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Abstract
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Doctor of Philosophy

Handling Class Imbalance Using Swarm Intelligence Techniques, Hybrid
Data and Algorithmic Level Solutions

by Haya ALHAKBANI

This research focuses mainly on the binary class imbalance problem in data
mining. It investigates the use of combined approaches of data and algo-
rithmic level solutions. Moreover, it examines the use of swarm intelligence
and population-based techniques to combat the class imbalance problem at
all levels, including at the data, algorithmic, and feature level. It also in-
troduces various solutions to the class imbalance problem, in which swarm
intelligence techniques like Stochastic Diffusion Search (SDS) and Dispersive
Flies Optimisation (DFO) are used. The algorithms were evaluated using
experiments on imbalanced datasets, in which the Support Vector Machine
(SVM) was used as a classifier. SDS was used to perform informed under-
sampling of the majority class to balance the dataset. The results indicate
that this algorithm improves the classifier performance and can be used on
imbalanced datasets. Moreover, SDS was extended further to perform fea-
ture selection on high dimensional datasets. Experimental results show that
SDS can be used to perform feature selection and improve the classifier per-
formance on imbalanced datasets. Further experiments evaluated DFO as
an algorithmic level solution to optimise the SVM kernel parameters when
learning from imbalanced datasets. Based on the promising results of DFO
in these experiments, the novel approach was extended further to provide a
hybrid algorithm that simultaneously optimises the kernel parameters and
performs feature selection.
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Chapter 1

Introduction

Over the last decade, there has been a rapid increase in the worldwide vol-
ume and velocity of data due to the unparalleled growth of data gathering
via internet-connected devices. Data volume of data is defined as the amount
of data and velocity is defined as the speed of data generation (Gandomi and
Haider, 2015). The proliferation of the Internet of Things (IoT) provides a
massive data lake from which increasingly large datasets are derived fast.
For example, Twitter has 330 million monthly active users with an average
of 500 million tweets being sent per day 1. This is a large amount of data
containing important information. Thus, it is important to speed up data pro-
cessing to quickly generate information. However, datasets are rendered and
useless unless meaning can be accurately derived from structured, unstruc-
tured, and semi-structured data. Data mining and analytic approaches are
therefore crucial. Data mining technologies have been adopted by various
sectors, including banking, retail and telecommunications, and are viewed
as the foremost technologies for processing data that is now measured in
tera-, peta-, and exabytes. Layers of analysis are required to both funnel the
data into a database and then provide pipelines for further analytical access
by organisational analysts and data scientists, who then use it to make pre-
dictive and inferential forecasts for a target population. Embedded within
the analytical framework are the challenges attributed to the problem of class
imbalance. In imbalanced datasets, the majority class is the class that has a
higher number of instances, while the minority class is the one that has a
comparatively lower number of instances. In terms of practical applications,
class imbalance is a problematic feature in fraud detection, medical diagno-
sis, direct marketing campaigns, and other applications in which the class
of interest is the minority class. Given the importance of cybersecurity and
medical diagnoses, among other data heavy disciplines that can directly and

1Information on the number of tweets available from https://www.omnicoreagency.
com/twitter-statistics/.

https://www.omnicoreagency.com/twitter-statistics/
https://www.omnicoreagency.com/twitter-statistics/
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drastically impact human lives, finding optimal solutions to the class imbal-
ance problem is imperative.

Numerous researchers have used data mining preprocessing techniques
as a method of solving the issue of imbalanced data (Chawla et al. (2002),
Han, Wang, and Mao (2005), Chawla (2009), and Liu et al. (2010)). However,
this solution is problematic as it can involve loss of important information
and over-fitting to balance the dataset. These problems have not stopped
researchers from using preprocessing techniques to overcome class imbal-
ance, though. Swarm intelligence techniques and population-based algo-
rithms have also been used to solve data mining issues, either by applying
them alone or by combining them with other preprocessing techniques. For
example, swarm intelligence techniques have been used to tune the learn-
ing algorithm parameters or search for optimal features in high dimensional
datasets (Unler, Murat, and Chinnam (2011) and Tiwari (2014)).

This work seeks to explore data mining preprocessing techniques to iden-
tify one that will offer the best performance in applications related to real-
world problems such as direct marketing that suffer from class imbalance.
It has also been found that high dimensional datasets like the microarray
datasets usually suffer from class imbalance. Thus, feature selection is in-
troduced and the possibility of using it as a solution to the class imbalance
problem is investigated. Moreover, the use of swarm intelligence techniques
as a solution for overcoming the class imbalance issue is explored. The next
section covers this study’s main objectives and explains the research method-
ology used in this thesis to tackle the issue of class imbalance in data mining.

1.1 Objectives and methodology

The research explores how data mining preprocessing techniques such as
sampling, cost sensitive learning, and feature selection are used to solve cases
where the class of interest is the minority class. It also examines the role that
swarm intelligence plays in solving this issue. This will be achieved by us-
ing experimental methodology to evaluate solutions for the class imbalance
problem. To accomplish this, real-world datasets will be used from resources
such as the University of California, Irvine (UCI) machine learning repository
2 and then compared with other results in the literature. When setting up the
experiments it is important to consider the following aspects: the definition

2An archive of databases for evaluating machine learning models: http://archive.ics.uci.
edu/ml/index.php.

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php


Chapter 1. Introduction 3

of the questions that drive the experiment, good record keeping and close
examination of the utility of the knowledge gained from the experiment. The
key research questions raised in this work are:

1. What are the available methods for handling the class imbalance prob-
lem?

2. How do swarm intelligence techniques help in dealing with imbal-
anced datasets at the data level?

3. How do swarm intelligence techniques help in dealing with imbal-
anced datasets at the algorithmic level?

4. How could swarm intelligence techniques, like SDS and DFO, provide
a way to address feature selection?

The first research topic investigates the current solutions for handling the
class imbalance problem and provides examples of how various solutions
are applied. This is followed by a number of experiments whose outcomes
demonstrate that a combination of various existing data mining preprocess-
ing techniques can improve the model performance on the direct marketing
dataset.

In order to answer the second research question, various swarm intelli-
gence and population-based algorithms are presented. SDS and DFO are the
algorithms discussed in most detail, and examples of how these algorithms
work are provided. In experimental work, the use of SDS as a data level solu-
tion was first investigated. SDS was used to undersample the majority class.
Following the promising results, SDS was extended further to undersample
the majority class at the feature level using a feature level threshold. This was
combined with the Synthetic Minority Oversampling Technique (SMOTE) at
the data level. At the algorithmic level, grid search was used to tune the SVM
parameters.

Moreover, to address the third question, DFO, another swarm intelligence
algorithm, is presented and used as an optimiser for the SVM parameters to
solve the class imbalance problem at the algorithmic level.

Finally, to answer the fourth question, the use of SDS to perform feature
selection is investigated and the results are compared with those of other
techniques from the literature on real-world imbalanced datasets. DFO is de-
veloped further to perform parameters tuning and feature selection simulta-
neously. The proposed approach is evaluated using two microarray datasets.
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1.2 Contributions

This thesis presents research work on novel methods of data mining and
swarm intelligence techniques for handling the class imbalance issue. It
demonstrates the advantages of using swarm intelligence search techniques
in balancing the dataset, finding a feature subset, and tuning the SVM pa-
rameters. The original contributions are made in the area of handling class
imbalance and the use of swarm-based techniques. In general, the contribu-
tions of this thesis are as follows:

• Class imbalance in the direct marketing dataset: In this experiment, a
model is proposed to improve the classifier performance on a direct
marketing imbalanced dataset using a combination of existing tech-
niques. At the data level, oversampling and undersampling are used.
At the algorithmic level, grid search is used to optimise the C, γ and
the kernel type of SVM. The model is used to overcome the class im-
balance problem in a real-world dataset that was collected from a Por-
tuguese marketing campaign for bank-deposit subscriptions (available
from the UCI machine learning repository). The results indicate that the
proposed approach performed competitively when compared to other
models on the same dataset. The outcome of this experiment was pub-
lished in the proceedings of the SAI Computing Conference, London
2016 3.

Alhakbani, H. A., al-Rifaie, M. M. (2016). “Handling Class Imbalance In
Direct Marketing Dataset Using A Hybrid Data and Algorithmic Level Solu-
tions.” In SAI Computing Conference, pp 446-451, 2016. IEEE, London,
UK.

• SDS and undersampling : This study investigates a new approach for
balancing the direct marketing dataset using a swarm intelligence tech-
nique, SDS, to undersample the majority class on the direct marketing
dataset. The outcome of the novel application of this swarm intelli-
gence algorithm demonstrates promising results which encourage the
possibility of undersampling a majority class by removing redundant
data whilst protecting the useful data in the dataset. This new approach

3The Conference Website: http://saiconference.com/Conferences/Computing2016.

http://saiconference.com/Conferences/Computing2016


Chapter 1. Introduction 5

for undersampling the dataset using SDS was published in the proceed-
ings of the 10th International Conference on Swarm Intelligence, ANTS
2016, Brussels, Belgium 4.

Alhakbani, H. A., al-Rifaie, M. M. (2016). “A Swarm Intelligence Ap-
proach in Undersampling Majority Class.” In ANTS 2016 Tenth Interna-
tional Conference on Swarm Intelligence, Lecture Notes in Computer
Science (LNCS). Volume 9882, pp 225-232, Brussels.

• Exploring feature-level duplications on imbalanced datasets using SDS:
In this experiment, a hybrid approach is proposed to deal with real-
world imbalanced datasets. The proposed model involves oversam-
pling the minority class, undersampling the majority class as well as
optimising the parameters of the classifier. The proposed model uses
SMOTE to perform the oversampling on the minority class and the
agents of SDS to perform an informed undersampling of the majority
class. The use of this swarm-based technique in conducting the under-
sampling tasks is investigated and its impact on improving the classi-
fication results is demonstrated. Not only was the agents-led under-
sampling compared with random undersampling, but the results were
also contrasted with other well-known techniques on nine real-world
datasets. Additionally, further experiments are designed to explore the
behaviour of the SDS agents during the undersampling process. The
results of this work were published at the 14th European Conference
on Multi-Agent Systems, EUMAS 2016, Valencia Spain 5.

Alhakbani, H. A., al-Rifaie, M. M. (2016). “Exploring Feature-Level Dupli-
cations on Imbalanced Data Using Stochastic Diffusion Search.” In 14th Eu-
ropean Conference on Multi-Agent Systems (EUMAS 2016), Springer
LNCS/LNAI. Valencia, Spain.

• Feature selection using SDS: In this experiment, a new approach for fea-
ture selection is introduced in which SDS is used to find a feature sub-
set. The proposed approach is called SDS-based feature selection (SDS-
FS). The results indicate that SDS-FS outperforms the classifier per-
formance without SDS feature selection. When compared with other
methods from the literature used on datasets with a feature size greater

4The Conference Website: http://iridia.ulb.ac.be/ants2016/.
5The Conference Website: http://eumas-at2016.webs.upv.es/

http://iridia.ulb.ac.be/ants2016/
http://eumas-at2016.webs.upv.es/
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than 10, SDS-FS offers a competitive performance. The outcome of this
novel approach for feature selection was published in the proceedings
of the Genetic and Evolutionary Computation Conference (GECCO),
2017, Berlin, Germany 6.

Alhakbani, H. A., al-Rifaie, M. M. (2017), “Feature Selection using Stochas-
tic Diffusion Search,” GECCO-2017: Genetic and Evolutionary Compu-
tation Conference, pp. 385-392, Association for Computing Machinery
(ACM).

• Optimising SVM parameters using DFO: Although substantial work
has been done on tuning SVM parameters using various swarm intelli-
gence techniques such as Particle Swarm Optimisation (PSO), the use of
other swarm-based techniques remains unexplored. In this experiment,
a novel approach that uses DFO to optimise the SVM kernel parame-
ters, C and γ, is proposed. This is to perform cost sensitive learning
to improve the classifier’s performance on imbalanced datasets. The
use of the swarming behaviour of the flies in DFO has been evaluated
on eight real-world datasets. The proposed approach has been com-
pared with other techniques for parameters tuning, such as PSO and
grid search. The results demonstrate that the proposed approach out-
performs other techniques on the same datasets. This proposed, novel
approach was published in the proceedings of the Federated Confer-
ence on Computer Science and Information Systems (FedCSIS), 2017,
Prague, Czech Republic 7.

Alhakbani, H. A., al-Rifaie, M. M. (2017), “Optimising SVM to classify
imbalanced data using Dispersive Flies Optimisation,” Proceedings of the
2017 Federated Conference on Computer Science and Information Sys-
tems. IEEE.

• Feature selection and parameters tuning using DFO: After the use of
DFO for SVM parameters tuning, the algorithm was further extended
to perform feature selection. In this experiment, another novel ap-
proach is proposed to simultaneously tune the kernel’s parameters while
finding a subset of features. The model has been evaluated using two

6The Conference Website: http://gecco-2017.sigevo.org/index.html/HomePage.
7The Conference Website: https://fedcsis.org/2017/.

http://gecco-2017.sigevo.org/index.html/HomePage
https://fedcsis.org/2017/
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well-known microarray datasets: small round blue cell tumours (SR-
BCT) and Leukemia MLL datasets. The performance of the proposed
approach was compared with other models from the literature on the
same datasets. The results indicate that the proposed DFO-based ap-
proach outperforms a variety of techniques from the literature.

1.3 Chapters outline

The rest of the thesis is structured as follows

• Chapter 2 begins by defining data mining and investigating why it is
important. It then provides a review of current literature on the major
issues in data mining, mainly the problem of class imbalance. It also
presents the suggested solutions from the literature to overcome this
problem. In particular, three solutions are outlined: 1) data level solu-
tions that make use of various approaches, such as sampling, to balance
the datasets; 2) algorithmic level solutions that work by adjusting the
misclassification cost; 3) hybrid solutions that work by combining un-
dersampling and oversampling until the dataset is balanced or by com-
bining data level solutions and algorithmic level solutions for a better
performance of the classification models. This chapter also highlights
the importance of feature selection in improving the model’s overall
accuracy and outlines how it can be used to solve the class imbalance
problem. Finally, the metrics used to evaluate models on imbalanced
datasets are explained.

• Chapter 3 begins with a discussion of the basic concept of swarm in-
telligence and evolutionary computation. It then goes on to define
main swarm intelligence algorithms. The chapter highlights the use
of swarm intelligence in data mining by providing examples from the
literature. It also provides an in-depth definition of two swarm intelli-
gence techniques - SDS and DFO - which can be used to solve search
and optimisation problems.

• Chapter 4 presents the set of experiments and obtained results for each
experiment. These experiments have been the main source of practice
to solve the class imbalance issue. The practice has been achieved using
real-world datasets.
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• Chapter 5 provides an in-depth discussion of the results based on the
experiments.

• The report concludes with Chapter 6, which includes a summary of
contributions thus far, along with the main achievements of this thesis.
The chapter also provides plans for future work, including experiments
to be conducted.
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Chapter 2

Class Imbalance

This chapter presents a brief overview of data mining. The definition of data
mining is followed by a description of the main approaches used to extract
knowledge from data. Major issues in data mining are identified before the
chapter goes on to offer an in-depth investigation of the class imbalance prob-
lem and a discussion of the proposed solutions by researchers. This includes
a brief introduction to the theory of SVM and the recent approach of opti-
mising the SVM kernel parameters to deal with the class imbalance problem.
Subsequently, an introduction to feature selection is given, along with an ex-
planation of how it can be used as a solution to class imbalance. Finally, the
evaluation metrics used to measure the classification model’s performance
on imbalanced datasets are presented.

2.1 Introduction

In recent years, technological and scientific breakthroughs have significantly
increased the availability of raw data, thereby enabling knowledge discov-
ery and data science research to make a number of contributions to var-
ious applications, from day-to-day tasks to decision-making support sys-
tems. Data mining techniques have the functional capability to process struc-
tured data and subsequently extract meaningful patterns (Mazurowski et al.,
2008). Data mining is an important field as it helps in extracting informa-
tion from large raw data. It has been defined as “the non-trivial extraction of
implicit, previously unknown, and potentially useful information from data” (Fraw-
ley, Piatetsky-Shapiro, and Matheus, 1992). Another definition for data min-
ing is “the process of discovering interesting knowledge from large amounts of data
stored either in databases, data warehouses, or other information repositories” (Han,
Pei, and Kamber, 2011). It involves the construction of data models using
available data to represent and interpret the current understanding of reality.
Moreover, it provides insights and facilitates decision making. A data model
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describes patterns and relationships that are apparent from the analysis and
slicing of the data sources (Berson, Smith, and Thearling, 2000).

Data mining algorithms analyse the data to look for patterns, so the data
to be mined must be presented as a collection of examples or instances . Each
example, an instance, is described by a number of attributes, or features val-
ues that can be either numerical or categorical. Table 2.1 shows fourteen
examples of ideal and non-ideal days to play golf (Witten and Frank, 2005).
Each example (row) represents a day that is described in terms of features or
attributes (columns), including: outlook, the outside temperature, humidity,
wind and the class label which specifies if the weather is suitable for playing
golf or not (Hall, 1999).

From a set of structured examples of a target concept, a data mining algo-
rithm can find patterns or trends in three different ways: Clustering, associ-
ation rule and classification.

TABLE 2.1: Golf dataset

Attributes Class label

Example # Outlook Temperature Humidity Windy Play

1 Sunny 85.0 85.0 False No
2 Sunny 80.0 90.0 True No
3 Overcast 83.0 86.0 False Yes
4 Rainy 70.0 96.0 False Yes
5 Rainy 68.0 80.0 False Yes
6 Rainy 65.0 70.0 True No
7 Overcast 64.0 65.0 True Yes
8 Sunny 72.0 95.0 False No
9 Sunny 69.0 70.0 False Yes
10 Rainy 75.0 80.0 False Yes
11 Sunny 75.0 70.0 True Yes
12 Overcast 72.0 90.0 True Yes
13 Overcast 81.0 75.0 False Yes
14 Rainy 71.0 91.0 True No

Clustering and association rule mining are “unsupervised learning” pro-
cesses as they do not involve the prediction of values for a specific attribute
(Tang et al., 2009). Clustering involves dividing the set of examples or in-
stances into groups based on some measure of similarity. The labels do not
exist in the datasets so they are not available to use at the beginning. Instead,
clustering is used to generate the class labels. Association rule mining looks
for useful predictive patterns or trends between any combination of features
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or attributes in the data. This approach is different from “supervised learn-
ing”. In supervised learning, one of the attributes, called the class attribute
or dependent attribute, can be predicted according to the values for those at-
tributes called independent attributes. The class attribute can be categorical or
numerical. If the class attribute is categorical, the process is called classifi-
cation. However, if the class attribute is numeric, the process is called re-
gression (Witten and Frank, 2005). Classification is defined as “the process of
finding a set of models (or functions) which describe and distinguish data classes or
concepts, for the purposes of being able to use the model to predict the class of objects
whose class label is unknown” (Han, Pei, and Kamber, 2011). The objective of
classification is to successfully predict the values of the class attributes of an
example or instance based on the values for its independent attributes. The
classifier success is usually measured using the overall predictive accuracy
(more details about evaluation metrics can be found in section 2.5). Going
back to the dataset example in Table 2.1, the class attribute is play and the in-
dependent attributes are outlook, outside temperature, humidity, and wind,
with the objective being to create a model that successfully predicts if the
day’s weather is suitable for playing golf or not.

The goal of the classification algorithms is to achieve higher accuracy by
having the maximum number of correct predictions. Thus, to explore pat-
terns from a dataset so that future examples can be classified correctly, the
datasets should be valid and well structured. Unfortunately, in many real-
world classification applications, datasets are not perfect. A number of issues
such as class imbalance, outliers, and missing values can affect the quality of
the dataset used to train a classifier. This often leads to reduced classification
accuracy. This thesis focuses on classification and its main issue, namely class
imbalance. Section 2.2 briefly describes the major issues found in datasets
and their effects on the data mining process. It also reviews the literature on
the suggested solutions to these issues.

2.2 Major issues in data mining

There has been a rapid increase in the number of datasets all over the globe
due to the unparalleled growth of globalisation and global markets (Chen
and Zhang (2014) and Hashem et al. (2015)). However, these datasets suffer
from issues such as missing values, outliers, or imbalance in the class distri-
bution. Therefore, data cleaning and preprocessing techniques are important
steps in data mining. These are especially used for filling in missing values,
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overcoming the class imbalance problem and identifying outliers. This sec-
tion will briefly list the major data issues in data mining and the suggested
solutions for each issue.

2.2.1 Outliers

Many data contain instances that do not conform to general behaviour. These
instances are called outliers, and they are usually treated as noise or errors in
the data that may cause a loss of important information. An outlier can be de-
fined as “an observation that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism” (Hawkins, 2013). There
are various types of outliers, including global outliers, conditional outliers,
and collective outliers. A global outlier occurs if the instance value is far out-
side the whole dataset to which it belongs. A conditional outlier, also called
a contextual outlier, is when the instance is an exception or abnormality in
a specific context, but not all. A collective outlier is a collection of instances
that are abnormal with respect to the whole dataset (Ajitha and Chandra,
2015).

The process of finding outliers is called outlier analysis or outlier detection.
At the preprocessing stage graphical presentation of the data can help in
finding outliers. Outlier detection is useful in applications like credit card
fraud detection, as a transaction that does not comply with the credit card be-
haviour is classified as an outlier and should be reported for security reasons
(Bolton and Hand, 2002). Also, in medical diagnosis, patients’ test results
may indicate potential health problems that can be discovered by comparing
with the characteristics of other patients (Hauskrecht et al., 2013). There are
different outlier detection methods that use statistical measurement to find
outliers. Distance-based techniques calculate distances between examples,
attributes, or objects to detect any nonconformities in the dataset. Exam-
ples of the distance-based detection techniques is the density-based method,
where local regions are used for identification, and the deviation-based ap-
proach, where the outliers are the instances that do not conform to any of the
group characteristics (Kriegel, Kröger, and Zimek, 2010). Another approach
is clustering-based outlier detection, in which similar data are grouped as
clusters. In this approach, the normal instances belong to a cluster while
the outliers or abnormal instances do not belong to any clusters (Ajitha and
Chandra, 2015). Various algorithms based on clustering are used to detect
outliers. These include Balanced Iterative Reducing and Clustering using



Chapter 2. Class Imbalance 13

Hierarchies (BIRCH) (Zhang, Ramakrishnan, and Livny, 1996), Clustering
Using Representatives (CURE) (Guha, Rastogi, and Shim, 1998) and Cluster-
ing Large Applications based on Randomised Search (CLARANS) (Liu and
Özsu, 2009).

The choice of outlier detection technique differs according to the data
type, the outlier type, and the chosen model. Some models consider out-
liers at different levels, for example, local level or global level. It is an im-
portant step at the preprocessing stage especially when a classifier such as
k-NN is highly affected by the outliers and noisy data. Various outlier de-
tection techniques have been proposed in the literature to deal with outliers
in certain types of data. For example, Aggarwal and Yu, 2001 proposed a
new technique for outlier detection for high dimensional datasets. This tech-
nique differs from distance-based techniques in that it overcomes the effect
of dimensionality. Janakiram, Reddy, and Kumar, 2006 proposed an outlier
detection technique for wireless sensor networks using Bayesian Belief Net-
works. The proposed approach is capable of detecting the outliers in sensor
streamed data. He, Deng, and Xu, 2005 proposed a model for outlier de-
tection in categorical data. The proposed approach performed well on real
and synthetic datasets. More details on various outlier detection techniques
can be found in (Hodge and Austin (2004), Patcha and Park (2007), Kriegel,
Kröger, and Zimek (2010), Zhang, Meratnia, and Havinga (2010), and Divya
and Babu (2016)).

2.2.2 Missing values

Another issue in data mining is missing values. Data cleaning is a stage at
which some work is required to handle missing values in the dataset. If the
dataset has missing values, the performance of the algorithm will be poor
(Acuna and Rodriguez, 2004). Datasets can have missing values for various
reasons, such as failure to record some observations, data warehouse corrup-
tion, and errors in the data entry stage.

There are classifiers such as Naïve Bayes (NB) that can handle missing
values by removing the attributes with missing values when calculating the
probabilities. However, when the classifiers cannot handle missing values,
as happens with Linear Discriminant Analysis (LDA), solutions for dealing
with missing values are required at the data cleaning stage or the prepro-
cessing stage (Aisha, Adam, and Shohaimi (2013) and Acuna and Rodriguez
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(2004)). According to Han, Pei, and Kamber, 2011, there are six different ways
to handle missing values:

1. Ignore the tuple by deleting the case which contains attributes with
missing values. The case deletion method is one of the easiest methods,
and works by deleting all cases that have missing values. However, this
approach can cause loss of important information in the case.

2. Manually fill in missing values, which is time consuming, especially
when the dataset is large.

3. Use a specified constant to fill in missing values, for example, “un-
known”, which may let the classifier think that the instance is an ex-
ample of an interesting group.

4. Use measures like mean and median to fill in the missing values. This
is known as mean and median imputation.

5. At the class level, measures like mean or median can be used to fill in
the missing values within the class. This is called class mean or median
imputation.

6. Fill in the missing value with the most probable value. This value can
be specified using inference-based tools, such as using decision tree in-
duction to predict a missing value in a dataset. The process is known
as imputation using decision tree algorithms.

It is important to explore the dataset well and understand the data mining
model goals and objectives in order to choose the optimal method for dealing
with the missing values, as some applications do not treat missing values as
an error. For example, when applying for a job, candidates may be asked to
supply a previous employer’s fax number. Candidates who do not know the
fax number may leave this blank. Therefore, forms should allow for answers
like “none” or “not applicable” or even analyse other values like “do not
have” to simplify the process and not waste time on cleaning missing values
that are not considered as errors.

Numerous research studies have been conducted to explore various solu-
tions for handling the missing values in specific cases at the data preparation
stage (Harel and Zhou (2007) and Sessa and Syed (2016)). For example, Pool-
sawad et al., 2012 designed methodologies based on feature selection to han-
dle many issues, including missing values in clinical datasets. Another ex-
ample is the work done by Acuna and Rodriguez, 2004, in which the authors
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evaluated four different techniques for dealing with the problem of miss-
ing values: median imputation, mean imputation, k-NN imputation, and the
case deletion method. In this experiment, the evaluation was carried out on
twelve datasets using two classifiers: LDA and k-NN. The experimental re-
sults indicate that there is not a big difference in the misclassification error
rate between the case deletion and the imputation methods for both classi-
fiers when dealing with datasets that have a small amount of instances that
include missing values. However, there is a great difference when dealing
with datasets with a high percentage of missing values such as the Hepatitis
dataset 1.

In summary, there are many techniques for handling missing values. How-
ever, different cases require different solutions. Moreover, each technique has
its own advantages and disadvantages. The simplest approach is to delete
the examples with missing values, but this may cause loss of data. Therefore,
it is important to fully understand the goals of the prediction model and its
way of dealing with missing values before choosing the technique that is suit-
able for solving the issue. More details on other methods for dealing with
missing values can be found in (Brown and Kros (2003), Pelckmans et al.
(2005), Li, Stuart, and Allison (2015), Magnani (2004), and Lee and Simpson
(2014)).

2.2.3 Imbalanced datasets

Another major issue in data mining is dealing with imbalanced datasets.
These are datasets in which the number of the majority class instances sig-
nificantly outnumbers that of the minority class instances. This problem is
called class imbalance and most data contains this problem. It often occurs in
customer-related data, churn prediction, medical diagnosis, text categorisa-
tion, and fraud detection, where the class of interest is the minority class. The
imbalance in datasets is a major challenge in data mining because in many
applications, the cost of misclassifying the minority class is high, such as
in direct marketing, where businesses are interested in identifying potential
buyers, and in charities when identifying potential donors.

The class imbalance issue has received attention in the literature (Ling and
Li (1998), Chawla et al. (2002), Chawla (2005), Chawla (2009), and Batuwita
and Palade (2013)). This is because data mining models usually tend to be

1The dataset can be found in the UCI machine learning repository https://archive.ics.
uci.edu/ml/datasets/hepatitis.

https://archive.ics.uci.edu/ml/datasets/hepatitis
https://archive.ics.uci.edu/ml/datasets/hepatitis
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influenced by the majority class. Therefore, the minority class is usually mis-
classified, leading to poor performance and low predictive accuracy. In an
even worse scenario, minority examples are considered as outliers of the ma-
jority class. Thus, they are ignored in the learning process. Moreover, the
algorithm goal is to maximise accuracy, so it assumes that the class distribu-
tion is equal and the misclassification cost for all classes is the same. How-
ever, this is not always the case (Thai-Nghe, Gantner, and Schmidt-Thieme,
2010).

As previously mentioned, the imbalance between the classes is a major
challenge when learning from imbalanced datasets. However, in some cases
when learning from an imbalanced dataset, the classification algorithms are
able to learn from the datasets and provide good accuracy. This indicates that
the class imbalance ratio is not the only issue that affects the performance of
the classifier when learning from imbalanced datasets. Therefore, more work
is needed to analyse other factors when learning from imbalanced datasets
(Japkowicz and Shah, 2011). One factor is the sparsity of the minority class,
which is the distribution of the data within the minority class itself. In re-
search by Jo and Japkowicz, 2004, the authors found that the main issue that
affects classifier performance on imbalanced datasets is the small disjuncts
within the dataset. The authors found that by focusing on the small disjuncts
problem, performance was improved when compared to the performance of
the classifier if the focus was only on the imbalance ratio. Another important
factor is class overlapping. Stefanowski, 2013 studied the effect of overlap-
ping, along with other factors such as the sparsity of the minority class. The
experimental results indicate that both class decomposition and class over-
lapping cause difficulty when learning from imbalanced datasets. In a study
by Napierala and Stefanowski, 2016, the authors suggested that analysing
the local characteristics of the minority examples and defining their types are
important steps when learning from imbalanced datasets. The authors de-
fined four types of minority class example: safe, borderline, rare examples
and outliers, in which the last three are classified as unsafe examples.

