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ABSTRACT
We tend to synchronize our movements to the person we
are talking to during face-to-face conversation. Higher inter-
personal synchrony is linked to greater empathy and more
effortless interactions. This paper presents a first method
and a corresponding dataset to explore synchrony in natural
conversation by capturing eye and head movement using
commodity smart eyewear. We present a 17 hour dataset,
using Electrooculography and inertial sensing, of 42 people
in conversation (21 dyads: 10 in Japanese, 10 in English, 1 in
Chinese). Initial results on 18 dyads show significant inter-
personal synchrony of blink and head nod behaviour during
conversation (at frequencies of 0.2 to 0.5 Hz). We also find
that people are more likely to synchronise blinks at around
1 Hz when conversing back-to-back than when face-to-face.
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Figure 1: Experimental setup. Participants had one conver-
sation back to back (A) and one conversation face to face (B).
Audio and video recording directionally captured both con-
versations.

1 INTRODUCTION
Understanding a person’s context and activity is at the core
of making wearable computing more personal and transpar-
ent. Activity recognition covers a wide range of wearable
modalities and applications, including physical (e.g., daily
step counting, assembly task analysis), physiological (e.g.,
heart rhythm analysis, breathing rate), and cognitive (e.g.,
reading detection, cognitive load tracking). To-date, most
of the focus of wearable sensing has been on the individ-
ual. However there is growing interest in the topic of social
sensing, i.e. the in-situ capture and analysis of human social
behavior using unobtrusive devices [20].
A particularly useful social signal is interpersonal syn-

chrony. Interpersonal synchrony reveals the degree of tem-
poral coordination between people during social interaction,
and can provide cues on things like social engagement, and
affect [2]. We propose measuring interpersonal synchrony
using the head nods and eye blinks of dyads in conversa-
tion. Nods and blinks are used due to their importance as
non-verbal signals [6], their connection to cognitive pro-
cesses like sustained attention [16], and the relative ease of
collecting this data using commercial head-worn wearables.
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Figure 2: J!NS Meme glasses with 6-axis sensors and (EOG)
electrodes.
We present a method of using smart eyewear to study

non-verbal, interpersonal synchrony using eye and head
movement during dyadic, open conversation. The work has
two ultimate goals: to evaluate a new, wearable, approach for
psychologists wishing to study interpersonal synchrony in-
the-wild, and to provide a dataset of head and eye movement
during conversation for researchers interested in building
socially aware wearable applications [14]. The specific con-
tributions include:

• A public dataset (http://eyewear.pro/blinksync) of 42
participants in conversation (10 in English, 10 in Japan-
ese, 1 in Chinese), including head and eye movements
via Inertial Measurement Unit (IMU) and Electroocu-
lography (EOG), as well as synchronized audio and
video.

• An application of wavelet coherence as a tool to anal-
yse interpersonal sychrony on two different wearable
sensing modalities (nods via IMU and blinks via EOG).

• Evaluation of two hypotheses: 1) we synchronise nods
and blinks during conversation (true), and 2) we syn-
chronise more face-to-face than back-to-back (false).

2 RELATEDWORK
There is a long history in applied psychology dedicated to the
study of nonverbal interaction using movement [9, 10, 27].
Tschacher et al. found a link between interpersonal syn-
chrony and affect [27], revealing that if people move in sync,
they tend to feel more positive towards one another. Ward et
al. show interpersonal synchrony can be captured between
actors and autistic children in theatre – and suggest how this
might be used as a measure of social engagement [30].
Nodding is a particularly useful back-channel in conver-

sation [11]. It is used to express attentiveness [17], as well
as stance and affiliation [23]. Hale et al. use motion capture
to reveal the importance of head nods as a mechanism for
coordination during conversation [10]. They reveal a link
between listening behaviour and fast nods of 1.5 to 5 Hz.
Eye blinks are a useful cognitive indicator [22, 25], but

they also reveal information on social interaction. Nakano
et al. found that when watching a video of a person speak-
ing, listeners synchronise their eye blinks to those of the
speaker, but only when the speaker’s mouth and eyes are
both visible [19]. They suggest a visual role of blinks and

mouth movement in coordinating face-to-face conversation.
This reinforces the early observations of Dittmann et al [4],
which linked blink (and nod) synchrony to coordinating
breakpoints in speech. The social importance of blinks was
also demonstrated in a further work by Nakano et al. show-
ing a lack of eye blink synchrony in autism [18], a condition
characterised by communication difficulties.
Our work is closely related to the field of Social Sensing

[20, 21]. This grew out of the initial efforts by Choudhury and
Pentland to use wearable motion and audio to analyse group
interactions [1]. Gordan et al. pursue collaborative activity
recognition for group activities [7], while Ward et al. use
audio and movement to uncover within-group collaborations
[29]. In the field of tele-presence, Madan et al. show how the
head nods of remote users can be reproduced in real time to
facilitate group discussion [15].

