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Abstract

Motivation: Protein fold recognition when appropriate, evolutionarily-related, structural templates

can be identified is often trivial and may even be viewed as a solved problem. However in cases

where no homologous structural templates can be detected, fold recognition is a notoriously dif-

ficult problem (Moult et al., 2014). Here we present EigenTHREADER, a novel fold recognition

method capable of identifying folds where no homologous structures can be identified.

EigenTHREADER takes a query amino acid sequence, generates a map of intra-residue contacts,

and then searches a library of contact maps of known structures. To allow the contact maps to be

compared, we use eigenvector decomposition to resolve the principal eigenvectors these can then

be aligned using standard dynamic programming algorithms. The approach is similar to the Al-

Eigen approach of Di Lena et al. (2010), but with improvements made both to speed and accuracy.

With this search strategy, EigenTHREADER does not depend directly on sequence homology be-

tween the target protein and entries in the fold library to generate models. This in turn enables

EigenTHREADER to correctly identify analogous folds where little or no sequence homology infor-

mation is.

Results: EigenTHREADER outperforms well-established fold recognition methods such as

pGenTHREADER and HHSearch in terms of True Positive Rate in the difficult task of analogous fold

recognition. This should allow template-based modelling to be extended to many new protein fam-

ilies that were previously intractable to homology based fold recognition methods.

Availability and implementation: All code used to generate these results and the computational

protocol can be downloaded from https://github.com/DanBuchan/eigen_scripts. EigenTHREADER,

the benchmark code and the data this paper is based on can be downloaded from: http://bioinfad

min.cs.ucl.ac.uk/downloads/eigenTHREADER/.

Contact: d.t.jones@ucl.ac.uk

1 Introduction

Accurate prediction of protein structure from protein sequence re-

mains a significant open problem in structural biology and bioinfor-

matics, and this topic has received a great deal of attention in the

preceding 50 years. While some sub-problems such as homology

modelling have shown marked successes, progress for other aspects

has remained relatively modest. A single, integrated mathematical

model of protein folding remains elusive (Mitchell and Gronenborn,

2015).

Today, protein structure prediction typically proceeds by one of

two broad strategies. Template-free or ab initio folding attempts to fold

proteins using only the physiochemical information implicit in the pro-

tein sequence itself. To date, such methods have achieved rather limited

success (Moult et al., 2014), though recent developments in protein

contact prediction are very promising. The alternative strategy, tem-

plate based (or homology) modelling, is widely used by biologists as it

has proven to be a robust predictive strategy, enjoying increasing suc-

cess as both the sequence and structure databases expand.
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Template based modelling proceeds by first attempting to iden-

tify suitable structural templates for the given query protein se-

quence. This initial step is commonly referred to as fold recognition.

If one or more templates can be identified, the 3D structure or struc-

tures can then be used as the basis for homology modelling which

will result in a predicted structure (Söding and Remmert, 2011).

As such, template-based modelling depends critically on success-

ful fold recognition and to this end many sophisticated fold rec-

ognition strategies have been developed. Popular methods make

use of computational methods as diverse as: dynamic programming,

Support Vector Machines, neural networks, Hidden Markov

Models, profile-profile comparison and so forth (Rost et al., 1997;

Olmea et al., 1999; Zhou and Zhou, 2005; Wu and Zhang, 2008;

Lobley et al., 2009; Peng and Xu, 2011; Ma et al., 2013; Gniewek

et al., 2014).

Fold recognition strategies often involve matching a query se-

quence against a representative library of known, possible template

folds. The fold library is expressed in terms of physiochemical fea-

tures such as secondary structure and solvent accessibility, which are

easy to calculate for each template fold and will also, ideally, be

easy to predict from the query sequence and its homologous se-

quences. Typically, each feature will be expressed as a vector over

the length of each fold library member and the query sequence. This

representation makes it easy to match the feature vectors of the

query sequence to those in the fold library in a computationally effi-

cient manner. With an appropriate scoring function, the quality of

each match can in turn be assessed. Query-sequence to specific-fold

matches which fulfil some given selection criteria will then be used

as structural templates for further structural modelling procedures.

