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The classical derivation of the well-known Vasicek model for interest rates is refor-
mulated in terms of the associated pricing kernel. An advantage of the pricing kernel
method is that it allows one to generalize the construction to the Lévy-Vasicek case,
avoiding issues of market incompleteness. In the Lévy-Vasicek model the short rate
is taken in the real-world measure to be a mean-reverting process with a general
one-dimensional Lévy driver admitting exponential moments. Expressions are ob-
tained for the Lévy-Vasicek bond prices and interest rates, along with a formula for
the return on a unit investment in the long bond, defined by Lt = limT→∞ PtT /P0T ,
where PtT is the price at time t of a T -maturity discount bond. We show that the
pricing kernel of a Lévy-Vasicek model is uniformly integrable if and only if the long
rate of interest is strictly positive.

I. PRICING KERNELS

The Vasicek model (Vasicek 1977) is one of the oldest and most well-studied models in
the mathematical finance literature, and one might think that there is little that is new
that can be said about it. But it turns out that there are some surprising features of the
Vasicek model relating to the long rate of interest that are very suggestive when it comes to
modelling long term interest rates in general.

We fix a probability space (Ω,F ,P) with filtration {Ft}t≥0. Time 0 denotes the present.
The probability measure P is the physical measure, and {Ft} represents the flow of market
information. We introduce an appropriate unit of account, and for T and t such that
0 ≤ t < T we let PtT denote the value at time t of a discount bond that pays out one
unit of account at maturity T . In what follows we use a pricing kernel method to construct
the Vasicek model. This is not the way in which the Vasicek model is usually presented in
the literature. Nevertheless, the pricing kernel approach is very effective. In particular, the
pricing kernel formulation of the classical Vasicek model leads us directly to a construction
of the corresponding Lévy-Vasicek model, extending results of Cairns (1999), Eberlein &
Raible (1999), Norberg (2004), and others.

We begin with a few remarks about pricing kernels and then turn to the case of the
Vasicek model. Let us recall briefly how pricing kernels work in the elementary geometric
Brownian motion (GBM) model for asset prices. We fix a Brownian motion {Wt}t≥0 on
(Ω,F ,P), and take it to be adapted to {Ft}. The GBM model is characterized by the
specification of a pricing kernel along with a collection of one or more so-called investment-
grade assets. We assume for simplicity that the assets pay no dividends over the time horizon
considered. The idea of an investment-grade asset is that it should offer a positive excess
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rate of return above the interest rate. Ordinary stocks and bonds, for example, are in this
sense investment-grade, whereas put options are not.

For the pricing kernel in the GBM model we assume that we have an expression of the
form

πt = e−rt e−λWt− 1
2
λ2t, (1)

where r is the interest rate, and λ > 0 is a risk aversion parameter. We require that the
product of the pricing kernel and the asset price should be a P-martingale. Let us suppose
that for some β ≥ −λ the product takes the form

πtSt = S0 eβWt− 1
2
β2t, (2)

where St denotes the value of the asset at time t. For a typical non-dividend-paying
investment-grade asset in the GBM model we thus have

St = S0 e(r+λσ)t eσWt− 1
2
σ2t, (3)

where σ = β + λ. The term λσ is called the risk premium or excess rate of return, and
is positive under the assumptions we have made. The idea of a “pricing kernel” dates
back to the 1970s and is used by Ross (1978). The alternative term “market kernel” is
used by Garman (1976). Authors have employed a variety of terms for the same concept.
Economists speak of the “marginal rate of substitution”. The term “state price density”
appears in Dothan & Williams (1978). The term “stochastic discount factor” is used in Cox
& Martin (1983). The term “state price deflator” is used in Duffie (1992).

Pricing kernel models are discussed in detail in Cochrane (2005) and Hunt & Kennedy
(2004). If the risky asset is a European-style derivative whose terminal payoff is HT , then
the value of the derivative at time t < T is given by

Ht =
1

πt
Et[πTHT ]. (4)

In particular, if the derivative pays one unit of account so that HT = 1, then we recover the
pricing formula for a discount bond, given by

PtT =
1

πt
Et[πT ]. (5)

We refer to the process {nt}t≥0 defined by nt = 1/πt as the “natural numeraire” (Flesaker &
Hughston 1997), or “growth-optimal portfolio”. It serves as a benchmark, relative to which
other non-dividend-paying assets are martingales. As an example of derivative pricing in
the GBM model, we consider the valuation of a digital put on the natural numeraire, with
unit notional, strike κ, and maturity T . In this case we have

HT = 1 {nT < κ} , (6)

where 1{ · } is the indicator function. Using the pricing kernel (1), a straightforward calcu-
lation gives

H0 = e−rTN

[
log
(
e−rTκ

)
+ 1

2
λ2T

λ
√
T

]
, (7)

where N [ · ] is the normal distribution function. We mention the example of a digital put on
the natural numeraire because it turns out to be relevant later in our consideration of the
uniform integrability of the pricing kernel. .
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II. VASICEK PRICING KERNEL

We can extend the geometric Brownian motion model by keeping the risk-aversion level
constant, but allowing the interest rate to be stochastic. The unit-initialized money market
account is then given by

Bt = exp

∫ t

0

rsds, (8)

and the pricing kernel is of the form

πt = exp

[
−
∫ t

0

rsds− λWt −
1

2
λ2t

]
. (9)

In the Vasicek model, the short rate process {rt}t≥0 is taken to be a mean-reverting process
of the Ornstein-Uhlenbeck (OU) type, satisfying

drt = k(θ − rt)dt− σdWt. (10)

Here k, θ, and σ denote the mean reversion rate, the mean reversion level, and the absolute
volatility of the short rate. Without loss of generality we can choose σ to be strictly positive.
The initial value of the interest rate is r0. The dynamical equation (10) can be solved by
use of an integrating factor to give

rt = θ + (r0 − θ) e−kt − σ
∫ t

0

ek(s−t)dWs. (11)

To obtain explicit formulae for the money market account and the pricing kernel in the
Vasicek model we require an expression for the integrated short rate,

It =

∫ t

0

rsds. (12)

Substitution of (11) into (12) gives

It = θt+
1

k

(
1− e−kt

)
(r0 − θ)− σ

∫ t

s=0

∫ s

u=0

ek(u−s)dWuds. (13)

Now, by the Ito product rule we have

d

(
e−ks

∫ s

u=0

ekudWu

)
= dWs − ke−ks

∫ s

u=0

ekudWu ds. (14)