Various solutions have been suggested to overcome the class imbalance
problem (Chawla et al. (2002), Han, Wang, and Mao (2005), Kubat and Matwin
(1997), Berson, Smith, and Thearling (2000), and Chawla (2005)). They fol-
low three main approaches, being applied at the data, algorithmic, or hy-
brid level. At the data level, the solutions work by applying various sam-
pling techniques to balance the dataset. At the algorithmic level, the solu-
tions work by modifying existing learning algorithms to overcome the bias
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toward the majority class and adapting them so that they learn from imbal-
anced datasets with a skewed distribution. Hybrid algorithms combine both
approaches: data and algorithmic level. Although there is increased aware-
ness of the importance of imbalanced data and available solutions, many of
the key issues are still open and occur more often, especially when dealing
with big data. More work is needed to analyse the dataset factors when learn-
ing from imbalanced datasets and to investigate the possibility of combining
various techniques to overcome the class imbalance problem.

This research will specifically address the problem of class imbalance in
classification. The remainder of this chapter is organised as follows: Sec-
tion 2.3 explains the problem and investigates the suggested solutions from
the literature for this major issue. It also explores the possibility of applying
variations of those solutions to imbalanced datasets and highlights different
perspectives of the class imbalance problem and how it is likely to be solved
based on various approaches further predicated on domain specificity. More-
over, there exists a variety of combinatorial solutions that merge sampling
techniques that are used together, or sampling techniques are joined with al-
gorithmic solutions to increase the chances of accurate classification; these
are presented in brief. Section 2.4 explains feature selection as a solution to
the class imbalance problem and provides a description of the main meth-
ods for feature selection. Section 2.5 defines the performance metrics used to
evaluate the classification model on imbalanced datasets.

2.3 Background on the class imbalance problem

In a number of real-world classification applications, such as software predic-
tion, oil spill detection from satellite images, detection of online credit card
fraud, and diagnosis of rare diseases, the training data might be imbalanced
(Lesperance et al. (2001), Weiss (2004), and Chawla (2009)). The class imbal-
ance problem occurs if the number of instances or examples in some classes
is much smaller than in other classes. An example of an imbalanced dataset
is shown in Fig 2.1, in which the majority class counts for 70% of the dataset
and the minority class counts for only 30%. When the learning model is ap-
plied to an imbalanced dataset, it can be biased or completely out of context,
as the algorithms being applied to classify the dataset can potentially ignore
the important minority.

There are many reasons for the class imbalance problem. One main rea-
son is a limitation on the data collection process; e.g., high cost or privacy



Chapter 2. Class Imbalance 18

problems. For example, biomedical data that are derived from a rare disease
and an abnormal condition or data that are obtained via expensive experi-
ments can often limit the size of the dataset. Moreover, most demographic
information, such as age, gender, and income, is private and should never be
disclosed to third parties (Kadiyala and Srivastava, 2011). Given the recent
European Union (EU) adoption of the General Data Protection Regulation
(GDPR) 2, this will likely further limit the amount of data available for anal-
ysis.

 

Malignant
70%

Benign
30%

DIAGNOSIS

Malignant Benign

FIGURE 2.1: Breast cancer imbalanced dataset

The key issue regarding an imbalanced learning problem is that its dataset
restricts the performance of most standard learning algorithms, and such al-
gorithms often assume balanced class distributions. Problems like these lead
to biased machine learning algorithms, which are biased towards the ma-
jority class since these types of algorithms attempt to maximise the overall
accuracy. Conversely, in the event of complex imbalanced datasets, these al-
gorithms will not reveal the distributive characteristics of the dataset, thus

2EU data protection and privacy regulator, more details can be found in their website:
http://www.eugdpr.org/.

http://www.eugdpr.org/
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leading to unfavourable accuracies within the dataset classes. In the biomed-
ical field, this issue is particularly crucial, since learning from imbalanced
data can help us gain useful knowledge from which we can then make im-
portant medical decisions.

An example of a biased SVM between two classes (red and black marks)
is shown in Fig 2.2. The SVM gives a biased separate line because its main
objective is to have maximum classification accuracy that is dominated by
the majority class. As shown in Fig 2.2, the SVM line is shifted toward the
minority class that is away from the majority class.

 

SVM 

Ideal SVM Line 

FIGURE 2.2: An example of a biased SVM

The problem of class imbalance can occur in binary, or two-class classifi-
cation problems and in multi-class classification problems. The next section
will briefly look into the multi-class imbalance problem and the available so-
lutions.

Multi-class imbalance

In an imbalanced dataset, one class immensely outnumbers the other and
this represents a traditional binary class imbalance problem. Yet, real-world
problems frequently require classification between more than two classes
(Sahare and Gupta, 2012). The multi-class imbalanced datasets problem ex-
pands on the traditional binary class imbalanced dataset problem, in which
a dataset has N classes rather than two. Given the existing binary class im-
balance problem, the impact of this imbalance presents a much greater risk
when dealing with multi-class imbalanced datasets.

In recent years, various researchers have explored imbalanced data classi-
fication problems and worked on improving the performance of classification
models (Japkowicz and Stephen (2002), Zhou and Liu (2006), and Seiffert et
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al. (2010)). However, the majority of these studies only address binary clas-
sification problems and only a few have been expanded to deal with multi-
class imbalanced datasets. One solution is to decompose multi-class prob-
lems into binary class problems; in other words, classifying each individual
class over other classes (Dietterich and Bakiri, 1991). However, there are a
few significant limitations to this approach: one is expensive training, which
is required to learn about the identification model for each class; the second
is the difficulty of comparing classes, as each has different properties; and
the third is that imbalanced distribution can be further worsened in small
classes (Dua and Du, 2011). Data level solutions, such as sampling, can be
directly applied to a multi-class problem. However, this is not the case for
many algorithmic level techniques (Tang et al., 2009).

Despite the significant amount of research on dealing with binary classi-
fication, there remain many open challenges and issues that need to be ad-
dressed. The remainder of this thesis will mainly assume a binary or two-
class classification in which datasets suffer from class imbalance. In such
cases, the classes are well identified: one class counts for the majority while
the other counts for the minority. This is because class imbalance in binary
classifications exists in many real-world applications such as fraud detection,
medical diagnosis, and direct marketing. Section 2.3.1 briefly explains the
various solutions to overcome the class imbalance problem.

2.3.1 Solutions to the class imbalance problem

Numerous solutions to the class imbalance issue have been proposed at the
data and algorithmic levels. Some solutions combine both levels, and are
known as hybrid methods. At the data level, different solutions have been
recommended to resolve the class imbalance problem (Wang, 2011). These
solutions work through the application of sampling techniques to resolve the
imbalance of data, including undersampling of the majority class and over-
sampling of the minority class (Kubat and Matwin (1997) and Chawla, Jap-
kowicz, and Kotcz (2004)). The algorithmic solutions take into consideration
adjustment to the costs of various classes. This section explores the various
solutions to class imbalance, including data level solutions, algorithmic level
solutions and hybrid solutions.
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Data level solutions

At the data level, the solutions work by applying various sampling tech-
niques to balance the dataset. Sampling is the simplest and most basic ap-
proach to address a class imbalance problem. Here, the original class fre-
quencies or the number of instances in each class are changed at the prepro-
cessing stage to balance the datasets. There is no need to change the learning
algorithm as the balanced dataset is suitable for a standard learning algo-
rithm.

Technically speaking, sampling methods involve modifying the distribu-
tion of an imbalanced dataset until it balances. This is because a number of
studies have found that the classifier performance improves when applied to
a balanced dataset (Weiss and Provost (2001), Estabrooks, Jo, and Japkowicz
(2004), and García, Luengo, and Herrera (2015)). Furthermore, undersam-
pling, oversampling, or both could be used. The sampling amount in each
class is empirically chosen (Chawla, 2009).

Random oversampling balances the dataset by creating duplicate instances
of the minority class, as shown in Fig 2.3. While this process has performed
well in some studies, given that it only duplicates existing examples and
does not add new information about the class, it has been argued that this
method results in making the decision region for the minority class very spe-
cific, which can ultimately lead to an over-fit (Kotsiantis, Kanellopoulos, and
Pintelas, 2006). Over-fitting means the model is perfectly modelling the train-
ing data and lacks generalisation ability. In addition to over-fitting, some
researchers have highlighted that computational costs are higher when over-
sampling is applied, as more examples are added for processing (Provost,
2000).

Malignant

Benign

MalignantBenignMalignant

Benign

Original Dataset Oversampled Dataset

FIGURE 2.3: Oversampling the breast cancer dataset

Another solution is to randomly undersample the dataset by decreasing
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the instances in the majority class, see Fig 2.4. As with random oversam-
pling, the process has performed well in some cases, but it has exhibited the
disadvantage of removing useful information from the training dataset (Gar-
cía et al., 2016). Therefore, many algorithms combine both of these sampling
types in order to benefit from the best of both (Estabrooks, Jo, and Japkowicz
(2004) and Liu, Wu, and Zhou (2009)).
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FIGURE 2.4: Undersampling the breast cancer dataset

Despite the issues mentioned above, sampling is still used to address
class imbalance. Researchers have made valuable progress in finding better
ways to undersample the majority class and oversample the minority class
to overcome issues like over-fitting in random oversampling and the loss
of information in random undersampling. For example, a proposed model
uses an approach in which the minority class is oversampled by creating syn-
thetic examples until the dataset is balanced (Chawla, 2005). The approach is
called SMOTE. It is a state-of-the-art informed oversampling process where
for each minority class, it finds the k-NN, randomly selects a number of these
neighbours and generates synthetic examples, as shown in Fig 2.5. There-
fore, SMOTE creates synthetic examples of the minority class based on the
feature space, not on the data space (Gao, 2015). It has been widely used as a
solution to the class imbalance problem (Wang (2008), Jeatrakul, Wong, and
Fung (2010), and Lusa (2013)).

SMOTE works by taking each instance of minority class, xi, in the dataset
and find its k-NN. It then randomly picks one of the nearest neighbours, xi,1,
calculates the d-dimensional feature difference vector xi - xi,1 and assumes
that there are p predictors in the dataset. The new synthetic example, xnew,
is calculated by multiplying a random number σ between [0, 1], and then
adding xi: xnew = xi + (xi - xi,1) × σ. As a result, the new synthetic example,
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xnew, is an instance that is along the line between xi and xi,1. The process is
repeated until the dataset is balanced (Gao, 2015).

SMOTE generates instances only within or between the available exam-
ples and never creates instances outside the border. Therefore, SMOTE never
creates new regions of minority instances. Moreover, it can be applied in
binary classification with continuous features type only. Despite the limi-
tations, SMOTE overcomes random oversampling by generalising the deci-
sion region for the minority class as it does not necessarily cause over-fitting
(Chawla et al., 2002). The success of SMOTE has led to new variants, such as
borderline-SMOTE1 and borderline-SMOTE2, in which only samples close to
the borderline or the decision boundary are chosen for oversampling (Han,
Wang, and Mao, 2005). This is because samples or examples in this area
are very important in determining the optimal decision boundary. Various
studies have found that sampling the entire minority class is not always nec-
essary, and by focusing on the borderline area, the classification algorithm
achieves better performance (Wang, 2008).

FIGURE 2.5: SMOTE oversampling in two-dimensional feature
space

When it comes to undersampling, researchers have found a way to avoid
losing useful information by performing random undersampling such as Fo-
cused Undersampling (FUS), in which only samples located at the border-
line are removed and clustering techniques are used in selecting a subset of
training data (Yen and Lee (2006) and Dubey et al. (2014)). This is because
removing the instances on the border of the majority class will clarify the
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decision boundary between the majority and minority class. Moreover, Ku-
bat and Matwin, 1997 proposed a one-sided selection undersampling tech-
nique to find a representative of the majority class instances and remove
noisy or borderline majority instances to balance the dataset in a more in-
formative method. The study has been applied to various datasets; it has
performed well in cases where either the accuracy of the positive instances or
the negative instances is low. Sowah et al., 2016 proposed an undersampling
technique known as the Cluster Undersampling Technique (CUST), which
is capable of improving the model performance when learning from imbal-
anced datasets. The performance of the proposed undersampling approach
has been compared with other sampling methods on sixteen real-world im-
balanced datasets using C4.5 decision tree and One Rule (OneR). The re-
sults indicate that the proposed undersampling approach provides higher
performance when using the geometric mean (G-mean) and the area under
receiver operating characteristic curve (AUC) as evaluation metrics. Yen and
Lee, 2009 proposed another cluster based undersampling technique to se-
lect training data. The experimental results show that the cluster based un-
dersampling approach gives better results as opposed to other undersam-
pling techniques. Ofek et al., 2017 proposed a model for overcoming the
class imbalance in binary classification which is known as Fast Clustering-
Based Undersampling (Fast-CBUS). Another informed undersampling ap-
proach is known as the Nearest Cleaning Route (NCR) (Laurikkala, 2001).
It removes examples from the majority classes that are misclassified when
using k-NN. This approach is based on the Edited Nearest Neighbour Rule
(ENNR) (Wilson, 1972). When comparing the proposed approach with ran-
dom undersampling and random oversampling, results show that the pro-
posed approach gives higher sensitivity .

Tomek link algorithm is another informed undersampling approach, in
which Tomek links are removed from the majority class (Tomek, 1976). Tomek
links are pairs of different instances (one is from the majority class and the
other from the minority class) that are close together. In other words, two
points x and y are Tomek linked if x is the closest point to y, y is the clos-
est point to x and they are from different classes (He and Ma, 2013). The
goal is to clarify the border between the classes, distinguish the majority and
minority regions and decrease the class overlap. However, borderline un-
dersampling removes examples close to the decision boundary. This is done
only to clear the boundary between the classes and not to remove majority
class instances that exist in the minority cluster. Tomek link has also been



Chapter 2. Class Imbalance 25

used as a cleaning method. Usually, classes are not well defined as some
majority class instances might be in the minority class space and vice versa,
which creates a class overlap. Thus, oversampling the minority class and
introducing more samples in the majority class space can increase the over-
lap. Tomek link therefore can be used to create better-defined majority and
minority clusters by not only removing majority classes instances but also
minority class instances (Batista, Prati, and Monard, 2004). This approach
has been widely used in undersampling the majority class instances and has
been combined with other sampling techniques (Batista, Prati, and Monard
(2004) and Elhassan et al. (2016)). For example, Batista, Bazzan, and Monard,
2003 combined Tomek link for undersampling and SMOTE for oversampling
to combat the class imbalance problem in Bioinformatics.

Another solution to address class imbalance is at the algorithmic level, in
which the learning algorithm is modified to tackle the problem. The follow-
ing section introduces the algorithmic level solution to the class imbalance
problem.

Algorithmic level solutions

At the algorithmic level, valuable progress has been made in finding better
ways to overcome the disadvantages of sampling by investigating possible
algorithmic solutions (Elkan (2001) and Thai-Nghe, Gantner, and Schmidt-
Thieme (2010)). In any machine learning process, various types of costs are
incurred, such as misclassification costs, costs of training, and costs of test-
ing. In classification tasks, the goal is to reduce the number of misclassified
examples and increase the number of correctly classified examples, which are
known as misclassification costs. Algorithmic level solutions, or costs sensitive
learning, aim to reduce misclassification costs when conducting a learning
process. This is because misclassification costs are the most important type
of costs when it comes to classification tasks (Weiss, McCarthy, and Zabar,
2007), especially in fields like medical diagnosis datasets, which suffer from
class imbalance because the cost of classifying a cancer patient as a non-
cancer patient is very high.

When learning from imbalanced data and building a classifier, it is im-
portant to consider misclassification costs. Some learning algorithms assume
that misclassification costs are the same, but that is not true in all cases; a
stark example would be in medical diagnosis and tumour detection, where
the cost of misclassifying cancerous cells could potentially lead to risking
patients’ health. Moreover, the class imbalance ratios vary as they are not
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always the same and can be as low as 1:100 or as extreme as 1:100000. This
problem can be solved at the algorithmic level by assigning different costs to
the samples of the classes or by adjusting the probabilistic estimate at the tree
leaf when using a decision tree (Chawla, Japkowicz, and Kotcz, 2004). This
means that the majority class becomes less important relative to the minor-
ity class when engaging in the training phase. Assigning different penalty
constants for the negative and positive samples has been proved highly ef-
fective, as concluded by Thai-Nghe, Gantner, and Schmidt-Thieme, 2010 in
their research on cost sensitive learning methods for imbalanced datasets.

Applying an algorithmic solution requires an awareness of the appropri-
ate learning algorithms and the reasons for their failure when mining skewed
class distributions, in addition to an awareness of the application domain. It
also necessitates an understanding of why the learning algorithm does not
perform in the event of an uneven class distribution of available datasets.
Numerous classification methods have been proven to perform well with
imbalanced datasets. These include adjusted k-NN, SVM and Genetic Pro-
gramming (GP) (Ganganwar, 2012). SVM has advantages that gives it unique
features and makes it popular, including speed and high accuracy (Zhu, Liu,
and Yu, 2002). For example, real-world applications such as bioinformatics
(Schölkopf, Tsuda, and Vert, 2004), churn prediction (Rodan et al. (2014) and
Rodan and Faris (2015)) and bankruptcy prediction (Wu et al., 2007) have
reported using SVMs. However, when a SVM classifier is trained on an im-
balanced dataset, it usually produces a model that is biased toward the ma-
jority class, as shown in Fig 2.2. There are various approaches to effectively
applying SVM on imbalanced datasets. Batuwita and Palade, 2013 defined
two approaches for SVM to handle the class imbalance: re-sampling meth-
ods which are known as external solutions and algorithmic modifications to
SVMs which are known as internal methods. At the algorithmic level, solu-
tions to this issue include, but are not limited to, assigning different weight
or penalties to the majority and minority classes, in which a high penalty is
assigned to the minority class. By assigning different costs, the model has
been found to produce good results (Krishnapuram, Yu, and Rao, 2011).

In terms of classification algorithms, the focus of this thesis is on SVMs.
The next section provides a brief literature review for the use of SVM when
learning from imbalanced datasets and explains the main algorithmic solu-
tion for overcoming the problem.
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SVM and class imbalance

SVM is a widely used machine learning algorithm that has been applied to
solve classification problems in many real-world applications (Chang and
Lin, 2011). This is due to its advantages from both a theoretical and practical
perspective, such as the high generalisation ability, the mathematical back-
ground and the ability to perform non-linear classification solutions (Batuwita
and Palade, 2013). SVMs work well when applied to balanced datasets, but
they could also produce a biased model with imbalanced datasets. Various
data preprocessing techniques and algorithmic level solutions have been pro-
posed to overcome the class imbalance problem for SVMs.

This section briefly defines the algorithm and its main properties. It also
investigates how SVM can be applied to imbalanced datasets.

Support vector machines

SVMs are forms of classification algorithms, which are supervised learning
methods that analyse data and discover patterns; they can be used for classi-
fication and regression in data mining. They are a blend of linear modelling
and instance-based learning, where a small number of critical boundary in-
stances called support vectors are selected from each class to build a linear
discriminant function that separates data as widely as possible (Witten and
Frank, 2005). Moreover, SVMs perform non-linear classification, in which the
method maps data into a higher dimensional space non-linearly in order for
it to be classified by a kernel function.

The model makes predictions using kernel basis methods, in which the
best choice will be the hyper plane that leaves the maximum margin from
both classes (Wang et al. (2003) and Witten and Frank (2005)). The accuracy
of the model relies on the kernel’s parameters. There are three widely used
types of kernels: polynomial, sigmoid, and radial basis kernel function (RBF)
(Huang and Wang (2006) and Lin et al. (2008)), Eqs. 2.1, 2.2 and 2.3. The RBF
kernel, Eq 2.3, has been proved to be a good choice for learning from im-
balanced datasets as it can be applied to high dimensional datasets and has
only two parameters to tune (Hsu, Chang, and Lin (2003), Ding and Chen
(2010), and Cao, Zhao, and Zaiane (2013)). The first parameter is the misclas-
sification cost or the penalty parameter, C. The choice of the value of C affects
the classification model. A high value of C will lead to a low bias and high
variance model (over-fitting model) while too small a value of C will create a
high bias and low variance model. The second important parameter within
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the kernel function is the gamma, γ that defines the spread of the kernel. If
the value of γ is too small, this will produce a low bias and high variance
model and vice versa (Sudheer et al., 2014).

This approach of optimising the kernel’s parameters has been shown to
perform well when dealing with imbalanced datasets (Hsu, Chang, and Lin
(2003), Lin and Lin (2003), and Lin et al. (2008)). One way to find the best
values for these parameters when using the RBF kernel for SVM is grid search,
which is a widely used method whereby the search is performed by trying
all possible combinations within a list of values for each parameter. In this
interval or list of values, the best values for C and γ can be found, which gives
the highest classification accuracy. However, this search is time consuming.
It also requires setting feasible range within which to search and a suitable
sampling step (Hsu and Lin (2002) and Ding and Chen (2010)).

K(xi,xj) = (1 + xi.xj)
d (2.1)

K(xi,xj) = tanh(kxi.xjδ) (2.2)

K(xi,xj) = e
−‖xi−xj‖

2

2σ2 (2.3)

Another way to optimise the kernel’s parameters is to use meta-heuristic
approaches such as swarm intelligence or evolutionary computation-based
approaches. These meta-heuristic models have garnered an increased level of
interest for solving common search and optimisation problems (Nasuto and
Bishop (1999) and Huang and Wang (2006)). These techniques often mimic
the behaviours of social insects like bees, wasps and ants to offer powerful
tools to solve problems. The emergence of collective intelligence, which is
the core of such techniques, lies in a network of interactions among social
insects and their environment; this process is described as a self-organised
and decentralised system of collective behaviour (Beni and Wang, 1993).

Various swarm intelligence techniques and population-based techniques
have been used to optimise the SVM kernel parameters, among them Genetic
Algorithm (GA), PSO, and Ant Colony Optimisation (ACO). GA is a meta-
heuristic algorithm based on Darwin’s evolution of biological systems and
developed in 1970s by John Holland (Goldberg and Holland, 1988). The al-
gorithm uses three main operators: crossover, mutation and selection. It has
been widely used to generate solutions to various search and optimisation
problems. In terms of data mining, GA has been widely used to search for
the optimal SVM configurations for best prediction performance when learn-
ing from imbalanced datasets. Di Martino et al., 2011 proposed a model for
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predicting fault prone components in which GA was used to configure the
SVM parameters for optimal performance on an imbalanced dataset. Experi-
mental results indicate that the proposed approach gives better performance,
increasing the model’s sensitivity without decreasing the precision rate. Li
and Kong, 2014 proposed a GA-based model called GA-SVM for landslide
displacement rate prediction. GA is used to optimise the kernel parameters,
C and γ. The proposed model gives the smallest root mean square error
equal to 0.0009. In other research undertaken by Wei and Hui-Mei, 2014, an
improved version of GA was used to optimise the kernel parameters, C, γ
as well as the loss function parameter, ε, was proposed. Results indicate the
superior performance of the proposed approach.

PSO is another meta-heuristic based search optimisation algorithm, in
which optimisation is carried out using simple agents called particles (Kennedy
and Mendes, 2002). PSO has been widely applied in model selection in ma-
chine learning. An example of a PSO-based approach is seen in Lin et al.,
2008, where the authors proposed a parameters optimisation and feature se-
lection approach in which the RBF kernel parameters, C and γ are optimised
and the optimal feature subset is selected. The proposed approach performed
well on several datasets when compared with grid search. Another approach
by Guo et al., 2008, in which a parameter’s selection method was proposed
for Least-Squares Support Vector Machines (LS-SVMs) using PSO. The pro-
posed method performed well on benchmark datasets. The results also show
that the best performance was obtained by using the Scaling Radial Basis ker-
nel Function (SRBF) and RBF kernel functions. Wang et al., 2014 combined
PSO and SMOTE on three classifiers: decision tree, logistic regression (LR),
and k-NN. To evaluate the proposed approach, G-mean and predictive accu-
racy were used. Experimental results show that SMOTE + PSO improves the
classifier performance in breast cancer prediction. Subbulakshmi and Deepa,
2015 proposed a PSO-SVM model to improve the classification accuracy on
the Electromyography (EMG) signal. The results show that PSO-SVM accu-
racy is equal to 97.41% as opposed to 96.75% for SVM. Therefore, the pro-
posed approach PSO-SVM can be used for diagnosis of neuromuscular dis-
orders.

In another investigation, Melgani and Bazi, 2008 proposed a novel model
that uses PSO to improve the classification accuracy and the generalisation
ability of SVM on the electrocardiogram (ECG) 3 beats dataset. The exper-
imental results indicate the superiority of the proposed approach against

3Electrocardiogram is a test to detect heart rhythm abnormalities.
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three different classifiers: SVM, k-NN, and the RBF neural network. Pan
and Luo, 2010 proposed a parameter selection model for SVM based on PSO.
The results indicate that the proposed approach improves the SVM model
prediction and generalisation capabilities.

In the literature, it has been found that PSO has been widely used as a
way to tune SVM parameters to overcome the class imbalance problem and
avoid over-fitting by improving the model’s generalisation capabilities. The
algorithm gives good results, as seen in previous studies on SVM parameters
tuning (Bao, Hu, and Xiong, 2013). Due to its search and optimisation capa-
bilities, PSO has also been used to simultaneously optimise the SVM kernel
parameters and perform feature selection (Huang and Dun (2008) and Lin
et al. (2008)).

ACO, which mimics the behaviour of ants to search for solutions in a
optimisation problem (Dorigo, Birattari, and Stutzle, 2006) has also been
applied to optimise the SVM parameters. Zhang, Chen, and He, 2010 pro-
posed a model that is based on ACO to tune SVM parameters. The proposed
model provided promising results when applied to real-world benchmark
datasets. In another study by Alwan and Ku-Mahamud, 2012a, a model
to tune the SVM parameters using incremental continuous ACO was pro-
posed. The proposed approach performed well on eight datasets from the
UCI machine learning repository. In another study conducted by Alwan and
Ku-Mahamud, 2012b, the authors proposed an algorithm for optimising the
SVM using continuous ACO. This was applied without discretising continu-
ous values for the SVM parameters as it has been found that the discretisation
process has been shown to causes loss of some values, which leads to lower
classification accuracy. The experimental results indicate that the proposed
approach outperforms grid search on seven datasets from the UCI machine
learning repository. Fang and Bai, 2009 proposed a model to predict share
prices. The proposed approach was based on ACO to optimise SVM pa-
rameters. Here ACO was integrated with wavelet transform to remove any
fluctuant from the dataset. The hybrid approach performed well in predict-
ing the price of Huaneng Guoji shares. Another ACO based search approach
was introduced by Zhang et al., 2008 to optimise the SVM kernel’s parame-
ters. The results indicate that the proposed approach provides an easy and
efficient solution for parameters tuning.

In the literature, the use of ACO to optimise the SVM has produced promis-
ing results. Like PSO, ACO has also been used to simultaneously optimise
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SVM parameters and find a suitable feature subset (Huang, 2009) (more de-
tails can be found in Section 2.4). Despite, the recent development in the
use of meta-heuristic techniques to optimise SVM parameter, GA and PSO
are the most commonly used, while other methods that can be used to op-
timise SVM are still at the early stage of experiment. As a result, there are
other population-based algorithms with efficient optimisation capabilities,
such as SDS and DFO, which can be used to optimise the SVM kernel pa-
rameters. Thus, further work is needed to develop the use of other meta-
heuristic algorithms to improve SVM performance on imbalanced datasets.
For example, one could combine various meta-heuristic based parameters
tuning approaches with different sampling methods available from the lit-
erature to improve the model performance and take the best of both when
learning from imbalanced datasets. The next section discusses how a hybrid
approach, namely, a combination of both data level and algorithmic level so-
lutions, can perform well on imbalanced datasets.

Hybrid approach

The process of customising a machine learning algorithm or data sampling
technique to address the class imbalance problem varies from case to case
and further depends on the difference of the data ratio between the classes.
Another solution to address this problem is a hybrid approach that either
comprises both oversampling and undersampling techniques (Singh, 2016),
or a combination of data level and algorithm level solutions to minimise the
effect of class imbalance (Burez and Poel (2009) and Kotsiantis, Kanellopou-
los, and Pintelas (2006)). The compendium of research described herein sug-
gests that an iterative way of applying this combination can improve classifi-
cation by deploying the algorithm after every undersampling and oversam-
pling of the dataset. Some of the earliest work on the utilisation of hybrid
approaches has been documented in (Ling and Li, 1998), whereby a combined
approach was suggested. This applies the undersampling to classes consisting
of a larger number of instances and the oversampling to classes consisting of
a smaller number of instances. Depending on the importance of the minority
sampled data, oversampling of the minority class and undersampling of the
majority class can be used, but only if it is effective. The reason is that if the
minority class data can be ignored because it presents anomalies, then there
is no need to oversample it or undersample the majority class.