Selection criteria vary in sophistication from simple heuristics (‘top

n matches’) to probabilistic scoring using Neural Networks or

Support Vector Machines.

Despite many successes, the early promise of classical threading

methods, to detect protein folds in the absence of sequence similar-

ity, has not stood the test of time (i.e. Jones et al., 1992), or rather

has not kept pace with the growth in both sequence and structure

data banks. The basic idea of classical threading approaches was to

use amino acid pair and solvation potentials to both pick out the

best templates and find the optimal alignment (or threading). As

fold space became more crowded, it became clear that these poten-

tials alone were not sufficient. Present day methods combine fea-

tures such as statistical potentials with sensitive sequence profile

methods, which have become very powerful due to the exponential

growth of sequence data banks, and it is these hybrid approaches

that have come to dominate the field. Unfortunately, in cases where

there is fold similarity but no evidence of common ancestry (so

called analogous folds), sequence-directed fold recognition methods

fail to provide adequate results. Here we present a new approach to

protein fold recognition, called EigenTHREADER, which revisits

the idea of detecting analogous folds by protein threading by ex-

ploiting new developments in residue-residue contact prediction ra-

ther than statistical potentials.

It has long been understood that protein structure can be accur-

ately reconstructed when complete (or sufficient high quality) con-

tact or distance constraint information is available. Indeed, this

insight is the basis of solving protein structures by NMR data

(Creighton, 1992).

With even sparse distance constraints, fold recognition is pos-

sible, even when high resolution structure reconstruction may not be

possible. This is especially the case when the contact data available

principally describes contacts between distal residues in the protein

chain. It follows then, that if we can access or predict sufficient

distance restraints from amino acid sequence, the fold of any given

protein may be elucidated.

For many years only modest progress had been made in the prob-

lem of protein structure prediction via residue-residue contact pre-

diction. However, recent substantial advances in accurate contact

prediction, via co-evolutionary sequence analysis, have now ren-

dered contact prediction a viable path to both de novo protein struc-

ture prediction and fold recognition (Marks et al., 2011; Jones et al.,

2012; Kaj�an et al., 2014; Kosciolek and Jones, 2014; Seemayer

et al., 2014; Jones et al., 2015). We also note such advances have

also allowed the development of highly accurate profile search meth-

ods such as MRFAlign (Ma et al., 2014) which integrate both query

sequence profile and contact data.

In this paper we present EigenTHREADER, a novel method for

fold recognition which combines standard threading techniques

with accurate contact prediction constraints. Predicted contact

maps for query sequences are searched against a pre-generated li-

brary of contact maps representing possible template structures.

EigenTHREADER has been specifically developed to tackle fold rec-

ognition problems in instances where powerful homology-driven de-

tection methods such as HHSearch/HHPred (Söding, 2005) fail to

produce results.

2 Materials and methods

2.1 Background
2.1.1 Representation of a protein as a contact map

A protein’s 3D structure can be described in terms of its inter-residue

contacts. A contact indicates that a pair of residues (ideally distant in

primary sequence) lie close to one another in 3D space in the native

folded tertiary structure. Where ‘close’ is defined by some given dis-

tance threshold. Typically, this distance threshold is set such that any

two residues within the threshold distance may be assumed to take

part in some form of physiochemical interaction. The underlying as-

sumption being that such interactions may be critical to stabilizing the

3D structure of the protein. Interaction threshold distances are typic-

ally considered between 6 and 16 Å between the Ca or Cb carbons of

the residue pairs. Given a threshold distance, a contact map (or ma-

trix) can be constructed, which is a 2D representation of the inter-

residue contacts within the tertiary structure of a protein chain.

Contact maps are square, binary, symmetric matrices valued such

that contacting residues are designated 1 and positions in the matrix

which do not represent contacts take the value 0. When analysing

contact maps adjacent residues are typically excluded or not con-

sidered in subsequent analysis as such contacts are trivially true under

all contact distance thresholds due to simple amino-acid main-chain

connectivity.