Much of the work on non-verbal analysis of social signals
use either computer vision, or pocket worn sensing (e.g.
mobile phones) [12, 13, 28].Wearables positioned on the body
have the potential to provide a richer source of information
on social signals.
To uncover synchrony between participants, we use a

method based on wavelet cross-coherence. This method
highlights correlation in both time and frequency between
two signals, and was originally developed to measure co-
variations in weather patterns [8]. It has since been used
to measure interpersonal synchrony of head movements in
conversation [5, 10]. And was applied to wrist-worn sen-
sor data to detect social engagement [30]. The present work
introduces a first attempt to apply wavelet coherence to con-
versation data obtained from two different head-mounted
sensors (EOG and IMU).

3 EXPERIMENTAL SETUP
Pairs of participants were asked to have two conversations
on two assigned topics. They had one conversation facing
each other (FF) and another sat back to back (BB) so that
they were unable to see the other person (Figure 1). Each
conversation lasted exactly five minutes. The first conver-
sation topic, adapted from Tschacher et al., was to ”plan a
4-course meal together using only ingredients that neither
of you like” [27]. The second topic was to ”plan one day of
a holiday only doing things that neither of you enjoy.” The
topics were described to participants directly before the be-
ginning of each conversation. The direction faced for the
first conversation was alternated throughout the study, and
the two topics were used equally in both directions.

Apparatus and signals
All interactions were recorded using two video cameras and
two channel audio recording (Figure 1). Each participant’s
EOG eye motion data, as well as IMU head movement data
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Figure 3: 6s example conversation (dyad 12, BB). Raw EOG-
V signals shown, with corresponding continuous wavelet
transforms (cwt) for each, and the resulting wavelet coher-
ence WCOH spectrogram from combining these. Darker re-
gions on the spectrograms show higher coherence values.
Dotted line shows a moment of sychronous blinking and re-
sulting wcoh (at scale of approx. 0.2s).

(accelerator and gyroscope), was recorded using J!NS MEME
glasses. The glasses are equipped with EOG sensors around
the nose, and 3-axis IMU in the frame. All logged data was
transmitted to Android smartphones via Bluetooth LE (low
energy). With a sampling rate of 100Hz, the glasses stream
10 datapoints (3 ACC, 3 GYRO, 4 EOG) at a time.

We use ’nod’ as a shorthand for head pitch (y-axis accel-
eration, or ACC-Y) because nodding is the most common
(and dominant) head pitch movement. Similarly we use blink
as a shorthand for vertical EOG, or EOG-V. During a blink,
the eyes perform a characteristic up- and downward motion
that is expressed in the EOG-V signal [3]. This is created, in
part, by changes in measuring the retinal-corneal potential,
but also movement of the eyelid muscle. The characteristic
voltage from blink is larger than any other eye movement,
and is thus a dominant signal in EOG-V.
Applying cross-wavelet coherence directly to pairs of

ACC-Y (and EOG-V) gives an indication that people are nod-
ding (or blinking) in a coordinated way with one another: it
highlights if the signals change at the same time.

Participants
We recorded 42 participants (22 female, average age 23, STD
4), who were predominantly university students. Participants
registered themselves for the study in pairs or were assigned
to dyads with someone fluent in their language to allow co-
herent communication. 21 pairs of participants (n=21 dyads)

were asked to speak in their mutually preferred language. In
total we had 10 English language pairs, 10 Japanese language
pairs, and one Chinese language pair. All participants gave
written consent after getting informed of the study design,
setup, and potential data usage for analysis, including video
and audio recordings before the experiment.
In the following analysis, we use data from 18 of the 21

dyads. Two excluded pairs were due to hardware synchro-
nisation issues. The lone Chinese-language pair was also
excluded (in part because one participant wore a face-mask,
and we are interested in face-to-face effects).

4 WAVELET COHERENCE ANALYSIS
Wavelets allow us to decompose a signal into its frequency
components while preserving temporal information, and
without the need for windowing [26]. Obtaining the wavelet
transform from two signals and then combining the outputs
provides a way of obtaining the common time-spectral re-
sponse. Two related methods of combining these include the
cross-wavelet transform, which highlights the frequencies
with high common power, and the wavelet coherence trans-
form, which highlights common frequencies regardless of
power [8]. Here we use wavelet coherence because of its
superior performance on subtle, lower-power data.
The wavelet coherence spectrogram is obtained by com-

bining wavelet spectrograms of the two signals being anal-
ysed (one from each of the conversing participants, here
referred to as left, L and right, R). This process is shown
using EOG-V for a 6s sequence of two people conversing in
Figure 3. The wavelet coherence spectrogram (for both EOG-
V and ACC-Y) is obtained in 3 steps: 1) low-pass filter the raw
signals for L and R (5th-order Butterworth, cut-off 20Hz), 2)
apply a continuous wavelet transform to the signals,WL and
WR , 3) calculate the cross-wavelet transform by multiplying
WL by the complex conjugate of the otherW ∗