SMOTE is one useful approach to oversample the minority class. This
is to balance the dataset (Chawla et al., 2002). A study by Batista, Prati,
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and Monard, 2004 suggests that a hybrid solution that is a combination of
SMOTE with other techniques like Extended Nearest Neighbour (ENN) has
performed well with highly imbalanced datasets that have a small number of
minority class instances. Moreover, in applications like fraud detection, Pad-
maja et al., 2007 proposed a hybrid approach that uses extreme outlier elim-
ination and a hybrid sampling approach in which a combination of SMOTE
to oversample the minority class and random undersampling to decrease the
number of instances in the majority class is used. The results obtained from
the hybrid approach improved classification accuracy. Rahman and Davis,
2013 proposed a model that uses both SMOTE and a new cluster-based un-
dersampling approach to improve the training sets for a better classifier per-
formance on the cardiovascular dataset. The experimental results indicate
that the proposed approach gives a better performance when compared with
other undersampling approaches. In terms of SVM, Tang and Zhang, 2006
proposed a model for imbalanced datasets that is a combination of Granu-
lar SVM and Random Undersampling (GSVM-RU). The proposed approach
was one of the best models in the ACM KDD cup 2004 competition 4 on the
protein homology imbalanced dataset. Gao et al., 2011 combined SMOTE
and PSO to determine the RBF kernel parameters for SVM, in which the aim
was to minimise the leave-one-out misclassification rate. The proposed ap-
proach has been applied to one simulated imbalanced dataset and three real-
world imbalanced datasets. The results indicate that the proposed approach
performs well when compared with other state-of-the-art models such as
SMOTE+ k-NN.

Similarly, the application of algorithms to adjust the cost for each class or
for the class attributes in training data after undersampling or oversampling
can improve the performance on imbalanced datasets (Tang et al., 2009). This
can be clarified with an example of a dataset containing 1300 samples in the
training set where the majority class has 1000 samples, while the minority
class has 300 samples. In the training set, it is important to keep the balance
of the cost assigned to each class because applying more cost to the minor-
ity class can also result in inaccurate classification when applied to the real
data. If we oversample the minority class using techniques like SMOTE, and
if, after each oversampling, we adjust the cost and evaluate the classifica-
tion, this will give us a robust balance point where the minority class is given
its due inclusion in the final results. Another hybrid solution which can be
applied to address the problem of class imbalance is that once the data has

4An annual knowledge discovery competition: http://www.kdd.org/kdd-cup.

http://www.kdd.org/kdd-cup


Chapter 2. Class Imbalance 33

been classified and has an imbalance, then the algorithm can be applied sep-
arately to the majority and minority classes. When these two classes are run
through the algorithm separately, there will be further classification of the
data embedded within each class. Subsequently, the data samples from each
class that should be considered are automatically filtered. This filtering can
then be input into the undersampling and oversampling techniques so that
redundant data is discarded based on the feedback of the algorithm. The
technique can be improved by selecting random datasets for training the al-
gorithm and running the iterations to determine if the data being discarded
or added is aligned with the complete dataset. It will remove the close depen-
dency on the selected training set and explore the data in different randomly
selected training sets to increase the chances of accurate classification, which
is based on using inbound and outbound loops of algorithm and sampling
techniques.

In summary, there is no unified and general answer regarding the best
method to apply to imbalanced datasets. Weiss, McCarthy, and Zabar, 2007
compared cost sensitive learning and sampling to find which is better at
handling class imbalance. To deal with this issue, the authors used three
models on fourteen datasets with different minority class percentages. The
first model adjusted the misclassification cost in the learning algorithm and
the other two models incorporated oversampling and undersampling to bal-
ance the dataset. It was found that the choice of method depended on the
dataset in terms of factors, such as the number of instances and the degree of
class imbalance; for example, in datasets with 10, 000 instances, cost sensitive
learning outperformed sampling. Maloof, 2003 also compared cost-sensitive
learning with sampling on one dataset and found that they all performed
nearly the same, but this assumption cannot be generalised because only
cases of class distribution were compared. In another study, where the class
imbalance problem was investigated from a probabilistic point of view, it was
found that undersampling works better in high dimensional datasets (Wal-
lace et al., 2011). An investigation of the impact of the class imbalance ratio
on the classifier in adverse drug events prediction was conducted by Taft et
al., 2009. The authors compared various sampling methods, including ran-
dom undersampling, SMOTE, Gabriel graph 5 based SMOTE (gg-SMOTE)

5Gabriel graph is an proximity graph introduced in 1969 (Gabriel and Sokal, 1969). It has
been used in various real-world applications such as geographical variation analysis and
cluster analysis (more details about the proximity graph can be found in (Sánchez, Pla, and
Ferri (1997) and Hossain et al. (2015))).
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and Wilson’s editing 6 with Modified Selective Subset (MSS) condensing al-
gorithm over the negative instances as undersampling approaches. The re-
sults show that oversampling was better than undersampling in highly im-
balanced datasets. This is because undersampling causes loss of information.
However, when the imbalance ratio is low, there is no difference in the per-
formance between undersampling and oversampling. In another study by
Batista, Prati, and Monard, 2004, the authors found that the combination of
SMOTE with an informed undersampling method such as Tomek links, gives
better results for smaller datasets. However, when dealing with datasets that
contain a higher number of minority examples, random oversampling gives
better results.

As a result, it is still unclear which method works better for a given im-
balanced dataset with unequal misclassification cost. Researchers have pro-
posed various models to overcome the class imbalance problem from differ-
ent angles. However, there is still no clear final winner out of undersampling,
oversampling, and cost sensitive learning, as they all have advantages and
disadvantages. Thus, further research is needed to identify what works bet-
ter for a given dataset and analyse the influence of factors like dataset size
on the choice of solution for the class imbalance problem. The next section
explores feature selection, defines its main approaches, and discusses how it
can be used to address the class imbalance problem.

2.4 Feature selection

In addition to the data and algorithmic level solutions, feature selection has
been used as a solution to the class imbalance problem at the feature level
(Wasikowski and Chen (2010) and Chawla, Japkowicz, and Kotcz (2004)).
This is because most high dimensional datasets are imbalanced when it comes
to class distribution (Maldonado, Weber, and Famili, 2014). Examples for
high dimensional and imbalanced datasets include: microarray dataset (Xing,
Jordan, and Karp, 2001), text categorisation (Forman, 2003) and bioinformat-
ics (Saeys, Inza, and Larrañaga, 2007). When learning from these types of
datasets, data level and algorithmic level solutions are not always sufficient
to improve the classifier performance. Therefore, more work is required
at the feature level. Numerous investigations have used feature selection

6Wilson editing is based on applying k-NN to predict the class label of all instances in the
training sample and remove all samples whose class label is not the same as the class label
of the largest number of the k neighbours.
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and combined it with other data mining techniques to increase the classi-
fier’s generalisation ability and improve overall performance on high di-
mensional and imbalanced datasets (Chen and Wasikowski (2008), Chawla
(2009), Wasikowski and Chen (2010), and Al-Shahib, Breitling, and Gilbert
(2005)). Al-Shahib, Breitling, and Gilbert, 2005 proposed a hybrid approach
that uses feature selection and undersampling to improve SVM performance
in predicting protein function from sequence. The results indicate that the
combined approach provides promising solutions. Maldonado, Weber, and
Famili, 2014 proposed a backward elimination approach based on successive
holdout steps. Six highly imbalanced microarray datasets are used to eval-
uate the proposed approach. A results comparison has shown that the pro-
posed method outperforms other well-known methods with smaller feature
subset size. In another approach by Han et al., 2016, two online feature se-
lection algorithms are proposed using the Passive-Aggressive (PA) algorithm
and a Truncated Gradient (TG) method to improve the classifier performance
on several high dimensional imbalanced datasets. In a study by Zheng, Wu,
and Srihari, 2004, a feature selection method is proposed for text categorisa-
tion imbalanced datasets using multinomial NB and regularised LR as clas-
sifiers. More details on other methods for feature selection on imbalanced
dataset can be found in (Mladenic and Grobelnik (1999), Forman (2003), and
Shang et al. (2007)).

The next section provides a definition for feature selection and briefly de-
scribes its main approaches and challenges.

Feature selection definition

Today’s datasets are massive, and they usually possess the characteristics
of high dimensionality. However, not all features or attributes are of equal
value. Indeed, a certain percentage of features are either repetitive, irrel-
evant, or both. Taking this into account, feature selection is defined as “a
process that selects a small subset of the relevant features” (Tran et al., 2016). It
is an important technique for removing the redundant or irrelevant features
to increase the speed of data mining algorithms, reduce data storage space,
improve predictive accuracy, ease interpretation for researchers, and reduce
the problem of over-fitting. Feature selection differs from feature extraction
in that it requires the selection of the optimal feature subset through the dele-
tion or removal of redundant features. However, feature extraction involves
constructing new features out of the original features to reduce the dataset’s
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dimensionality. Essentially, feature selection searches for the most relevant
features for classifications within the dataset as opposed to deriving new
features. Examples for feature selection techniques include chi-square, in-
formation gain, and mutual information.

Nowadays, feature selection methods are used in various fields such as
information retrieval and filtering, text classification, risk management, web
categorisation, medical diagnosis, and detection of credit card fraud, all of
which are subject to high dimensionality and class imbalance problems (Ja-
mali, Bazmara, and Jafari (2012) and Chandrashekar and Sahin (2014)). They
are a vital step for a number of learning algorithms, particularly for high
dimensional datasets such as microarray based classification and text classi-
fication (Carvajal et al., 2004). Feature selection strategies include three main
approaches: filter, wrapper and hybrid. In the filter approach, feature subset
selection is dependent on selected criteria to evaluate the feature’s impor-
tance for class label classification. However, the wrapper approach is de-
pendent on the classification algorithm to evaluate the feature subset that
gives the best prediction performance. It is more computationally expensive
when compared to the filter approach. The hybrid approach combines the
advantages of both the filter and wrapper models. The approach applies an
evaluation criterion and a data mining algorithm to search for a feature sub-
set.

Section 2.4.1 sets out feature selection’s main challenges. Section 2.4.2
describes the three main feature selection approaches.

2.4.1 Feature selection challenges

In real-world situations, the relevant features of the data are often not known
in advance. This increases the complexity of feature selection. Additional
issues or challenges exist with regard to the following:

• Complex interactions among features.

• Deciding which data and features are redundant versus relevant.

• An important feature may become irrelevant when combined with other
features in the dataset (and vice versa).

• The large search space makes it nearly impossible to perform an ex-
haustive search within the exponential search space.
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Thus, feature selection is not an easy preprocessing technique. As such,
a growing number of advanced feature selection methods using swarm in-
telligence techniques are being tested. Currently, they combine traditionally
used data mining preprocessing techniques with meta-heuristic techniques
such as PSO. Accordingly, feature selection methods fall into three broad cat-
egories: filter, wrapper, and hybrid methods (Raymer et al. (2000) and Saeys,
Inza, and Larrañaga (2007)).

2.4.2 Feature selection approaches

There are two primary objectives when assessing a feature selection algo-
rithm: optimal classification performance and minimisation of the number
of features when dealing with high dimensional datasets. In addition to the
different sub-goals of each method, the filter and wrapper techniques have
their own evaluation criteria (Liu and Yu, 2005). There are clear advantages
and disadvantages to both, which are discussed further below. In the next
section, the filter method will be presented, followed by the wrapper method
and then the hybrid method.

Filter Approach

Filter methods are traditionally used at the preprocessing step of feature se-
lection. They rely on the general characteristics of the training data’s selected
features, as shown in Fig 2.6. The feature subsets are weighted – or scored
– and then ranked using a statistical measure. Those with top scores (high
rank) are kept and those with lower scores are removed or discarded. Scoring
measures include Z-score, Bayesian test, information gain, and mutual infor-
mation. The ranking method is used to evaluate the feature relevance. This
is to evaluate how the feature is useful in discriminating the various classes
in the dataset.

The benefit of filtering is that it is fast, computationally simple to perform
and easily scalable for high dimensional datasets (Wu et al., 2017). Filtering
is also reported to often ignore the interaction with the classifier and there-
fore tends to ignore feature dependencies, which when contrasted with other
methods can lead to worse classification performance (Liu and Yu, 2005).
One major drawback in filtering is that the selected feature is not always op-
timal as it may include redundant and highly correlated features. Many filter
techniques have been proposed to overcome the correlation problem, among
them Pearson correlation.
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FIGURE 2.6: Filter method

Many feature selection methods are proposed in the literature. An ex-
ample is the use of mutual information to measure relevant features and
whether there is any redundancy. In Mutual Information based Feature Se-
lection (MIFS), features are ranked or evaluated based on their mutual in-
formation with regards to the class label. Battiti, 1994 introduced a mutual
information based feature selection approach that considers both the mutual
information with regards to the class label and with the already-selected fea-
tures in the feature subset, known as MIFS-U. The method was proposed to
overcome a limitation of MIFS, which is that it does not show the relation-
ship between the feature and the class label in its redundancy term. Another
variant of MIFS is Normalised Mutual Information Feature election (NMIFS).
The method calculates the normalised mutual information to measure the re-
dundancy (Estevez et al., 2009).

Another filter method is information gain (IG). IG measures the total bits
of information gained for class prediction by knowing the value of a feature.
In particular, it calculates the expected decrease in entropy whenever a cer-
tain feature is available, whereby important features cause greater decrease
when calculating the entropy (Mitchell, 1997).

IG(F ) = E(S)−
∑
n

Sn
S
E(Sn) (2.4)

where E(S) is the entropy of the given dataset and E(Sn) is the entropy of
the nth subset generated by partitioning the dataset based on feature F.

Researchers have developed other ways for feature selection to overcome
the shortcomings of standard feature selection methods. Kira and Rendell,
1992 proposed a feature selection approach for binary classification known as
Relief feature selection. The approach is efficient, noise tolerant and sensitive
to feature interactions, making it applicable to real-world applications such
as protein folding. It is a statistical method that calculates each feature score
to rank the features. Based on the ranking the top scoring features are chosen
for feature selection. Later, Kononenko, 1994 proposed an extension of the
Relief algorithm that handles multi-classification and datasets with missing
values. The method is called ReliefF. Another approach was developed by
Xie et al., 2018, who proposed a feature selection method based on Relief that
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can be extended and used on unbalanced multi-label datasets. The method
is called a UBML-ReliefF algorithm. Experimental results show that the new
UBML-ReliefF outperformed the original ReliefF algorithm. Tiwari, 2014
proposed a modified version of Relief which gives higher weight to attributes
when dealing with minority classes. The results indicate that the proposed
method gives better results when compared to the original Relief algorithm.
Peng, Long, and Ding, 2005 proposed a correlation-based feature selection
approach called minimum-redundancy-maximum-relevance (mRMR). The
algorithm provides a balance between relevancy and redundancy (Nguyen,
Franke, and Petrovic, 2010). Another approach for feature selection is called
the Maximum Relevance–minimum Multi-Collinearity (MRmMC) method,
in which both correlation and redundancy are evaluated and eliminated. The
proposed approach performed well on eight datasets from the UCI machine
learning repository (Senawi, Wei, and Billings, 2017). Another example is
the FOCUS algorithm, in which all possible feature subsets are examined.
One major drawback of this algorithm is that it is computationally expensive
(Almuallim and Dietterich, 1994).

The next section looks at the second approach for feature selection, which
is the wrapper approach. Unlike the filter approach which uses feature rank-
ing criteria, wrapper methods rely on the classification algorithm to find the
optimal feature subset.

Wrapper Approach

In terms of the wrapper approach, feature selection makes use of the result of
the classification algorithm to determine the strength and usefulness of any
given subset. The method involves initiating a search procedure, whereby
various dataset attributes are defined, generated and evaluated. In the wrap-
per approach, the process of feature selection can be generalised into four
steps, the first two of which are repeated until the third stopping criterion (3)
is achieved:

1. Subset generation: a search strategy that derives the potential feature
subsets.

2. Subset evaluation: comparative analysis of the potential subsets.

3. Stopping criterion: determines when the search is to be stopped, of
which there are several methods; the search self-completes, a given
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bound is reached, additional feature deletions or additions do not im-
prove results, a sufficiently good subset is selected (e.g., based on a
below threshold error rate).

4. Result validation: this largely depends on the scenario; if there is a pre-
determined measurement of best fit, such as having knowledge of rel-
evant features beforehand, then results can be validated in comparison
to this already known set of features. However, if such knowledge is
not available, then the error rate method can be applied.

Although the approach takes feature dependency into account, one com-
mon problem is that it has a higher risk of over-fitting than the filter tech-
niques. In addition, its performance tends to be slow and computationally
expensive (Jun-shan, Wei, and Yan, 2009). Additionally, given the dual com-
putation occurring, larger datasets slow the algorithm’s performance. How-
ever, when coupled with classification algorithms such as SVM or k-NN and
swarm intelligence algorithms (e.g., GA), increased classification accuracy
has been reported within the realm of gene classification research (Alba et
al., 2007).

Numerous wrapper approaches have been proposed in the literature. An
example of two widely used methods are Sequential Forward Selection (SFS)
and Sequential Backward Selection (SBS). In SFS, the process starts with no
features at all, then features are added. This is repeated until there is no
increase in the classifier performance. However, in SBS the process starts
with all features, and then features are removed in sequence. The removal is
stopped when the increase in classifier performance stops. One major draw-
back of these two approaches is the nesting effect (Kabir, Islam, and Murase,
2010). The nesting effect problem can be solved by combining SFS and SBS
into one method, such as the Sequential Forward Floating Selection (SFFS)
and Sequential Backward Floating Selection (SBFS) (Reunanen, 2003).

Various search algorithms can be used to find the feature subset and max-
imise the classification performance most use meta-heuristic techniques to
speed up the search (Blanco et al. (2004) and Jirapech-Umpai and Aitken
(2005)) and few use sequential search approaches (Xiong, Fang, and Zhao,
2001). Many others have used a hybrid filter-wrapper approach to take ad-
vantage of both (Sebban and Nock (2002) and Bermejo, Gámez, and Puerta
(2011)).

The following section provides examples from the literature on various
hybrid approaches.
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Hybrid Approach

Various search techniques have been proposed to speed up the generation
and evaluation of feature subsets, such as combining a filter and wrapper
approach and using meta-heuristic methods to find the solution in a cost-
effective way (Xue et al., 2016). Many researchers have proposed a hybrid
filter-wrapper approach to perform feature selection. More details about var-
ious hybrid approaches can be found in (Sebban and Nock (2002) and Jashki
et al. (2009)).

Swarm intelligence and population-based algorithms have been widely
used as a solution for the feature subset selection problem. An example of a
population-based technique which has been used as a solution for the feature
subset selection problem is GA (Punch III et al., 1993). Leardi, 2000 proposed
a GA feature selection in the spectral datasets. In another study by Oh, Lee,
and Moon, 2004, a novel hybrid GA for feature selection was proposed. The
results indicate that the proposed hybrid GA gives better results than the
classic GA and the sequential search algorithms.

In terms of PSO, a model was proposed by Zahran and Kanan, 2009,
which uses PSO for text feature selection. It reduces the dimensionality of
the dataset in order to improve text categorisation efficiency. The proposed
model has been evaluated against others including chi-square and document
frequency. The results illustrate the superiority of the proposed model on
the Arabic dataset. Two multi-objective PSO algorithms for feature selection
were proposed by Xue, Zhang, and Browne, 2013. In the first algorithm,
the concept of nondominated sorting was used with PSO to solve the fea-
ture selection problem. The second algorithm applies crowding, mutation,
and dominance to search for the optimal pareto front solution using PSO.
Both algorithms outperform three other well known multi-objective algo-
rithms. In another study, a hybrid approach that uses both PSO and SVM to
improve the classification task (PSO-SVM) was proposed (Huang and Dun,
2008). The algorithm simultaneously optimises the features subset and SVM
kernel parameters by using a distributed architecture to reduce the computa-
tional cost. The results show that the proposed method can find the optimal
feature subset and improve the classification accuracy. Moreover, a gene se-
lection method was developed using two hybrid techniques: PSO and GA
(Alba et al., 2007). Both methods performed well when compared with other
meta-heuristic algorithms from the literature on six datasets.

In terms of ACO, Aghdam and Kabiri, 2016 introduced an ACO based fea-
ture selection approach to reduce dimensionality in the intrusion detection
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system. The proposed approach is simple and computationally low. More-
over, it outperforms other techniques on the KDD Cup 99 and NSL-KDD
intrusion detection benchmark datasets 7. Huang, 2009 proposed a hybrid
ACO-SVM approach to simultaneously find a feature subset and optimise
the SVM kernel parameters. The experimental results indicate that the pro-
posed approach gives higher classification accuracy and reduces the feature
size. Another model proposed by Kanan and Faez, 2008, uses ACO to per-
form feature selection for a face recognition system. The proposed method
can easily be implemented and does not require prior information about the
features, as opposed to standard ACO based methods. Ding, 2009 proposed
an ACO based model to perform feature selection and parameter optimisa-
tion. The proposed approach uses F-measure to simultaneously perform fea-
ture selection by removing irrelevant features and optimise the C and γ. Ex-
perimental results show both the feasibility and efficiency of the ACO based
model.

In short, feature selection comes in many different forms, each resulting
in a measurably different outcome. Research regarding the variety of feature
selection methods increases accuracy in establishing which metrics perform
best on different datasets. Currently, there is a lack of expert systems that can
successfully reduce both training and testing times. Therefore, it is impor-
tant for researchers to dedicate their time to testing and identifying the most
effective feature selection methods that can be applied to each dataset.

The next section illustrates the various metrics available for evaluating
the model when learning from imbalanced datasets.

2.5 Metrics to evaluate models on imbalanced datasets

The performance of the learning model is typically evaluated using predic-
tive accuracy (Acc), see Eq 2.5. However, this is not suitable when the dataset
suffers from class imbalance or the costs of errors vary. An example is the
classification of microscopic biopsy images (Kumar, Srivastava, and Srivas-
tava, 2015). Acc, as shown in Eq 2.5, is not an effective performance metric for
models on imbalanced datasets as it does not show how the model correctly
classified the minority class instances.

Accuracy =
TP + TN

TP + TN + FN + FP
(2.5)

7The NSL-KDD is a dataset available at http://www.unb.ca/cic/datasets/nsl.html.

http://www.unb.ca/cic/datasets/nsl.html
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TABLE 2.2: Confusion matrix

Predicted Positive Class Predicted Negative Class

Actual Positive Class True Positives (TP) False Negatives (FN)

Actual Negative Class False Positives (FP) True Negatives (TN)

Alternative performance metrics are sensitivity and specificity (Han, Pei,
and Kamber (2011) and Tang et al. (2009)). Sensitivity, as shown in Eq 2.6, also
known as the True Positive Rate (TPR) or recall rate, refers to the percentage
of positive examples correctly predicted as positive class examples.

Sensitivity =
TP

TP + FN
(2.6)

Specificity, as shown in Eq 2.7, also known as the True Negative Rate
(TNR), refers to the percentage of negative examples that are correctly pre-
dicted negative class examples.

Specificity =
TN

TN + FP
(2.7)

A combination of sensitivity and specificity is another metric which can
also be used for imbalanced dataset. The metrics are called F-measure and
the geometric mean (G-mean) of sensitivity and specificity. The F-measure
is calculated using the harmonic mean of precision and sensitivity as shown
in Eq 2.8. It is a commonly used metric on multi-class imbalanced datasets
(Guo and Viktor, 2004). G-mean shows the balance between the classifier
performance on both the majority class and the minority class, and it consid-
ers both the sensitivity and the specificity, as shown in Eq 2.10. Both metrics
have been widely used by researchers to evaluate the classifier performance
over imbalanced datasets, more details can be found in (Su and Hsiao (2007)
and Zhang and Wang (2013)).

F-measure =
2× Precision× Recall

Precision + Recall
(2.8)

where precision is the positive predictive value which indicates the accuracy
of the model’s recall. Precision can be calculated using the following equa-
tion:

Precision =
TP

TP + FP
(2.9)

G-mean =
√

Sensitivity× Specificity (2.10)
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Additionally, for models comparison, Receiver Operating Characteristics
(ROC) rate and Area Under the ROC Curve (AUC) can be used where the
False Positive (FP) rate on the x-axis and True Positive (TP) rate on the y-
axis and each classifier is represented by a point on the curve. Both metrics
are widely used to evaluate classification models performance (Weiss, 2004).
The ROC is a visual tool to evaluate the classifier performance over a range
of trade-offs between true positive and false positive error rates, in which the
perfect point on the ROC curve would be (0,100). This point indicates that all
the positive examples have been classified correctly and there are no negative
examples classified as positives (Chawla et al. (2002), Alpaydin (2014), and
Maimon and Rokach (2010)). AUC is a single metric derived from the ROC
curve to summarise classifier performance, and the larger the AUC, the better
the classifier performance when learning from the dataset.

Therefore, the choice of performance measurements depends on the prob-
lem and the class distribution. It has been suggested that a combination
of measurements gives a balanced evaluation of the model’s performance
(Sokolova, Japkowicz, and Szpakowicz, 2006).

2.6 Summary

Through the analysis of all available results, it is evident that data mining
is a valuable tool for extracting useful information hidden within data. It
can be implemented in numerous real-world applications to support vari-
ous decision making processes. There are a variety of classification meth-
ods with demonstrable evidence regarding how well they perform in certain
cases where datasets suffer from class imbalance such as customer response
prediction, medical diagnosis and fraud detection. The background research
and the literature review presented in this chapter aimed to summarise re-
lated work and provided a critical discussion of the topic. This investigation
helped to engender a deeper understanding about the results of research con-
ducted within the field of data mining and the problem of class imbalance.

The review also highlighted an important problem with data mining al-
gorithms when classifying imbalanced datasets: that these algorithms can
be unintentionally biased towards the majority class, which can increase the
likelihood of inaccurate classification. Also discussed were in-depth solu-
tions related to the issue of class imbalance that used SVM as a learning algo-
rithm, which assists in constructing the thesis framework and methodology.
The solutions include sampling, cost sensitive learning and feature selection.
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Included within this examination was the description of a link between
the problem of class imbalance, the type of data, and its dependence on the
instances included in a minority samples class. The importance of the in-
stances in a minority samples class and its identification before selecting a
technique to solve the problem should not be underestimated as it varies
from problem to problem. In other words, the criticality of the minority class
in one dataset cannot be compared to another dataset and from one applica-
tion to another, therefore a sampling technique can be expected to vary from
one classification model to another with a similar number of instances in the
majority and minority class. Moreover, assigning more cost or weight to the
minority class does not always solve the problem because it cannot be gener-
ically applied to different datasets or even different training sets of the same
dataset. This is due to each classification attempt on a different training set
resulting in a different number of instances in each class, even if the train-
ing sets are taken from the same dataset. Therefore, cost sensitive learning
can be combined with other techniques to tackle various aspects of the class
imbalance problem.

Another link was the use of feature selection as a tool to overcome the
class imbalance problem, as most high dimensional datasets have skewed
distribution. The review provided an insight into the use of swarm intel-
ligence techniques and population-based algorithms such as GA, PSO, and
ACO to resolve issues related to class imbalance. This includes the use of
swarm based techniques to balance the datasets, applying a cost sensitive so-
lution by optimising the kernel parameters, C and γ, searching for a feature
subset when dealing with high dimensional imbalanced datasets.

The next chapter of this thesis, Chapter 3, addresses significant aspect
for data mining: the role of swarm intelligence and population-based algo-
rithms in solving the class imbalance issue. It provides an overview of swarm
intelligence and evolutionary computation, and their advantages and disad-
vantages. This is followed by a definition of well-known algorithms and a
brief introduction to the role of swarm intelligence in data mining through
a review of how swarm intelligence algorithms have been used to overcome
the class imbalance problem. Chapter 4 presents the set of experiments per-
formed on real-world datasets to evaluate the performance of various mod-
els, the objective of the experiments being to answer the research questions
raised in this thesis.
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Chapter 3

Swarm Intelligence

This chapter presents a background for swarm intelligence and evolutionary
computations and provides definitions of a number of terms, followed by
a discussion of the main advantages and limitations of swarm intelligence.
Several population-based algorithms are then introduced, and their main
components and behaviours are highlighted. These algorithms include GA,
SDS, ACO, PSO, DE, and DFO. This is followed by a review of the work done
by earlier researchers on the use of various population-based algorithms in
data mining. The aim of this chapter is to shed light on how these algorithms
can be used to solve various search and optimisation issues in data mining,
mainly the class imbalance problem.

3.1 Background

Swarm intelligence and evolutionary computation are both artificial intelli-
gence based approaches and have been introduced as optimisation method-
ologies. They can produce solutions to various search and optimisation prob-
lems using a population-based approach. Swarm intelligence is inspired by
the collective behaviour of swarms such as ants and bird flocks. However,
evolutionary computation is inspired by the biological evolution in nature
and is based on the processes of Darwinian evolution (Fogel, 1995). Gener-
ally speaking, evolutionary computation algorithms include but are not lim-
ited to GA, GP, and DE. Swarm intelligence algorithms include but are not
limited to ACO and PSO.