2.1.2 The maximum contact map overlap (CMO) problem

The CMO problem asks, given two proteins (P1 and P2) and their

respective contact maps (MP1 and MP2 ), what is the alignment of

the 2D contact maps which maximizes the overlaps between the

maps (i.e. best superimposes the two maps)? The problem is con-

strained such that positions in the first or second protein can be

aligned with at most one position in the other protein. Any non-

aligned positions are assumed to align to gaps. A second constraint

requires that the ordering of residues in both sequences must be

preserved.

Following on from the work of Di Lena et al. (2010) we re-

produce here their formalization of the maximum CMO between

two contact maps: The maximum CMO of MP1 and MP2 can be
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calculated as: the alignment of two contact maps, f , which maxi-

mizes the quantity:

O MP1;MP2
� �

¼
X

f ið Þ6¼1 6¼f jð Þ
j>iþ1;f jð Þ>f ið Þþ1

MP1

ij �M
P2

f ðiÞf ðjÞ (1)

Note that contacts between consecutive amino acids are not counted

and that there is no penalty to the score for aligning a contact pos-

ition in one matrix with a non-contact position in the other matrix.

So, the maximum CMO is the alignment of the two matrices

where the sum of the number of superimposed 1-valued elements is

greatest.

2.2 EigenTHREADER
EigenTHREADER is a threading method which efficiently

searches a library of protein folds (expressed as contact maps)

with the contact map of a query protein. Contacts in the query

contact map may be derived by experimental means (e.g. inferred

from NMR or x-ray crystallographic data) or, of more relevance

to this study, may be generated by predictive methods. In this

study we make use of predicted contacts generated by

MetaPSICOV (see Section 2.3). This method was found to be the

most accurate contact prediction method in the most recent CASP

experiment (Kinch et al., 2016), and is thus an obvious starting

point for contact threading. The maximum contact map overlap

(CMO) between the predicted contact map for the query protein

and every contact map in the fold library is calculated and scored.

The highest scoring pairs can then be regarded as valid fold pre-

dictions for the query sequence as for those pairs the number of

satisfied contacts is maximized.

Calculating the maximum CMO is known to be an NP hard

problem (Goldman, 1999). EigenTHREADER calculates near max-

imal CMOs using the heuristic method, Al-Eigen, developed by Di

Lena et al. (2010). We introduce some algorithmic improvements so

that a large library of folds can be searched in reasonable time. The

Al-Eigen method uses eigendecomposition of symmetric matrices

(Strang, 2016) and the Needleman-Wunsch alignment algorithm

(Needleman and Wunsch, 1970) to achieve high quality contact

map alignments in polynomial time.

2.2.1 Al-eigen

Here we briefly outline the Al-Eigen method, for a detailed treat-

ment of the method we refer readers to the paper of Di Lena et al.

Eigendecomposition allows us to decompose any real-valued

n� n symmetric matrix, M, into a series of eigenvectors and their

associated eigenvalues. The matrix, M, can then be reconstituted by

summing the outer product of each eigenvector-eigenvalue pair. It

follows from this that the matrix M may be approximated, �M, by

considering only the few (tth) eigenvectors with the largest associ-

ated eigenvalues. Such that:

M ¼
Xt

i¼1

kiðvi � viÞ (2)

where M is the approximation of matrix M to order t, vi is the ith

eigenvector and ki is its associated eigenvalue. � denotes the outer

product of the eigenvector to itself.

Two proteins can then be compared by considering the global

alignment of the contact map eigenvectors rather than attempting to

align the contact maps directly. This can be trivially computed in

polynomial time with the Needleman-Wunsch algorithm given a

scoring matrix with a specified gap penalty. Di Lena et al. state that

their scoring function:

Sij ¼
Xt

k¼1

ðu0kÞiðv0kÞj (3)

Assigns high scores where the entries in each eigenvector, u0 and v0,

have the same sign rather than the similar values.

