. If nest quality is artificially manipulated during the assessment phase of
an emigration, the ants are able to respond flexibly to the new nest qualities;
if quality is manipulated after quorum is reach and implementation has begun,
then colonies often become ‘trapped’ in an inferior nest [26], [65]. This indicates
that quality is not re-assessed after quorum has been reached in these cavity-
dwelling Temnothorax species. In contrast, a different ant species, Diacamma
indicum recruits only by tandem-running with no clear quorum point and no
adult transport [3]. Colonies of Diacamma indicum are able to respond flexi-
bly to manipulated qualities at any stage of the emigration - but overall colony
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cohesion is lower, supporting the idea that using a quorum threshold increases
cohesion, but at a cost to flexibility.

Although quorum sensing behaviour is not modulated by the quality of the
options available, it is influenced by the scout’s experience, and by the con-
text of the emigration. Naive scouts use different quorum thresholds to those
used by more experienced scouts, but the direction of this difference differs be-
tween species [57]. This suggests that there is a learning component to quorum
sensing behaviour, but the mechanisms by which appropriate quorum thresh-
olds are learnt is unknown. Figure (1) describes an emergency emigration, but
cavity-nesting ants do also sometimes emigrate even when their home nest is un-
damaged, if a better nest is available in the neighbouring area. This is not due to
direct comparison of the quality of the two nests, but due to quality-dependent
nest leaving by scouts, and quality-dependent nest acceptance [63], [70]. In these
non-emergency migrations, scouts appear to use a quorum threshold around
twice as high as in emergency migrations [18], suggesting that colonies prioritise
speed over accuracy when conditions are harsher.

5 Stochastic Diffusion Search

SDS is based on distributed computation, in which the operations of simple
computational units, or agents are inherently probabilistic. Agents collectively
construct the solution by performing independent searches followed by diffu-
sion of information through the population. Positive feedback promotes better
solutions by allocating to them more agents for their exploration. Limited re-
sources induce strong competition from which the largest population of agents
corresponding to the best-fit solution rapidly emerges.

In many search problems the solution can be thought of as composed of
many subparts and in contrast to most Swarm Intelligence methods SDS ex-
plicitly utilises such decomposition to increase the search efficiency of individual
agents. In what is known as standard, or vanilla, SDS each agent poses a hy-
pothesis about the possible solution and evaluates it partially. Successful agents
repeatedly test their hypothesis while recruiting unsuccessful agents by direct
communication. This creates a positive feedback mechanism ensuring rapid con-
vergence of agents onto promising solutions in the space of all solutions. Regions
of the solution space labelled by the presence of agent clusters with the same
hypothesis can be interpreted as good candidate solutions. A global solution is
thus constructed from the interaction of many simple, locally operating agents
forming the largest cluster. Such a cluster is dynamic in nature, yet stable, anal-
ogous to, “a forest whose contours do not change but whose individual trees do”,
[4] [10] [53] [54]. Below the SDS mechanism is illustrated by analogy in ‘The
Restaurant Game’.

5.1 The restaurant game analogy

A group of delegates attends a long conference in an unfamiliar town. Each night
they have to find somewhere to dine. There is a large choice of restaurants, each
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Fig. 1. The process of assessment and recruitment for an individual scouting ant of
the genus Temnothorax, triggered by damage to the home nest. The scout starts by
searching for new nest sites, and may finish by detecting quorum at a site and starting
implementation of the decision to choose that site. Alternatively, if it is unable to
recruit other scouts or be recruited by other scouts, this indicates that quorum has
been reached at another site, and the scout will then be transported to that site and
will cease to search. Non-emergency emigrations also occur, but in non-emergency
situations scouts may spontaneously cease to search for a nest or attempting to recruit
and instead enter a quiescent state. Probability of becoming re-activated is dependent
on the home nest quality.
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of which offers a large variety of meals. The problem the group faces is to find the
best restaurant, that is the restaurant where the maximum number of delegates
would enjoy dining. Even a parallel exhaustive search through the restaurant
and meal combinations would take too long to accomplish. To solve the problem
delegates decide to employ a Stochastic Diffusion Search5.