Although the algorithms have different sources of inspiration and use dif-
ferent names for their operations, they still share many characteristics (Eber-
hart and Shi, 1998). For example, both use fitness functions and population
to initialise. A study by Yang, 2014, found that the random route generation
in the ACO is analogous to mutation in evolutionary computation. However,
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there is no specific crossover in the ACO algorithm. In this thesis, swarm in-
telligence is considered to include both swarm intelligence algorithms and
evolutionary computation algorithms. According to Grosan, Abraham, and
Chis, 2006, a swarm is defined as “a large number of homogeneous, simple agents
interacting locally among themselves, and their environment, with no central control
to allow a global interesting behaviour to emerge”. In particular, swarm is applied
to entities or animals that exhibit a collective behaviour. The swarming be-
haviour was first simulated by Reynolds, 1987 using the Boids program. The
model was first used to simulate the behaviour of flocks of birds. However,
it can be applied to simulate other swarming behaviours like schools of fish.
Swarm intelligence is based on boids or simple agents who interact locally
with each other and with the environment, leading to intelligent collective
behaviour. Moreover, it refers to “a relatively new branch of Artificial Intelligence
that is used to model the collective behaviour of social swarms in nature, such as ant
colonies, honey bees, and bird flocks” (Grosan, Abraham, and Chis, 2006). An-
other definition of swarm intelligence by Bonabeau, Dorigo, and Theraulaz,
1999 further define swarm intelligence as “the emergent collective intelligence
of groups of simple agents”. Even though agents, such as swarm individu-
als or insects, are with very little intelligence by themselves and with very
few individual capabilities, they do interact with each other through partic-
ular behaviours to achieve tasks, which are vital for their survival. Recently,
swarm-based algorithms have emerged. They are both nature and popula-
tion driven algorithms and have the ability to produce a series of robust, fast
and low-cost solutions to a number of complex issues (Abdelbar, Ragab, and
Mitri (2003) and Abonyi, Feil, and Abraham (2005)). Furthermore, research
by Abraham and Ramos, 2003 has demonstrated that a swarm individual’s
social activity (interactions) can be either direct or indirect. For example, vi-
sual or audio contact can be considered direct interaction (e.g., honey bees’
waggle dance), whereas indirect interactions arise from the changes that an
individual makes to their surrounding environment. This creates a new en-
vironment to which other individuals react (e.g., pheromone trails that ants
deposit when searching for food); this is known as stigmergy. Stigmergy is
defined by Grassé as “indirect communication via interaction with the environ-
ment” (Marsh and Onof, 2008). It simply creates a means of communication
through the environment, which affects the behaviour of other members of
the population or swarm.

Within the past twenty years, both natural scientists and biologists have
investigated insects’ social behaviours due to the incredible efficiency these
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natural swarm systems exhibit. Their efficiency stems from their informa-
tion sharing and decentralised behaviour in identifying solutions. Computer
scientists wanted to introduce the scientific phenomenon of natural swarm
systems to artificial intelligence. Thus, there has been a rapid increase in the
development of new or novel, nature-inspired algorithms, to which impor-
tant attention has been given. It has been found that the tsunami of meta-
heuristic algorithms which is based on natural or man made processes, is
causing a shift of meta-heuristics away from scientific rigor (Sörensen, 2015),
and indeed some newly emerged methods do still require clearer presenta-
tion. Thus, in order to evaluate the contribution of the main concept behind
each proposed method, theoretical and practical formalisation is required
along with an explanation of how the methods can be applied to various
optimisation problems. Moreover, it is necessary to clarify how the proposed
methods differ from already existing methods (Nesmachnow, 2014). In gen-
eral, all swarm intelligence based algorithms are naturally inspired and are
population-based. They differ in the inspiration and how the agents are ex-
ploring and exploiting the search space (Mavrovouniotis, Li, and Yang, 2017).
In 1975, GA, which is inspired by natural evolution, was proposed to find a
solution to search and optimisation problems (Holland, 1975). In 1989, SDS
was introduced to perform evaluation of search and optimisation hypothe-
ses (Bishop, 1989b) . Thereafter, in 1992, Marco Dorigo introduced an inno-
vative and nature-driven meta-heuristic known as ACO to overcome hard
Combinatorial Optimisation (CO) problems (Blum (2005a) and Chen et al.
(2005)). Soon after, Kennedy and Eberhart developed an algorithm known as
PSO to simulate bird flocking social behaviour (Chen, Abraham, and Yang
(2005), Chen et al. (2005), and Kennedy (2011)). In 2005, the Artificial Bee
Colony (ABC) algorithm was proposed, which is inspired by the behaviour
of a honey bee swarm (Karaboga, 2005). Another method was proposed in
2005, known as Glowworm Swarm Optimisation (GSO). It is based on agents
called glowworm for multi-modal functions optimisation (Krishnanand and
Ghose, 2009). In 2009, a Cuckoo Species Algorithm (CSA) was proposed by
Yang and Deb, 2009 . Later on in 2011 a new swarm-based algorithm was
introduced, based on modifications to the original CSA. It is known as Mod-
ified Cuckoo Search (Walton et al., 2011). Another swarm intelligence algo-
rithm is the Quantum Inspired Cuckoo Search Algorithm (QICSA), aimed
to improve CSA diversity. Subsequently, Al-Rifaie, 2014 proposed a new
swarm intelligence algorithm derived from the behaviour of flies hovering
over food. The algorithm is called DFO and has become a new addition to the
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existing set of swarm intelligence algorithms. There are many more swarm-
based algorithms other than those listed above, among them GP. More details
can be found in (Ab Wahab, Nefti-Meziani, and Atyabi (2015) and Parpinelli
and Lopes (2011)).

Ever since the introduction of swarm intelligence and evolutionary com-
putation, the number of studies documenting the success of meta-heuristic
algorithms in various optimisation tasks and research problems has steadily
increased (Parpinelli, Lopes, and Freitas (2002) and Bonabeau, Dorigo, and
Theraulaz (1999)). The successful application of swarm intelligence algo-
rithms to a number of problematic situations, such as optimal routes discov-
ery, function optimisation problems, image and data analysis, structural op-
timisation and scheduling, have been demonstrated in (Dall’Asta et al. (2006)
and Tan, Shi, and Niu (2016)). Further applications of the meta-heuristic
algorithms have been applied in several other domains, including: bioin-
formatics, dynamical systems, medical informatics, operations research, ma-
chine learning, and even finance and business (Bhattacharyya, 2015). Despite
this increase in the use of swarm intelligence algorithms, there is the no-free-
lunch theory proposed by Wolpert and Macready, 1997. This theory states
that any algorithm will perform equally on average to another algorithm. For
example, A and B are two algorithms which have an averaged equal perfor-
mance; this means if algorithm A performs better than B in some problems,
then algorithm B will perform better than A in other problems. Thus, there is
no algorithm that performs well in all types of problems, and the algorithm
performance should be measured for the given problem (Yang, 2012).

This chapter is organised as follows: Section 3.2 briefly illustrates the
main advantages and limitations of population-based techniques. Section 3.3
describes the main population-based algorithms. Section 3.4 then provides
an overview of the use of these algorithms in data mining.

3.2 Advantages and disadvantages of swarm intel-

ligence

As with any system, there are several advantages and disadvantages in swarm
intelligence. This section discusses the main advantages and disadvantages
of swarm intelligence algorithms.
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3.2.1 Advantages of swarm intelligence

One of the significant advantages of swarm intelligence algorithms is their
highly scalable nature. The outstanding abilities of swarm intelligence algo-
rithms are generally sustained in the event of using group sizes, whether it
be sufficiently few or millions of individuals. For example, swarm intelli-
gence systems’ control mechanisms do not always rely on swarm size, pro-
vided that the size is not too small (Belal et al. (2006) and Tan and Zheng
(2013)). Swarm intelligence based algorithms are also known to adapt well
to quickly changing environments, as well as making the most of using their
self-organisation and auto-configuration capabilities, thereby enabling them
to freely and flexibly adapt individual behaviour to the outside environ-
ment (Belal et al. (2006), Tan and Zheng (2013), and Kennedy et al. (2001)).
Moreover, they can collectively function without any central control, and
the swarm is not dependent on a single individual; this is why swarm in-
telligence is a highly robust system. In other words, in swarm intelligence
systems, there is a high degree of fault tolerance capability since the swarm-
based system has no single point of failure. In contrast, systems with a single
point of failure can potentially jeopardise the system, leading to complete
system failure (Dorigo (2007) and Shi (2012)). The swarm is also made of
simple components with little capabilities on their own as individuals, but
the simple rules they use create a collective sophisticated behaviour for the
group.

3.2.2 Disadvantages of swarm intelligence

It is clear that swarm intelligence is growing at a rapid pace and is becom-
ing a far reaching phenomenon. It is an innovative way of designing com-
plex systems where no centralised control is needed (Parpinelli and Lopes,
2011). However, there are some disadvantages or limitations to swarm in-
telligence based systems. Given the emergent solutions that swarm intel-
ligence systems provide, these systems cannot be used for time-critical ap-
plications, such as elevator controllers and nuclear reactor temperature con-
trollers. Nevertheless, swarm intelligence can be applied to non-time critical
applications involving various repetitions of a desired activity (Belal et al.,
2006). One of the most significant limitations of swarm intelligence optimi-
sation techniques is parameters tuning. Given that various swarm intelli-
gence algorithms’ parameters are problematic, they are usually empirically
pre-selected based on a problematic trial-and-error scenario (Bhattacharyya,
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2015). Another limitation is stagnation. Systems may experience some form of
stagnation due to limited central coordination or an untimely convergence to
a local optimum. For instance, a common form of stagnation in ACO is that
ants may eventually follow the same suboptimal path. However, this issue
can easily be resolved by carefully setting algorithmic parameters (Yang and
Karamanoglu, 2013). For example, fine tuning the swarm-based algorithm’s
parameters by hybridising with other swarm intelligence algorithms. This
can be used as a way to overcome problems like stagnation and resources
utilisation.

Despite their limitations, swarm intelligence based optimisation techniques
are still popular because of their robustness and flexibility. They are robust
because they are made up of simple agents and the failure of one agent has lit-
tle or no impact on the whole system. For example, ACO was first introduced
to solve the Travel Salesman Problem (TSP). After that, it was extended fur-
ther to solve other issues such as scheduling problems and bioinformatics
problems. In terms of data mining, an improvement in performance is found
by incorporating swarm-based techniques with data mining techniques. This
motivates the use of swarm intelligence techniques in data mining (Martens,
Baesens, and Fawcett, 2011).

This section defined swarm intelligence and discussed its main advan-
tages and disadvantages, the next section delves into a number of other as-
pects associated with swarm intelligence. It includes a brief introduction to
major swarm-based algorithms and reviews the recent applications of swarm
intelligence in knowledge discovery and data mining.

3.3 Swarm intelligence algorithms

Swarm intelligence has two main approaches. The first category consists of
a search technique in which individuals of a swarm move through the solu-
tion space in search for a solution to a task. The second category is a data
organising approach, which occurs when swarms move data away from low
dimensional feature space so that they can achieve a clustering solution of the
data. These two categories occur through various meta-heuristic algorithms
that are utilised to evaluate solutions to single and multi-objectives fitness
functions (Kennedy et al. (2001) and Rao and Patel (2013)). This section in-
troduces some swarm-based techniques. First is the GA algorithm, which is
based on natural selection and genetics, and next is SDS, a multi-agent op-
timisation algorithm that has a strong mathematical framework to describe
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its behaviour. This is then followed by a brief introduction to ACO, which
is based on ant behaviour when searching for food. PSO is introduced after,
which mimics the behaviour of birds flocking birds in order to provide guid-
ance for the particles that are searching for the global solution in the search
space. Following this, a brief introduction to DE is provided. Finally, DFO is
explained and its behaviour is illustrated.

3.3.1 Genetic algorithm

GA is the most popular approach in the research area of evolutionary compu-
tation. It is a search technique for global optimisation in the complex search
space. As suggested by the name, natural selection, as well as genetic con-
cepts such as mutation, crossover and inheritance are employed in it. John
Holland developed the concept of GA in 1975 at the University of Michigan.
He worked on the initial version of GA, which involved the particular sim-
ulation of the Darwinian principle known as “survival of the fittest” (Holland,
1975). Based on this principle, GA reaches the optimal solution after a series
of generations or iterative computations.

GA has received increasing popularity in the research area of computer
science, business, engineering, operations research, and social sciences (Ku-
mar et al., 2010). Challenging and complex problems in these research areas
have benefited from GA, and various problems still require the use of GAs to
solve them. GA’s main components are chromosome representation, fitness
function, initial population, generations’ termination criteria, selection func-
tion, and the genetic operation for reproduction. The initial population in GA
is usually a randomly generated solution. When it comes to termination cri-
teria for the reproduction to stop, the most commonly used approach is to set
a maximum number of generations. GA usually works by representing the
chromosome (solution) in a string of 0’s and 1’s (Agrawal and Bala, 2007).
In the evaluation step, GA uses the fitness function to evaluate the quality
of the solution. The fitness function represents the main requirements for
the intended solution of a problem. For example, shortest route, minimum
cost, and most compact arrangements are computed in this feature of the
algorithm. Based on the chromosomes’ fitness value, the selection process
starts. There are various ways to select chromosomes for reproduction, such
as roulette wheel selection and ranking methods. In the ranking method, the
fittest chromosomes have a higher chance (higher probability) of being re-
combined with other chromosomes to produce improved solutions (Blickle
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and Thiele, 1996). However, roulette wheel selection is the simplest selec-
tion method, in which a random number is generated and the chromosome
is selected if its segment spans the selected random number.
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FIGURE 3.1: GA algorithm operations: Crossover (left) and Mu-
tation (right)

Genetic operation for reproduction is the process by which genetic oper-
ators such as crossover and mutation are used to create new solutions based
on the existing ones. Fig 3.1 shows the GA operation of crossover and muta-
tion. Crossover is the operation in which new solutions, known as Offspring,
are created (from the parents) in the search space for exploration. However,
mutation is the operation by which the gene is altered. For example, in the
string representation of 0s and 1s, the 1 is changed to 0 or vice versa.

GA is capable of finding a good solution. However, this solution is not
necessarily the optimal solution. Another limitation is that solving problems
with longer chromosomes takes time. Despite its limitations, GA has been
widely used in solving complex issues such as scheduling and gene selection.
More details on GA’s different applications can be found in (Man, Tang, and
Kwong (1996), Bandyopadhyay and Pal (2007), and Kumar et al. (2010)).

3.3.2 Stochastic diffusion search

SDS was first described by Bishop, 1989b as a population-based matching al-
gorithm that uses direct communication patterns such as cooperative trans-
port as found among social insects, to perform evaluations of the search and
optimisation hypothesis. In SDS, the direct communication between agents
is analogous to the “tandem calling” mechanism employed by a particular
species of ants called Leptothorax Acervorum. De Meyer, 2000 described SDS
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as a framework that fits within processes governed by mechanisms of varia-
tion, replication, and selection. The method employs a probabilistic approach
to solve matching and pattern recognition problems (Bishop, 1989b).

Unlike other nature-inspired search methods, SDS, which is rooted in
mathematical frameworks, describes the behaviour of the algorithm by in-
vestigating convergence to the global optimum in a linear time complexity
(Bishop (1989b) and Nasuto (1999)). SDS presents itself as a more effective
solution to persistent problems encountered in search and optimisation, in
addition to being reliable and fast. The main components of SDS are as fol-
lows:

• The model, which is the target pattern.

• The search space, which consists of micro features that define the model.

• Agents performing independent searches with internal operational states
containing location-mapping pointing to the search space.

SDS is most applicable to optimisation and search problems where com-
ponent functions can be evaluated independently using swarm agents who
maintain a hypothesis about the optima (Nasuto and Bishop, 1999). In SDS,
the agents’ population has a “hypothesis” about the possible solutions; these
hypotheses are partially evaluated in the test phase. This is to provide feed-
back that ensures the agents’ convergence on promising solutions. Using
SDS, agents’ communication and the “partial” evaluation of hypotheses play
a critical role in the performance of the agents and the emergence of “intel-
ligence” (Bishop, 1989b). Unlike other swarm intelligence algorithms, SDS is
not based on applying non-linear transfer and does not calculate based on
standard learning rules (Nasuto, 1999). Given its approach, agents’ commu-
nication appears as a collective and emergent property (Nasuto and Bishop,
1999). Unlike ACO, which is based on stigmergetic communication, SDS uses
direct communication between agents.

SDS then functions by finding the best match for a given model in any
search space using a diffusion process, whereby each agent operates indepen-
dently and only communicates to provide information about their findings.
During SDS, every agent is able to examine the entire search space and pro-
cess information about the target. For example, each agent can access an
entire document containing texts and when the selected hypothesis test func-
tion returns a positive result, the agent becomes more active and able to re-
cruit others to increase the agent population. Once an individual agent has
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individually evaluated its hypothesis, individuals in the population come
together through various methods to achieve diffusion (exchanging infor-
mation and communicating with each other). Once information is commu-
nicated about the positive hypotheses, hypotheses that do not yield positive
results are discarded and the number of agents multiply on the positive result
through the information exchanged. In principle, the partial function evalu-
ation feature in SDS makes it applicable to a dynamically changing problem
space. Thus it is a dynamic, not static, process. This feature of dynamic
changes causes SDS to be widely used in various applications across dif-
ferent fields, among them, eye tracking in facial images, where a stochastic
search network is combined with an n-tuple network (Bishop and Torr, 1992),
site decision for transmission equipment for wireless networks (Hurley and
Whitaker, 2002), and mouth locating in human faces images (Grech-Cini and
McKee, 1993). More details on SDS applications can be found in Section 3.3.2.

SDS Architecture

SDS starts the search with the initialisation phase. This is then followed by
iterations of the test and diffusion phases. The structure of SDS is shown in
Algorithm 1.

Algorithm 1 SDS Algorithm

1: Initialising phase
2: while stopping condition is not met do
3: Test phase
4: Diffusion phase

Initialisation phase: The initialisation phase is where each agent randomly
selects a hypothesis (i.e. an element’s index or, in the case of a dataset,
the instance number) from the search space. These “pointers” are later
used to lead the search process of the SDS population.

Test phase: In the test phase, which follows the initialisation phase, each
agent is assigned to a random hypothesis in the search space, and each
agent’s hypothesis is partially and individually evaluated based on the
objective function; if the hypothesis evaluation is successful, the agent
is set to be active (boolean value) and if not, it is inactive. Therefore, at
the end of the test phase, each agent adopts either of the two possible
boolean outcomes: active or inactive.
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Diffusion phase: During the diffusion phase, information about the hypothe-
ses is exchanged among agents, depending on the recruitment strategy
employed. For example, the standard SDS algorithm employs the pas-
sive recruitment strategy in which each inactive agent selects another
agent randomly; if the randomly selected agent is active, the hypothesis
of the active agent is diffused to the inactive agent; otherwise, the inac-
tive agent randomly selects a hypothesis from the search space. There
are other types of recruitment strategies, and the next section describes
variations in recruitment strategies to balance between global explo-
ration and local exploitation.

Recruitment strategies

Various types of recruitment strategies are employed for SDS to converge.
The choice of recruitment strategy depends on the desired level of greediness
and robustness. The methods include active, passive, dual, context sensitive,
and context free strategies, as shown in Fig 3.2. The agent in SDS can be in
one of three different status: Active status: if the agent was successful in the
hypothesis evaluation at the test phase, inactive status: if the agent was not
successful at the test phase and engaged status: if the agent is engaged in a
communication with another agent (Al-Rifaie and Bishop, 2013a).

Recruitment Strategy

Active
Recruitment

Passive
Recruitment

Dual
Recruitment

Context
Sensitive

Mechanism

Context
Free

Mechanism

FIGURE 3.2: Recruitment strategies

Passive recruitment strategy: A passive recruitment strategy is a process in
which inactive agents randomly select other agents to adopt their hy-
potheses if those hypotheses are active. Otherwise, the inactive agent
is assigned to a new random hypothesis, as shown in Algorithm 2. In
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passive recruitment strategy, it is possible but unlikely that the agents’
population would converge to any hypothesis in a single attempt.

Algorithm 2 Passive recruitment strategy

1: for Ag = 1→ Total_No_of_agents do
2: if Ag.active() == false then
3: rand_Ag = pick a random agent()
4: if rand_Ag.active() == true then
5: Ag.setHypo(rand_Ag.getHypo())
6: else
7: Ag.setHypo(random_Hypo())

Active recruitment strategy: Active recruitment takes place when active agents
randomly select other agents. If the selected agent is inactive and not
engaged in a communication with another agent, then the active agent’s
hypothesis is passed to the inactive agent and the agent is set as en-
gaged. This is repeated for all the active agents. Otherwise, if the agent
is neither active nor engaged, it will be assigned a new random hypoth-
esis. See Algorithm 3.

Algorithm 3 Active recruitment strategy

1: for Ag = 1→ Total_No_of_agents do
2: if Ag.active() == true then
3: rand_Ag = pick a random agent()
4: if rand_Ag.active() == false and rand_Ag.Engaged() == false then
5: rand_Ag.setHypo(Ag.getHypo())
6: rand_Ag.Engaged(true)
7: for Ag = 1→ Total_No_of_agents do
8: if Ag.active() == false and Ag.Engaged() == false then
9: Ag.setHypo(random_Hypo())

Dual recruitment strategy: This is a combination recruitment method in which
both active and inactive agents randomly select other agents. If an ac-
tive agent randomly selects another agent that is inactive and not en-
gaged in another communication, then the active agent shares its hy-
pothesis with the inactive one and the inactive agent is set as engaged.
Moreover, if an agent that is inactive and not engaged in a commu-
nication, it selects a random agent that is active, the active agent will
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share its hypothesis with the inactive agent, which will be set as en-
gaged. Finally, if there is still an agent that is inactive and not engaged
in a communication, it will be assigned a new random hypothesis. See
Algorithm 4.

Algorithm 4 Dual recruitment strategy

1: for Ag = 1→ Total_No_of_agents do
2: if Ag.active() == true then
3: rand_Ag = pick a random agent()
4: if rand_Ag.active() == false and rand_Ag.Engaged() == false then
5: rand_Ag.setHypo(Ag.getHypo())
6: rand_Ag.Engaged(true)
7: else
8: rand_Ag = pick a random agent()
9: if rand_Ag.active() == true and rand_Ag.Engaged() == false then

10: Ag.setHypo(rand_Ag.getHypo())
11: Ag.Engaged(true)
12: for Ag = 1→ Total_No_of_agents do
13: if Ag.active() == false and Ag.Engaged() == false then
14: Ag.setHypo(random_Hypo())

Context sensitive recruitment strategy: In contrast with dual recruitment strat-
egy, in active recruitment strategy the robustness and greediness de-
crease. However, in dual recruitment, the two features are increased.
Even though an increase in greediness in dual recruitment causes a de-
crease in the robustness of the SDS algorithm, context sensitive recruit-
ment strategy controls this decrease (Myatt, Nasuto, and Bishop, 2006).
Therefore, the context sensitive recruitment strategy will increase diver-
sity and improve global exploration. In context sensitive recruitment
strategy, if the randomly selected agent is active and shares the same
hypothesis, the selecting agent changes its status to inactive and picks
a new random hypothesis, as shown in Algorithm 5. This recruitment
strategy facilitates global search by freeing up some of the resources
(Al-Rifaie and Bishop, 2013a).

Context free strategy: In context free recruitment strategy, if the randomly
selected agent is active, the selecting agent changes its status to inac-
tive and picks a new random hypothesis regardless of whether it shares
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Algorithm 5 Context sensitive recruitment strategy

1: for Ag = 1→ Total_No_of_agents do
2: if Ag.active() == true then
3: rand_Ag = pick a random agent()
4: if rand_Ag.active == true and Ag.getHypo() == rand_-

Ag.getHypo() then
5: Ag.setActive(false)
6: Ag.setHypo(random_Hypo())

the same hypothesis or not, as shown in Algorithm 6. This recruit-
ment strategy ensures that other possible solutions are investigated and
about 50% of the agents explore the search space.

Algorithm 6 Context free strategy

1: for Ag = 1→ Total_No_of_agents do
2: if Ag.active() == true then
3: rand_Ag = pick a random agent()
4: if rand_Ag.active == true then
5: Ag.setActivity(false)
6: Ag.setHypo(random_Hypo())

More details on recruitment strategies can be found in (Bishop (1989a),
Bishop (1989b), and Al-Rifaie and Bishop (2013a)).

Types of SDS

A number of variants of SDS have been proposed, including methods with-
out standard parameters for selecting hypothesis to solve the random selec-
tion problem (Al-Rifaie and Bishop, 2013a). One of the forms of SDS algo-
rithms is unlabelled SDS, which makes no agent accessible to other agents’
internal state (De Meyer, 2000). Apart from the diffusion phase, the opera-
tion of unlabelled SDS is similar to the standard process. When compared
to standard SDS, it has the same equilibrium population, but unlabelled SDS
has a slower convergence speed. Another type of SDS is data-driven SDS
(DDSDS), which has similar components and processes to SDS other than a
few dissimilarities in some stages of the algorithm (Myatt and Bishop, 2003).
DDSDS is used to solve parameter estimation problems such as locating spo-
ken word in an audio file that has some noise. The algorithm contains a com-
posite hypothesis known as the manifold hypothesis and datum hypothesis.
The manifold hypothesis contains the minimum description of the hypoth-
esis while the datum hypothesis contains the smallest building block of the
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hypothesis. Bishop, 2003 has also proposed a Coupled SDS (CSDS) based
on the modification of other SDS algorithms such as DDSDS. Like DDSD,
CSDS has a composite hypothesis that includes the manifold hypotheses and
datum hypotheses. However, in CSDS there are two different populations of
agents and two different types of hypothesis are formed. In CSDS, the datum
hypotheses are chosen randomly from the whole search space. These types
of SDS have been proposed to improve the performance of standard SDS to
increase the convergence speed and tolerate the noise in the search space.

Applications

Existing studies have tested the efficiency of different SDS algorithms and
their fitness for solving various search problems (Al-Rifaie and Bishop, 2013a).
In 1989, SDS was first introduced using a simple text search example to illus-
trate the use of partial function evaluation and partly to evaluate the text to
find the best match to the model (Bishop, 1989a). Later in 1992, SDS was
used in applications like eye tracking in grey scale facial images by using a
combination of a stochastic search network and an n-tuple network (Bishop
and Torr, 1992). In a similar project, SDS was used to locate mouths on im-
ages of human faces (Grech-Cini and McKee, 1993). SDS was also applied to
locate an autonomous wheelchair in a busy environment. The results of this
work indicate that Focused Stochastic Diffusion Network (FSDN), along with
laser range sensors, provides a valuable solution to the Automated Guided
Vehicles (AGV) localisation problem (Beattie and Bishop, 1998). Later, SDS
was used in site decisions for transmission equipment for wireless networks
(Hurley and Whitaker, 2002). Another version of SDS, known as Constrained
Stochastic Diffusion Search (CSDS), was introduced to solve the best fit se-
quence matching problem. It has been applied in computational molecular
biology (Jones, 2002).

In another visual tracking application, Group Stochastic Search (GSS) was
used to track objects like heads in cluttered environments. In this proposed
approach, each agent uses SDS, histogram interaction methods, and an n-
tuple neural network to evaluate the location (Evans and Ferryman, 2005).
In 2006, Nicran used standard SDS in voting methods (Nircan, 2006). Two
years later in 2008, SDS was applied in feature tracking as other methods
like Euclidean distance (ED) were computationally expensive (Hernandez-
Carrascal and Nasuto, 2008).

In another study, SDS was used in room design and the creation of vir-
tual rooms. The placement of objects like books on a bookshelf were solved
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using SDS (Cant and Langensiepen, 2009). SDS has been further used in so-
cial networks, where a new version of the algorithm was created and called
Stochastic Diffusion Market Research (SDMS). In SDMS, a new advertise-
ment method between participating businesses was proposed. The results
indicate that SDMS convergences to a stable state in which the distribution
of market prices changes to power-law properties (Salamanos et al., 2010).
Medical imaging is another application in which SDS has been used, where
it was employed for the first time on bone scans (Al-Rifaie, Aber, and Raisys,
2011). This work was later extended to mammography (Al-Rifaie, Aber, and
Oudah, 2012). Moreover, SDS has been used in various artistic applications.
SDS-PSO is a hybrid algorithm used to sketch drawings received from input
images (Al-Rifaie (2011) and Al-Rifaie, Bishop, and Caines (2012)). A further
application of SDS is machine learning. SDS has been used in reinforcement
learning to discover instances of strong correlations. The results of this study
show that SDS is able to discover the majority of instances at different time
indexes (Hughes, 2011).

This part of the thesis has reviewed the concept of SDS and its excel-
lent approach to solving complex search and data optimisation problems
in various applications. Due to its partial evaluation of objective function
and its communication pattern, which allows good information to be dis-
seminated to agents quickly, SDS has proven to be an effective technique
in solving various search and optimisation problems. Previous experiments
have also shown that SDS can be applied not only to static but also dynamic
problems (Al-Rifaie and Bishop, 2013a). However, due to its nature, SDS is
found only to perform well on certain problems. Thus, further research is re-
quired to make SDS more dynamic and have better auto-tuning to solve more
problems such as class imbalance in data mining. Although more sophisti-
cated versions of SDS and other models have been produced, hybridisation
strategies that combine population based algorithms have been argued to be
valuable, especially as the type of multi-population concept found in these
algorithms can be applied. Such an approach can also solve larger scale op-
timisation and search problems. Expansion of SDS is also likely to enable it
to develop scope for solving wider problems such as molecular optimisation
and water distribution system optimisation.