2.2.2 Efficient contact map search

The original Al-Eigen algorithm paper clearly showed that the qual-

ity of the alignments was seen to increase as the number of included

eigenvectors was increased. However, due to the requirement in

their algorithm to evaluate all possible eigenvector signs (as

vi � vi ¼ �vi ��vi), the time required for each comparison scaled

at 2n, where n is the maximum number of eigenvectors considered.

This meant that in any practical search time, only a relatively small

number of eigenvectors could be considered, limiting the accuracy

of alignments.

Rather than exhaustively enumerating all possible eigenvector

signs, EigenTHREADER opts instead for an iterative search proced-

ure where we attempt to invert the signs of each eigenvector in turn,

starting with the eigenvector associated with the largest eigenvalue.

The CMO score is then assessed after each inversion, and any sign

inversion which decreases the CMO score is rejected. Once a sign in-

version is accepted, this process is repeated, starting again with the

largest eigenvalue/eigenvector, until no further improvement in

CMO score is observed. This modified algorithm is expected to scale

by n2 rather than the 2n of the original Al-Eigen. Although this itera-

tive procedure cannot be guaranteed to produce optimal scores we

have observed that it always achieves better alignments than Al-

Eigen for any comparable runtime (data not shown).

As a further constraint to the alignment, a secondary structure

matching score can also be optionally added to the CMO score ma-

trix, up-weighting regions of the alignment path matrix where the

predicted secondary structure of the target matches the observed sec-

ondary structure in the template.

2.2.3 Final scoring

After the optimal contact map alignment is found, a final match

score is produced by calculating the Pearson correlation coefficient

between the MetaPSICOV contact probabilities and the contact dis-

tances in the template protein. One advantage of this score over

other metrics is that it can be transformed easily into a t-statistic and

so significance can be tested using a standard t-test. This provides a

simple statistical significance test for contact map matches. Rather

than using the t-statistic alone, as a final refinement of the scoring

function, a logistic regression function is fitted to three variables: the

t-statistic value, the fraction of the target that is aligned, and the

fraction of the template that is aligned. The data used for this regres-

sion are pairwise matches (i.e. matching SCOP folds) in the

MetaPSICOV (Jones et al., 2015) training set, which does not over-

lap with the 150 test proteins. After the regression, this simple

model gives good estimates of the probability of a fold-level match

being correct for each matched template.

2.3 MetaPSICOV
For the EigenTHREADER performance benchmarking, query pro-

tein contacts were predicted using MetaPSICOV (Jones et al., 2015).

MetaPSICOV is a 2 stage neural network protein contact predictor

which integrates contact predictions from multiple co-evolutionary
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protein contact predictors; PSICOV (Jones et al., 2012), mfDAC/

FreeContact (Kaj�an et al., 2014) and CCMpred (Seemayer et al.,

2014).

In the first stage 672 features are generated for the prediction tar-

get protein. These cover a variety of physio-chemical properties such

as solvation potential, helix-strand propensities, amino-acid propen-

sities and sequence separation. Critically 6 input features are derived

from the three contact prediction methods PSICOV, FreeContact

and CCMpred. This stage outputs a predicted contact map for the

query sequence.

The second stage neural network correlates the outputs for the

first stage network analysing the predicted contact map from stage

one. Taking an 11� 11 window of the contact map this stage de-

tects patterns to eliminate outlying predictions and infill gaps in the

contact map. Inter-residue interactions such as main-chain hydrogen

bonding are also identified at this stage. The second stage utilizes a

superset of the first stage features with a total feature set of 731 fea-

tures. Interested readers should refer to the MetaPSICOV paper and

its Supplementary material (Jones et al., 2015).

2.4 Benchmark data
150 single chain, single domain proteins with their associated pre-

dicted contacts were taken from the MetaPSICOV benchmark dataset

(Jones et al., 2015). To test EigenTHREADER’s tolerance to sparse or

low quality data we generated 8 additional contact subsets taking only

a proportion of the contacts for each dataset. For one experiment, we

took the top scoring L (sequence length), L/2, L/5 and L/10 long range

contacts (sequence separation>21 residues). For the other experiment

the lists of contacts for each lists were randomized rather than ranked

by prediction score, we then took an L, L/2, L/5 and L/10 set of long

range contacts from these randomized lists.