Each delegate acts as an agent maintaining a hypothesis identifying the best
restaurant in town. Each night each delegate tests his hypothesis by dining there
and randomly selecting one of the meals on offer. The next morning at breakfast
every delegate who did not enjoy his meal the previous night, asks one randomly
selected colleague to share his dinner impressions. If the experience was good,
he also adopts this restaurant as his choice. Otherwise he simply selects another
restaurant at random from those listed in ‘Yellow Pages’.

Using this strategy it is found that very rapidly significant number of dele-
gates congregate around the best restaurant in town.

Abstracting from the above we get the algorithmic process defined in Table 1.
By iterating through test and diffusion phases agents stochastically explore the
solution space. However, since tests succeed more often on good candidate solu-
tions than in regions with irrelevant information, an individual agent will spend
more time examining ‘good’ regions, at the same time recruiting other agents,
which in turn recruit even more agents. Candidate solutions are thus identified
by concentrations of a substantial population of agents.

Table 1. Algorithmic description of the restaurant game

Initialisation phase
whereby all agents (delegates) generate an initial hypothesis
(select a restaurant at random)

loop
Test phase

Each agent evaluates evidence for its hypothesis (meal quality).
Agents are partitioned into active (content) and inactive (disgruntled)
groups (of diners).

Diffusion phase
Inactive agents adopt a new hypothesis by either communication with
another agent or, if the selected agent is also inactive, there is no
information flow between the agents; instead the selecting agent must
adopt a new hypothesis (restaurant) at random.

endloop

Central to the power of SDS (see Algorithm 1) is its ability to escape local
minima. This is achieved by the probabilistic outcome of the partial hypothesis

5 It should be emphasised that this analogy is provided simply to illustrate the com-
munication and feedback mechanisms at the heart of a stochastic diffusion search,
and not as a heuristic to be employed by a group of hungry conference delegates.
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Algorithm 1 Vanilla SDS

1: procedure step(swarm, search space)
2: for each agent in swarm do . Diffuse Phase
3: if not agent.active then
4: polled agent = swarm.random agent()
5: if polled agent.active then
6: agent.hypothesis = polled agent.hypothesis
7: else
8: agent.hypothesis = search space.random hypothesis()

9: for each agent in swarm do . Test Phase
10: test result = perform random test(hypothesis)
11: agent.active = test result

evaluation in combination with reallocation of resources (agents) via stochastic
recruitment mechanisms. Partial hypothesis evaluation allows an agent to quickly
form its opinion on the quality of the investigated solution without exhaustive
testing (e.g. it can find the best restaurant in town without having to try all the
meals available in each).

6 An approximate characterisation of the Stochastic
Diffusion Search

Stochastic Diffusion Search has often been used for pattern matching; such prob-
lems can be more generally redefined in terms of an optimisation, by defining
the objective function, F (x), for a hypothesis, x, as the similarity between the
target pattern and the corresponding region at x in the search space and finding
x, such that F (x) is maximised. In general SDS is most easily applied to optimi-
sation problems where the objective function is decomposable into components
that can be evaluated independently:

F (x) =

n∑
i=1

Fi (x) , (1)

where Fi(x) is defined as the ith partial evaluation of F (x).

In a standard SDS a ‘Test Function’ returns boolean value indicating whether
a randomly selected partial evaluation of the objective function is suggestive of
a ‘good’ hypothesis. In pattern matching the Test Function may return True if
the ith sub-feature of the target pattern is present at position (x, i) in the search
space. Thus the Test Score for a given hypothesis is the probability that the Test
Function will return true, and is hence indicative of the underlying value of the
objective function.
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6.1 Homogeneous background noise

In [50] Nasuto first derived a comprehensive analysis of SDS in which he pre-
sented several alternative noise cases and examined the resource allocation of
SDS in each using an Ehrenfest Urn model. One of these cases was that of homo-
geneous noise, where there are a number of distractors with the same Test Score
(the probability of an agent becoming active for a given hypothesis). However,
practical issues in the selected experimentation domain of text search prevented
the exploration of high values of both pd, (the probability of selecting a distractor
from the search space) and p+ (the overlap of the distractor with the target).