The next section explores another swarm-based technique known as ACO.
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3.3.3 Ant colony optimisation

The ACO algorithm, inspired by the social behaviour of ant colonies, was in-
troduced in 1992 (Dorigo, 2007). Ants are social insects whose main interest
is the colony in which they reside and the survival of their colony, as op-
posed to individual survival. Furthermore, ants have the ability to discover
the shortest route to their closest food source, and this scenario inspired the
proposed ACO algorithm (Merkle and Middendorf, 2014).

When ants search for their food, they first randomly explore the closest
area to their nest. Ants will leave behind a chemical pheromone trail dur-
ing their trip, and the smell helps them to keep track of the areas they have
already explored and prevents dwindling away from the colony. Ants will
often select the most suitable paths, indicated by the strongest pheromone
concentration (Zhang et al., 2014). Upon discovering a food source, the ant
will first evaluate the quantity and quality, and will then bring it back to
its nest. Upon returning to the nest, the potency of the ant’s pheromone re-
flects the food quality and quantity, and the trail directs other ants to the food
source. ACO uses an indirect communication mode in which there is no ex-
change of information between the ants directly. In short, pheromone trails
are forms of indirect communication that allow ants to locate the food source
nearest to their nest. The ACO algorithm consists of five key steps (Dorigo
and Blum, 2005). The steps are as follows:

• Establish a pheromone trail.

• Use the pheromone trail to construct a solution.

• Each ant comes up with a solution to the problem based on a proba-
bilistic approach.

• Define the state transition rule based on the pheromone conditions.

• Update the pheromone trail.

There are two key stages in a global pheromone updating rule. The first is
the evaporation stage, in which a tiny amount of pheromone evaporates, and
the second is a reinforcement stage, in which each ant excretes a quantity of
pheromone based on the current state of its solution The process is repeated
until the initiation of a termination condition (Toksari, 2006).

In terms of ACO convergence, the time is uncertain but granted. More-
over, the positive feedback leads to discovering good solutions. ACO has
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been widely used in various applications such as transportation engineer-
ing (Teodorović, 2008) and data mining (Parpinelli, Lopes, and Freitas, 2002).
Due to its popularity, there have been several variants of algorithms since the
1990s including: Beam-ACO (Blum, 2005b), Max-Min Ant System (MMAS)
and Ant Colony System (ACS) (Chaparro and Valdez, 2013). More details
on ACO applications can be found in (Dorigo and Stützle (2003) and Blum
(2005a)).

The next section looks into another population-based algorithm, called
PSO.

3.3.4 Particle swarm optimisation

Grosan, Abraham, and Chis, 2006 state that PSO is “a population-based search
algorithm and is initialised with a population of random solutions, called particles”.
The algorithm was inspired by the Reynolds boids model. Boids is an ar-
tificial simulation program that simulates the flocking behaviour of birds.
The goal of this simulation is to reproduce the flocking behaviour of birds.
There are three basic rules to explain collective behaviour: cohesion, separa-
tion and alignment (Reynolds, 1987). PSO was initially designed to simulate
food searches from a bird’s perspective; this is referred to as a “cornfield vec-
tor” (Kennedy and Mendes, 2002). PSO consists of a swarm of birds, and
each bird is called a particle. All PSO particles are related to a velocity and
flies through a search space consisting of other velocities; these are adjusted
based on their historic behaviour (Cheng, Shi, and Qin, 2015). Consequently,
these particles often fly toward a much improved search area throughout the
process.

For example, there may be a number of food searching processes going
on among a flock of birds in a particular area. Only one piece of food is
left within the search space, and the birds are unaware of its location. The
birds, however, have an idea of how far away the food is and where their
neighbouring flock members are. Therefore, one must ask which strategy a
bird could employ to locate the food: simply find and follow the bird clos-
est to where the food is located. PSO learns from this kind of situation, and
becomes used to overcoming existing optimisation issues. The solution in a
PSO-type scenario can be represented as a bird in the search space or the “par-
ticle” in the d-dimensional space, which carry a fitness value. These values
are assessed according to the function to be optimised, known as the fitness
function, and comprise velocities which give direction to the flying particles.



Chapter 3. Swarm Intelligence 64

Furthermore, PSO starts with a solution (a point in the d-dimensional search
space), and after that seeks out optima by informing each generation. Per
generation, a particle is updated via two key “best” values; the most ideal
position of the particle, which is known as the personal best “pBest”, and the
best position of all other particles in the swarm, known as the global best
“gBest” (Cheng, Shi, and Qin, 2015). The particle is updated by adding a ve-
locity to the current positions. The particle’s velocity is updated using the
equation below:

vtid = wvt−1
id + c1r1

(
pid − xt−1

id

)
+ c2r2

(
gid − xt−1

id

)
(3.1)

xtid = vtid + xt−1
id (3.2)

where w is the inertia weight whose; ~vt−1
id is the velocity of particle i in di-

mension d at time step t− 1; c1,2 are the acceleration constants for pBest and
neighbourhood best respectively; r1,2 are random numbers generated from a
uniform distribution on the unit interval U (0, 1) and used to add stochastic-
ity to the algorithm; pid is the pBest position of particle ~xi in dimension d; and
gid is neighbourhood best at dimension d (Al-Rifaie and Bishop, 2013b).

After the update, particles move on to a new location on their new veloc-
ities. Algorithm 7 summarises the PSO algorithm.

Algorithm 7 PSO

1: Initialise a population of particles with random values positions and ve-
locities from D dimensions in the search space

2: while Termination condition not reached do
3: for Each particle i do
4: Calculate the fitness function
5: if the fitness value > the stored fitness value (pBest) then
6: Set the fitness value as the new (pBest)
7: Find the particle with best fitness value and set as (gBest)
8: for Each particle i do
9: Calculate Velocity

10: Update the position of the particle using Equation 3.1 and 3.2

In PSO, the inertia weight is applied to provide a balance between the
global exploration and local exploitation. Basically, it controls the effect of the
previous velocity and the current particle’s velocity. Therefore, setting a large
value for the inertia weight will increase the algorithm global exploration
while a small value will increase the local exploitation. A suitable setting for
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the inertia weight will provide a balance between the global exploration and
local exploitation thus requiring fewer iterations to search for the optimal
value.

PSO is easy to implement and has a memory of the particle’s previous best
location. However, it suffers from premature convergence and is mainly used
for continuous optimisation. The original PSO has gone through a number
of changes since its introduction to overcome various limitations, such as
premature convergence and being trapped in a local optimum. Moreover,
PSO was initially introduced as an optimiser in the continuous search space.
The first version of PSO for discrete optimisation was proposed by Kennedy
and Eberhart, 1997. For more details on other variants of PSO, see (Kennedy
(2003) and Poli (2008)).

3.3.5 Differential evolution

DE is another population-based algorithm introduced by (Storn, 1996). It is
a multi-dimensional real value optimiser that has been widely used in opti-
misation tasks that are noisy and change over time. Similar to GA, DE uses
crossover, mutation and selection. However, DE relies on mutation when
constructing a new solution, as opposed to GA, which relies on crossover.
DE starts by having a population of candidate solutions known as agents.
Agents move in the search space to create new solutions by combining exist-
ing ones using a mathematical formula. If the new solution or the position
of an agent is better, then it forms a part of the population; otherwise it is
discarded. This is repeated until a satisfactory solution is found.

Algorithm 8 DE Algorithm

1: Initialising phase
2: Evaluation phase
3: do
4: Mutation phase
5: Recombination phase
6: Evaluation phase
7: Selection phase
8: while stopping condition is not met

DE has performed well in various search and optimisation problems. Storn
and Price, 1997 found that DE is better than genetic algorithms and simu-
lated annealing. In a study by Ali and Törn, 2004, the authors evaluated
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various population-based algorithms in terms of their efficiency and robust-
ness. The results indicate that DE outperforms GA and controlled random
search. More details about other applications of DE can be found in (Das,
Abraham, and Konar (2008), Chakraborty (2008), and Chen, Rangaiah, and
Srinivas (2017)).

3.3.6 Dispersive flies optimisation

Inspiration was taken from nature to solve the optimisation problems of a
search space by using the swarming behaviour of the objects in the search
space to find optimal solutions. DFO, first introduced in (Al-Rifaie, 2014), is
an algorithm inspired by the swarming behaviour of flies hovering over food
sources. Several factors affect the swarming behaviour of flies, including the
presence of threat, which disturbs the flies’ convergence to the optimal value.
As a result, both the formation and breaking of the swarms are considered in
the proposed algorithm (Al-Rifaie, 2014). The position vectors of the flies are
defined as:

~xti =
[
xti1, x

t
i2, . . . , x

t
iD

]
, i = 1, 2, . . . ,N (3.3)

Where t is the current time step, D is the dimension of the problem space and
N is the number of flies (population size).

In the first generation, when t = 0, the ith vector’s dth component is ini-
tialised as:

x0id = xmin,d + r (xmax,d − xmin,d) (3.4)

Where r is a random number drawn from a uniform distribution on the unit
interval U (0, 1); xmin and xmax are the lower and upper initialisation bounds
of the dth dimension, respectively. As a result, each fly in the population is
randomly initialised with a position in the search space (Al-Rifaie and Aber,
2016).

At each iteration, the position vectors’ components are independently up-
dated. This is achieved by considering three different aspects: the compo-
nent’s value, the corresponding value in the best neighbouring fly’s vector
that has the best fitness, and the corresponding value in the best fly in the
whole swarm. The updated equation is described below:

xtid = xt−1
ind

+ U (0, 1)× (xt−1
sd − x

t−1
id ) (3.5)
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Where xt−1
ind

is the position value of ~xt−1
i ’s best neighbouring fly in the dth

dimension at time step t − 1; xt−1
sd is the swarm’s best fly value in the dth

dimension at time step t− 1; and U (0, 1) is the uniform distribution between
0 and 1 (Al-Rifaie (2014) and Al-Rifaie and Aber (2016)).

Technically speaking, there are two main components of DFO: the use
of social neighbouring network in updating the flies’ position and the flies’
communication with each other about the best results found. Moreover, the
disturbance of the swarm plays an important role in DFO as it displaces the
flies, leading to the discovery of better positions. Thus, at the update phase a
stochastic element is introduced that is known as the disturbance threshold or
∆. As a result, if a random number, r, generated from a uniform distribution
on the unit interval U (0, 1) is less than ∆, each component of the flies’ po-
sition vectors are reset. The disturbance threshold provides a disturbance and
helps in avoiding stagnation over a local minima (Al-Rifaie, 2014).

Algorithm 9 summarises the DFO algorithm.

Algorithm 9 Dispersive Flies Optimisation

1: while Function Evalutions < Evaluations Allowed do
2: for i = 1→ N do
3: ~xi.fitness← f(~xi)

4: ~xs = arg min [f(~xi)], i ∈ {1, . . . , N}
5: for i = 1→ N and i 6= s do
6: ~xin = arg min [f(~xi−1), f(~xi+1)]
7: for d = 1→ D do
8: if (u < ∆) then
9: xt+1

id ← xmin,d + u (xmax,d − xmin,d)
10: else
11: xt+1

id ← xtind + u(xtsd − xtid)

In summary, DFO is a population-based algorithm, originally proposed
to search for the optimum value over the continuous search space. Although
the algorithm is simple, it has been found that DFO outperforms the standard
versions of the well-known PSO, GA, and DE algorithms on an extended set
of benchmarks over three performance measures of error, efficiency and reli-
ability (Al-Rifaie, 2014). It is shown that DFO is more efficient in 84.62% and
more reliable in 90% of the 28 standard optimisation benchmarks used (Al-
Rifaie and Aber, 2016). Not only has theoretical research been carried out on
the DFO algorithm, but it has also recently been applied to medical imaging
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(Al-Rifaie and Aber, 2016); furthermore, ongoing and current research is be-
ing conducted in the fields of image analysis, simulation and gaming (King
and Al-Rifaie, 2017), computational aesthetic measurements (Al-Rifaie et al.,
2017a), digital arts (Al-Rifaie et al., 2017b), protein folding and more.

A comparison between PSO and DFO

PSO is based on the social behaviour observed in a bird flock. It has a pop-
ulation called particles that moves around in the search space based on two
vectors: the particle position and the velocity. In addition to the two vectors,
each particle has a memory of its personal best position. Each particle move-
ment in the search space is a factor of its personal best particle and the global
best particle. Originally, PSO was applied to continuous optimisation prob-
lems. However, it has been extended further to solve discrete optimisation
problems and even multi-objective optimisation problems (Kennedy, 2011).

DFO is based on the swarming behaviour of flies hovering over food
sources. The formation of the swarm is affected by the presence of threats
which can disturb the flies. Thus, in DFO both the formation of the swarms
and the breaking of the swarms is considered in the algorithm. In DFO, the
movement of the flies is affected by the best neighbouring fly and the best
fly in the whole swarm. The flies will be dispersed from their location de-
pending on the disturbance threshold. This is to explore new locations in the
search space (Al-Rifaie, 2014).

PSO and DFO have many similarities in that both are continuous, population-
based optimisers and a fly or particle’s fitness is evaluated using a fitness
function. Also, both have a number of parameters to tune that affect algo-
rithm performance when dealing with a certain problem. PSO has four pa-
rameters: population size, the acceleration constants, c1,2, and the weight w.
Moreover, in terms of memory, PSO requires more memory to store infor-
mation on personal previous best particle vector. Unlike PSO, DFO has only
two tunable parameters: the population size and the disturbance threshold.
Despite the introduction of the other variants of PSO in an attempt to sim-
plify the algorithm such as the bare bone PSO in which the velocity vector is
removed, DFO still has less components, and it exhibits better performance
when using the three measures of error, efficiency and reliability (see Eq 1,
2 and 3) in (Al-Rifaie, 2014) . The simplicity of DFO in terms of parameters
and components allows for further analysis.

There are many more swarm intelligence and population-based algorithms
available, but they are not discussed in this section as only GA, ACO, PSO,
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and DE as well as a more in-depth introduction to SDS and DFO are within
the scope of this thesis. The reason is to explore the possibility of using
these two population-based algorithms for solving the class imbalance issue
in data mining.

The next section reviews the most commonly used population-based al-
gorithms in applications related to class imbalance in data mining.

3.4 Swarm intelligence and data mining

Although swarm optimisation and data mining may appear to have very few
properties in common, these properties can be utilised to develop alternative
methods to those that are very difficult to implement. The motivation for
using swarm intelligence and population-based algorithms to solve various
data mining issues is that these are fast, adaptable, and able to perform a
global search to find the optimal solution. However, data mining techniques
perform a local grid search in the solution space. As a result, various studies
have been carried out to benefit from meta-heuristics algorithms’ speed and
search capabilities to solve various data mining issues like feature selection,
parameters tuning, and class imbalance.

GA is a meta-heuristic search technique inspired by natural evolution that
has been widely used in data mining. In terms of parameter optimisation, re-
search has been carried out to tune the SVM parameters using GA (Chun-
hong and Licheng (2004), Liu, Jia, and Ma (2005), and Pourbasheer et al.
(2009)). For example, Wu et al., 2007 proposed a real-valued GA to opti-
mise the kernel parameters: C and γ. This is to improve SVM classification
accuracy and generalisation ability in predicting bankruptcy. Liu et al., 2014
proposed a hybrid GA approach to forecast short-term wind speed, in which
GA was used to optimise the SVM parameters while improving its general-
isation ability. In another approach by Samadzadegan, Soleymani, and Ab-
baspour, 2010, GA was used to optimise the SVM parameters in multi-class
problems. The results indicate that GA outperforms grid search when con-
ducting experiments on various benchmark datasets.

In terms of feature selection, various approaches have been carried out
using GA in gene selection. Silva, Souza Ribeiro, and Amaral, 2013 used GA
to perform feature selection for a cancer dataset. Experimental results show
the outperformance of the proposed approach when compared with other
classifiers on the same datasets. In another novel approach by Huerta, Du-
val, and Hao, 2010, LDA is combined with GA to find the most informative
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genes. The GA based approach was applied on seven real-world datasets.
The results show that the proposed approach gives higher accuracy with a
small number of genes. Ahmad et al., 2013 proposed a GA based approach
for the automatic and simultaneous parameters tuning and feature selection
of multi-layer perception networks. Karnan and Thangavel, 2007 introduced
a GA based method for cancer diagnosis. This proposed approach was used
to detect microcalcifications in mammograms that can be characterised as
breast cancer. In this method, AUC was used as an evaluation metric on
114 abnormal digitised mammograms available from Mammogram Image
Analysis Society database 1. Diaz, Pinon, and Solano, 2014 proposed a GA
based approach for feature selection for SVM and Artificial Neural Network
(ANN) in lung cancer diagnosis. Yu and Cho, 2003 introduced a GA-SVM
wrapper approach for feature selection in keystroke dynamics identity ver-
ification. Wang, Yu, and Liu, 2005 proposed a GA based feature selection
approach for SVM known as GA-SVM. The results indicate that the pro-
posed approach outperforms the original SVM when applied to the UCI
spam datasets. Another hybrid approach using a combination of feature
ranking and wrapper method for feature selection using multi-class SVM in
microarray datasets has been proposed by Agrawal and Bala, 2007. First, the
features were ranked using Rankgene Su et al., 2003. Then, GA was used on
the top ranked genes to select a smaller feature subset. In this proposed ap-
proach, GA is used to implement the wrapper method, and the fitness func-
tion objectives maximise accuracy while minimising the number of features.
The proposed approach performed well on four microarray datasets. More
details on other GA based wrapper methods using various fitness functions
with different weightings for classifier performance and feature subset size
can be found in (Yang and Honavar (1998) and Huang, Cai, and Xu (2007)).

In terms of PSO as an instrument for data mining, various approaches
have been proposed in the literature. Sousa, Silva, and Neves, 2004 proposed
a model to evaluate how useful PSO is for data mining. The performance of
three key PSO variants and the GA and Tree Induction Algorithm (J48) were
compared. The results conclude that PSO algorithms can be used to provide
solutions to various classification tasks. Moreover, it was found that PSO pro-
duces competitive results, not only when compared with other evolutionary
algorithms but also with standard algorithms in the field such as J48.

Researchers have also applied feature selection techniques using PSO (Alba
et al. (2007) and Chuang et al. (2008)). An example of a PSO based feature

1Dataset is a available at: http://www.mammoimage.org/databases/.

 http://www.mammoimage.org/databases/
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selection approach was proposed by Chuang, Ke, and Yang, 2016. The pro-
posed approach is a hybrid filter and wrapper method. At the first stage,
information gain was used to filter the most informative genes. Then, an
improved binary PSO is implemented as a wrapper approach to select a
gene subset that improves classification accuracy. The results indicate that
the proposed approach is capable of reducing dimensionality and improv-
ing the classification accuracy for microarray classification. Another model
proposed by Zahran and Kanan, 2009 uses PSO for text feature selection.
It reduces the dimensionality of the dataset in order to improve text cate-
gorisation efficiency. The proposed model has been evaluated against others
including; chi-square and document frequency. The results illustrate the su-
periority of the proposed model. Two multi-objective PSO algorithms for fea-
ture selection were proposed by Xue, Zhang, and Browne, 2013. In the first
algorithm, the concept of non-dominated sorting has been used with PSO to
solve the feature selection problem. The second algorithm applies crowding,
mutation and dominance to search for the optimal pareto front solution us-
ing PSO. Both algorithms outperform three other well-known multi-objective
algorithms.

Another important application of PSO is in SVM parameter optimisation
to solve the class imbalance problem at the algorithmic level. PSO has been
used to improve SVM performance accuracy by selecting the best classifier.
The results show that PSO is able to optimise SVM parameters, which will
lead to better classification accuracy (Garšva and Danenas (2014) and Mel-
gani and Bazi (2008)). In another study, a hybrid approach that uses PSO and
SVM to improve image classification was proposed. The proposed approach
used the images in the Corel image datasets and the results indicate that the
classification accuracy of the PSO based approach outperforms SVM, Back
Propagation Neural Network (BPNN), and RBF neural network (Zhang, Xie,
and Cheng, 2010).

Microarray data classification is one of the major challenging issues in
data mining. PSO has been applied to improve the classifier performance on
medical datasets. For example, Subbulakshmi and Deepa, 2015 proposed a
model that integrates PSO with the Extreme Learning Machine (ELM) classi-
fier. Here, PSO was used to determine ELM optimum parameters to improve
the model generalisation ability. The proposed model performed well when
compared with other classifiers on five medical datasets available at the UCI
machine learning repository. Valdés, 2004 developed a hybrid model, which
was inspired by PSO and combined it with traditional optimisation approaches.



Chapter 3. Swarm Intelligence 72

This method is used in a number of experiments involving high dimensional
datasets as a way of understanding the structure of processed and raw data
types. Moreover, experiments involving datasets based on common dis-
eases, such as Alzheimer’s disease, suggest that combining PSO with tra-
ditional optimisation methods can help with achieving high quality visual
representation. Studies have also been conducted on the behavior of cer-
tain parameters when controlling swarm evolution. PSO has also been used
for both image processing and pattern recognition (Omran, Engelbrecht, and
Salman, 2005a). A novel clustering technique based on PSO was introduced
and applied to image segmentation and unsupervised classification. This
PSO-driven approach was introduced to overcome a number of image-based
problems, such as spectral un-mixing problems and colour image quantisa-
tion.

DE has also been used in data mining. Omran, Engelbrecht, and Salman,
2005b proposed a DE based model for image classification. In another model
by Prabusankarlal, Thirumoorthy, and Manavalan, 2017, DE was used with
ELM and rough set feature selection for the classification of breast masses in
ultrasound images. Garcia-Nieto, Alba, and Apolloni, 2009 proposed a DE
based feature selection using SVM called DESVM. The proposed DESVM ap-
proach has been evaluated using two widely used microarray datasets: Dif-
fuse Large B-cell Lymphoma (DLBCL) and Colon Tumour gene expression
datasets. Experimental results indicate that DESVM gives better results when
compared with other methods from the literature. In another approach by
Wang et al., 2012, DE was used to tune the Support Vector Regression (SVR)
parameters in load forecasting. The proposed approach outperformed the
standard SVR model, BPNN, as well as regression forecasting models in an-
nual load forecasting. In a study by Li and Yin, 2012, DE was used for quan-
titative interpretation of self-potential data in which six parameters are opti-
mised. The self-potential method is an optimisation problem in geophysics
mainly used for mineral exploration. In this experiment, self-potential data
for geometrical body approximation such as a sphere was used. DE was ap-
plied on three different kinds of data from Turkey: noise-free data, contami-
nated synthetic data, and field example. Experimental results show that DE
is applicable in solving the quantitative interpretation of self-potential data
when compared with other methods from the literature. Chauhan, Ravi, and
Chandra, 2009 proposed a model that used DE for bankruptcy prediction in
the bank industry. The model is called the DE trained Wavelet Neural Net-
work (DEWNN). Results indicate that the proposed approach outperforms
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the standard Wavelet Neural Network (WNN).
In terms of ACO, Deneubourg et al., 1991 first introduced ant colony-

based clustering algorithms by imitating different kinds of natural phenom-
ena. Data clustering is essentially based on the idea that secluded things
or items must be dropped and picked up in other locations where similar
items can be found. The ACLUSTER algorithm proposed by Ramos, Muge,
and Pina, 2002, helps to interpret ant-like behaviours. Applying this strategy
supports ants to adaptively discover clusters of objects (Yang, 2014). Another
clustering algorithm known as AntClust-Miner, which is based on ACO and
was proposed by Salama and Abdelbar, 2016, uses two different clustering
approaches: instance-based and medoid-based clustering. This is done to
create cluster-based classification systems. The performance of the proposed
approach has been evaluated on 30 UCI machine learning repository bench-
mark datasets and three different classifiers: C4.5, k-NN and the Ripper al-
gorithm. The results indicate that the proposed algorithm, AntClust-Miner,
gives statistically significant results when compared to k-NN and the Ripper
algorithm. AntPart, presented by Admane et al., 2006 is another unsuper-
vised classification technique inspired by how specific classes of ants, such
as Pachycondyla apicalis, behave. Moreover, the performance of both AntPart
and three others (AntClass, AntTree and AntClust) were compared, all of
which were inspired by ants’ social behaviour. A time-series segmentation
algorithm inspired by ACO was proposed by Weng and Liu, 2006, to demon-
strate the variability of time series data. A bottom-up method was used, as
it was reported to provide better results for time-series segmentation. The
findings suggest that time-series segmentation based on ACO identifies nu-
merous segments and has a low segmentation cost. In a study by Shelokar, Ja-
yaraman, and Kulkarni, 2004, an ACO meta-heuristic model was developed
as a rule-based machine learning method known as the ant colony classifier
system. It was discovered that this algorithm helps to address knowledge
acquisition problems in terms of developing and maintaining the knowl-
edge base by employing a simple mechanism. Another study proposed an
ACO based classification rule mining approach called Ant-Miner. The perfor-
mance of the proposed approach was compared with another classification
algorithm on six datasets. The results indicate that the proposed approach is
competitive with CN2 in terms of classification accuracy and the size of the
rule list (Parpinelli, Lopes, and Freitas, 2002). Yu, Ni, and Zhao, 2013 intro-
duced an ACO sampling (ACOSampling) approach in which feature selec-
tion is first applied to reduce the noise in the data. Then, the original training
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set is randomly divided into training and validation sets, where ACO is ap-
plied to filter the less informative majority samples. It was demonstrated that
the proposed model outperforms other sampling approaches when applied
on four skewed DNA microarray datasets using the SVM classifier.

The number of studies hybridising two population-based algorithms to
take advantage of both and address their main shortcomings in solving vari-
ous data mining issues is increasing. Nazir, Majid-Mirza, and Ali-Khan, 2014
proposed a hybrid PSO-GA model for gender classification using facial and
clothing information. The model has been evaluated using real-world face
image datasets and SVM. Results show that the proposed approach produced
high classification accuracy equal to 98.3%. Ghamisi and Benediktsson, 2015
proposed a model for feature selection based on the hybridisation of GA and
PSO to overcome PSO premature convergence and GA difficulty in finding
the optimal solution. The results indicate that the proposed hybrid model is
able to find the best feature efficiently. Holden and Freitas, 2007 proposed
a hybrid ACO-PSO algorithm for classification, in which there is no need
to convert the nominal attributes to numerical attributes at the preprocess-
ing stage. The proposed algorithm has been evaluated on sixteen real-world
datasets. Experimental results show that the proposed approach competi-
tively outperforms other techniques. Another hybrid ACO-GA approach has
been proposed for feature selection in protein function prediction (Nemati et
al., 2009). More details on other hybrid models can be found in (Li, Wu, and
Tan (2008), Shi et al. (2003), Kuo and Lin (2010), Liu et al. (2013), and Holden
and Freitas (2005)).

In this section, a review of the applications of evolutionary computation
and swarm intelligence techniques for their speed and global search and abil-
ity to solve data mining issues has been provided. The results show that GA
and PSO continue to be the most popular algorithms in the field of computer
science (Corne, Reynolds, and Bonabeau, 2012). It has been also found that
there is a striking trend in the latest work on swarm intelligence techniques
toward the creation of solutions to various data mining issues using hybrid
algorithms. These hybrids involve either combining two meta-heuristic ap-
proaches or one meta-heuristic approach and a data mining preprocessing
technique to solve issues like feature selection and parameter optimisation.
This enables them to use the advantages of both while also addressing their
main limitations. Moreover, a hybrid of two meta-heuristic techniques can
be used to utilise each technique to optimise a different aspect of the solution
in the optimisation problem in an attempt to create a more powerful swarm
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algorithm that can be used to solve a wider range of issues (Bergh and En-
gelbrecht (2004) and Muthiah, Rajkumar, and Rajkumar (2016)).

3.5 Summary

In summary, this chapter has presented the main concepts of swarm intelli-
gence, highlighted its main advantages and disadvantages, and defined the
main swarm-based algorithms. In addition, a review of previous studies of
swarm intelligence in data mining has been provided. It has been found
that swarm algorithms and population-based algorithms have many similar-
ities, such as the initialisation of the swarm and the fitness function that is
used to evaluate the solution found by each member in the swarm. More-
over, swarm intelligence techniques provide a fast and robust solution for
search and optimisation problems that can be potentially used to address
various data mining issues, such as the problem of class imbalance. This
can be achieved by applying swarm-based algorithms by themselves or by
combining these algorithms with non-swarm techniques like feature selec-
tion algorithms to increase the chances of even more accurate classification.
Data mining optimisation problems are complex and require a large amount
of computation to find the optimal solution. This is because datasets can be
large and suffer from issues like class imbalance and high dimensionality, all
of which require time and effort to improve classifier performance. There
are standard methods for optimisation, such as grid search. However, these
methods are impractical and time consuming, especially when dealing with
large datasets. Instead, swarm intelligence techniques can efficiently solve
the optimisation problem.

The review also indicates that GA and PSO remain the most widely used
swarm intelligence algorithms in solving data mining issues. More work
is needed to investigate the possibility of implementing other swarm-based
techniques like SDS and DFO in solving data mining issues like class im-
balance and feature selection. SDS is applicable for solving search and opti-
misation problems due to various characteristics, among them partial func-
tion evaluation, which provides a cost effective solution when conducting a
search. Another important characteristic of SDS is the different recruitment
strategies that can be employed as an alternative mechanism for achieving a
balance between exploration and exploitation. Moreover, it can be used as
a continuous and discrete optimiser. In terms of DFO, the simplicity of this
swarm intelligence algorithm adds to its appeal when applied to complex
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search and optimisation problems with only one parameter to tune, which
is ∆, as opposed to the presence of more parameters in several other swarm
techniques. Moreover, it has less components and is easier to analyse, as
DFO only uses the current positions of the population to determine future
movements (i.e. it does not hold memory or velocity vectors as in PSO). Fi-
nally, neither SDS nor DFO have ever been used for solving the class imbal-
ance problem. This is therefore the first time these algorithms are being used
to improve classifier performance when learning from imbalanced datasets.
SVM is used as a classification algorithm. It is a popular machine learning al-
gorithm that has been widely used in real-world applications from different
domains. Moreover, it has various advantages such as non-linear classifica-
tion using kernels and high generalisation capabilities (Batuwita and Palade,
2013). Swarm intelligence based techniques can be used to optimise the ker-
nel parameters efficiently and to achieve better performance on imbalanced
datasets.