Integrating each side of this equation and rearranging the result we obtain∫ t

s=0

∫ s

u=0

ek(u−s)dWuds =
1

k

∫ t

0

(1− ek(u−t))dWu. (15)

It follows that for the integrated short rate we have

It = θt+
1

k

(
1− e−kt

)
(r0 − θ)−

σ

k

∫ t

0

(1− ek(u−t))dWu, (16)
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and that the pricing kernel is given by

πt = exp

[
−
(
θ +

1

2
λ2

)
t− 1

k

(
1− e−kt

)
(r0 − θ) +

∫ t

0

(σ
k
− λ− σ

k
ek(u−t)

)
dWu

]
. (17)

A useful alternative expression for the integrated short rate can be obtained by integrating
equation (10) to give

It = θt+
1

k
(r0 − rt)−

σ

k
Wt . (18)

This expression can also be obtained by combining (11) and (16). It follows that the Vasicek
money market account is given by

Bt = exp

[
θt− σ

k
Wt −

1

k
(rt − r0)

]
, (19)

and that the Vasicek pricing kernel can be expressed in the form

πt = exp

[
−
(
θ +

1

2
λ2

)
t+
(σ
k
− λ
)
Wt +

1

k
(rt − r0)

]
. (20)

Note the appearance of Wt in the formulae for the money market account and the pricing
kernel. Often it is said that the Vasicek model has a single state variable, the short rate.
This statement is a little misleading. For while it is true, as we shall see shortly, that the
price at time t of a T -maturity discount bond depends only on the state variable rt insofar as
its stochasticity is concerned, the money market account and the pricing kernel each depend
at time t on a pair of state variables, namely, rt and Wt. We take the view that to specify
a financial model one needs to give the price processes of the basic assets of the model,
together with the process for the pricing kernel. In the case of an interest rate model this
means giving the processes for discount bonds of all maturities, the money market account,
and the pricing kernel. Hence, the Vasicek model requires two state variables.

III. DISCOUNT BONDS

We proceed to derive an expression for PtT . In the derivation we find it convenient to work
with logarithms rather than exponentials. Thus, instead of (17) we write

log πt = −
(
θ +

1

2
λ2

)
t− 1

k

(
1− e−kt

)
(r0 − θ) +

∫ t

0

(σ
k
− λ− σ

k
ek(u−t)

)
dWu. (21)

It follows that

log πT = −
(
θ +

1

2
λ2

)
T − 1

k

(
1− e−kT

)
(r0 − θ) +

∫ T

0

(σ
k
− λ− σ

k
ek(u−T )

)
dWu

+

∫ T

0

(σ
k
− λ− σ

k
ek(u−T )

)
dWu, (22)
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and hence for t < T we have

Et[πT ] = exp

[
−
(
θ +

1

2
λ2

)
T − 1

k

(
1− e−kT

)
(r0 − θ)

+

∫ t

0

(σ
k
− λ− σ

k
ek(u−T )

)
dWu

]
×Et

[
exp

(∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)
dWu

)]
. (23)

It is a standard result that for any measurable function {αt} satisfying∫ T

t

α2
udu <∞ (24)

we have

Et

[
exp

(∫ T

t

αudWu

)]
= exp

(
1

2

∫ T

t

α2
udu

)
. (25)

As a consequence, we obtain

Et exp

[∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)
dWu

]
= exp

[
1

2

∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)2

du

]
. (26)

Therefore, by (5) we have

logPtT = −
(
θ +

1

2
λ2

)
(T − t)− 1

k

(
e−kt − e−kT

)
(r0 − θ)

+
1

2

∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)2

du+
σ

k

(
1− ek(t−T )

) ∫ t

0

ek(u−t)dWu. (27)

By use of (11), in the final term above we can write

σ

∫ t

0

ek(u−t)dWu = θ + (r0 − θ)e−kt − rt. (28)

Then the terms in (27) involving r0 − θ cancel, and we are left with the following:

logPtT = −
(
θ +

1

2
λ2

)
(T − t) +

1

2

∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)2

du

+
1

k

(
1− ek(t−T )

)
(θ − rt) . (29)

Thus, we have isolated the dependence of PtT on the state variable rt. Now, for a, b constant
we have ∫ T

t

(
a− beku

)2
du = a2(T − t)− 2ab

k

(
ekT − ekt

)
+

1

2

b2

k

(
e2kT − e2kt

)
. (30)
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Hence,∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)2

du =
(σ
k
− λ
)2

(T − t)− 2

(
σ2

k3
− λσ

k2

)(
1− ek(t−T )

)
+

1

2

σ2

k3

(
1− e2k(t−T )

)
. (31)

Inserting this expression into (29), we see that the terms involving λ2 cancel. After some
simplification we therefore obtain the following expression for the value of a T -maturity
discount bond:

PtT = exp

[
−R∞(T − t) +

1

k

(
1− ek(t−T )

)
(R∞ − rt)−

1

4

σ2

k3

(
1− ek(t−T )

)2]
, (32)

where

R∞ = θ +
λσ

k
− 1

2

σ2

k2
. (33)

The prices of bonds in the Vasicek model have been known for forty years. Nevertheless,
even seasoned practitioners may find it useful to see a derivation based entirely on pricing
kernel methods, without the use of PDEs or measure change. The significance of R∞ is that
it represents the asymptotic bond yield, or “exponential long rate of interest”, defined by

R∞ = − lim
T→∞

1

T − t
logPtT . (34)

That R∞ does not depend on t is characteristic of interest rate models for which the tail of
the discount function is exponential, and is a manifestation of the so-called DIR theorem
(Dybvig, Ingersoll & Ross 1996, Hubalek, Klein & Teichmann 2002, Goldammer & Schmock
2012, Kardaras & Platen 2012, Brody & Hughston 2016), according to which the long rate
of interest can never fall in arbitrage-free term structure models.