Nonetheless, in many real-world situations there will be high values of pd,
in that any non-optimal hypothesis can be regarded as a significant distractor.
In the brief and simplified analysis presented herein6, we consider the case of
‘homogeneous background noise’, where pd ≈ 1 and the Test Score of each dis-
tractor is identical. Moreover, even if the distractors show significant deviation
from homogeneity, some search space could be constructed that would produce
the same mean response from SDS; hence in many real-world situations the
homogeneous background noise model is both practical and useful.

In a typical convergence of SDS in the presence of homogeneous background
noise it can be seen that before an optimal solution is found the proportion of
active agents remains approximately constant [51]. Let this level of homogeneous
background noise be called β, and be equal to the proportion of active agents
given that the optimal solution has not yet been selected. Additionally, β is also
equivalent to the Test Score of the homogeneous distractors, since if all agents
are currently associated with distractors of Test Score β then the proportion of
the agents active will also be β. Therefore, the noise parameter β replaces the
two parameters pd and p+ used in previous analyses by Nasuto. It is noted that
in practise the background noise of a search can be estimated simply by iterating
SDS for a short time and taking the mean of the number of active agents per
iteration.

6.2 Expected cluster size formulation of SDS

In this section the minimum Test Score, αmin, for which a stable cluster of agents
can form will be derived. A simplifying assumption is that, by considering only
the mean transition of agents between different clusters, rather than the full
probability distribution (as investigated in [50]), a sufficiently accurate charac-
terisation of SDS can be produced. The noise model that will be assumed is that
of ‘homogeneous background noise’, where every non-optimal hypothesis corre-
sponds to a distractor of Test Score β. It is also assumed that there is a single
optimal solution with Test Score α that has a negligible probability of being
selected. Let c̄i be the mean number of active agents with the optimal solution
as a proportion of the total population.

6 The material in Section (6) was included at the suggestion of one of the reviewers
of this manuscript; it forms a much extended and adapted version of the ‘practical’
analysis of SDS behaviour first presented by Myatt et al in [48].
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Consider a function, f , that defines the mean transition between the size of
a cluster of active agents with the optimal hypothesis, in consecutive iterations,
as a proportion of the total number of agents. It can be seen that f is therefore
a function of the current cluster size c̄i, the Test Score of the optimal solution
α and the level of homogeneous background noise β.

c̄i+1 = f (c̄i, α, β) . (2)

By calculating f for a given variant of SDS it is possible to extract both the
mean optimal cluster size once a stable convergence has occurred and also the
minimum value of α for which a stable convergence can occur as a function of
β, αmin. The stationary state γ occurs when the mean cluster size (the number
of active agents with the same hypothesis) remains constant between successive
iterations i.e.

γ = f (γ, α, β) . (3)

It is apparent that (3) will have two solutions, one of which will be zero (when
c̄i = 0). A cluster will, on average, increase in size if the constraint

c̄i+1 > f (c̄i, α, β) (4)

holds. αmin may therefore be found using the constraint

f

(
1

k
, αmin, β

)
>

1

k
, (5)

which assumes the worst case that only one agent has the correct hypothesis.
For a given value of αmin SDS will then stably converge if the constraint

αmin < α ≤ 1 (6)

is satisfied. For a non-negligible pm, the value of αmin derived will be artificially
large but will still provide a useful guide.

6.3 Convergence level of SDS

In the following analysis it is assumed that pm is negligible and hence over a
small number of iterations the optimal solution will not be found.