2.5 Benchmark comparison software
EigenTHREADER performance was benchmarked against the state-

of-the-art fold recognition methods HHSuite 3.0.0 (https://github.

com/soedinglab/hh-suite) and pGenTHREADER 8.9 (http://bioinfad

min.cs.ucl.ac.uk/downloads/pGenTHREADER/).

2.5.1 Fold and sequence libraries

To perform a valid comparison between EigenTHREADER,

HHSearch and pGenTHREADER, identical fold libraries were con-

structed. We downloaded the 13,730 HHSearch a3m files for SCOP

1.75 (http://www.user.gwdg.de/�compbiol/data/hhsuite/databases/

hhsearch_dbs/). These were used to prepare the relevant HH-

Suite Hidden Markov Models and library files as per the HH-

Suite documentation. For each HH-Suite SCOP a3m file we

constructed the equivalent fold library files for EigenTHREADER

and pGenTHREADER. We note that we could not generate

EigenTHREADER fold library files for a trivial number of the

13 730 domains resulting in a slightly smaller database of 13 613 do-

mains. To maintain parity between each of our fold libraries we

deleted these ‘missing’ entries in the EigenTHREADER library from

the HHSearch library such that all three libraries cover the same set

of 13,613 domains.

Uniref90 (Suzek et al., 2015) for the pGenThreader PSIBLAST was

downloaded from UniProt FTP server and for the HHBlits profile gen-

eration we downloaded the uniprot20_2013_03 sequence database.

Additionally, we wanted to investigate EigenTHREADER run-

times. A fold library based on whole PDB chains (Berman et al.,

2000), 12 833 chains, rather than domains was prepared to repre-

sent a potential worst-case runtime use of EigenTHREADER.

3 Results

EigenTHREADER has several tuneable parameters, two of which

are performance critical: the number of eigenvectors to match and

the contact distance. To find the optimal values for each of these

parameters we generated EigenTHREADER predictions across the

whole benchmark dataset holding one of the two parameters con-

stant and incrementing the value of the test parameter in integer

steps. We ran a non-exhaustive search for both parameters with the

number of eigenvectors tested from 1 to 20 (contact distance held at

10 Å) and contact distances from 1 to 20 Å tested (eigenvectors held

at 20). As both parameters are unlikely to have any non-linear inter-

action a grid search of these parameters was not conducted.

3.1 EigenTHREADER runtimes
Figure 1 shows the increase in runtime as the number of eigenvectors is

increased. Increasing the number of eigenvectors brings with it

increased fold recognition performance, but trading off a quadratic in-

crease in runtime. It is worth noting that as the size of the fold library

is increased, runtimes scale linearly as the time to match each fold li-

brary entry is approximately constant for a given number of eigenvec-

tors (data not shown). Alongside the EigenTHREADER runtimes we

show the estimated runtimes for Al-eigen given the exponential in-

crease in runtime reported in the work of Di Lena et al. It is clear that

EigenTHREADER represents a substantial increase in performance.

3.2 Impact of the number of eigenvectors on fold

recognition performance
In Figure 2 we show the true positive rate as a function of the num-

ber of eigenvectors. Performance is broken down on a t1, t2, t5 and

t10 basis, where a true positive has been counted if the correct

Class, Fold or Superfamily is found anywhere in the top 1, 2, 5 or

10 results. For all three prediction levels, as we relax the true posi-

tive stringency (t1 to t10) the recognition performance increases, as

expected. When predicting SCOP class there is no substantial in-

crease in performance as the number of eigenvectors increases, indi-

cating that all the information available for such a prediction is

Fig. 1. EigenTHREADER and Al-eigen runtimes. Average runtime in seconds

as a function of the number of eigenvectors used. The contact fold library

used contained 12,833 full length PDB chains. Al-eigen runtimes are esti-

mated ater the paper of Di Lena et al
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contained in the first eigenvector. At the fold and superfamily levels,

as the number of eigenvectors increases the performance also in-

creases. This is expected as each eigenvector should add increasing

information to the prediction and there ought to be additional infor-

mation beyond the first eigenvector. Performance is seen to level out

at around 10 eigenvectors but we assume performance increases

should slowly continue past 20 eigenvectors. We stopped at 20, as

run times begin to become prohibitive for trivial increases in

performance.