The next chapter presents a set of experiments that use existing tech-
niques from the literature and combine them with swarm intelligence tech-
niques like SDS or DFO to take the best of both in solving the class imbalance
problem from different aspects while using SVM as classification algorithm.
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Chapter 4

Experiments

This chapter presents the set of experiments that aimed to explore various so-
lutions to the class imbalance problem using swarm intelligence techniques
like SDS and DFO.

4.1 Experiment I: Class imbalance in a direct mar-

keting dataset

Some studies have found that a combination of data level and algorithmic
level solutions can lead to better model performance when dealing with im-
balanced datasets (Burez and Poel (2009) and Longadge and Dongre (2013)).
In this experiment, a model is proposed to solve imbalanced data using a Hy-
brid of Data-level and Algorithmic-level solutions (HybridDA). It involves
oversampling the minority class using SMOTE to create a synthetic exam-
ple of the minority class, random undersampling of the majority class , and
optimising the C, γ and kernel type of SVM using a grid search. The pro-
posed model performed competitively compared with other models on the
same dataset. The dataset used in this experiment is real-world data collected
from a Portuguese marketing campaign for bank-deposit subscriptions and
is available from the UCI machine learning repository 1. This dataset was col-
lected in an attempt to convince clients to subscribe to a term deposit using
phone calls as a means of reaching potential clients and improving the qual-
ity of Customer Relationship Management (CRM) in banks (Moro, Cortez,
and Rita, 2014). It contains 21 attributes and 4119 examples (see Table 4.1 for
the list of the attributes).

The next section describes the experiment setup.

1The dataset is available at http://mlr.cs.umass.edu/ml/datasets/Bank+Marketing.

http://mlr.cs.umass.edu/ml/datasets/Bank+Marketing
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TABLE 4.1: Attributes list

Attributes Name Description

1 Age In integer

2 Job Type of job

3 Marital status Married, single, divorced or unknown

4 Default Has credit

5 Balance Average yearly balance

6 Housing If there is a housing loan

7 Loan Has a personal loan

8 Contact Type of communication

9 Day Last contact day of the month

10 Month Last contact month of the year

11 Duration Duration of last contact in second

12 Campaign Number of contacts performed during this
campaign and for this client

13 Pdays Number of days passed since last campaign
contact

14 Previous Number of contacts performed for this client
from previous campaigns

15 P-outcome Previous outcome results

16 Emp-Var-rate Employment-variation rate

17 Con-Price-index Consumer price index

18 Cons-Conf-index Consumer confidence index

19 Euribor3m Euribor 3-month rate

20 No Of employed Number of employees

21 Subscription Label class Target: has the client subscribed

4.1.1 Experiments setup

In the direct marketing dataset, the target variable is “subscription”, a bino-
mial type of attribute that is set as the “label class” in the model, as shown
in Table 4.1. From the meta data, it can be seen that the number of “sub-
scribers” is dramatically below that of the “non-subscribers”, which causes a
class imbalance, as shown in Table 4.2.

The next section describes the data level and algorithmic level solutions
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TABLE 4.2: The label class before balancing the instances

Label Number of instances

Subscribers 451
Non-subscribers 3668

used to overcome the class imbalance issue found in the direct marketing
dataset.

Data Level Solution

At the data level, there are several methods to deal with the imbalance in the
dataset. The proposed model focused on balancing the data by oversampling
the minority class and undersampling the majority class, using SMOTE and
random undersampling respectively. To oversample the minority class, the
model implemented SMOTE, with the parameters initialised as follows:

• Class was set to zero to detect the minority class automatically.

• Nearest neighbours was set to 5, which created synthetic instances from
the 5 nearest neighbours 2.

• The percentage of instances to create was set to 458%. This was to over-
sample the number of subscribers to 2516 subscribers and balance the
dataset. The majority class was then undersampled using random un-
dersampling to 2550.

• The number of seeds used for sampling was set to 0 3.

After the SMOTE algorithm was applied, it was necessary to randomise
the instances, especially in some cases (e.g., when applying 10-folds cross
validation where some folds will have too many positive instances or too
many negative instances). After the randomisation process was applied, the
majority class had to be randomly undersampled to balance the dataset fur-
ther. When this was done, the dataset was balanced and the minority class
was then only slightly smaller than the majority class (see Table 4.3).

2Based on recommendations from the literature, the number of nearest neighbours is set
to five (Chawla et al. (2002) and Blagus and Lusa (2013)).

3Random number generator seed was set to 0. In other words, no seed was used by the
random number generator.
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TABLE 4.3: The label class after balancing the instances

Label Number of instances

Subscribers 2516
Non-subscribers 2550

Algorithmic Level Solution

At the algorithmic level, solutions to learn from imbalanced datasets include
adjusting the cost measurement to consider the class imbalance, or adjusting
the probabilistic estimate at the tree leaf when using a decision tree. The
HybridDA model uses SVM and a grid search to optimise the C, γ, and kernel
type. As suggested by Hsu, Chang, and Lin, 2003, the range for C has been
defined as [2−5,215] and the range for γ as [2−15,23 ]. Moreover, k-fold cross
validation was used to calculate the classification accuracy. In this study,
the value of k was equal to 10 and the dataset was partitioned equally into
10 sub samples, 9 of which were used for training and 1 for testing. The
process was then repeated 10 times and the classification accuracies were
averaged. The advantage of k-fold cross validation is that all instances are
used for both training and validation, and each instance is used for validation
exactly once. All possible combinations were evaluated and the optimised
results evaluated by the grid search are shown in Table 4.4. A flowchart of
the proposed system is shown in Fig 4.1.

TABLE 4.4: The optimised parameters combination using grid
search

Parameter Optimised value

Kernel Poly
Gamma 4.800

C 3276.828

The next section presents the obtained experimental results and provides
a comparison with other techniques from the literature on the same dataset.

4.1.2 Results

As previously mentioned, in cases of imbalanced datasets and the class of
interest being the minority class, predictive accuracy is not the best perfor-
mance indicator. In this experiment, the TPR, also known as the recall rate,
was used as a performance measurement as the higher the recall rate, the
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New
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FIGURE 4.1: The proposed model flowchart

better the class of interest is classified. To complement TPR, TNR, the accu-
racy and AUC were also used (more details on evaluating the performance
on imbalanced datasets can be found in Section 2.5). The proposed model
presents an improved predictive model, as shown in Table 4.5.

TABLE 4.5: HybridDA results

Performance metric Value

Acc 96.73%
TPR 97.93%
TNR 94.82%
AUC 0.98

As discussed in the next section, the proposed system outperforms pre-
viously reported results conducted on the dataset. In summary, this has
been achieved by applying SMOTE, which creates more synthetic examples
to learn from, undersampling the majority class to balance the dataset, and
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then combining this with the optimised values for C, γ and the kernel type in
SVM.

Comparison with other techniques

There have been some relevant studies on various versions of the dataset
used in this experiment. For example, Moro, Laureano, and Cortez, 2011 im-
plemented the Cross Industry Standard Process for Data Mining (CRISP-DM)
methodology on previous versions of the dataset. The CRISP-DM methodol-
ogy allows the building of a data mining model in six non-grid phases that
can be used in a business environment. The phases are business understand-
ing, data understanding, data preparation, modelling, evaluation and de-
ployment (Azevedo and Santos, 2008). The study implemented three classi-
fication methods using an R package for data mining: DT, NB and SVM. The
algorithms have been evaluated using both the ROC and lift curve. The ROC
curve and lift curve are visualisation tools used to show how good the clas-
sification model is. The ROC curve is a plot between the TPR on the y-axis
and the FPR on the x-axis, in which the higher the curve the better the model.
However, the lift curve shows the results gained with or without using the
classification model. In the lift curve, the x-axis represents a sorted list of
the population and the y-axis represents the TPR. The lift curve is helpful in
business campaigns (Vuk and Curk (2006) and Zadrozny and Elkan (2001)).
For example, in direct marketing it shows how likely it is to receive potential
subscribers from the first 10% group of customers. According to the study
by Moro, Laureano, and Cortez, 2011, SVM gives the best results with a AUC
value and Area Under The Lift Curve (ALIFT) value equal to 0.9 and 0.8 re-
spectively.

In a 2014 study, (Moro, Cortez, and Rita, 2014) used four classification
methods: DT, Neural Networks (NN), SVM and LR. Two evaluation metrics
were also used: AUC and ALIFT. The models were tested on the most re-
cent contacts and NN performed the best with AUC=0.8 and ALIFT=0.7. In
terms of simplicity, LR and DT produce a more understandable model while
giving good results. However, SVM and NN are more flexible and have bet-
ter learning capabilities, thus yielding better results. At the beginning of the
above-mentioned study, a semi-automated approach was used to reduce the
attributes from 150 to 22. This was done in two steps. In the first step, the
attributes were analysed from a business perspective, and in the second step
the forward selection method was implemented.
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Vajiramedhin and Suebsing, 2014 proposed a model on the same dataset,
focusing on using correlation-based feature subset selection algorithm and
a dataset balancing technique. The balancing technique was used to make
the dataset label equivalent by randomly selecting the dataset of each label
equally. For the correlation-based feature subset selection algorithm for fea-
ture correlation measurements, the authors proposed a model that imple-
ments a C4.5 algorithm. The proposed model scored a high TPR of 92% and
an ROC rate of 95%, when compared with other methods where balancing
or feature selection was excluded.

Another model proposed by Feng, Zhang, and Liao, 2014 on the direct
marketing dataset combines Bayes networks (BNs). The experiment started
by combining two BNs, then three, then more than three. All average accura-
cies were compared and led to results improvement with average accuracies
of 83%.

A study by Elsalamony, 2014 focused on increasing the effectiveness of
the marketing campaign by finding the major attributes that affected the suc-
cess of the phone call. The author compared four classification methods-
Multilayer Perception Neural Network (MLPNN), Bayesian networks, LR,
and C5.0- on the direct marketing dataset and found that C5.0 gave the best
results, with the testing part scoring:

TABLE 4.6: The C5.0 classification results

Performance metric Value

Acc 90.09%
TPR 59.06%
TNR 93.23%

The author also found that “duration” was the most important attribute
from C5.0, MLPNN and LR, and that (age) was the most effective attribute
from BN.

Another model that has been proposed by Bahnsen, Aouada, and Ot-
tersten, 2015 is an example-dependent cost-sensitive decision-tree algorithm
where the direct marketing dataset was used with two other datasets. In
this model, the Cost-Sensitive Decision Tree (CSDT) was evaluated against
the standard DT with three different cases: without pruning, with error-
based pruning and with cost-sensitive pruning training. The three differ-
ent tree algorithms were trained using the training, undersampling, cost-
proportionate rejection sampling and cost-proportionate sampling dataset.



Chapter 4. Experiments 84

The results show that the proposed learning algorithm is the best perform-
ing for all three databases, with direct marketing dataset accuracy of 88.28%
and an F-measure of 0.35. This model has been used further to measure cost
savings. The summary of the comparison with other techniques is shown in
Table 4.7.

TABLE 4.7: Summary of the results for previous models on the
direct marketing dataset

Models AUC ALIFT Acc TPR TNR ROC

Moro, Laureano, and Cortez, 2011 0.938 0.887 NA NA NA NA
Moro, Cortez, and Rita, 2014 0.8 0.7 NA NA NA NA
Vajiramedhin and Suebsing, 2014 NA NA NA NA 92.14% 95.6%
Feng, Zhang, and Liao, 2014 NA NA 83% NA NA NA
Elsalamony, 2014 NA NA 90.09% 59.06% 93.23% NA
Bahnsen, Aouada, and Ottersten, 2015 NA NA 88.28% NA NA NA
HybridDA 0.98 NA 96.73% 97.93% 94.82% NA

4.1.3 Summary

This experiment proposed a new approach to address class imbalance by us-
ing a combination of both data-level and algorithmic-level solutions. One
such imbalanced dataset was used in the experiment to evaluate the pro-
posed method using this dataset, and different researchers have taken differ-
ent approaches to building a classification model that predicts potential sub-
scribers to a bank term deposit. While most research projects have compared
different classification algorithms on the dataset, some focused on finding the
most effective attribute by applying different classification algorithms. The
experiment described in this section showed promising results when evalu-
ated against previous work on the same dataset. This is likely to be caused
by focusing on minimising the imbalance effect on the learning algorithm
without affecting identification of the class of interest of customers who sub-
scribed to the term deposit. SMOTE was chosen to oversample the minority
class in order to create more synthetic examples, which is better than ran-
dom oversampling (which causes over-fitting). Random undersampling was
applied only to the majority class to balance the data further. To comple-
ment the sampling process, an algorithmic solution was applied by adjust-
ing the misclassification cost, the kernel type, and the γ. The adjustment was
made by applying the standard grid search to optimise the parameter com-
bination. Therefore, the proposed model, HybridDA, uses a combination of
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data and algorithmic level solutions to handle the existing class imbalance
in the dataset. The result of this hybridisation demonstrates a competitive
performance. It is suggested that balancing a dataset using a more powerful
random oversampling technique and combining it with random undersam-
pling to address the class imbalance, then applying a cost-sensitive learning
algorithm where the parameters are optimised, works well with imbalanced
datasets. Given that the proposed model is not generalised, caution should
be exercised when applying the system to other datasets. Thus, future work
will focus on testing the suggested model on the large Portuguese market-
ing campaign dataset as well as on other datasets from different fields, while
using additional techniques at the data level. Another future project will
involve the use of meta- heuristic approaches to optimise the SVM kernel pa-
rameters. The purpose is to speed up the search and lower computational
expenses.

4.2 Experiment II: SDS and undersampling

In this investigation, a set of experiments at the data level was conducted
to compare a number of undersampling approaches that were applied to the
same direct marketing campaigns of the Portuguese bank dataset used in Ex-
periment 4.1. This was done to investigate a new approach for balancing a
marketing dataset using a swarm intelligence technique, SDS, to undersam-
ple the majority class on the direct marketing dataset and apply a data level
solution using a meta-heuristic search technique. SDS is a simple discrete
optimiser in which partial function evaluation is used. Partial function eval-
uation allows agents to quickly have an opinion or a decision about the hy-
pothesis (the investigated solution from the search space) without exhaustive
search. The outcome of the novel application of this swarm based algorithm
demonstrates promising results which encourage the possibility of under-
sampling a majority class by removing redundant data whilst protecting the
useful data in the dataset. The next section outlines the experiment setup and
presents the findings.

4.2.1 Experiment setup

As shown in Table 4.2, there is a difference between the number of sub-
scribers, which is equal to 451 and that of non-subscribers which is equal
to 3668. To balance the dataset, the model used SDS for undersampling the
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majority class and SMOTE to oversample the minority class. At the algorith-
mic level, the model made predictions using the SVM with the RBF kernel
in which the γ set to 1.00 and the C set to 0.00. To prepare the dataset for
the SVM, the following pre-processing steps were taken: all nominal values
are converted to numerical; and all values are normalised to avoid the value
scale difference among all attributes. For all the experiments, 10-folds cross
validation was applied.

In order to oversample the minority class to 2000, SMOTE algorithm was
used with the following configurations:

• Class was set to zero to detect the minority class automatically.

• Nearest neighbours was set to 5, which created synthetic instances from
the 5 nearest neighbours 4.

• The percentage of instances to create was set to 345%. This was to over-
sample the minority class to 2006 subscribers. The majority class was
then undersampled using SDS to 2000 to balance the dataset.

• The number of seeds used for sampling was set to 0.

The aim was to oversample the minority class in order to reach a com-
parable size with the undersampled majority class (see Table 4.8 for the size
of the dataset before and after balancing). The next section illustrates the
balancing techniques used in this work.

TABLE 4.8: The label class before and after balancing the
dataset

Number of instances in the dataset

Label Imbalanced Balanced

Subscribers 451 2006
Non-subscribers 3668 2000

Balancing the Dataset

There are several methods to deal with the class imbalance problem in the
dataset; the proposed model investigated balancing the dataset by apply-
ing two different approaches: undersampling the majority class and over-

4As mentioned in Experiment 4.1, the number of nearest neighbours was set to five based
on the literature recommendations (Chawla et al. (2002) and Blagus and Lusa (2013)).
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sampling the minority class, which was conducted using SMOTE. The un-
dersampling process was performed by SDS, whose performance was then
contrasted against random undersampling as well as undersampling with
ED.

Applying SDS for undersampling

The initial experiment used SDS to undersample the majority class from 3668
to 2000 non-subscribers. In this experiment, 100 agents were used 5. Initially,
the model was selected from the search space (all non-subscribers) and the
agents were set to find the closest match from the remaining items of the
search space. Once a match or the most similar item was found, it was re-
moved from the majority class with the aim of removing redundant data.
Given that this process aims at reducing the size of the search space with-
out removing useful data, removing the closest item to a randomly selected
model discourages the deletion of useful data. This hypothesis was later val-
idated (in section 4.2.3) when the spread and the central tendency of the data
were investigated before and after the undersampling process (McCluskey
and Lalkhen, 2007).

Following the initialisation phase where each agent was allocated to a hy-
pothesis from the search space (a random non-subscriber), in the test phase,
a randomly selected micro-feature (attribute) from the hypothesis was com-
pared with the corresponding micro-feature of the model; if the randomly se-
lected micro-feature of the hypothesis lay within a specific threshold (which
will be discussed later) of the model’s micro-feature, the agent was set to
active, otherwise to inactive. This process is repeated for all agents.

In the next phase, the diffusion phase, a passive recruitment mode was ap-
plied where each inactive agent chose another agent and adopted the same
hypothesis if the randomly selected agent was active. If the randomly se-
lected agent was inactive, the selecting agent picked a random hypothesis
(i.e. a random non-subscriber from the search space). This process was re-
peated for all inactive agents.

The cycle of test-diffusion was repeated 10 times, which is the best empir-
ically chosen value, at the end of which a non-subscriber with the maximum
number of active agents was removed from the search space and the model
was moved to another list (e.g., model list). This guaranteed that while the

5The best empirically found value.
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most similar item was removed from the search space, the model, which rep-
resents the deleted item, was kept and used later during the classification
process. This process was repeated until the dataset was undersampled.

In brief, the process of picking a random non-subscriber as a model and
deleting the most similar item was repeated until the size of the search space
plus the model list was equal to the number required (i.e., 2000, which is
close to the number of the oversampled minority class).

In the experiments reported in this work, three different thresholds, in-
cluding 1.00, 0.50, and 0.00 were used and thus three different datasets of
non-subscribers were generated, all sized 2000. As the input dataset was
normalised and the range of values was between 0.00 and 1.00, the SDS al-
gorithm with threshold of 1.00 randomly undersampled the data; threshold
0.00 looked for an exact micro-feature match from the model; and threshold
0.50 was a state between random and exact-match undersampling.

Applying euclidean distance for undersampling

Euclidean distance is a metric used to measure distances between n points
in the space. Over the past years, this measure has been widely used for
database dimensionality reductions (Keogh et al. (2001) and Beckmann, Ebecken,
and Lima (2015)). Although it is a comprehensive metric and there is a high
computational expense involved in it to the undersampling problem, it was
used in this experiment as the mean to contrast with the proposed computa-
tionally cheaper swarm intelligence technique. ED was used to undersample
the majority class; in each iteration, a model was picked randomly, then the
ED of the model with each element in the search space was calculated; once
all the distances had been calculated, the closest element to the model was
removed. This process was repeated until the size of the search space was
reduced to the number required (i.e. 2000 entries).

4.2.2 Results

In this experiment, various performance measurements were used: accuracy,
sensitivity, specificity, Area Under the Curve (AUC), F-measure, and preci-
sion. The experimental results show that the new approach (i.e., a combina-
tion of SDS at threshold 0.00 to undersample the majority class, and SMOTE
to oversample the minority class) achieved the best performance in terms of
accuracy, specificity, F-measure, and precision, as shown in Table 4.9.
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TABLE 4.9: Performance measurements comparison

Euclidean
Threshold 0.00 0.50 1.00 Distance

Accuracy 90.46% 88.56% 88.56% 89.47%
Sensitivity 95.46% 96.06% 96.06% 96.76%
Specificity 85.45% 81.04% 81.04% 82.15%
AUC 0.959 0.96 0.96 0.965
F-measure 90.93% 89.41% 89.41% 90.91%
Precision 86.82% 83.67% 83.67% 84.48%

As shown in Table 4.9, the proposed model achieved higher accuracy
because of the higher specificity. On the other hand, obtaining higher F-
measure is attributable to the higher precision rate as opposed to the ED
undersampling. However when using ED for undersampling, the results
exhibited higher sensitivity and AUC which can be justified given the much
higher computational expense; this claim is explored further in the next sec-
tion along with a more in-depth discussion about SDS and the impact of the
varying thresholds on the results. From the results, the proposed SDS un-
dersampling process performed the undersampling and removed redundant
data using the threshold 0.00 as a distance measurement to the model, with a
better specificity rate as opposed to the ED. Threshold 0.00 indicates that the
difference between each corresponding attribute is minimised as the dataset
is normalised between 0 and 1. Thus, threshold 0.00 finds the closest cor-
responding attribute in the majority class. Also, SDS undersampling out-
performed the ED undersampling in terms of speed and computation time.
Moreover, the results reported in this experiment show that the proposed
method can offer promising results when compared with previous work on
the same dataset, as shown in Table 4.10.

TABLE 4.10: Results for previous models on the direct market-
ing dataset

Models AUC Accuracy Sensitivity Specificity

Moro, Laureano, and Cortez, 2011 0.938 NA NA NA
Moro, Cortez, and Rita, 2014 0.8 NA NA NA
Feng, Zhang, and Liao, 2014 NA 83% NA NA
Elsalamony, 2014 NA 90.09% 59.06% 93.23%
Bahnsen, Aouada, and Ottersten, 2015 NA 88.28% NA NA
Proposed Model 0.959 90.46% 95.46% 85.45%
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4.2.3 Discussion

This section discusses the results reported in section 4.2.1 and section 4.2.2,
and further investigates the use of SDS for undersampling and the benefit
of the partial function evaluation in decreasing computational complexity.
It also analyses the spread of data to explore whether there were changes
and whether the proposed approach caused a removal of useful data from
the majority class. Finally, it explores computational cost of the proposed
approach.

Applying SDS to Imbalance Data

SDS presents itself as an effective tool to persistent problems encountered in
search and optimisation. This is due to SDS’s strong partial function evalu-
ation feature which assists agents to explore the existing large search space
and gather global knowledge without having to evaluate all the existing di-
mensions; the in-depth analysis of the dimensions occurs only once a viable
solution is found, at which stage, agents explore further dimensions of plau-
sible solutions. In this experiment, the agent points to a randomly selected
micro-feature and compares it with the corresponding micro-feature of the
model. Therefore, partial evaluation enables an agent to form a quick “opin-
ion” about the quality of the investigated solution without exhaustive test-
ing (i.e. complete attributes comparison) which potentially leads to increased
computational complexity. However, using ED, the search for a close match
to the model is more computationally expensive because of the complete (vs.
partial) function evaluation that accompanies each evaluation.

In the experiments reported earlier, three SDS threshold values were eval-
uated. The activity of the agents in each of the three presented thresholds are
illustrated in Fig 4.2. As expected, when the threshold is set to 1.00, all agents
become active at the end of the first iteration, and thus stop communicating
with other agents in the diffusion phase; when the threshold is set to 0.00,
the algorithm only “settles” on an exact match, thus as shown in the figure,
while around half of the agents are active, the other half searches for the
closer match. The middle ground status of SDS when the threshold is set to
0.50, is also illustrated in the figure.
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FIGURE 4.2: SDS
agent’s activity

FIGURE 4.3: SDS &
ED time compari-

son

SDS and the Spread of Data Analysis

Several metrics were used in the experiment to evaluate the quality of the
undersampled data during the classification phase. However, the spread of
data and the central tendency are two other important metrics for verifying
that useful data was not removed during undersampling. These measure-
ments were used to calculate the mean and the standard deviation of all data
points. The difference between each undersampled dataset and the original
dataset (before undersampling) is 0.01095 ± 0.00925 for SDS with threshold
0.00 and 0.00945 ± 0.00775 when using ED. The results highlight the lack of
any significant change in the spread of data with the threshold set to 0.00 and
when ED is used. This shows not only the success of the algorithm in keeping
the useful data, but also the presence of redundant data in the dataset.

SDS and Computational Complexity

As stated before, due to the partial function evaluation feature of SDS, the
computational cost of running SDS on a huge dataset is only dependant on
the number of agents and the number of iterations. In the presented work,
where the initial size of the majority class was 3668, having 100 agents per-
forming 10 iterations, means that the agent population partially evaluates
more than a quarter of the search space (i.e. 100 agents × 10 iterations =

1000 micro-features evaluated). Over time, with the shrinkage of the search
space – thanks to the removal of the redundant data – the algorithm’s cover-
age increased to half. One possible approach, which is the subject of ongoing
research, is to reduce the computational expense further by keeping the cov-
erage of the swarm at a constant rate throughout the undersampling process.



Chapter 4. Experiments 92

Fig 4.3 shows the time taken for SDS in all three thresholds to undersam-
ple the data as well as the time taken when ED is used. As can be seen in
the figure, the undersampling process with SDS demonstrates a linear time
complexity throughout the undersampling process (where the search space
shrinks but the number of agents and the iterations allowed are constant),
thus exhibiting the time complexity of (n).

4.2.4 Summary

Various researchers have proposed advanced undersampling techniques to
reduce the majority class samples without removing useful information. This
work has proposed a swarm based undersampling approach that reduces the
sizes of the majority class in a reliable yet cheap computational way, using the
agents and partial evaluation of the majority instance, in which the individ-
uals of the swarm move through the solution space in search of a solution
that is close to the model. In the proposed method, the capability of SDS to
perform majority class undersampling has been investigated on a real-world
Portuguese bank dataset. The obtained results imply that SDS can be used as
a good undersampling tool for class imbalance.

Future work includes the investigation of SDS on other imbalanced datasets,
as well as comparison with other swarm intelligence techniques that have
been applied to overcome the class imbalance issue. Another topic of ongo-
ing research is the relationship between (and the impact of) the population
size of the SDS and the coverage percentage of the dynamically shrinking
search space of the dataset being undersampled.

4.3 Experiment III: Feature level duplication

Following the promising results of the use of SDS to perform undersampling
of the majority class, the work was extended further to overcome the class
imbalance problem on nine real-world datasets. This was combined with
SMOTE to oversample the minority class. Moreover, to solve the problem
at the algorithmic level SVM values C and γ were optimised using a grid
search and 5-folds cross validations to train and test the classifier. This ex-
periment initially aimed at investigating the impact of the duplication at
dataset’s feature-level (the role of duplications on each individual feature) on
the undersampling process, the use of SDS as a way to address the feature-
level duplications, and the possibility of making a recommendation on when



Chapter 4. Experiments 93

to use the pro- posed approach. The next section describes the experiment
setup.

4.3.1 Experiment setup

In the experiments conducted for this work, the first task is the application of
SDS to undersample the majority class where the aim is to reduce the size of
majority class (SDS’s search space). The proposed model uses SDS to under-
sample the majority class to around 50%; in cases where the minority class
instances need to be oversampled for balancing the distribution (to reach a
comparable size with undersampled majority class) SMOTE is applied (this
is to all datasets with minority class size less than 30%), with the following
configurations:

• Class was set to zero to detect the minority class automatically.

• Nearest neighbours was set to 5, as this would create synthetic instances
from the 5 nearest neighbours 6.

• The percentage of instances to create depended on the size of the un-
dersampled majority class.

• The number of seeds used for the sampling was set to 0.

Table 4.11 shows in which of the datasets SMOTE was used to oversample the
minority class. At the algorithmic level, the model used the SVM algorithm,
where parameters such as C and γ for the RBF kernel were optimised using
a grid search, in which the range for C was defined as [2−5,215] and the range
for γ as [2−15,23] (Hsu, Chang, and Lin, 2003). The search was performed us-
ing 5-folds cross validation and multi-threading to run multiple processes at
a time. The hybrid approach was then contrasted against random undersam-
pling (along with SVM optimisation). To evaluate the proposed model, nine
imbalanced datasets were used in this experiment. The datasets are available
from the UCI machine learning repository, plus the Oil Spills dataset (Ku-
bat, Holte, and Matwin, 1998). The datasets, all collected from real-world
cases, vary greatly in their class distributions, sizes and features characteris-
tics (continuous and discrete features). The full list of datasets used is shown
in Table 4.11. In the experiments reported here, for the Abalone dataset, the
model is applied on classes “9” versus “18”; for the Yeast dataset, the model

6Based on recommendations from the literature, the number of nearest neighbours is set
to five (Chawla et al. (2002) and Blagus and Lusa (2013)).
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was applied on the classes “CYT” versus “POX”; and for the Vehicle dataset,
the class “Van” vs the others is used, in order to have a highly imbalanced
dataset. Additionally, all datasets values were normalised; this is to avoid
the value scale difference among all attributes, while instances with missing
values are removed.