During the diffusion phase, the mean number of inactive agents selecting an
agent within the optimal cluster is given by g(c̄i, α, β)c̄i, where g yields the num-
ber of inactive agents for a given iteration. From Figure 2 g can be immediately
written as

g(c̄i, α, β) =
1− α
α

c̄i + (1− β)
(

1− c̄i
α

)
. (7)

Therefore, the function f that defines the mean 1-step optimal cluster size evo-
lution is

c̄i+1 = f(c̄i, α, β) = α (c̄i + g(c̄i, α, β)c̄i) . (8)



Local termination criteria for Stochastic Diffusion Search 13

c
i
 

α α 

c
i
 

1 − 

c
i
 c

i
 1−α 

α 

ACTIVE INACTIVE ACTIVE INACTIVE 

Optimal Solution Background Noise 

β 1 − 
c

i
 

α 
c

i
 

α 
1 − β 1 − 

AGENTS AGENTS AGENTS AGENTS 

Optimal Solution Optimal Solution Noise Solution Noise Solution 
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and consequently

f(c̄i, α, β) = α

[
c̄i +

(
1− α
α

c̄i + (1− β)
(

1− c̄i
α

))
c̄i

]
. (9)

Substituting this into (3) yields

γ =
α (2− β)− 1

α− β
. (10)

Similarly, substituting (9) into (5) gives

αmin =
1

2− β
, (11)

assuming that k is large. Figure 3 considers (9) as a 1 dimensional iterated map,
and graphically it can be seen that for a non-zero attractor to exist the condition

df

dc̄i
> 1 (12)

must hold for c̄i = 0. Differentiating (9) wrt c̄i yields

df

dc̄i
= α (2− β)− 2c̄i (α− β) (13)

and it follows that the minimum value of α for which the constraint in (12) holds
is

αmin =
1

2− β
. (14)

Hence, for any α < αmin the size of the cluster will tend to zero for any initial
cluster size and the search will fail. NB. This maximum level of background noise
is equal to the convergence level of SDS with β = 0.

6.4 Multiple testing

In situations where the Test Score of the global optima cannot cause a stable
convergence as defined by (5), the corresponding Test Function may be manipu-
lated such that the Test Score of all hypotheses is boosted, thus allowing stable
convergence. One simple of achieving this is the utilisation of multiple testing. If
an agent performs t samples of the Test Function at a given hypothesis (rather
than just one) and becomes active iff one or more of these tests are passed, then
the Test Score α for all hypotheses will be increased, such that

α′ = 1− (1− α)
t

(15)

Let e = 1− α, then
dα′

de
= −tet−1 (16)
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and
de

dα
= −1. (17)

Therefore
dα′

dα
=
dα′

de
.
de

dα
(18)

and thus
dα′

dα
= t (1− α)

t−1
. (19)

Hence for α ∈ R, 0 < α < 1 and t ∈ I, t > 0,

dα′

dα
> 0. (20)

Therefore, because the increase of α′ is monotonic with respect to α, the topology
of the Objective Function landscape will be preserved (except as t → ∞), and
thus the optima of α′ will still correspond to the optima of α. Multiple testing
is therefore a generalisation of the standard testing technique in Vanilla SDS.
Figure 4 shows the transformation applied by tuple testing for varying t (where
t is the number of tests evaluated for each agent-hypothesis).

Considered in the domain of nest selection in social insects, multiple testing
is analogous to a scout spending time at a potential nest site and evaluating it
repeatedly using t different metrics, with the nest judged suitable if anyone of
the metrics is positive7.

Consequently, for sufficiently large t, SDS can be made to converge success-
fully for any arbitrary optimal match. However, this may pose problems if such
a value of t results in the background noise, β, of the search being greater than
50%, because it will be difficult to establish when convergence to the optimal
solution has actually taken place (as the search will always be in some state of
convergence). In such cases, it may be necessary to evaluate the search a num-
ber of times (to a given termination criterion, say, a terminal number of search
iterations, this number being selected to ensure a high probability of the search
having located the optimal match). In summary we observe that the principle
of multiple testing is robust and not domain specific (i.e. it may be applied to
any problem in which the Test Score of the standard Test Function is not suffi-
cient to ensure stable convergence); an example multiple testing SDS application
(locating eyes in images of human faces) was outlined in [9].

7 Halting criteria

The termination of SDS has historically been defined in terms of the stability of
the population size of a group of active agents. Such methods are termed global
halting criteria as they are a function of the total number of active agents within
the global population of agents.