IV. UNIFORM INTEGRABILITY OF PRICING KERNEL

We proceed to remark on a feature of the Vasicek model that seems not to have been noted
previously, namely, that R∞ > 0 if and only if the pricing kernel is uniformly integrable (UI).
Before we establish this fact and its generalization to the Lévy-Vasicek model, we propose
to express the condition that the pricing kernel should be UI in financial terms. A collection
C of random variables is said to be UI (see Williams 1991) if for every ε > 0 there exists a
δ ≥ 0 such that for all X ∈ C it holds that

E[|X|1{|X| > δ}] < ε. (35)

An equivalent way of expressing the UI condition on C is

lim
δ→∞

sup
X∈C

E[|X|1{|X| > δ}] = 0. (36)
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The limit on the left side of (36) exists since supX∈C E[|X|1{|X| > δ}] is decreasing in δ and
bounded from below by zero. A random process {Xt}t≥0 is then UI iff for every ε > 0 there
is a δ > 0 such that E[|Xt|1{|Xt| > δ}] < ε for all t ≥ 0, or

lim
δ→∞

sup
t

E[|Xt|1{|Xt| > δ}] = 0. (37)

In the case of a pricing kernel we have πt > 0, so the UI condition is that for every ε > 0
there should exist a δ ≥ 0 such that E[πt1{πt > δ}] < ε for all t ≥ 0, or

lim
δ→∞

sup
t

E[πt 1{πt > δ}] = 0. (38)

Alternatively, the UI condition can be imposed by requiring that for every ε > 0 there should
exist a κ > 0 such that

E[πt 1{nt < κ}] < ε (39)

for all t ≥ 0. Here nt = 1/πt, and we have set κ = 1/δ. But the left side of (39) is the price
at time 0 of a European-style digital put option on the natural numeraire with strike κ and
maturity t. Thus we have shown:

Proposition 1 A pricing kernel is uniformly integrable if and only if for any price level
ε > 0 there exists a strike κ > 0 such that the value of a digital put option on the natural
numeraire is less than ε for all maturities.

The class of interest rate models for which the pricing kernel has the UI property is in fact
rather broad. For example, if the pricing kernel is a type-D potential (Hunt & Kennedy
2004, Rogers 1997, Rutkowski 1997), then it is UI (Meyer 1966). We proceed by establishing
the following for the Vasicek model.

Proposition 2 If R∞ > 0 then {πt} is uniformly integrable.

Proof. We shall use an L p test. A collection C of random variables is said to be bounded in
L p if there exists a constant γ > 0 such that E[|X|p] < γ for all X ∈ C. Now, if p > 1 and
x ≥ δ > 0 for x, δ ∈ R, then clearly x ≤ δ1−pxp. It follows that if C is bounded in L p then
for all X ∈ C it holds that

E[|X|1{|X| > δ}] ≤ δ1−pE[|Xp|1{|X| > δ}] < γδ1−p. (40)

Therefore given any ε > 0 if we set

δ = (ε/γ)1/(1−p) (41)

then we have constructed a δ such that (35) holds for all X ∈ C. Thus, if a collection of
random variables is bounded in L p for some p > 1 then it is UI. Therefore, a sufficient
condition for the pricing kernel to be UI is that there should exist a p > 1 and a γ > 0 such
that E[πpt ] < γ for all t. A calculation starting with (17) gives

log E[πpt ] = −p
[
θ +

1

2
λ2 − p 1

2

(σ
k
− λ
)2
]
t

+
p

k

[
θ − r0 − p

σ

k

(σ
k
− λ
)] (

1− e−kt
)

+
p2σ2

4k3

(
1− e−2kt

)
. (42)
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The second and third terms on the right are bounded, so our goal is to show that if R∞ > 0
then there exists a value of p > 1 such that the coefficient of t in the first term on the right
in (42) is less than or equal to zero. But if R∞ > 0 then

θ >
1

2

σ2

k2
− λσ

k
. (43)

Completing the square on the right, we get

θ +
1

2
λ2 >

1

2

(σ
k
− λ
)2

. (44)

Therefore if we set

p =
θ + 1

2
λ2

1
2

(σk−1 − λ)2 , (45)

then p > 1 and the first term on the right side of (42) vanishes. This shows that if R∞ > 0
then the L p test is satisfied, and the pricing kernel is UI. �

Proposition 3 If R∞ < 0 then {πt} is not uniformly integrable.

Proof. If a collection C of random variables is UI then it is bounded in L 1. For suppose that
C is such that for every ε > 0 there exists a δ ≥ 0 such that (35) holds for all X ∈ C. Then
there exists a constant δ1 such that E[|X|1{|X| > δ1}] < 1 for all X ∈ C, and therefore

E[|X|] = E[|X|1{|X| > δ1}] + E[|X|1{|X| ≤ δ1}] < 1 + δ1 (46)

all X ∈ C, and it follows that C is bounded in L 1. Thus to establish the proposition it
suffices to show that if R∞ < 0 then {πt} is not bounded in L 1. Keeping in mind that
E[πt] = P0t, we shall show that if R∞ < 0 then for any choice of γ > 0 there exists a time
t∗ such that P0t > γ for all t ≥ t∗. By virtue of (42), we have

P0t = exp

[
−R∞t+

1

k

(
1− e−kt

)
(R∞ − r0)−

1

4

σ2

k3

(
1− e−kt

)2]
. (47)

It follows that

P0t ≥ exp

[
−R∞t+

1

k
(R∞ − r0)1{R∞ − r0 ≤ 0} − 1

4

σ2

k3

]
. (48)

Now suppose that R∞ < 0 and define t∗ by setting

−R∞t∗ +
1

k
(R∞ − r0)1{R∞ − r0 ≤ 0} − 1

4

σ2

k3
= log γ. (49)

Then for all t > t∗ we have P0t > γ, which shows {πt} is not bounded in L 1. �

Remark. More generally, it can be shown that in any arbitrage-free interest rate model based
on a pricing kernel with the property that the long exponential rate of interest exists and is
negative the pricing kernel is not UI.
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Proposition 4 If R∞ = 0 then {πt} is not uniformly integrable.

Proof. The pricing kernel fails the L p test if R∞ = 0, so we cannot conclude that it is UI. On
the other hand, the pricing kernel is bounded in L1 if R∞ = 0, so we cannot conclude that
it is not UI. Thus when R∞ = 0 the simple tests give us no information and we need to look
at the definition of uniform integrability and ask whether (38) holds. We shall demonstrate
that if R∞ = 0 then (38) does not hold, and therefore the pricing kernel is not UI. First, let
us define

αst =
σ

k
− λ− σ

k
ek(s−t). (50)

Using (21) and (27) we can write

πt = P0t exp

(∫ t

0

αst dWs −
1

2

∫ t

0

α2
st ds

)
. (51)

Thus, for each value of t the pricing kernel is of the form

πt = P0t exp

(
AtZ −

1

2
A2
t

)
, (52)

where Z is normally distributed with mean zero and variance unity, and where we define At
(which we take to be positive) by

A2
t =

∫ t

0

α2
st ds. (53)

It follows that

E[πt1{πt > δ}] = P0t E
[
exp

(
AtZ −

1

2
A2
t

)
1

{
Z >

log δ − logP0t + 1
2
A2
t

At

}]
.