3.3 Impact of contact distance on performance
Figure 3 shows change in performance as we adjust the contact dis-

tance parameter. In all cases, there is little predictive power when

only contacts below 5 Å are included. Performance rapidly increases

as the contact distance increases reaching peak performance be-

tween 7 and 10 Å. Performance tails off once the contact distance

exceeds 11 or 12 Å. This is consistent with the distance thresholds

found to be optimal for contact-assisted de novo folding (Nugent

and Jones, 2012; Kosciolek and Jones, 2014).

3.4 Performance with sparse data
Figure 4 shows the fold prediction results when running

EigenTHREADER with very sparse, long range contact data with either

the most confident predictions (Top) or a random set of predictions

(Random), see Section 2.4. As expected, as the number of predictions be-

comes exceedingly sparse, moving from L to L/10, the TPR rate declines

rapidly. This correlates to moving from using only 1–5% of the most

confident MetaPSICOV predictions to using less than 0.15% of the top

contacts. When considering the Top L predictions, the TPR is about 0.2

lower than the peak performances seen in Figures 2 and 3 using only

one 20th of the data. This indicates that EigenTHREADER predictions

are still robust even with little contact data available. As a control, when

randomized contacts are used, it’s clear that EigenTHREADER

performs poorly, as expected, indicating the importance of obtaining

correct, high quality contact data for correct fold recognition.

3.5 Comparison of EigenTHREADER, pGenTHREADER

and HHSearch
3.5.1 Analogous fold recognition

EigenTHREADER was developed to enable fold recognition in in-

stances where homology based fold recognition is not possible. We

have compared the performance of EigenTHREADER in this spe-

cific task with two other widely used fold recognition methods;

pGenTHREADER and HHSearch. pGenTHREADER is a profile-

profile search method which compares a sequence profile generated

with PSIBLAST against a library of structure profiles. In the

HHSearch case we first used HHBlits to generate sequence profile

HMMs and then used these to search the fold library using

HHSearch. We are also interested using such predictions to build

high quality models, any hits that have less than 40% overlap with

the query sequence were also excluded. Figure 5 shows the average

true positive rate for the top 1, top 2, top 5 and top 10 predictions

for each prediction method. For the following analysis, we have

excluded any hits which shared the same SCOP family (left-hand

bar chart) or where SCOP family and superfamily are excluded

(right-hand bar chart). When family and super family members are

excluded it reduces the number of benchmark proteins where a True

Positive is attainable. Where family hits are excluded the TPR is cal-

culated over 130 benchmark proteins, when both superfamily and

family hits are excluded the TPR is calculated over only 76 proteins.

The left-hand bar chart simulates the case where there is minimal

Fig. 2. Performance as number of eigenvectors increase. Average True Positive

Rate of predictions for the 150 benchmark proteins for EigenTHREADER as the

number of eigenvectors is adjusted from 1 to 20. Plots show the performance

for SCOP Class, Fold and Superfamily predictions considering only the top 1, 2,

5 or 10 scoring predictions

Fig. 3. Performance as the distance threshold is increased. Average True

positive rate of predictions for the 150 benchmark proteins as the

EigenTHREADER distance threshold is adjusted from 1 to 20. Plots show the

performance for SCOP Class, Fold and Superfamily predictions considering

only the top 1, 2, 5 or 10 scoring predictions

Fig 4. EigenTHREADER fold prediction performance. Fold prediction using the

Top or Random L, L2, L5 or L10 MetaPSICOV contacts. Comparison shows TPR

performance when considering either the top 1, 2, 5 or 10 EigenTHREADER

predictions
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homology information present in the fold library for each bench-

mark protein. The right-hand bar chart simulates the case where

there are no homologous relatives for each benchmark protein in the

fold library. These highly stringent criteria eliminate most hits from

the results of all three methods.