7 Thus multiple testing is very similar to the repeated metrics strategy deployed by
real scouts in nest selection, albeit in the latter case scouts assess potential nest sites
across a number of metrics using a weighted additive strategy [27].
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Fig. 4. The relationship between α and α′ for varying tuple tests t

7.1 Global Halting criteria

Two well documented global methods for determining when SDS should halt are
the Weak Halting Criterion and Strong Halting criterion[51] [50]; the former is
a function of the total number of active agents and the latter the total number
of active agents sharing the same hypothesis; the ‘Weak’ halting criterion is
simpler to compute and from Figure 5 can be broadly seen to demonstrate the
same halting behaviour as the ‘Strong’.

7.2 Local Halting criterion

In order to approximate the behaviour of Temnothorax ants in their nest selec-
tion behaviour, the halting behaviour of SDS was redesigned such that it would
emerge from purely local interactions of agents.

By analogy with the behaviour of tandem running Temnothorax ants (as
outlined in Section (3) and Section (4) herein), in the following we propose two
new variants of the process for determining when an agent should switch from
the classical SDS explore-exploit behaviour to a new, so called, ‘terminating ’
behaviour which we term the independent and confirmation halting criteria.

In these variants agents can take on an additional behaviour in which they
enter a new state we define ‘Terminating’, wherein their hypothesis becomes
fixed and they subsequently seek to actively remove agents from the dynamic
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swarm8 and give them their own (now fixed) termination hypothesis (analogous
to the ‘post-quorum’ behavioural state in ants of the genus Temnothorax, wherein
post-quorum ants literally carry other ants they encounter to the new nest site).

As this decision making process successively removes agents from the swarm
we name the removal behaviour Terminating, and the whole process Reduc-
ing SDS. In this way a collective ‘decision’ is made (and the local halting condi-
tion met) when all agents are either active and/or have been removed from the
swarm.

7.3 ‘Independent’ termination behaviour

In independent reducing SDS we relax the assumption that all SDS agents update
synchronously in iterative ‘cycles’ (wherein one such cycle corresponds to all
agents being updated).

Algorithm 2 independent SDS

1: procedure step(swarm, search space)
2: swarm = shuffle(swarm)
3: for each agent in swarm do
4: polled agent = swarm.random agent() . Diffusion behaviour
5: if Both agents are inactive then
6: Both agents randomise hypothesis
7: else if One agent is inactive and other is active but not terminating then
8: Inactive agent assumes active agent’s hypothesis
9: else if One agent is terminating then

10: Other agent is removed from the swarm
11: else if Agents share a hypothesis then
12: Both agents become terminating

13: if not agent.terminating then . Testing behaviour
14: test result = perform random test(hypothesis)
15: agent.active = test result

In independent SDS agents update independently9; furthermore the diffusion
process endeavours to mirror the behaviour of real ants when two ants ’meet’:

– if neither agent is active both reselect new random hypotheses;
– one agent is inactive and other is active but not terminating then the inactive

agent assumes active agent’s hypothesis.

8 Standard SDS has previously been shown to be a global search algorithm[51] - it will
eventually converge to the global best solution in a given search space; by removing
agents form the swarm, relative to standard SDS the number of potential agents
remaining available for explore-exploit behaviour is reduced.

9 To facilitate the use of homogenous performance metrics, we assume that in a pop-
ulation of k agents, k single asynchronous updates corresponds to one standard
synchronous iteration cycle.
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– one of the agents is in terminating mode then the other is ‘removed’ from
the swarm and give (placed at) this hypothesis.

– if the two agents meet that both have the same hypothesis then both switch
to terminating mode.

The above process is more fully outlined in Algorithm 2.

7.4 ‘Confirmation’ termination behaviour

Since its inception in 1989 [7] a substantial body of algorithmic analysis (describ-
ing the theoretical behaviour of SDS), empirical studies and practical applica-
tions have been published (for a recent review see [2]). To more readily facilitate
the future use of these results in both local termination variants and potentially
to extend this work to the analysis of real ants, we also present a further simpli-
fication of independent SDS to a second reducing behaviour that more closely
aligns with that of standard SDS diffusion; we define this termination mode
confirmation reducing SDS.