(54)

The expectation can be computed by standard techniques, leading to the following:

E[πt1{πt > δ}] = P0tN

(
logP0t + 1

2
A2
t − log δ

At

)
. (55)

Recall from (47) with R∞ = 0 that

logP0t = −r0
1

k

(
1− e−kt

)
− 1

4

σ2

k3

(
1− e−kt

)2
, (56)

which is bounded. We thus have

sup
t

E[πt1(πt > δ)] ≥ exp
[
inf
u

logP0u

]
sup
t
N

(
logP0t + 1

2
A2
t − log δ

At

)
≥ exp

[
inf
u

logP0u

]
sup
t
N

[
infu(logP0u) + 1

2
A2
t − log δ

At

]
. (57)
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It follows from

inf
t

logP0t = −r0
k
1{r0 > 0} − 1

4

σ2

k3
(58)

that

sup
t

E[πt1{πt > δ}] ≥ exp

[
−r0
k
1{r0 > 0} − 1

4

σ2

k3

]
× sup

t
N

[
1

At

(
−r0
k
1{r0 > 0} − 1

4

σ2

k3
+ 1

2
A2
t − log δ

)]
.

(59)

Since limt→∞At =∞, the supremum on the right side is achieved in the limit as t approaches
infinity. As a consequence, we have

sup
t

E[πt1{πt > δ}] ≥ exp

[
−r0
k
1{r0 > 0} − 1

4

σ2

k3

]
, (60)

which implies that

lim
δ→∞

sup
t

E[πt1{πt > δ}] > 0, (61)

and hence that the pricing kernel is not UI. �

V. LONG-BOND RETURN PROCESS

The return at time t on an investment of one unit of account in the long bond is defined by
the expression

Lt = lim
T→∞

PtT
P0T

, (62)

provided the limit exists (Flesaker & Hughston 1996). We refer to {Lt}t≥0 as the long-bond
return process. In the following, we consider the long-bond return process in the Vasicek
model. We shall show that the limit exists and that it can be worked out explicitly. Using
the formula for the discount bond price, we find that

log
PtT
P0T

= R∞t+
1

k
(r0 − rt)−

1

k
(R∞ − rt)e−k(T−t) +

1

k
(R∞ − r0)e−kT

+
σ2

4k3

((
1− e−kT

)2 − (1− e−k(T−t)
)2)

. (63)

One sees immediately that

lim
T→∞

log
PtT
P0T

= R∞t+
1

k
(r0 − rt). (64)

It follows that the long-bond return process exists and is given by

Lt = exp

[
R∞t+

1

k
(r0 − rt)

]
. (65)
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Recalling expression (20) for the pricing kernel in the Vasicek model and expression (33) for
the long rate of interest, we deduce that the product of the pricing kernel and the long-bond
return is given by

πtLt = exp

[(σ
k
− λ
)
Wt −

1

2

(σ
k
− λ
)2

t

]
. (66)

This shows that the return on a unit investment in the long bond takes the form of a
geometric Brownian motion asset with volatility σ/k and with a Vasicek-type integrated
interest rate. More specifically, we have

Lt = exp

[∫ t

0

(
rs +

λσ

k

)
ds+

σ

k
Wt −

1

2

(σ
k

)2

t

]
. (67)

The significance of the martingale {Mt}t≥0 defined by Mt = πtLt is that it acts as the
change-of-measure density from the physical measure P to the so-called terminal measure
(or long forward measure) introduced in Flesaker & Hughston (1996), which is the measure
such that for any non-dividend-paying asset with price process {St} the ratio {St/Lt} is
a martingale. To see this, recall that to change from P to the measure associated with a
given numeraire {Nt}, the change-of-measure martingale is given by {πtNt}. For example,
to change from P to the risk-neutral measure associated with the use of the money market
account as numeraire, the change-of-measure martingale is {πtBt}. In the present context,
the terminal measure agrees with P in the Vasicek model if and only if Mt = 1 for t ≥ 0,
which holds if and only if λ = σ/k. The condition that the terminal measure and the
physical measure agree has been shown by Qin & Linetsky (2017) to be equivalent to the
assumptions of the so-called recovery theorem of Ross (2015), which purports that under
certain conditions it is possible to recover the physical measure from current option pricing
data (Carr & Yu 2012, Borovička et al 2016). Thus, consistently with Qin & Linetsky (2017),
one sees that in the Vasicek model under the Ross recovery hypothesis one can infer the
market price of risk from the current price levels of options on discount bonds. This follows
from the fact that such option prices depend on the ratio σ/k, which under the recover
hypothesis is equal to the market price of risk. It should be emphasized, however, that there
is no a priori reason to believe that the interest-rate market price of risk is equal to the
volatility of the long-bond return process. In fact, we have:

Proposition 5 In any arbitrage-free interest-rate model based on a Brownian filtration,
Ross recovery holds if and only if the interest-rate market price of risk is equal to the volatility
of the long-bond return process.

Proof. We know that Ross recovery holds if and only if the terminal measure coincides with
the physical measure, or equivalentlyMt = 1 for all t ≥ 0, which holds if and only if Lt = 1/πt
for all t ≥ 0, which in the case of interest-rate models based on a Brownian filtration holds if
and only if the the interest-rate market price of risk agrees with the volatility of the return
on the long bond. �

Since there is no evidence that the interest-rate market price of risk is equal to the volatility
of the long-bond return process, Proposition 5 shows that it is unlikely that Ross recovery
will be observed in bond markets (Borovička et al 2016).
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VI. GEOMETRIC LÉVY MODELS

Are the foregoing conclusions, including those addressing the feasibility of Ross recovery
and those relating the positivity of the long rate of interest to the uniform integrability of
the pricing kernel, specific to markets based on Brownian filtrations? To investigate this
question, we consider the more general case of markets based on Lévy filtrations. To begin,
we review the pricing kernel approach to geometric Lévy models. The pricing kernel method
has the advantage that it highlights the relations between risk, risk aversion, and return for
models with price jumps (Brody et al 2012). Let {ξt} be a Lévy process and λ > 0 the level
of risk aversion. We assume that {ξt} satisfies a moment condition of the form

E [exp(αξt)] <∞ for t ≥ 0 and α ∈ A, (68)

for some interval A ⊂ R containing the origin as a proper subset. The pricing kernel of a
geometric Lévy model, with constant interest rate r, is taken to be of the form

πt = e−rt e−λξt−ψ(−λ)t, (69)

where −λ ∈ A. Here {ψ(α)}α∈A is the so-called Lévy exponent, defined by

E[eαξt ] = eψ(α) t. (70)