We see that HHSearch outperforms both pGenTHREADER and

EigenTHREADER when homology is present in the fold library (left-

hand bar chart). This is to be expected as we know that HHSearch is

among the most sensitive sequence homology searching methods

available today. However, when we exclude SCOP Superfamily and

Family matches from the results the performance of all three methods

more than halves. In this case EigenTHREADER shows better per-

formance than the other two methods, nearly 4 times the performance

of pGenTHREADER and about twice that of HHSearch. This indi-

cates the EigenTHREADER can have a role to play in the instances of

fold recognition where no homologues can be found.

3.5.2 Model quality comparison

All three methods compared are able to produce low resolution

backbone structural models based on the fold alignments obtained

during the searches (see Section 3.5.1). Under our stringent filtering

criteria we note that only 103 of the benchmark proteins find suit-

able structural templates via HHSearch. The structure comparison

scores are calculated only over this subset.

Table 1 summarizes the TM-score (Zhang and Skolnick, 2005)

and GDT-TS (Zemla et al., 1999) scores for the best models created by

the three methods. Models generated by EigenTHREADER for analo-

gous hits outperform those produced by both pGenTHREADER and

HHSearch, for the 123 benchmark proteins which HHSearch finds

hits. As we move from T1 to T5 the average median scores typically

fall as the model variability rises as more models with lower scores are

included in the statistic. The averaged TM and GDT max scores are

seen to increase for all methods, indicating that the best fitting model

is not always the highest scoring hit.

In Figure 6 we plot the actual TM scores of the T1 hits from both

EigenTHREADER and HHSearch for the benchmark proteins. Nearly

all the EigenTHREADER T1 models have greater TM scores than the

HHSearch T1 models. This indicates that EigenTHREADER’s best hit

template is either closer to the target structure for that benchmark

protein, or that the alignment to the template may be more accurate.

4 Conclusion

In the presence of detectable homologous structures, protein fold recog-

nition may be regarded as being a mostly solved problem. Previous

results amply demonstrate that methods such as pGenTHREADER

and HHSearch achieve very high accuracy for this aspect of the fold

recognition problem. Recognition of analogous folds, where no homo-

logues exists in the fold library, is anything but a solved problem.

Performance of predictive methods in this task, is typically poor. In this

paper we have presented and benchmarked an alternative approach to

fold recognition, EigenTHREADER, which relies only on residue con-

tacts predicted from sequence alignments. Our benchmark demon-

strates that EigenTHREADER outperforms both pGenTHREADER

and HHSearch in the challenging task of analogous fold recognition,

although it is not as sensitive in the task of homologous fold search.

Fig. 5. True Positive Rate comparison for analogous fold recognition. Average

True Positive Rate performance for EigenTHREADER, pGenTHREADER and

HHSearch across the benchmark target proteins. For these fold recognition

searches, the left-hand bar chart considers only matches at fold and superfam-

ily levels (calculated over 130 benchmark proteins). The right-hand bar chart

considers matches only at the fold level (calculated over 76 benchmark

proteins)

Table 1. Median and best max TM-score and GDT-TS scores

EigenTHREADER pGenTHREADER HHSearch

TM-score (median/max) GDT-TS TM-score GDT-TS TM-score GDT-TS

T1 0.35/0.35 29.47/29.47 0.19/0.19 16.25/16.25 0.19/0.19 18.5/18.5

T5 0.32/0.39 28.04/33.1 0.18/0.23 16.03/19.44 0.18/0.19 18.63/22.37

The table gives the median TM-Score and GDT-TS score for the Top (highlighted) and Top 5 hits across benchmark set alongside the best score achieved by

any target. Values are averaged over 103 benchmark proteins.