Applying SDS to undersample the majority class instances:

In this experiment, the number of SDS agents was empirically set to be half of
the search spaces (half the number of instances) and a quarter of the SDS pop-
ulation size was set for the number of iterations to undersample the majority
class. Initially, a model (an instance from the majority class) was randomly
selected from the search space (the entire majority class instances) and the
agents were set to find the closest match (an instance) from the remaining
items of the search space. Once a match or the most similar item was found,
it was removed from the majority class with the aim of removing redundant
data. Given that this process aimed at undersampling the majority class with-
out removing useful information, removing the closest match to a randomly
selected model prevented the deletion of useful information from the search
space. The initialisation, test, and diffusion phases of SDS were expanded in
order to shed more light on how SDS is adapted for the purpose of under-
sampling. In the initialisation phase each agent was assigned to a hypothe-
sis from the search space (i.e., a random instance number from the majority
class). Subsequently, in the test phase, a randomly selected micro-feature (one
of the attributes of the instance) was compared against the corresponding micro-
feature of the model (i.e., the corresponding attribute of the model); if the ran-
domly selected micro-feature of the hypothesis was within the threshold of
the model’s micro-feature, the agent was set to active, otherwise to inactive
(threshold vector calculation is described in the next section). This process
was repeated for all the agents, after which all agents were either active or
inactive. Once the status of all the agents was determined in the test phase,
the next phase started. In the diffusion phase, each inactive agent randomly
picked another agent; if the randomly selected agent was active, its hypoth-
esis (i.e., instance number) was shared with the inactive agent; otherwise,
the selecting agent picked a random hypothesis (a random instance number)
from the search space. The cycle of test-diffusion phases was repeated equal
to the number of iterations allowed. The instance which attracted the largest
number of agents was labelled as the “closest match” and thus removed from
the search space. The model was then transferred to another “models list”.
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In the next step, another model was randomly chosen from the remaining
instances, its closest match was found and removed from the search space,
and the new model was then added to the “models list”. Once the sum of the
size of the models list and the remaining search space reached the desired
number (i.e., when the majority class was downsized), the undersampling
process was terminated..

Feature Dependent Threshold Vector

There are two types of features or attributes in the datasets (i.e., continuous
and discrete). Depending on their types, the feature’s threshold was calcu-
lated accordingly and separately (for each feature). For continuous features,
the thresholds were found by calculating the median values (excluding the
zeros) of the difference between the values of the features. Following the
same analogy for the discrete features, the threshold was calculated using
the following equation:

τi =
1

n− 1
(4.1)

where τi is the threshold of feature i, and n is the number of discrete val-
ues. Therefore, τ returns the value of the ‘gap’ between each neighbouring
discrete value.

Using the method described for calculating the threshold vector, ~τ , the
algorithm can perform an evaluation as to whether any two selected values
from the same feature can be considered “adjacent” values. Therefore, using
~τ during the test phase for each agent, the proximity of the instances can
be partially evaluated (through each individual feature comparison). It has
been shown in many other applications that, after several iterations, SDS is
capable of finding the closest match, which can then be removed as part of
the undersampling process. By applying this method, the undersampling is
performed at feature level to find the closest match for the randomly picked
model from the remaining majority instances. The next section presents the
obtained results.

4.3.2 Results

This section summarises the results of using SDS-SVM to undersample the
majority classes of all the datasets used. In order to fairly evaluate the per-
formance of the proposed model, various performance measurements have
been used: G-mean, F-measure, AUC, accuracy, sensitivity, and specificity
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(more details on performance metrics can be found in section 2.5). The re-
sults achieved in this experiment have been compared with the hybrid ap-
proach where random undersampling and optimised SVM are used (RND-
SVM), as well as some of the best previous models on the same datasets.

In Table 4.12, the results of SVM classification after random undersam-
pling (RND-SVM) and SDS undersampling (SDS-SVM) are reported and con-
trasted against other methods from the existing literature. The results in Ta-
ble 4.12 show that, in most cases, SDS-SVM outperformed RND-SVM. In
order to investigate the reason behind this difference of performance, the re-
dundancy at instance and feature levels are discussed in section 4.3.3.

The current literature demonstrates that there have been other relevant
experiments on the same datasets (see Table 4.12); for example, Zhang and
Li, 2013 implemented a Positive biased Nearest Neighbour algorithm (PNN)
on real-world datasets including the Oil Spills and Vehicle datasets. The pro-
posed model gave the best results when compared against the k-NN algo-
rithm, other sampling methods such as SMOTE, and the general method for
making a classifier cost sensitive, known as MetaCost. The model was evalu-
ated using AUC, and PNN gave the best results, with AUC equal to 0.847 for
the Oil Spills dataset and 0.983 for the Vehicle dataset. In both instances, SDS-
SVM outperformed PNN. In another study, Guo and Viktor, 2004 proposed a
new model called DataBoost-IM. The model was evaluated using F-measure,
G-mean, and Accuracy on seventeen imbalanced datasets, including datasets
used in this experiment. The proposed model scored well on highly imbal-
anced datasets in terms of the F-measure, and was comparable with (in some
instances higher than) other models with regards to G-mean and Accuracy.
This algorithm was outperformed by the model proposed in this experiment.

The next section explores the behaviour of the algorithm proposed for
undersampling in this experiment. The aim is to provide some insight into
where it would be recommended to use SDS-SVM.

4.3.3 Discussion

In this section, the proposed approach is analysed and the agent behaviour
is investigated.
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TABLE 4.12: Results for the datasets

G-mean AUC F-measure Accuracy Sensitivity Specificity

Oil Spills

RND-SVM 35.27% 0.648 69.61% 56.27% 100.00% 12.44%
SDS-SVM 98.74% 0.999 98.74% 98.74% 99.58% 97.92%
DataBoost-IM 1 67.70% NA 55.0% 96.60% 46.30% 98.90%
PNN 2 NA 0.847 NA NA NA NA

Yeast

RND-SVM 91.43% 0.969 90.86% 91.26% 94.00% 88.94%
SDS-SVM 90.33% 0.965 89.74% 90.11% 94.00% 86.81%
DataBoost-IM 1 66.9% NA 58.0% 97.3% 45.00% 99.90%
GSVM-RU 3 NA 0.845 68.8% NA NA NA

Abalone

RND-SVM 88.69% 0.951 89.29% 88.62% 91.43% 88.00%
SDS-SVM 89.83% 0.957 89.39% 89.77% 91.11% 88.57%
GSVM-RU 3 86.5% NA 60.4% NA NA NA
DataBoost-IM 1 61.1% NA 45.0% 94.6% 38.0% 98.1%

Vehicle

RND-SVM 98.45% 0.995 98.46% 98.45% 99.06% 97.85%
SDS-SVM 98.45% 0.999 98.46% 98.45% 99.37% 97.54%
DataBoost-IM 1 95.7% NA 93.7% 97.0% 93.4% 98.1%
PNN 2 NA 0.983 NA NA NA NA

Breast Cancer

RND-SVM 97.70% 0.996 97.71% 97.70% 98.33% 97.08%
SDS-SVM 95.81% 0.972 95.77% 95.83% 97.07% 94.58%
DataBoost-IM 1 96.40% NA 95.2% 96.70% 95.40% 97.3%

Bank Marketing

RND-SVM 92.91% 0.972 93.43% 93.06% 97.05% 88.95%
SDS-SVM 90.96% 0.966 91.46% 91.07% 94.04% 88.00%
HybridDA 4 NA 0.98 NA 96.73% 97.93% 94.82%

Thoracic Surgery

RND-SVM 71.69% 0.755 70.51% 71.82% 68.88% 74.63%
SDS-SVM 73.51% 0.767 72.78% 73.59% 71.94% 75.12%
Boosted SVM 5 65.7% NA NA NA 60.00% 72.00%

Ionosphere

RND-SVM 94.01% 0.979 93.77% 94.15% 97.69% 90.48%
SDS-SVM 95.32% 0.986 95.27% 95.31% 96.03 94.62%
CSB2 6 93.00% NA 89.7% 82.90% 96.5% 89.7%
DataBoost-IM 1 92.3% NA 91.2% 94.0% 87.3% 97.7%

Hepatitis

RND-SVM 91.02% 0.960 90.62% 91.21% 93.55% 88.57%
SDS-SVM 91.98% 0.963 91.47% 92.42% 87.10% 97.14%
CSB2 6 80.9% NA 63.4% 80.6% 81.3% 80.5%
DataBoost-IM 1 76.2% NA 62.6% 83.8% 65.6% 88.6%

1. Guo and Viktor, 2004
2. Zhang and Li, 2013
3. Tang et al., 2009

4. Alhakbani and Al-Rifaie, 2016b
5. Zięba et al., 2014
6. Ting, 2000
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Analysing instance and feature levels redundancy:

It is intuitive that in the case of a dataset with a high level of duplication,
picking a randomly selected instance and removing it as part of the under-
sampling process is less likely to cause the removal of important informa-
tion. This hypothesis was clearly demonstrated with two of the datasets
used (i.e. Yeast, and Breast Cancer) where there were duplications at instance
level, making all the features of some samples identical to some others. Ta-
ble 4.13 (No. of Duplicates) shows the duplications (percentage of duplicate
instances) for both of these datasets.

While this justifies the outperformance of RND-SVM over SDS-SVM, it
neither justifies the outperformance of RND-SVM in Bank Marketing nor of-
fers a strong reason for the outperformance of SDS-SVM in all the remaining
datasets. For this reason, redundancy at the feature level was explored, as
shown in Table 4.13 where the number of repetitions in each feature was cal-
culated and then the median, mean, and standard deviation of all the feature
repetitions were taken into account. Considering these figures, a link can
be established between a high level of similarity (duplications) between the
features (e.g., combination of median (or average) and standard deviation)
and the performance of SDS-SVM. For instance, in the case of the Oil Spills
dataset, the median repetition of 81.47% and the standard deviation of 32.61%

indicate a varying level of duplications across various features, leading to the
superior performance of SDS-SVM, which partially evaluates the instances.
In terms of Bank Marketing, where there is no duplication of instances, there
is a high level of duplication at feature level with a median of 99.72% and
standard deviation of only 4.14% which justifies the good performance of
RND-SVM. In all other cases (Oil Spills, Abalone, Vehicle, Thoracic Surgery,
Ionosphere and Hepatitis), where feature-level duplication is not high, and
there are no large standard deviations (causing a larger level of oscillations),
SDS-SVM is a recommended method to use. As can be seen, feature-level
duplication analysis also caters for instance-level duplication analysis, thus
providing a better insight into which of the two algorithms to use.

Investigating agents behaviour:

The SDS algorithm adopted for the purpose of undersampling is responsive
towards feature-level duplications, and when there are many duplications
at feature level, the number of active agents is higher; this is illustrated in
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TABLE 4.13: Instance and feature duplication rates

Instance Features
Level Figures Level Figures

Datasets No. of Duplicates Median Average Deviation Best Model

Oil Spills 0 81.47% 68.65% 32.61 SDS-SVM
Yeast 25 (5.39%) 91.25% 92.54% 4.61 RND-SVM
Abalone 0 61.62% 58.01% 33.57 SDS-SVM
Vehicle 0 94.12% 88.46% 13.43 SDS-SVM
Breast Cancer 231 (50.43%) 95.19% 95.26% 0.2 RND-SVM
Bank Marketing 0 99.72% 98.48% 4.18 RND-SVM
Thoracic Surgery 0 99.50% 94.90% 10.63 SDS-SVM
Ionosphere 0 4.88% 7.67% 6.3 SDS-SVM
Hepatitis 0 97.01% 81.30% 26.15 SDS-SVM

the graphs of Fig 4.4, where the Bank dataset with the high feature-level du-
plications is shown (on the left) as opposed to the Ionosphere dataset (on
the right) where the feature-level duplication is much lower (with a median
of 4.88% and the standard deviation of 6.3). The oscillating behaviour of
the population’s activity is attributed to the micro-feature evaluation of each
of the agents. In other words, if an agent picks a certain micro-feature and
becomes active, it is likely that other agents are attracted to the hypothesis
of that agent, thus adopting the same hypothesis (but a randomly selected
and likely different micro-feature); if the newly selected micro-feature is not
within the threshold, this would lead to agent inactivity for the next cycle.
This mechanism assists the agents to maintain their activities only when a
hypothesis is (in most of its micro-feature selections) within the calculated
threshold. One interesting feature of the algorithm is that a high activity
level of the population does not always correspond to convergence to a sin-
gle instance. While this in itself is a useful feature for identifying more (than
one) similar instances, work still needs to be done in the future on this char-
acteristic. Also, it would be worthwhile to explore whether each trial (i.e.,
removal of one similar instance from the search space) could be terminated
depending on the activity level of the populations.

Search Space Coverage:

In the case of the SDS algorithm and its partial function evaluation, while
SDS might visit each instance “briefly” (i.e. checking one of a few features),
it does not run a greedy comparison on all of the instance’s features. There-
fore, the agent aims to “form an idea” before spending further computational
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FIGURE 4.4: Convergence of agents over the iterations allowed
for the Bank (left) and Ionosphere (right) datasets

time (by itself or by attracting other agents). This behaviour of the agents can
be summarised in two sets of experiments: the first would be to explore the
percentage of the instances visited by the SDS agents, and the second to cal-
culate the percentage of all features visited from the whole of the dataset (i.e.
all the features of all the instances). The results of these two experiments are
shown in the graphs of Fig 4.5. It is shown that while the empirically cho-
sen values for the number of agents and the iterations suffice in visiting the
instances at least once, not all the features are (or need to be) visited.
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FIGURE 4.5: Search space coverage for the Oil Spills (left) and
Ionosphere (right) datasets

In another experiment, the frequency of agents visiting each feature was
explored and the distribution of agents’ exploration capability in the search
space was investigated, with the ultimate goal of finding the closest match.
For this purpose, three datasets with varying degrees of feature-level dupli-
cation were chosen, and the results are illustrated in Fig 4.6. For instance,
in the case of the Bank Marketing dataset, where duplication is very high,
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with a median of 99.72% and standard deviation of 4.14%, it was shown that
agents converged to the closest matches (showing themselves as stripe of
white lines) while in the case of the Oil Spills and Ionosphere, the agents pres-
ence was distributed across the search space. Also, in terms of the Oil Spills
dataset, instances in position 450 to 550 attracted more agent visits, which is
attributable to their similarity to the model that is located at position 471.

4.3.4 Summary

This experiment proposed a model which uses a swarm intelligence based
algorithm, SDS, which is assigned to perform the undersampling of the ma-
jority classes in imbalanced datasets. This work presents an analysis of both
instance- and feature-level redundancies and establishes a link between the
feature-level duplications and the role of the feature-level undersampling
mechanism. This analysis is accompanied by an investigation of the be-
haviour of the agents through their activity level during the undersampling
process. It is shown that the agents’ activity is directly proportional to the
level of redundancy in the datasets (not only at the instance level, but more
importantly, at the feature level). Another investigation carried out in this
project regards the ability of the algorithm to comprehensively explore the
search space without having to greedily investigate all features of all in-
stances in the dataset. As part of future research, various coverage per-
centages could be explored, thus associating the coverage percentage with
the termination criteria. This might shed light on the “bare essential” cov-
erage needed before removing an instance. There is ongoing study being
conducted on the link between the agents’ activity level and the termination
criteria as well as the possibility of removing more than one instance from
the dataset when the agents share a “similar interest” in multiple instances.

4.4 Experiment IV: Feature selection using SDS

As shown in Experiments 4.2 and 4.3, SDS has performed well in solving the
class imbalance issue. In this experiment, the use of SDS was extended fur-
ther to tackle the class imbalance problem by performing feature selection.
Feature selection is a technique applicable to datasets that experience high
dimensionality problems. It aims to select a subset of features, which en-
ables a classifier to maximise its performance. It is a vital step for a number
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of classification tasks like micro array-based classification and text classifi-
cation. As a result, effective feature selection methods are needed to speed
up the search and improve the predictive accuracy. SDS has been applied to
various areas of search and optimisation but has not been applied to feature
selection problems in imbalanced datasets classification yet.

In terms of feature reductions, there are some similarities between fea-
ture selection algorithms and swarm algorithms because both have factors
or parameters that influence the solution being applied. This is the case es-
pecially for the wrapper variation of the feature selection algorithms because
the algorithms determine the validity or strength of the subset based on the
performance of the algorithm, which is very similar to dynamically updating
the swarming behaviour of the swarm intelligence algorithms. The method
introduced in this experiment uses SDS to select the most relevant feature
subset for the classification task. In this algorithm, SDS is adapted to find
a suitable feature subset. Moreover, SVM is used as a classifier to evaluate
the predictive accuracy of the agent. The proposed method exhibits a statisti-
cally significant superior performance when compared with the performance
of the classifier without the SDS-powered feature selection. Additionally, the
results have been compared with other methods from the literature over nine
datasets. It is shown that the proposed SDS based feature selection (SDS-FS)
offers a competitive performance compared to other methods on datasets
with a feature size greater than 10. The behaviour of the proposed algorithm
has been investigated in the context of global exploration and local exploita-
tion. The next section describes the experiment setup.

4.4.1 Experiment setup

In this experiment, eight real-world datasets were used from the UCI ma-
chine learning repository as well as the Small Round Blood Cells dataset (SR-
BCT), which contains information on 83 samples and 2308 genes (Khan et al.,
2001). These datasets vary in terms of the number of features, and they have
been widely used as benchmarks to compare the performance of different
feature selection methods in the literature. Table 4.14 describes the datasets
used to evaluate the proposed method in terms of number of features, num-
ber of instances, and number of classes. Feature scaling was applied to the
dataset to improve the classification accuracy of the learning algorithm and
prevent distance calculation difficulties. In general, the range of each feature
value was scaled to [0,1] range.
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TABLE 4.14: Summary of datasets used in these experiments

Dataset No of features No of instances Classes

Ionosphere 34 351 2
Sonar 60 208 2
Wine 13 175 3
Bupa 6 345 2
Breast Cancer (WDBC) 32 569 2
Vowel 10 990 11
Glass 10 214 6
Lung Cancer 56 32 3
SRBCT 2308 83 4

SDS for feature selection

This section provides a description of the proposed method that employs
SDS for feature selection. The motivation for this method is the use of agents’
direct communication to perform feature subset evaluation in a way that
effectively improves the classification model’s overall performance and de-
creases the training time.

In these experiments, 100 agents were set to perform the search for a fea-
ture subset of size d (where d = half of the original number of features in the
dataset), and the number of iterations allowed was 50. These values were
the suggested empirical values. The aim of this study was to find the best d
features out of N, the total number of features. The accuracy of the classifier
was taken as a fitness function.

Initially, each agent was assigned to a combination of feature subset (i.e.,
hypothesis) from the search space (i.e., all possible combinations of features).
It should be noted that each agent used an independent random split in the
dataset to form the two subsets of training and testing, 80% and 20% of the
dataset respectively. The hypothesis was a binary string that represents a
features subset within the subset size. In this string if a bit was 1, the corre-
sponding feature was included and if 0, it was not.

In the test phase, agents’ activities were determined based on the accuracy
of the classifier that was calculated in the fitness function. In this phase, an
agent selected another random agent and compared the predictive accuracy
of them both. If the selecting agent’s accuracy was higher than the random
agent’s, the selecting agent was set to active; otherwise, the selecting agent
was set to inactive. This process was repeated for all agents to determine
their status. Following this, the next phase, called the diffusion phase, com-
menced.
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In the diffusion phase, both inactive agents and active agents randomly
picked another agent. In the case of an inactive agent randomly picking an-
other agent, if the randomly selected agent was active, its offset hypothesis
(feature subset) was shared with the inactive agent; if inactive, the selecting
agent picked a random hypothesis (feature subset) from the search space (all
possible combinations of features within the subset size). In the offsetting,
one feature was removed randomly (by changing the 1 to 0) and another
was added randomly (by changing 0 to 1), thus preserving the subset size.
Moreover, when an active agent picked another active agent that maintains
the same hypothesis (feature subset), the selecting agent was set to inactive
and was assigned to a random hypothesis. This freed up the agents, im-
proved their diversity and increased the algorithm’s ability to search widely
throughout the search space. This cycle of test and diffusion was repeated
equal to the iterations allowed. See Algorithm 10.

Fitness function

The purpose of feature selection is to find a particular subset of feature by
applying certain fitness evaluation criteria to find a subset which has a better
classification accuracy. SVM has been applied to several classification tasks
due to its speed and high accuracy (Zhu, Liu, and Yu, 2002). To evaluate the
feature subset, this model used the RBF kernel for SVM, which is able to deal
with high dimensional datasets (Hsu, Chang, and Lin (2003) and Lin and Lin
(2003)). Moreover, predictive accuracy was used as a performance metric as
shown in Eq 2.5, in section 2.5, where the goal was to find a subset with the
maximum classification accuracy. In this model, a train/test split (80% train,
20% test) was used to assess the performance of the feature subset on unseen
dataset using SVM (each agent splits that data randomly for two sets: one for
training and the other for testing). This is a common approach in splitting the
datasets (Chang et al., 2010).
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Algorithm 10 SDS algorithm for feature selection

1: Initialisation phase
2: Assign agents to random hypotheses with inactive states
3: while less than iterations allowed do
4: #Evaluation Phase
5: for all agents do
6: Evaluate the fitness value
7: Find the maximum fitness value
8: #Test Phase
9: for all agents do

10: if Agent’s fitness >random agent’s fitness then
11: Set agent as active
12: else
13: Set agent as inactive
14: #Diffusion Phase
15: for all agents do
16: if agent is inactive then
17: Select a random agent
18: if selected agent is active then
19: Copy its hypothesis & offset it
20: Calculate the fitness value
21: else
22: Pick a random hypothesis
23: Calculate the fitness value
24: else agent is active
25: Select a random agent
26: if rand agent is active & shares hypothesis then
27: Set the selecting agent to inactive
28: Assign a new hypothesis
29: Calculate the fitness value
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4.4.2 Results

Results I: Presence and lack of feature selection

Table 4.15 summarises the best results of applying SDS as a feature selection
method. It shows the accuracy of SVM without feature selection and the ac-
curacy of SVM with SDS-FS on the datasets. As shown in the table, the use of
SDS-FS was found to improve predictive accuracy for all datasets. For exam-
ple, for the Sonar dataset, which has 60 features, the classification accuracy
increased from 69.04% to 97.61%. Moreover, the model performed well on
a larger number of features. For example, for the SRBCT dataset, which has
2308 features, the classification accuracy increased from 29.41% to 94.11%.
Similar improvements in the classification accuracy can be observed in the
rest of the datasets.

SVM, when learning from an imbalanced dataset produces a model that
is biased toward the majority class. Therefore, it gives poor results when
trained on an imbalanced dataset and without applying any solution to com-
bat the class imbalance as seen in Table 4.15. The use of feature selection
on imbalanced datasets that suffers from high dimensionality was found to
improve the SVM classification accuracy for all the datasets by decreasing
the degree of class overlap. Thus, the selected subset of features, which dis-
criminates between the classes, allows SVM to perform well on imbalanced
datasets using the default parameters (without tuning the kernel parameters
C and γ). These results also indicate the possibility of improving the classi-
fier performance further through the use of algorithmic level solutions and
data level solutions while selecting a feature subset. As a result, the proposed
model which uses SDS to perform feature selection, demonstrates the ability
to reduce the dimensionality and improve classification accuracy.

In order to conduct the statistical analysis measuring the presence of any
significant difference in the performance of the algorithms with and without
SDS-powered feature selection, a t-test was deployed. This test was applied
using the outcome of all the trials (30 runs) on each experiment. Through this
statistical test, it was shown that the proposed feature selection technique of-
fers a statistically significant superior performance over all the datasets used.
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TABLE 4.15: Accuracy of SVM with and without feature selec-
tion

SVM with SDS-FSOriginal SVM without
Dataset No of features feature selection No of features Accuracy

Ionosphere 34 87.32% 17 100%
Sonar 60 69.04% 30 97.61%
Wine 13 94% 6 100%
Bupa 6 50.72% 3 79.71%
WDBC 32 92.98% 16 100%
Vowel 10 68.18% 5 75.25%
Glass 10 69.67% 5 100%
Lung Cancer 56 57.14% 28 71.42%
SRBCT 2308 29.41% 1154 94.11%

Results II: Comparison with other techniques

This part aims to compare the performance of the proposed method with
other techniques from the literature.

Table 4.16 compares the results of the proposed model with other meth-
ods on the same datasets from the literature. This includes PSO-SVM (Tu
et al., 2007), binary bare bones PSO (BPSO) (Zhang et al., 2015), PSO+SVM
with feature selection (Lin et al., 2008), mr2PSO (Unler, Murat, and Chinnam,
2011), IFS with feature selection and GA+SVM (Liu et al., 2011). As seen in
Table 4.16, the proposed method excels in comparison to other techniques
when applied to datasets with a dimensionality more than 10. For example,
in the Ionosphere dataset, SDS-FS is outperformed other methods in terms
of both maximising accuracy and reducing the feature size. However, in
datasets with a dimensionality of less than 10, the SDS-FS method was out-
performed by other methods. For example, in the Vowel dataset PSO+SVM
with feature selection outperformed the rest with an accuracy equal to 100%.
Moreover, for the Glass dataset BPSO (Zhang et al., 2015), it scored the same
accuracy with lower number of features (feature subset size = 3) as opposed
to SDS-FS, in which the size of the feature subset was 5.

The results indicate that SDS-FS is applicable to feature selection on high
dimensional data. It achieves dimensionality reduction (to half of the fea-
ture size) and improves classification accuracy in a more effective way when
applied to datasets with a feature size larger than or equal to 10. More exper-
iments on other large datasets are needed before any generalisations can be
made on this claim.

Moreover, for completeness, Table 4.17 compares the results of the pro-
posed model with other non-evolutionary computation techniques on the
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same datasets from the literature. This includes sequential forward search
(SFS) (Tu et al., 2007), maximum relevance-minimum multicollinearity (MR-
mMC), minimal redundancy maximum relevance (mRMR) and mutual infor-
mation based feature selection (MIFS) (Senawi, Wei, and Billings, 2017). As
shown in Table 4.17, other than the Vowel dataset when processed with the
SFS algorithm, the proposed SDS based model excels all other non-evolutionary
computation techniques. When comparing to non-evolutionary techniques,
it is also clear that SDS-FS is applicable to feature selection on high dimen-
sional data.
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FIGURE 4.7: Ionosphere dataset. Left: agents’ activity over the
iterations; right: detailed view of the individual agent’s activi-

ties over the iterations.
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FIGURE 4.8: Vowel dataset. Left: agents’ activity over the iter-
ations; right: detailed view of the individual agent’s activities

over the iterations.
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4.4.3 Discussion

The purpose of global exploration is to discover a wider segment of the
search space in the hope of discovering other solutions. This requires that
the search be diversified in order to circumvent being restricted within a lo-
cal optimum. On the other hand, local exploitation explores a limited area of
the search space (which surrounds the agent) in the hope of improving the
solution that already exists.

As of yet, there is no generally accepted agreement about which of the
two has greater advantages. For a search to be successful, there needs to be
a balance between global exploration and local exploitation (Črepinšek, Liu,
and Mernik, 2013). For example, a hybrid Chaos PSO (CPSO) model has been
proposed. The proposed algorithm balances between global exploration and
local exploitation by introducing an Adaptive Inertia Weight Factor (AIWF).
After comparison with other results, it was found that the proposed CPSO
improved the search quality and diversity (Liu et al., 2005). In this experi-
ment, a combination of an offset and context sensitive recruitment strategy was
used to balance between local exploitation and global exploration.

In the offset, an inactive agent copies an active agent’s hypothesis, in
which a randomly selected feature is removed from the subset and a ran-
domly selected one is added instead (i.e. changing 1 to 0 and 0 to 1, in
the string representing the feature subsets). This focuses more on the search
space surrounding the current solution which will improve the algorithm’s
local exploitation. Moreover, a context sensitive recruitment strategy is used
to free up active agents (those sharing the same hypothesis with another se-
lected agent) to increase their ability to explore other hypotheses far from
the current one, a process designed to improve the algorithm’s diversity and
global exploration. By applying both mechanisms, a balance between global
exploration and local exploitation is achieved.

This balance is reflected in the agents’ activity level in each iteration, as
shown in Figs 4.7 and 4.8. As described above, given the agents’ communica-
tion strategy and the rule determining their activity status (in the test phase),
at any given point during the optimisation process, approximately half of
the agent population is active and the other half inactive. The plots in Figs
4.7-left and 4.8-left illustrate the number of active and inactive agents oscil-
lating around the middle. The heatmaps shown on Figs 4.7-right and 4.8-
right provide a detailed account of each agent’s activity in each iteration.
Using these heatmaps, it can be shown that, on average, over the lifetime of
the agents (i.e., 50 iterations), each individual agent is active 54.50 ± 13.94%
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and 51.24 ± 15.16% of the time when processing the Ionosphere and Vowel
datasets respectively.

Further investigation of the figures representing the heatmaps shows that,
despite the balanced activity of the agents, they exhibit resistance in changing
their activity status. In other words, an active agent strives to stay active
more often than not, paving the way for further “exploitation”. On the other
hand, once an agent “loses” its activity in one of the iterations, it starts its
“exploration” of the search space before it settles on returning to exploitation.
This switching behaviour is shown to be less than 50% in the Ionosphere and
Vowels datasets. The switching tendencies in agents’ activity are 32.64 ±
10.21% and 32.08±10.61% respectively, demonstrating that in approximately
60% of cases, agents “dedicate” their time to perform further exploration (or
exploitation), before they switch their status to exploitation (or exploration).