It is straightforward to check that the Lévy exponent is a strictly convex function. Since
the product of the pricing kernel and the price {St} of a non-dividend-paying asset is a
P-martingale, we generate a family of models for asset pricing (the so-called geometric Lévy
models) by proposing that there should exist a constant β satisfying β ≥ −λ and β+λ ∈ A
such that

πtSt = S0e
βξt−ψ(β)t. (71)

Writing σ = β + λ, we deduce that

St = S0 ert+R(λ,σ)t+σξt−ψ(σ)t, (72)

where the excess rate of return R(λ, σ) is given by

R(λ, σ) = ψ(σ) + ψ(−λ)− ψ(σ − λ). (73)

A short calculation shows that R(λ, σ) is bilinear in λ and σ if and only if {ξt} is a Brownian
motion (Brody et al 2012). It follows that the interpretation of λ as a “market price of
risk”, which is valid for models based on a Brownian filtration, does not carry through to
the general Lévy regime. Nevertheless, the notion of excess rate of return is well defined,
and the convexity of the Lévy exponent implies that the excess rate of return is an increasing
function of both λ and σ.

We draw attention to the fact that the value of the asset given by (72) does not depend
on the drift of the Lévy process. More precisely, if one replaces ξt with ξt + µt and ψ(α)
with ψ(α) + µα, then one can easily check that St remains unchanged. Therefore without
loss of generality we can set the drift of the Lévy process equal to zero. In that case we
refer to {ξt} as a compensated Lévy process. This implies that E[ξt] = 0 and that {ξt} is a
martingale. For example, if {Nt} is the standard Poisson process, with jump rate µ, then
the associated compensated Lévy process is given by ξt = Nt − µt. With these conventions
in mind we proceed to establish the following lemmas:



13

Lemma 1 Let {ψ(α)}α∈A be the Lévy exponent of a compensated Lévy process {ξt} that
admits exponential moments for an interval A ⊂ R containing the origin as a proper subset.
Then ψ is strictly positive on its domain, except at the origin, where it vanishes.

Proof. Differentiating each side of (70) and setting α = 0, we obtain E[ξt] = ψ′(0)t for all
t ≥ 0. Since {ψ(α)} is by assumption the Lévy exponent of a compensated Lévy process,
it follows that ψ′(0) = 0. Hence, the curve ψ : A → R defined by α ∈ A → ψ(α) has a
horizontal tangent at the origin. Since ψ is strictly convex, and thus lies above any of its
tangents except at the point where the tangent touches the curve, we conclude that ψ is
strictly positive except at the origin. At the origin, we have ψ(0) = 0, which follows from
the definition of the Lévy exponent. �

Lemma 2 Let A ⊂ R be an interval containing the origin as a proper subset, and let
f : A → R be a nonnegative strictly convex function, differentiable on A and vanishing at
0. Then it holds that xf ′(x) > f(x) for all x ∈ A except at x = 0.

Proof. Let x ∈ A. If x > 0, then by the mean value theorem there exists y ∈ (0, x) such
that f(x) = xf ′(y). Since f takes its minimum at the origin and is strictly convex, it follows
that f ′(y) < f(x). Therefore, f(x) < xf ′(x), as required. On the other hand, if x < 0, then
the mean value theorem says that there exists y ∈ (x, 0) such that f(x) = xf ′(y). But since
f is strictly convex with a minimum at the origin, it follows that 0 < f ′(x) < f ′(y), and
thus xf ′(y) < xf ′(x), since x < 0. Therefore, f(x) < xf ′(x). �

We also have the following, which extends Lemma 3.1 of Eberlein & Raible (1999) by allowing
the interval A to be asymmetric about the origin.

Lemma 3 Let {ξs} be a Lévy process such that E[exp(αξt)] <∞ for t ≥ 0 and α ∈ A ⊂ R
for some interval A = [−(1+ε)M, (1+ε)N ] where M,N and ε are strictly positive constants.
Let the function α : R → A′ = [−M,N ] be left-continuous with right limits. Then it holds
that

E
[
exp

(∫ t

0

αsdξs

)]
= exp

(∫ t

0

ψ(αs)ds

)
. (74)

VII. CONSTRUCTION OF LÉVY-VASICEK MODEL

Going forward, we investigate properties of the pricing kernel in the Lévy analogue of the
Vasicek model. We are interested in a short rate model of the Ornstein-Uhlenbeck type,
driven by a Lévy process. Such models have been investigated by Norberg (2004). Remark-
ably, the condition λ = σ/k for Ross recovery in the Vasicek model is unchanged in its
Lévy-Vasicek counterpart.

The pricing kernel method allows us to work out the details of the general Lévy-
Vasicek model in the P-measure. We fix a probability space (Ω,F ,P) and introduce a
one-dimensional Lévy process {ξt}t≥0. We assume that (68) holds for some A ⊂ R con-
taining the origin as a proper subset, and we write ψ(α) for the Lévy exponent, defined for
α ∈ A. The pricing kernel in the Lévy-Vasicek model takes the form

πt = exp

[
−
∫ t

0

rs ds− λξt − ψ(−λ) t

]
, (75)
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where the short rate is a Lévy-Ornstein-Uhlenbeck process satisfying a dynamical equation
of the form

drt = k(θ − rt) dt− σdξt. (76)

The parameters of the model here have essentially the same interpretation as those of the
classical Vasicek model. Without loss of generality we can set the drift of the Lévy process
equal to zero by absorbing any drift into the definition of the mean-reversion level. Thus in
what follows we assume that {ξt} is a compensated Lévy process. We find that the short
rate is given by

rt = θ + (r0 − θ)e−kt − σ
∫ t

0

ek(s−t)dξs. (77)

The integrated short rate can be worked out by a calculation that parallels that of the
classical Vasicek model, with the following result:∫ t

0

rsds = θt+
1

k
(r0 − rt)−

σ

k
ξt . (78)

It follows that the pricing kernel in the Lévy-Vasicek model can be written as

πt = exp

[
−
(
θ + ψ(−λ)

)
t+
(σ
k
− λ
)
ξt −

1

k
(r0 − rt)

]
. (79)

Alternatively, if we insert the expression for rt given in (77) then we obtain

πt = exp

[
− (θ + ψ(−λ)) t− 1

k

(
1− e−kt

)
(r0 − θ) +

∫ t

0

(σ
k
− λ− σ

k
ek(u−t)

)
dξu

]
. (80)