Algorithm 3 Confirmation SDS

1: procedure step(swarm, search space)
2: for each agent in swarm do . Diffuse Phase
3: polled agent = swarm.random agent()
4: if agent.active then
5: hyp 1 = agent.hypothesis
6: hyp 2 = polled agent.hypothesis
7: if polled agent.active and hyp 1 == hyp 2 then
8: agent.terminating == True

9: else
10: if polled agent.active then
11: if polled agent.terminating then
12: swarm.remove(agent)
13: else
14: agent.hypothesis = polled agent.hypothesis

15: else
16: agent.hypothesis = search space.random hypothesis()

17: for each agent in swarm do . Test Phase
18: test result = perform random test(hypothesis)
19: agent.active = test result

In confirmation reduction SDS agents are assumed to update synchronously
and the diffusion of information is changed to more closely resemble that of clas-
sical dual mode (passive and active) recruitment SDS[49]. In confirmation SDS
an active agent polls random agents in the diffusion phase. Active agents become
terminating if their polled agent is also active and both agents share a hypoth-
esis. The agent is then locked into being active, maintaining that hypothesis. If



Local termination criteria for Stochastic Diffusion Search 19

an inactive agent polls a terminating agent, the inactive agent is removed from
the population (see Algorithm 3 for details).

Thus independent SDS has two major distinctions from confirmation SDS,
firstly no distinction is made between the polling agent and the polled agent, the
effect of their diffusion is resolved simultaneously; secondly, rather than alter-
nating diffusion and test phases, agents are randomly selected to individually
perform a hypothesis diffusion behaviour immediately followed by a hypothesis
test behaviour. These two features are intended to more closely model the actual
termination behaviour of real ants.

8 Experiments

A series of experiments was performed to investigate the diffusion behaviour
of the two new halting criteria over a variety of search parameters to establish
(a) if the algorithms’ gross behaviour remains characteristic of SDS and (b) to
evaluate their robustness over a variety of search parameters (which effectively
characterise the quality of the putative best solution, α (0 ≤ α < 1), relative to
β, (0 ≤ β < 1), the quality of the distractor solution10); in the ‘ant migration’
problem, α is analogous to a measure of the quality of the potential new nest
site and β effectively a measure of the quality of the original nest.

In all experiments the population is initialised with one agent maintaining
the hypothesis representing the potential best solution and the probability of an
agent randomly selecting the hypothesis of the potential best solution is set to
zero; this ensures that only the diffusion behaviour of the algorithm is explored11.

In the first experiment each of the four termination functions (weak, strong,
independent and confirmation) was modelled in a population of 10000 agents,
one of which was active and at the solution hypothesis at time zero, with all other
agents set inactive pointing to the ‘noise’ hypothesis. The algorithm was then
evaluated 25 times from these conditions against a range of possible values of α
and β (from 0 to 0.875 with a step of 0.125). The number of times the algorithm
successfully halted within 250 iterations was recorded as was the mean average
number of iterations before halting in these cases.

In the case of weak and strong halting SDS, halting was considered success-
ful if the halting criterion was reached. All four algorithms would also halt if
all agents were active at the solution hypothesis, as this is analogous to a suc-
cessful migration of agents to an optimal state. Two further halting conditions
were included, when the algorithm had run for more than a specified number of
iterations and when all agents held the noise hypothesis. Any experiment that
halted for these reasons was considered unsuccessful.

10 β defines a “uniform random noise” hypothesis; an aggregate of all the possible
hypotheses an agent could have other than the putative solution hypothesis.

11 These parameters define a problem analogous to the search space being infinitely
large, wherein the only way an agent can adopt the ‘best’ solution is to receive it
via diffusion from an active agent.
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In a second experiment the four algorithms were run against fixed values of α
and β which the first experiment had shown would be likely to successfully halt.
The state of all agents was recorded at every iteration and number of agents (as
a proportion of the total population) in various states was graphed over time to
visualise the characteristic behaviour of the halting criteria (see Figure 6).