Fig. 6. Comparison of EigenTHREADER and HHSearch T1 TM scores. Each

point represents a single benchmark protein. The TMscore (x and y axes) for

the highest scoring model for both methods are plotted
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This work further demonstrates the power of recently developed

co-evolutionary contact prediction methods in varied structural bio-

informatics applications. Given the ability to predict an accurate con-

tact map, and assuming the native fold is present in the fold library,

EigenTHREADER offers an alternative path to identify useful tem-

plates for homology modelling. This should make template-based mod-

elling a viable option for many more structurally uncharacterized

sequence families in the near future.

Acknowledgements

The authors acknowledge the use of the High Performance Computing facility

of the UCL Department of Computer Science in the completion of this work.

Funding

This work has been supported by the Biotechnology & Biological Sciences

Research Council (BBSRC) UK, Grant BB/M011712/1.

Conflict of Interest: none declared.

References

Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28,

235–242.

Creighton,T.E. (1992) Proteins: Structures and Molecular Properties. New

York, NY, W. H. Freeman.

Di Lena,P. et al. (2010) Fast overlapping of protein contact maps by alignment

of eigenvectors. Bioinformatics, 26, 2250–2258.

Gniewek,P. et al. (2014) BioShell-Threading: versatile Monte Carlo package

for protein 3D threading. BMC Bioinformatics, 15, 22.

Goldman,D. (1999) Algorithmic aspects of protein structure similarity. In:

FOCS 1999 Proceedings of the 40th Annual Sumposium on Foundation of

Computer Science, 512–521.

Jones,D.T. et al. (2012) PSICOV: precise structural contact prediction using

sparse inverse covariance estimation on large multiple sequence alignments.

Bioinformatics, 28, 184–190.

Jones,D.T. et al. (2015) MetaPSICOV: combining coevolution methods for ac-

curate prediction of contacts and long range hydrogen bonding in proteins.

Bioinformatics, 31, 999–1006.

Jones,D.T. et al. (1992) A new approach to protein fold recognition. Nature,

358, 86–89.

Kaj�an,L. et al. (2014) FreeContact: fast and free software for protein contact

prediction from residue co-evolution. BMC Bioinformatics, 15, 85.

Kinch,L.N. et al. (2016) Assessment of CASP11 contact-assisted predictions.

Proteins, 84, 164–180.

Kosciolek,T. and Jones,D.T. (2014) De novo structure prediction of globular

proteins aided by sequence variation-derived contacts. PLoS One, 9, e92197.

Lobley,A. et al. (2009) pGenTHREADER and pDomTHREADER: new meth-

ods for improved protein fold recognition and superfamily discrimination.

Bioinformatics, 25, 1761–1767.

Ma,J. et al. (2014) MRFalign: protein homology detection through alignment

of Markov random fields. PLoS Comput. Biol., 10, e1003500.

Ma,J. et al. (2013) Protein threading using context-specific alignment poten-

tial. Bioinformatics, 29, i257–i265.

Marks,D.S. et al. (2011) Protein 3D structure computed from evolutionary se-

quence variation. PLoS One, 6, e28766.

Mitchell,S.D. and Gronenborn,A.M. (2015) After fifty years, why are protein

X-ray crystallograpers still in business? Br. J. Philos. Sci., 66, 1–21.

Moult,J. et al. (2014) Critical assessment of methods of protein structure pre-

diction (CASP)–round x. Proteins, 82, 1–6.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Nugent,T. and Jones,D.T. (2012) Accurate de novo structure prediction

of large transmembrane protein domains using fragment-assembly and

correlated mutation analysis. Proc. Natl. Acad. Sci. U. S. A., 109,

E1540–E1547.

Olmea,O. et al. (1999) Effective use of sequence correlation and conservation

in fold recognition. J. Mol. Biol., 293, 1221–1239.

Peng,J. and Xu,J. (2011) A multiple-template approach to protein threading.

Proteins, 79, 1930–1939.

Rost,B. et al. (1997) Protein fold recognition by prediction-based threading.

J. Mol. Biol., 270, 6471–6480.

Seemayer,S. et al. (2014) CCMpred–fast and precise prediction of protein

residue-residue contacts from correlated mutations. Bioinformatics, 30,

3128–3130.
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