VIII. DISCOUNT BONDS IN LÉVY-VASICEK MODEL

We proceed to obtain an expression for the price of a discount bond. By (80) we have

log πT = − (θ + ψ(−λ)) t− 1

k

(
1− e−kT

)
(r0 − θ) +

∫ T

0

(σ
k
− λ− σ

k
ek(u−T )

)
dξu, (81)

from which we deduce that

log πT = − (θ + ψ(−λ))T − 1

k

(
1− e−kT

)
(r0 − θ) +

∫ t

0

(σ
k
− λ− σ

k
ek(u−T )

)
dξu

+

∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)
dξu. (82)

Hence,

Et[πT ] = exp

[
− (θ + ψ(−λ))T − 1

k

(
1− e−kT

)
(r0 − θ)

+

∫ t

0

(σ
k
− λ− σ

k
ek(u−T )

)
dξu

]
×Et

[
exp

(∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)
dξu

)]
. (83)
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A sufficient condition for the use of Lemma 3 to work out the conditional expectation on
the right side of this expression is that the domain in R upon which the Lévy exponent is
defined includes a subset of the form [−(1 + ε)λ, (1 + ε)(σk−1−λ)] if σk−1−λ > 0, for some
ε > 0, or a subset of the form [−(1 + ε)λ, 0] if σk−1 − λ < 0. Then it follows from Lemma
3 that

Et exp

[∫ T

t

(σ
k
− λ− σ

k
ek(u−T )

)
dξu

]
= exp

[∫ T

t

ψ
(σ
k
− λ− σ

k
ek(u−T )

)
du

]
. (84)

Therefore, by expression (5) for the discount bond we obtain

logPtT = − (θ + ψ(−λ)) (T − t)− 1

k

(
e−kt − e−kT

)
(r0 − θ)

+

∫ T

t

ψ
(σ
k
− λ− σ

k
ek(u−T )

)
du+

σ

k

(
1− ek(t−T )

) ∫ t

0

ek(u−t)dξu. (85)

As a consequence of (77) we can write

σ

∫ t

0

ek(u−t)dξu = θ + (r0 − θ)e−kt − rt. (86)

Thus, the terms involving r0− θ in (85) cancel, and we are left with the following expression
for the price of a T -maturity discount bond:

PtT = exp

[
− (θ + ψ(λ)) (T − t) +

∫ T

t

ψ(αuT ) du+
1

k

(
1− ek(t−T )

)
(θ − rt)

]
, (87)

where for 0 ≤ s ≤ t we set

αut =
σ

k
− λ− σ

k
ek(u−t). (88)

To investigate the asymptotic bond yield, or exponential long rate, first we show

lim
T→∞

1

T − t

∫ T

t

ψ (αsT ) ds = ψ
(σ
k
− λ
)
. (89)

We note that the derivative of the numerator with respect to T is given by

d

dT

∫ T

t

ψ(αsT ) ds = ψ(αTT ) + σ

∫ T

t

ψ′(αsT )ek(s−T )ds

= ψ(αTT )−
∫ T

t

d

ds
ψ(αsT ) ds

= ψ(αtT ). (90)

Thus, applying l’Hospital’s rule we obtain

lim
T→∞

1

T − t

∫ T

t

ψ (αsT ) ds = lim
T→∞

ψ(αtT ) = ψ
(σ
k
− λ
)
, (91)

establishing (89). One sees that in the Lévy-Vasicek model, as in the Brownian case, the
long rate does not depend on t, and we have the following:

R∞ = − lim
T→∞

1

T − t
logPtT = θ + ψ(−λ)− ψ

(σ
k
− λ
)
. (92)
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IX. UNIFORM INTEGRABILITY IN LÉVY-VASICEK MODEL

A natural question that emerges is whether and for what choice of parameters the pricing
kernel in a Lévy-Vasicek model is UI. For this purpose, it will be useful to express the pricing
kernel in the form

πt = exp

(
−
(
θ + ψ(−λ)

)
t− 1

k
(r0 − θ)(1− e−kt) +

∫ t

0

αst dξs

)
, (93)

or equivalently

πt = exp

(
−R∞t− ψ

(σ
k
− λ
)
t− 1

k
(r0 − θ)(1− e−kt) +

∫ t

0

αst dξs

)
, (94)

where we recall the definition (88) for αst. It follows that

log E[πt] = −R∞t−
1

k
(r0 − θ)(1− e−kt) +

∫ t

0

ψ (αst) ds− ψ
(σ
k
− λ
)
t. (95)

Let us adopt the following conventions. Given a pair of functions f : R+ → R and
g : R+ → R\{0}, we say that f is O(g) for large t if

lim sup
t→∞

∣∣∣∣f(t)

g(t)

∣∣∣∣ <∞, (96)

and we say that f is o(g) for large t if

lim
t→∞

f(t)

g(t)
= 0. (97)

With reference to the integral appearing on the right side of (95), we shall show∫ t

0

ψ (αst) ds = ψ
(σ
k
− λ
)
t+O(1) (98)

for large t. We note that∣∣∣∣∫ t

0

(
ψ (αst)− ψ

(σ
k
− λ
))

ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣ψ (αst)− ψ
(σ
k
− λ
)∣∣∣ ds. (99)

But it follows from the mean value theorem that, for a fixed value of s, there exists a ρ in
the open interval (−σk−1ek(s−t), 0) such that

ψ
(σ
k
− λ
)

= ψ(αst) +
σ

k
ek(s−t)ψ′

(σ
k
− λ+ ρ

)
. (100)

Hence, ∣∣∣ψ (αst)− ψ
(σ
k
− λ
)∣∣∣ =

σ

k
ek(s−t)

∣∣∣ψ′ (σ
k
− λ+ ρ

)∣∣∣ . (101)

Recall from Lemma 1 that ψ is a nonnegative strictly convex function taking its minimum
value at zero. Thus, over the relevant range of ρ, the maximum of |ψ′(σ/k−λ+ρ)| is taken,
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depending on the value of s, either at the left boundary ρ = −(σ/k)ek(s−t) or at the right
boundary ρ = 0. More precisely, there exists a t′ ∈ [0, t] such that as s varies, the maximum
is achieved at the right boundary whenever s ∈ (0, t′), and at the left boundary whenever
s ∈ (t′, t). Thus, when s ∈ (0, t′) we have∣∣∣ψ (αst)− ψ

(σ
k
− λ
)∣∣∣ ≤ σ

k
ek(s−t)

∣∣∣ψ′ (σ
k
− λ
)∣∣∣ , (102)

and when s ∈ (t′, t) we have∣∣∣ψ (αst)− ψ
(σ
k
− λ
)∣∣∣ ≤ σ

k
ek(s−t)

∣∣∣ψ′ (σ
k
− λ− σ

k
ek(s−t)

)∣∣∣ ≤ σ

k
ek(s−t) |ψ′(−λ)| .