8.1 Experiment 1

The graphs in Figure 5 and Figure 6 plot the cluster size of a population of
10,000 SDS agents over time using the four different halting criteria - weak,
strong, independent and confirmation - with search parameters (solution hy-
pothesis (α = 0.750, noise hypothesis (β = 0.375); it is noted that the shapes of
cluster sizes using all four termination criteria broadly follow the characteristic
SDS S-shaped convergence curve.

8.2 Experiment 2

Table 2 lists i the average number of iterations before halting and c the number
of times that the algorithm successfully halted for a SDS experiment for all four
algorithms using a population of 10,000 agents across a variety of parameter
values of the noise hypothesis (β) and solution hypothesis (α).

NB. Pairs of values for α and β for which all four algorithms failed to converge
25 times out of 25 are not listed.

Examining the results presented in Table 2, the following comparative ob-
servations can be made:

weak versus strong halting the convergence time for weak and strong halt-
ing are almost identical whilst their robustness is similar (strong halting is
more robust in 8 cases and less robust in 8);

strong halting versus independent reduction on average the convergence
time is 3.3 times faster for independent whilst its robustness is similar (strong
halting is more robust in 11 cases, less robust in 6);

strong halting versus confirmation reduction on average the convergence
time is around 2.8 times faster for confirmation whilst its robustness is similar
(strong halting is more robust in 8 cases, less robust in 6);

9 Comparison of ant quorum-sensing and SDS local
halting criteria

The termination criterion of an SDS algorithm can be considered analogous to
the ant quorum threshold, i.e. the point at which ants cease to search, and in-
stead implement their chosen decision (Figure 1). Once an ant has sensed that
quorum is met, it does not re-visit that decision and is essentially committed
to that hypothesis. This process can be compared to theoretical SDS local halt-
ing criteria that are able to terminate a decision-process rapidly. Specifically,
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Table 2. Mean average iterations before termination for three different halting criteria
(strong, independent and confirmation) over varying quality of solutions

strong independent confirmation

β α i c i c i c

0.000 0.625 151.2 17 42.0 6 46.2 14
0.000 0.750 126.8 20 25.8 16 27.8 18
0.000 0.875 118.2 21 20.0 22 21.1 21
0.125 0.625 195.0 7 52.2 12 58.4 7
0.125 0.750 130.4 11 29.6 15 34.1 16
0.125 0.875 122.0 23 22.9 21 25.8 20
0.250 0.625 216.0 1 77.1 7 88.6 5
0.250 0.750 138.7 17 35.5 16 42.2 15
0.250 0.875 125.5 22 26.0 21 31.4 22
0.375 0.625 100.0 1 232.0 1 244.0 1
0.375 0.750 165.6 14 48.5 12 56.7 16
0.375 0.875 131.5 21 30.0 19 38.5 20
0.500 0.750 212.0 5 74.2 12 87.9 7
0.500 0.875 140.5 18 38.5 13 51.5 16
0.625 0.750 100.0 4 150.0 3 238.0 1
0.625 0.875 161.9 18 50.6 14 73.5 20
0.750 0.875 211.0 7 92.4 14 142.5 13
0.875 0.875 100.0 1 − 0 − 0
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Fig. 5. Cluster size evolution over time for SDS using the weak halting criterion (left)
and the strong halting criterion (right). The x-axis counts iterations, the y-axis shows
cluster size as a proportion of the entire population. The behaviours are practically
identical, the slightly later convergence of the strong halting SDS is a result of the
inherent randomness. The positive feedback effect can be seen in the sharp S-curve of
the solution cluster size.
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Fig. 6. Cluster size evolution over time for SDS using confirmation SDS (left) and
independent SDS (right). The x-axis counts iterations, the y-axis shows cluster size
as a proportion of the entire population. Both show an accelerating growth in the
number of agents at the solution hypothesis followed by a similar growth of terminating
agents at the solution hypothesis until the entire swarm is either active (in the case of
confirmation SDS) or removed from the swarm (in the case of independent SDS).