R , i.e.WL,R =

WL ∗W
∗
R , and then normalising for signal power to obtain

the wavelet coherence (see [8] for full details). The wavelets
used in this work are calculated using the continuous wavelet
transform function, with a Morlet base, from the PyCWT
module in Python (https://github.com/regeirk/pycwt).
Wavelet coherence spectrograms were computed for all

the EOG and IMU data signals between conversing partners,
and the results averaged for each condition over time to
give a typical frequency response. Here we present only
the data from vertical eye movement, EOG-V (blink), and
y-direction acceleration, ACC-Y (head nods), as these are the
relevant signals to the current study. The frequency response
is represented by the approximate wavelet scale periods, or
1/f requency. Paired t-tests (with p=0.05, N=18) were applied
across 121 different wavelet scales. To account for multiple
comparisons, we applied Benjamini-Hochberg, false discov-
ery rate (FDR) correction at 0.05.
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Figure 4: Real conversation vs. pseudo for blinks (EOG-V) and nods (ACC-Y). Average coherence for each condition is shown
(with standardmean error, SME, in the shaded regions). Effect size (Cohen-d) is also shownwith significance levels highlighted.
This shows 1) we synchronise our blinks at periods of greater than 2s during conversation, and 2) we synchronise head nods
over similar frequencies.

Figure 5: FF vs. BB conversation for EOG-V and ACC-Y. This shows 1) much of the synchrony in both nods and eye blinks
occurs irrespective of whether people are FF or not, 2) and people synchronise their blinks at periods of 1 s more in BB.
5 RESULTS AND DISCUSSION
We performed evaluations to test 2 hypotheses: 1) people
synchronise nods and blinks during conversation, 2) people
synchronise more when they can see one another vs. when
they cannot.

Do people synchronise in conversation?
Coherence data from real conversations were compared
against coherence data from pseudo-conversations. Pseudo
conversations approximate a random interaction by calcu-
lating the coherence of two signals taken from different con-
versations. To maintain the validity of the dependent t-tests,

each pseudo conversation is calculated from the same par-
ticipants used in the corresponding real conversation. To
calculate a pseudo, we generate the coherence of person L
(from FF), with their partner, R (from BB), and vice versa
(L from BB, R from FF). We then average both to generate
a single pseudo response. By comparing real-vs-pseudo in
this way, we can uncover synchronicity that occurs in ac-
tual conversation as distinct from just the combination two
individuals speaking.
Figure 4 shows our main result, which confirms the hy-

pothesis that people synchronise with one another in eye
blink, and to a slightly lesser extent in head nod. The effect
is particularly strong for EOG-V at periods of 2 to 5 s, which
roughly corresponds to typical eye blink rates in individuals.
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Do people synchronise more face-to-face?
The right plots on Figure 5 suggest that there is generally
no significant difference between conversants’ ACC-V when
face to face (FF) vs. back to back (BB).
However, when analysing EOG-V (the left plot), a sig-

nificant difference is found in favour of BB at interaction
periods of around 1s (1Hz). This surprising result suggests
that people coordinate blinks more when they cannot see
one another.

A rate of 1 Hz is faster than typical blink rates. It should be
stressed that this analysis does not necessarily imply a con-
stant stream of synchronised blinks every second. The result
might also be explained by a series of occasional, synchro-
nised, slow blinks (each lasting around 1s), or short bursts of
1 Hz blinks. Currently, we do not have a full explanation for
this phenomenon, but hypothesize that either entrainment
of breathing patterns of people who sit next to one another
and talk, but cannot see one another, might be a factor. It may
be also that the lack of visual connection leads to a higher
dependence on auditory attention to be able to follow the
conversation, which results in synchronized eye blinks due
to increased engagement [19].

6 CONCLUSIONS AND FUTUREWORK
In this paper, we provide a data set exploring over 17 hours of
natural conversations recorded by smart eyewear. We show
– for the first time – that synchrony of physiological signals
and non-verbal communication gestures can be detected
using an unobtrusive, off-the-shelf wearable sensing device.
We demonstrate how wavelet coherence analysis might be
used to highlight coordination between wearable signals
from interacting participants.

One limitiation of the work is our use of raw EOG-V and
ACC-Y signals as a proxy for ’blink’ and ’nod’ behaviour. This
is a valid assumption considering the dominance of nods and
blinks on these signals. However, future work might con-
sider a higher-level analysis, for instance using dynamic time
warping on the output of separate blink and nod detectors.

In future work we intend to explore the cultural differ-
ences inherent in non-verbal behaviour. There are known
differences in nodding between Japanese and English speak-
ing populations, for example, which we will explore more
fully in a follow-on work (e.g., [24]).
We also plan to extend the research beyond dyads to an-

alyze group discussions. An important addition will be to
test the robustness of these methods to in-the-wild situa-
tions and to evaluate real-time classification of conversa-
tional behaviour. This will allow eventual application of these
methods to help build wearable aids that benefit from better
awareness of human social context.
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