(103)

In the last step here we have made use of the fact that since ψ is convex, |ψ′| is decreasing
on the negative half line. Reverting to the right side of (99), we have

t∫
0

∣∣∣ψ (αst)− ψ
(σ
k
− λ
)∣∣∣ ds

=

t′∫
0

∣∣∣ψ (αst)− ψ
(σ
k
− λ
)∣∣∣ ds+

t∫
t′

∣∣∣ψ (αst)− ψ
(σ
k
− λ
)∣∣∣ ds

≤ σ

k
ψ′
(σ
k
− λ
)∫ t′

0

ek(s−t)ds+
σ

k
|ψ′ (−λ)|

∫ t

t′
ek(s−t)ds

=
σ

k2
ψ′
(σ
k
− λ
)

e−kt
(

ekt
′ − 1

)
+
σ

k2
|ψ′(−λ)|

(
1− e−k(t−t

′)
)

≤ σ

k2
ψ′
(σ
k
− λ
)

+
σ

k2
|ψ′(−λ)|, (104)

and hence ∣∣∣∣∫ t

0

ψ(αst) ds− ψ
(σ
k
− λ
)
t

∣∣∣∣ ≤ σ

k2
ψ′
(σ
k
− λ
)

+
σ

k2
|ψ′(−λ)|. (105)

It follows that

lim sup
t→∞

∣∣∣∣∫ t

0

ψ(αst) ds− ψ
(σ
k
− λ
)
t

∣∣∣∣ <∞, (106)

which establishes (98).
With these preparations at hand, we are ready to return to our considerations of the

uniform integrability of the pricing kernel.

Proposition 6 If R∞ > 0 then {πt} is uniformly integrable.

Proof. We shall use an L p test. Specifically, we show that if R∞ > 0 then there exists a
p > 1 such that supt E[πpt ] < ∞. We claim that it suffices to prove that if R∞ > 0 then
limt→∞ E[πpt ] = 0 for some p > 1. To see this, note that if limt→∞ E[πpt ] = 0 holds for some
p > 1, there exist positive constants C and T such that E[πpt ] < C for all t ≥ T . But then

sup
t

E[πpt ] ≤ max

(
C, sup

t≤T
E[πpt ]

)
. (107)
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Since continuous functions are bounded on compact intervals, we see that supt≤T E[πpt ] is
bounded, and thus supt E[πpt ] <∞, as required. Let us therefore show that limt→∞ E[πpt ] = 0
for some p > 1. It follows from (94) that

log E[πpt ] = −pR∞t−
p

k
(r0 − θ)(1− e−kt) +

∫ t

0

ψ (pαst) ds− pψ
(σ
k
− λ
)
t,

(108)

and we can use (98) to see that

log E[πpt ] = −pR∞t−
p

k
(r0 − θ)(1− e−kt)

+
(
ψ
(
p
(σ
k
− λ
))
− pψ

(σ
k
− λ
))

t+O(1) (109)

for large t. Since ψ is continuous at σ/k − λ, we observe that the quantity∣∣∣(ψ (p(σ
k
− λ
))
− pψ

(σ
k
− λ
))∣∣∣ (110)

can be made arbitrarily small as p approaches unity from above. Keeping in mind that
R∞ > 0, we thus see that there exists a p > 1 such that

−R∞ +
(
ψ
(
p
(σ
k
− λ
))
− pψ

(σ
k
− λ
))

< 0, (111)

and hence limt→∞ E[πpt ] = 0, which is the required result. �

Proposition 7 If R∞ < 0 then {πt} is not uniformly integrable.

Proof. We shall show that {πt} is not bounded in L 1, which implies that {πt} is not UI. It
follows from (95) and (98) that for large t one has

log E[πt] = −R∞t−
1

k
(r0 − θ)(1− e−kt) +O(1). (112)

If R∞ < 0, we have

lim
t→∞

E[πt] =∞. (113)

Thus, the pricing kernel is not bounded in L 1. �

Proposition 8 If R∞ = 0 then {πt} is not uniformly integrable.

Proof. We recall that the pricing kernel is UI if and only if (38) holds. Using (87) and (93)
we have

πt = P0t exp

(∫ t

0

αst dξs −
∫ t

0

ψ(αst) ds

)
. (114)
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As a consequence, we see that

E[πt1{πt > δ}]

= P0tE
[

exp

(∫ t

0

αst dξs −
∫ t

0

ψ(αst) ds

)
1

{∫ t

0

αst dξs > B(t, δ)

}]
,

(115)

where we define

B(t, δ) = log δ − logP0t +

∫ t

0

ψ(αst) ds. (116)

Equivalently, by (87) we have

B(t, δ) = log δ +R∞t+
1

k
(r0 − θ)

(
1− e−kt

)
+ ψ

(σ
k
− λ
)
t. (117)

We introduce a new measure P∗ on Ft by setting

P∗(A) = E
[
exp

(∫ t

0

αst dξs −
∫ t

0

ψ(αst) ds

)
1{A}

]
(118)

for A ∈ Ft. Writing E∗ for expectation under P∗ we then have

E[πt1{πt > δ}] = P0t E∗
[
1

{∫ t

0

αst dξs > B(t, δ)

}]
. (119)

Let us introduce a positive constant ω with units of inverse time, making ωt dimensionless.
Thus ω is a fixed “rate”. To proceed, we need the following results regarding the mean and
variance of the random variable

∫ t
0
αstdξs under P∗. If R∞ = 0, then for large t we have

E∗
[∫ t

0

αst dξs

]
−B(t, ωt) = Ct+ o(t), (120)

where

C =
(σ
k
− λ
)
ψ′
(σ
k
− λ
)
− ψ

(σ
k
− λ
)

(121)

is a positive constant, and

Var∗
[∫ t

0

αst dξs

]
= O(t). (122)

To see (120), (121), and (122), note that for u sufficiently close to zero we have

E∗
[
exp

(
u

∫ t

0

αst dξs

)]
= exp

(∫ t

0

(ψ ((1 + u)αst)− ψ(αst)) ds

)
. (123)

Taking a derivative with respect to u on both sides and setting u = 0 gives

E∗
[∫ t

0

αst dξs

]
=

∫ t

0

ψ′(αst)αst ds. (124)
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A calculation then shows that

d

dt
E∗
[∫ t

0

αst dξs

]
= α0tψ

′(α0t), (125)

and thus, by l’Hospital’s rule,

lim
t→∞

1

t
E∗
[∫ t

0

αst dξs

]
= lim

t→∞
α0t ψ

′(α0t) =
(σ
k
− λ
)
ψ′
(σ
k
− λ
)
. (126)