the independent SDS termination criterion can be considered analogous to a
process whereby an ant’s decision to enter a post-quorum state is influenced
by a one-to-one reinforcement of its own view. That is, Scout A will enter a
post-quorum state (=terminating) for Nest A if Scout A has accepted nest A
and returned to the home nest to recruit, but is instead itself then recruited by
scout B back to nest A. This recruitment event would serve to reinforce Scout
A’s initial judgement. Temnothorax ants are indeed sometimes recruited back
to nests they have already visited (Figure 1), so there is potential for this ’re-
inforcement recruitment’ process to play a role for ant colonies. For example,
’reinforcement recruitment’ could cause ants to enter a post-quorum state at a
lowered encounter rate. This would help extra rapid acceptance of a nest if there
were only one new nest site available. This idea could be tested empirically, ide-
ally in a complex arena that would promote tandem-running behaviour, allowing
communication of preference.

The main limitation on the use of the independent SDS termination crite-
rion by the ants is that the criterion relies on ants being able to communicate
their current preference, which they are able to do only by the slow and fairly
infrequent process of tandem-running. Empirical observations have shown that
scouting ants can judge quorum to have been reached (through encounter rate)
without having followed a tandem run, so clearly they are not relying solely on
independent-like rules. An analogous - Swarm Intelligence - process has however
been observed in house-hunting honeybees.
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Honeybees, in contrast to ants, are able to directly ‘poll’ another scouting
bee for its preference, without having to actually visit that bee’s preferred site.
This is because honeybees communicate the location of their preferred site using
a waggle-dance performed back at the main swarm and honeybees are able to
determine whether a waggle-dance indicates their chosen site or not, without fly-
ing to the location indicated by the dance ([69]). This gives the bees more power
to use independent-like rules in their decision-making - and honeybees do indeed
use the unanimity of the waggle-dances in their assessment of when to terminate
the search and relocate to a new site ([68]). While in this way, honeybee decision-
behaviour is closer to confirmation SDS than Temnothorax house-hunting is, on
the other hand we note that bees use a one-to-many broadcasting communica-
tion when they waggle-dance, rather than pair-wise communication as used by
tandem running ants and SDS agents.

10 Conclusion

This paper has looked at cooperative decision making in house-hunting ants and
in the Stochastic Diffusion Search algorithm. Decision making in standard SDS
is typically based on the use of one of two well established ‘halting’ functions -
the Strong and Weak Halting criteria - both of which entail global access to the
activity of the SDS population as a whole. Conversely in this paper, inspired
by the quorum sensing mechanism deployed by some species of ants in nest
moving, we have successfully demonstrated two new local termination criteria
for SDS which have broadly been demonstrated to have similar behaviour to the
standard SDS meta-heuristic using strong and weak halting criteria (in terms
of their robustness to noise). Furthermore, it is observed that the use of a local
halting mechanism substantially speeds up the collective decision making time;
both independent and confirmation terminate are around three times faster than
via the use of the strong halting criterion.

Although the independent and confirmation termination processes described
in this paper found inspiration from the nest hunting behaviour of Temnothorax
ants, we do not claim that the nest selection behaviour of these ants is isomorphic
to SDS :- one critical difference between the two systems is that SDS relies on its
agents being easily able to communicate their current hypothesis to each other,
whereas Temnothorax ants are only able to do this by the slow [and relatively
infrequent] process of tandem-running. Empirical observations have shown that
scouting ants can judge quorum to have been reached (through encounter rate)
without having followed a tandem run, so clearly Temnothorax ants do not solely
rely on independent-SDS like termination rules. In this context, future research
will investigate the degree to which appropriately modified SDS characterisations
can be used to describe the behaviour of Temnothorax ants.

In conclusion we suggest that the successful deployment of local halting cri-
teria (a) significantly simplifies the implementation of SDS on parallel com-
putational hardware and (b) potentially open up analogical study of ant and
honeybee decision-making behaviour through the transformational lens of SDS
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theory, where there is a significant extant body of proven mathematical results;
for example outlining: speed of convergence, robustness, time complexity, stabil-
ity of solutions etc.[2]; further mathematical study aims to better understand the
empirical performance of the local termination criteria described herein, using
extant mathematical models of SDS behaviour (ibid).
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