It follows that

E∗
[∫ t

0

αst dξs

]
=
(σ
k
− λ
)
ψ′
(σ
k
− λ
)
t+ o(t) (127)

for large t. Recall from (117) that B(t, δ) grows to leading order like ψ(σ/k − λ)t when
R∞ = 0. This remains the case if we replace δ by ωt, since the growth of logωt is slower
than linear growth. That is,

E∗
[∫ t

0

αst dξs

]
−B(t, ωt) =

[(σ
k
− λ
)
ψ′
(σ
k
− λ
)
− ψ

(σ
k
− λ
)]
t+ o(t) (128)

for large t. The positivity of the coefficient of t follows from Lemma 2. We have thus arrived
at (120) and (121). It remains to show equation (122). Taking the second derivative of (123)
with respect to u and setting u = 0, we find

E∗
[(∫ t

0

αst dξs

)2
]

=

(∫ t

0

ψ′(αst)αst ds

)2

+

∫ t

0

ψ′′(αst)α
2
st ds. (129)

Using (125), we then obtain

Var∗
[∫ t

0

αst dξs

]
= E∗

[(∫ t

0

αst dξs

)2
]
−
(

E∗
[∫ t

0

αst dξs

])2

=

∫ t

0

ψ′′(αst)α
2
st ds. (130)

The limit

lim
t→∞

1

t
Var∗

[∫ t

0

αst dξs

]
= lim

t→∞

1

t

∫ t

0

ψ′′(αst)α
2
st ds (131)

is finite, which can be seen using l’Hospital’s rule. Hence, (122) follows. We set

c(t) = E∗
[∫ t

0

αst dξs

]
−B(t, ωt), (132)

and recall from (120) that c(t) grows linearly for large t. Let t be large enough so that
c(t) > 0. We recall that if X is a random variable such that Var [X] < ∞, then for any
constant c > 0 we have the Chebyshev inequality

P [|X − E[X]| ≥ c] ≤ 1

c2
Var [X]. (133)
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In the present context it follows that

P∗
[∣∣∣∣∫ t

0

αstdξs − E∗
[∫ t

0

αstdξs

]∣∣∣∣ ≥ c(t)

]
≤ 1

c(t)2
Var∗

[∫ t

0

αstdξs

]
. (134)

Since both c(t) and the variance grow linearly in t by (120)–(122), we see that

lim
t→∞

P∗
[∣∣∣∣∫ t

0

αstdξs − E∗
[∫ t

0

αstdξs

]∣∣∣∣ ≥ c(t)

]
= 0. (135)

For t large enough so that c(t) > 0, we have

E∗
[
1

{∫ t

0

αstdξs > B(t, ωt)

}]
= P∗

[∫ t

0

αstdξs > B(t, ωt)

]
≥ P∗

[∣∣∣∣∫ t

0

αstdξs − E∗
[∫ t

0

αstdξs

]∣∣∣∣ < c(t)

]
= 1− P∗

[∣∣∣∣∫ t

0

αstdξs − E∗
[∫ t

0

αstdξs

]∣∣∣∣ ≥ c(t)

]
.

(136)

Taking the limit on both sides as t gets large, and using equation (135), one finds

lim
t→∞

E∗
[
1

{∫ t

0

αstdξs > B(t, ωt)

}]
= 1. (137)

To proceed, recall from (38) and (119) that in order to show that the pricing kernel is not
UI when R∞ = 0 one needs to prove that

lim
δ→∞

sup
t

(
P0t E∗

[
1

{∫ t

0

αst dξs > B(t, δ)

}])
> 0. (138)

To see that (138) holds, note that

lim
δ→∞

sup
t

(
P0t E∗

[
1

{∫ t

0

αst dξs > B(t, δ)

}])
= lim

T→∞
sup
t

(
P0t E∗

[
1

{∫ t

0

αst dξs > B(t, ωT )

}])
= lim sup

T→∞
sup
t

(
P0t E∗

[
1

{∫ t

0

αst dξs > B(t, ωT )

}])
≥ lim sup

T→∞
P0T E∗

[
1

{∫ T

0

αsT dξs > B(T, ωT )

}]
= lim sup

T→∞
P0T , (139)

where the final equality follows as a consequence of equation (137). Keeping in mind that
for the case under consideration we have R∞ = 0, it follows from (95) and (98) that P0T is
of the form

P0T = exp

(
−1

k
(r0 − θ)

(
1− e−kT

)
+ f(T )

)
(140)
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for some function f(T ) that satisfies

lim sup
T→∞

|f(T )| <∞. (141)

We deduce that

lim sup
T→∞

P0T = exp

(
−1

k
(r0 − θ)

)
lim sup
T→∞

exp (f(T )) > 0. (142)

Therefore, the right side of (139) is strictly positive, and thus we have shown that (138)
holds, which concludes the proof. �

X. LONG-BOND RETURN IN LÉVY-VASICEK MODEL

We proceed to determine the return on a unit investment in the long bond in a Lévy-Vasicek
model. Note that

lim
T→∞

log
PtT
P0T

= lim
T→∞

[−RtT (T − t) +R0T T ] , (143)

from which it follows that

Lt = (θ + ψ(−λ))t+
1

k
(r0 − rt)− lim

T→∞

∫ t

0

ψ(αsT )ds

= (θ + ψ(−λ))t+
1

k
(r0 − rt)− ψ

(σ
k
− λ
)
t

= R∞t+
1

k
(r0 − rt). (144)

It is natural to ask whether it is possible to bring the long-bond return process into the form
of a geometric price process. If we take into account relation (78) for the integrated short
rate and definition (73) for the excess rate of return, then after some algebra we deduce that

Lt = exp

[∫ t

0

(
rs +R

(
λ,
σ

k

))
ds+

σ

k
ξt − ψ

(σ
k

)
t

]
. (145)

Thus, the form of the long-bond return is indeed that of a geometric asset price, with a
Lévy-Vasicek short rate rt, risk aversion λ, and volatility σ/k. If we multiply this expression
by the pricing kernel, we obtain the geometric Lévy martingale

Mt = exp
[(σ
k
− λ
)
ξt − ψ

(σ
k
− λ
)
t
]
. (146)

This gives the result that Ross recovery holds in a Lévy-Vasicek model if and only if λ = σ/k,
just as in the Brownian context.
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