Another illustration has been created to shed light on the behaviour of
inactive agents during the diffusion phase. Fig 4.9 illustrates the behaviour
of inactive agents in the Vowel dataset as to the proportion of each inactive
agent picking an active agent randomly (and sharing the hypothesis) and the
instances where the inactive agents which fail to pick active agents (and pick-
ing a random hypothesis from the search space); the first boosts exploitation
and the latter furthers the exploration of the search space.

Fig 4.10 shows the improvements made on the two sample datasets over
the iterations, and two heatmaps in Fig 4.11 visualise the identification of
alternative feature combination as the optimisation progresses across the rel-
evant datasets, thus enhancing the accuracy with the newly identified feature
subsets. As shown in the figures, there are instances where a difference in the
identification of a different feature subset does not contribute to an increased
accuracy.

Feature selection bias

Feature selection is very important since it plays a very crucial role in reduc-
ing the dimensionality of a dataset. It increases the speed of the classifica-
tion process, simplifies the learned classifier, and improves and maintains
the performance of the classification. However, this preprocessing step faces
the challenge of feature selection bias, where the whole set of data is used
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Ionosphere dataset; right: Vowel dataset.

within the feature selection process and no test data is unseen (Singhi and
Liu (2006) and Krawczuk and Łukaszuk (2016)). This bias can negatively
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affect the model’s ability to predict on new datasets. It has been also found
that feature selection bias has less negative effects in classification when com-
pared to regression because of the dissimilarity of the two tasks (Singhi and
Liu, 2006).

Several studies have investigated the feature selection bias and suggested
solutions to eliminate the bias (Krawczuk and Łukaszuk, 2016). Ambroise
and McLachlan, 2002 proposed two of these: external cross validation and
the bootstrap approach. Tran et al., 2016 proposed a model that uses a PSO
algorithm known as PSO-LSRG, which contains a fast local search together
with a gbest mechanism that resets automatically to improve the performance
of the PSO in conducting feature selection. This is because resetting the gbest
leads to the swarming search for solutions with smaller sizes, and the local
search increases the classification performance further. Ultimately, PSO-LSRG
can put into utilisation the two mechanisms in such a manner that the num-
bers of features are reduced while increasing performance. When compared
to PSO, PSO with gbest resetting or local search only, the proposed model se-
lects the smallest number of features when there is no feature selection bias.

Since swarm intelligence techniques like PSO are highly stochastic ap-
proaches which require the performance of multiple runs aimed at testing
overall accuracy and finding the optimal feature subset, cross validation is
computationally expensive and time consuming. Therefore, designing an
efficient cross validation for evolutionary computations multiple runs is dif-
ficult. One way is to use two loops for cross validation, in which an inner
cross validation loop is used to perform feature selection and training and
an outer loop to calculate the classifier’s performance (Tran et al., 2016). In
this work, the datasets were uniquely divided, for each agent with a candi-
date solution, into two datasets for training and testing (i.e. each agent has
its 80/20 train-test split) . This was to evaluate the accuracy of each feature
subset in an attempt to eliminate the feature selection bias by directing the
test to be independent of the training process for each agent.

4.4.4 Summary

This experiment proposes an algorithm that performs feature selection to
improve the classification accuracy over nine datasets. The introduced ap-
proach implements a swarm intelligence technique, SDS, which benefits from
agents’ direct communication to find the optimal feature subset. The aim is
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to navigate a very large search space, which contains all the possible com-
binations of features

(
n
m

)
where n is the number of original features in the

dataset and m is the reduced number of features.
The proposed method provides a balance between local exploitation and

global exploration by iterating through the test and diffusion phases as well
as combining the offsetting and context sensitive recruitment strategy. The ac-
curacy of the proposed method has been compared with the accuracy of the
classifier when all features are used. The results show that the proposed
method offers statistically significant improvements in the classification accu-
racy over the experiments without feature reductions. Moreover, the method
has been compared with other hybrid algorithms on the same datasets. It has
been demonstrated that the proposed SDS-FS works well with high dimen-
sional datasets where the number of features is more than 10.

The current study does not aim at finding the optimal algorithm-related
parameter (population and the number of iterations) and provides proof of
principle of the performance of the proposed algorithm with an empirically
suggested parameter set as a starting point for researchers. Finding the op-
timal parameter values is the topic of ongoing research. Another topic for
future study is to find the optimal size for the final feature subset. Moreover,
coupling the presented technique with simultaneous optimisation of the clas-
sifier’s RBF kernel parameters, C and γ is currently being investigated.

4.5 Experiment V: DFO and parameter optimisa-

tion

This experiment investigates the possibility of implementing DFO in opti-
mising SVM’s parameters like C and γ for higher accuracy classification mod-
els. This is to perform cost sensitive learning to improve the classifier’s per-
formance on imbalanced data. The use of the swarming behaviour of the flies
and their diversity in the search space in conducting cost sensitive learning
are investigated on eight real-world datasets. The proposed algorithm has
been compared with other techniques to optimise the classifier’s parameters,
including PSO, grid search, and random search, which is used as a control
algorithm. The results demonstrate a statistically significant outperformance
of the proposed optimisation technique over other techniques on the same
datasets. The next section outlines the experiment setup.
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4.5.1 Experiment setup

In this experiment, DFO was used to search for the optimal kernel param-
eters: C and γ. In this model, F-measure was deployed as an evaluation
metric and the performance of DFO was compared with that of other param-
eter optimisation techniques to find the optimal kernel values over a set of
benchmark datasets (more details on the performance metric in Chapter 2,
Section 2.5). In order to evaluate the performance of the proposed technique,
eight real-world datasets are used and available from the UCI machine learn-
ing repository 7. These datasets are imbalanced and they vary in size and
class distribution. Moreover, they have been widely used as benchmarks to
compare the performance of various methods in the literature. Table 4.18
provides a description of the datasets used. In this experiment, the Abalone
datasets for the class “9” versus “18” and for the Vehicle dataset, the model
is applied on the class “Van” vs the others. Moreover, normalisation was ap-
plied to the datasets to scale each feature value to a [0,1] range, and instances
with missing values were removed.

TABLE 4.18: Dataset list

Dataset Minority Class Majority Class Attributes

Vehicle 199 647 18
Sonar 97 111 60
Ionosphere 34 126 34
WDBC 212 357 32
Abalone 42 689 8
Hepatitis 32 123 19
German credit 300 700 20
Breast Cancer 241 458 9

Furthermore, to make predictions on new data valid, a train/test split was
used, in which 80% of the dataset was used for training and 20% was used
for testing. The advantages of train/test split are that the optimised C and γ

are evaluated on unseen dataset. As the datasets are imbalanced, F-measure
was used as a fitness value for SVM, in which the goal was to find the C and
γ which would give the maximum F-measure.

7The datasets are available at: http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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DFO for parameters optimisation

In this experiment, 50 flies were set to optimise the SVM’s parameters, in
which the range for C was defined as [2−5,215] and the range for γ was de-
fined as [2−15,23] based on Hsu, Chang, and Lin, 2003. The iterations allowed
were equal to 10. The number of the flies and the total iterations allowed
are the best empirically chosen values. At the initialisation phase, each fly was
assigned randomly to two values, with the first value being for C and the sec-
ond for γ; by using these values the fly’s fitness, the F-measure, is calculated.
The fitness value was stored for each fly to find the best neighbouring fly and
the best fly in the whole swarm. At every iteration, the components of the po-
sition vector were independently updated at the update phase, considering the
components vector for the best neighbouring fly and the components vector
for the best fly in the whole swarm. It also considered if the random number,
r, that was generated from the uniform distribution on the range [0,1], is less
than the disturbance threshold, ∆. In the experiment, the ∆ was empirically
equal to 0.5, which meant that 50% of the flies’ components were randomly
initialised to new positions in the search space. This enhanced the diversity
of the algorithm and provided a balance between exploration and exploita-
tion. In order to ensure that the performance of the algorithm was not solely
due to the disturbance mechanism, a control algorithm (random algorithm)
was also applied to the problem and the results are reported for comparison.

4.5.2 Results

Table 4.19 summarises the results of applying DFO as an optimisation algo-
rithm and compares them with other methods on the same datasets. This
includes PSO, grid search, and random search. As shown in the table, the
use of DFO was found to improve the F-measure for all datasets and the
proposed model outperformed other techniques on the same datasets. For
example, for the Ionosphere dataset, the F-measure increased from 94.52%,
as obtained by the PSO, to 98.59%. Similar improvements in the F-measure
can be seen in the rest of the datasets. As a result, the proposed model which
uses DFO to optimise the SVM kernel’s parameters C and γ, demonstrates
the ability to improve the classifier performance on imbalanced datasets.

As Fig 4.12 illustrates, while the other techniques exhibit varying perfor-
mance over different datasets, DFO is shown to provide a consistent outper-
formance over all datasets. Given the importance of conducting a statistical
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analysis to measure the presence of any significant difference in the perfor-
mance of the proposed model and the other techniques including PSO, grid
search and random search, the t-test was applied. This statistical significance
test was applied using the outcome of all the trials (30 runs) on each exper-
iment. The results show that, the F-measure difference is significant at 5%
level. The result of this test indicates that the proposed optimisation tech-
nique offers a statistically significant improvement in the classifier’s perfor-
mance on the imbalanced datasets when compared to the other techniques.
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FIGURE 4.12: Comparison of F-measure on all datasets

Impact of Disturbance Threshold

The disturbance mechanism in DFO provides a stable independent conver-
gence throughout the optimisation process. It also maintains a balance be-
tween exploration and exploitation. At the update phase, the ∆ is the only
adjustable parameter controlling the diversity of the algorithm that needs to
be set. A suitable value for this parameter depends on the size of the swarm,
the number of iterations and the size of the search space. Therefore, further
work needs to be done to find a theoretically suitable value for this param-
eter. In this experiment, ∆ was empirically set to 0.5, which allowed for an
enhanced diversity of the population in covering the search space, as well as
the ability to escape local optima.
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TABLE 4.19: Performance measurements comparison of DFO-
SVM and other techniques

Dataset Method Accuracy Sensitivity Specificity F-measure AUC

WDBC PSO 92.98% 93.33% 92.75% 93.00% 0.93
Grid 94.73% 90.69% 97.18% 95.00% 0.93

Random 97.36% 93.87% 100% 97.35% 0.96
DFO 99.12% 98% 100% 99.12% 0.99

Sonar PSO 92.85% 90.90% 100% 92.86% 0.92
Grid 87.71% 76.19% 95.14% 84.21% 0.823

Random 88.90% 92.30% 81.25% 88.00% 0.86
DFO 97.61% 96.42% 100% 97.63% 0.98

Ionosphere PSO 94.36% 92.30% 100% 94.52% 0.96
Grid 97.14% 95.83% 97.83% 95.83% 0.95

Random 97.18% 100% 91.30% 97.15% 0.95
DFO 98.59% 97.87% 100% 98.59% 0.98

Abalone PSO 93.87% 30.76% 100% 92.35% 0.65
Grid 97.95% 40.00% 100% 57.14% 0.88

Random 96.59% 37.50% 100% 95.85% 0.68
DFO 97.27% 62.50% 99.28% 97.09% 0.80

Hepatitis PSO 87.50% 33.33% 100% 84.82% 0.66
Grid 87.50% 83.33% 90.00% 83.33% 0.83

Random 87.50% 50.00% 92.85% 87.50% 0.71
DFO 93.75% 100% 93.33% 94.68% 0.96

Vehicle PSO 95.29% 86.36% 98.41% 95.21% 0.92
Grid 98.22% 98.43% 97.62% 98.81% 0.99

Random 98.24% 95.35% 99.21% 98.23% 0.97
DFO 99.41% 97.50% 100% 99.40% 0.98

German Credit PSO 76.00% 54.90% 83.22% 76.14% 0.69
Grid 79.33% 45.74% 94.66% 58.11% 0.83

Random 73.50% 48.28% 82.39% 72.11% 0.65
DFO 78.00% 65.07% 83.94% 78.00% 0.74

Breast Cancer PSO 97.81% 97.77% 97.82% 97.81% 0.97
Grid 99.25% 97.94% 100% 98.56% 0.96

Random 96.34% 94.00% 97.70% 96.34% 0.95
DFO 98.54% 98.70% 98.88% 98.59% 0.98

As stated previously, a random algorithm was included in the compari-
son as a control algorithm to ensure the DFO’s performance was not solely
attributable to its disturbance mechanism and that the coupled mechanisms
of forming and breaking the swarm, together, gave rise to the performance
of the algorithm. Equally, in order to demonstrate the impact of the absence
or reduction of diversity (induced through the disturbance mechanism), an-
other control algorithm with a small disturbance threshold (∆ = 0.001) is pro-
posed. Fig 4.13 illustrates that the sole presence of diversity or the lack of it,
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FIGURE 4.13: Negative impact of reducing the disturbance
threshold to ∆ = 0.001

negatively impacts the performance of the algorithm.

4.5.3 Summary

Class imbalance is a major problem in machine learning. This experiment
investigated the use of DFO to optimise the RBF kernel’s parameters to im-
prove the classifier performance without changing the distribution of the
dataset by applying data level solutions such as oversampling or undersam-
pling the dataset. The proposed method had a better, statistically significant
performance when compared to other techniques on all datasets. Moreover,
the simplicity of this swarm intelligence algorithm adds to its appeal when
applied to complex search and optimisation problems as it has only one pa-
rameter to tune in contrast with several other swarm and evolutionary com-
putation techniques, which have more. Future work is needed to compare
the performance of DFO with that of other swarm and evolutionary compu-
tation techniques in larger datasets.

4.6 Experiment VI: Feature selection and parame-

ters tuning using DFO

In Experiment 4.5, DFO was successfully applied to tune SVM parameters.
Due to this, it was extended further to perform simultaneous feature selec-
tion and parameters tuning. The purpose was to reduce dimensionality and
overcome the class imbalance problem in various applications such as med-
ical diagnosis. In this experiment, a model using DFO was proposed to tune
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the kernel’s parameters whilst finding a subset of features. To evaluate the
proposed model, two microarray datasets were used: Small Round Blue Cell
Tumours (SRBCT) and Leukemia MLL datasets. The classification accuracy
of the developed model was compared with that of other models from the lit-
erature. The results indicate that the proposed approach outperforms various
techniques from the literature. Moreover, the proposed model was evaluated
using F-macro, an evaluation metric for imbalanced datasets, and the results
indicate that the model is applicable to imbalanced datasets.

4.6.1 Experiment setup

This work developed a DFO based approach, DFO-SVM, for feature sub-
set selection and kernel parameter optimisation. To evaluate the proposed
model, two multi-class microarray high dimensional datasets were used, as
shown in Table 4.20. The two datasets were the SRBCT dataset (Khan et al.,
2001) and the MLL dataset (Armstrong et al., 2002). These multi-class high
dimensional datasets are widely used as benchmarks to compare the perfor-
mance of various methods in the literature (Li and Yin (2013) and Sharma
and Paliwal (2008)). The relative frequencies of each class in both datasets
are:

• SRBCT datasets: contains 83 instances 29 of which are instances of
Ewing’s sarcoma (ES) (34.9%), 25 are instances of rhabdomyosarcoma
(RMS) (30.1%), 18 are instances of neuroblastoma (NB) (21.7%) and 11
are instances of Burkitt’s lymphoma (BL) (13.3%).

• MLL dataset: contains 72 instances 24 of which are instances of acute
lymphoblastic leukemia (ALL) (33.33%), 28 are acute myeloid leukemia
(AML) (38.88%) and 20 are instances of mixed-lineage leukemia gene
(MLL) (27.77%).

The model used multi-class SVM, One-vs-the-Rest (OvR), in which one clas-
sifier is fitted per class and each classifier is fitted against other classes. As
the datasets suffer from high dimensionality the RBF kernel is used as shown
in Eq 2.3.

At the preprocessing stage, feature scaling was applied to the datasets to
standardise the range of values to [0,1]. This is also known as normalisation
and is an important preprocessing step to avoid numerical difficulties in the
calculation. In this experiment, 10-folds cross validation was used.
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The approach consisted of two phases: filter and wrapper. In the first
phase, a filtering algorithm was used to rank the genes. In this experiment,
information gain was used to find the top 50 genes (see Chapter 2, section 2.4).
As these genes are usually highly correlated, they were further reduced in
the second phase in which DFO was used to find a subset of features whilst
optimising the RBF kernel parameters, C and γ. This phase applied a wrap-
per approach using a meta-heuristic search technique in which the goal was
to find a subset of features and optimise the kernel’s parameters while im-
proving the classifier performance. The next section presents the two steps
that were used to apply the filter approach, optimise the kernel’s parameters
and perform feature selection.

Step I: Information gain

In this experiment, information gain was used first to rank the top 50 genes.
Numeric features were discretised using the Mean- Entropy based discretisa-
tion method because it has been found to be more effective when classifying
gene expression data (Li, Liu, and Wong (2003), Liu, Li, and Wong (2002),
and Li, Zhang, and Ogihara (2004)).

TABLE 4.20: Dataset list

Dataset Features Instances Classes

SRBCT 2308 83 4
MLL 12582 72 3

Step II: DFO for feature selection and parameters optimisation

In this experiment, 50 flies were used to find a subset of features while op-
timising the RBF kernel’s parameters, in which the range for C and γ were
defined as [2−5,215] and [2−15,23] respectively (Hsu, Chang, and Lin, 2003)
and the value of each bit for feature selection ranged between 0 and 1. At
the initialisation phase, each fly was assigned randomly to a vector of size
D, (where D = 52), in which the first two values , PC and Pγ , were for C
and γ and the remaining 50, F2 to FD-2, were for feature selection as shown in
Fig 4.14. If the value of Fd was more than 0.5 then its corresponding feature
is chosen when building the classification model. Conversely, if the value
of Fd was less than 0.5 then its corresponding feature was not chosen when
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building the classification model. Using these values, the fitness function
was calculated.

TABLE 4.21: DFO parameters

DFO parameters Value

Number of flies 50
Number of iterations 30
Disturbance threshold 0.05

PC Pγ F2 . . . Fd . . . FD-2 FD-1

FIGURE 4.14: Vector representatives

After all flies were assigned a position in the D-dimensional space, each
fly’s fitness was calculated and the maximum fitness was set as the global
best fitness and labelled as the global best fly. At the update phase, the com-
ponents of the vector were independently updated based on the global best
fitness (the global best fly) and the best neighbour (the neighbour with a
higher fitness). Note that if the position of the fly updated to beyond its
lower or upper bound, the fly’s component was assigned to the value of its
corresponding lower or upper bound. This update happened whenever a
random number, r, that is generated from the uniform distribution on the
range [0,1], was less than ∆.

However, if the value of r was more than the value of ∆, the flies were
randomly initialised to new positions in the search space (resetting the posi-
tion). In this experiment the value of ∆ was equal to 0.05. This meant that
5% of each of the fly’s components would explore a new location and would
increase the algorithm’s overall diversity.

The number of iterations allowed in this experiment was set to 30 8, as
shown in Table 4.21. After the final iteration, the final fitness value and size
of the feature subset were given a score based on Eq 4.2. The obtained feature
subset was further reduced in the next generation, and the results (fitness
value and size of feature subset) were given a score again. The goal was to
minimise the score. If the new score was higher than the old score, then the
optimisation process stopped and the final results obtained. Otherwise, DFO
was run again to further reduce the feature subset.

8The number of the flies and the total iterations allowed are the best empirically chosen
values.
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f(a, b) = λ(1− a) + (1− λ)
b

50
(4.2)

where a is the optimised classification evaluation metric, b is the number of
the selected feature and λ is a weight parameter. In this experiment, λ was
set to 0.25, giving the reduction of the number of features more weight equal
to 0.75. Allowing domain experts to extract knowledge regarding relevant
features and conduct further microarray studies such as statistical pattern
recognition.

The experiment was conducted using two different fitness functions. The
first used the classification accuracy as an evaluation metric. The other used
the macro averaging of F-measure, (F-macro), as it gives equal weight to each
class and so would show the effectiveness of the model on the small classes
with lower frequencies (Özgür, Özgür, and Güngör, 2005). The F-measure is
calculated using the harmonic mean of precision (p) and recall (r) as shown
in Eq 2.8 (see section 2.5). It is a commonly used metric on multi-class im-
balanced datasets (Ye et al. (2012) and Guo and Viktor (2004)). The F-macro
is computed by first calculating the F-measure of each class and then the av-
erage over all classes is taken (This approach allows each class to have equal
weight) (Zhang, Wang, and Zhao, 2015).

The next section summarises the results of the experiments.

Experiment I:

This section presents the results of applying the hybrid approach, DFO- SVM,
while using the model classification accuracy as a fitness value.

Table 4.22 summarises the results of applying the hybrid approach, DFO-
SVM, to perform parameters optimisation and feature selection. As shown
in Table 4.22, the use of DFO reduces the number of features while improv-
ing the classification accuracy. For example, the average accuracy for the
SRBCT dataset for 30 runs, is 96% and the average size of the features sub-
set is 7.66 and the best obtained accuracy is 100% with a feature subset size
equal to 7. Furthermore, the results were statistically analysed to measure the
presence of any significant difference in the performance of the hybrid ap-
proach (combination of feature selection and parameters optimisation) and
the performance of the classifier without parameter optimisation (classifier
performance on the selected features using the default SVM kernel param-
eters: C=1.0, γ=1/Number of features). The t-test , which is a statistical
significance test, was applied using the results of all the trials (30 runs) on
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each experiment: the hybrid DFO-SVM and the classifier performance on
the selected features with the default RBF kernel’s parameters. Based on the
results, the classification accuracy difference is significant at 5% level. The
result of this test indicates that the proposed hybrid approach of parameters
optimisation and feature subset selection offers a statistically significant im-
provement on the datasets when compared to the classifier performance on
the selected features without parameters setting. Thus, the developed ap-
proach can simultaneously optimise the parameters values and find a subset
of features without lowering SVM classification accuracy. Figs 4.15 and 4.16
illustrate the difference of the classification accuracy on the SRBCT dataset
and the MLL dataset over the 30 trials.

TABLE 4.22: Classification accuracies

Average Average feature Best Accuracy
Dataset accuracy selected (Features)

SRBCT 96.00%±0.04 7.66 100.00%(7)
MLL 93.00%±0.03 5.1 98.57%(10)
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FIGURE 4.15: Com-
parison of the classi-
fication accuracy on

the SRBCT dataset
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FIGURE 4.16: Com-
parison of the classi-
fication accuracy on

the MLL dataset

Experiment II:

The SRBCT dataset does not only suffer from high dimensionality but also
from class imbalance, with ES=34.9%, RMS=30.1%, NB=21.7% and BL=13.3%.
Therefore, classification accuracy rate, as shown in Eq 2.5, in section 2.5, is
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not an effective performance metric for models on imbalanced datasets be-
cause it does not show how the model correctly classified the minority class
instances (Zhu and Davidson, 2007). For example, in a case where the mi-
nority class accounts for only 2% of the training dataset, a 98% accuracy does
not mean that the classifier is perfect as it can mean that it is classifying one
class perfectly. Therefore, caution is advised when evaluating a model on
imbalanced data, as accuracy is only suitable if the cost of FP is equal to the
cost of FN, which is not always the case as in medical diagnoses. In cases
like this, more suitable evaluation metrics should be used, especially when
dealing with multi-class imbalanced datasets (Sun, Wong, and Kamel, 2009).

An alternative performance metric for multi-class datasets is the F-macro,
which is a metric used to give equal weight to all classes regardless of their
relative frequency and is usually affected by the classifier performance on
rare classes. This section summarises DFO-SVM performance when the fit-
ness function for the SVM is the F-macro, with the goal being to search for a
feature subset while improving the F-macro.

Table 4.23 summarises the results of optimising the F-macro for the SR-
BCT dataset and the MLL dataset. The results indicate that the proposed
model is capable of improving the model F-macro while reducing the num-
ber of features and optimising the kernel’s parameters. As shown in Ta-
ble 4.23, for the SRBCT dataset, the best F-macro is equal to 100% with feature
subset size equal to 8 and, for the MLL dataset, it is equal to 98.66% with fea-
ture subset size equal to 5.

TABLE 4.23: F measure on SRBCT

Average Average feature Best F-macro
F-macro selected (Features)

SRBCT 94.72% ± 0.04 7.13 100.00%(8)
MLL 93.46% ± 0.03 5.22 98.66%(5)

Moreover, to determine if the results are statistically significant, a t-test
was applied to measure if there was a difference in the performance of the
hybrid approach (combination of feature selection and parameters optimisa-
tion) and the performance of the classifier without parameter optimisation
(classifier performance on the selected features using the default SVM kernel
parameters) while using F-macro as a fitness value. The results indicate that
the proposed approach is statistically significant at 5% level with p-values
less than 0.05. Thus the proposed approach, DFO-SVM, performs better on
imbalanced datasets while using the F-macro as an evaluation metric.
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FIGURE 4.17: Comparison of F-macro on the SRBCT dataset

4.6.2 Results

Tables 4.24 and 4.25 summarise a comparison of the obtained results in terms
of classification accuracy and the number of features with other methods
from the literature for the SRBCT and MLL datasets respectively . For DFO-
SVM, the classification accuracy presented is the best results obtained from
30 independent runs. From Tables 4.24 and 4.25, it can be observed for the SR-
BCT dataset and MLL datasets the proposed model outperforms in terms of
both classification accuracy and the number of selected features when com-
pared with methods reported in (Chuang et al. (2008), Khan et al. (2001), and
Liu, Krishnan, and Mondry (2005)). The same classification accuracy was
obtained by Zhao and Wu (2016) and Agrawal and Bala (2007) with fewer
numbers of selected features. In Zhao and Wu (2016), the average classi-
fication accuracy and number of selected features was reported. However,
in (Agrawal and Bala, 2007) the optimisation was applied using a train/test
split which causes a feature selection bias, as using the same training dataset
to conduct both feature selection and classification can lead to feature selec-
tion bias. This bias will cause over-fitting and will make it difficult to evalu-
ate new data (Krawczuk and Łukaszuk, 2016).

In terms of F-macro, which is one of the appropriate measures for imbal-
anced datasets, the proposed approach gives higher F-macro values for the
SRBCT dataset and the MLL datasets and fewer numbers of features when
compared with the results reported in (You and Li, 2011) as shown in Ta-
bles 4.26 and 4.27. Thus, the proposed approach is applicable to multi-class
imbalanced datasets.
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TABLE 4.24: DFO-SVM performance comparisons for the SR-
BCT dataset (Accuracy)

Evaluation
Dataset metric Validation Results Features Classifier Reference

SRBCT Accuracy LOOC 100% 431 k-NN IBPSO 1

SRBCT Accuracy 10-folds 100% 4 k-NN WLMGS 2

SRBCT Accuracy 10-folds 100% 5 SVM WLMGS 2

SRBCT Accuracy Train/Test 100% 3 SVM GA+SVM 3

SRBCT Accuracy 3-folds 100% 96 ANN ANN 4

SRBCT Accuracy LOOC 100% 58 K means
Clustering

Mrmr 5

SRBCT Accuracy 10-folds 72.75% 45 K-means
Clustering

K-means 6

SRBCT Accuracy 10-folds 74.37% 45 K-means
Clustering

K-means 6

SRBCT Accuracy 10-folds 100% 7 SVM DFO-SVM

1. Chuang et al., 2008
2. Zhao and Wu, 2016
3. Agrawal and Bala, 2007

4. Khan et al., 2001
5. Liu, Krishnan, and Mondry, 2005
6. Remli et al., 2017

TABLE 4.25: DFO-SVM performance comparisons for the MLL
dataset (Accuracy)

Evaluation
Dataset metric Validation Results Features Classifier Reference

MLL Accuracy LOOC 100% 1292 k-NN IBPSO 1

MLL Accuracy 10-folds 100% 4 k-NN WLMGS 2

MLL Accuracy 10-folds 100% 4 SVM WLMGS 2

MLL Accuracy 10-folds 98.57% 10 SVM DFO-SVM

1. Chuang et al., 2008 2. Zhao and Wu, 2016

TABLE 4.26: DFO-SVM performance comparisons for the SR-
BCT dataset (F-macro)

Evaluation
Dataset metric Validation Results Features Classifier Reference

SRBCT F-macro 5-folds 100% 99 FGS1-SVM FrPA 1

SRBCT F-macro 10-folds 100% 8 SVM DFO-SVM

1. You and Li, 2011

TABLE 4.27: DFO-SVM performance comparisons for the MLL
dataset (F-macro)

Evaluation
Dataset metric Validation Results Features Classifier Reference

MLL F macro 5-folds 97.00% 100 FGS2-SVM FrPA 1

MLL F macro 10-folds 98.66% 5 SVM DFO-SVM

1. You and Li, 2011
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4.6.3 Discussion

As shown in the graphs of Fig 4.19, the proposed approach converges to the
optimum solution in less than or equal to 10 generations (in all 30 trials).
Moreover, Fig 4.18 is an example of one run that shows the reduction of the
number of features over six generations in the SRBCT dataset. The proposed
approach reduces the number of features from 50 to 6, with classification
accuracy equal to 98.14 %.

The flow of information between flies creates similar flies while main-
taining diversity by applying the disturbance mechanism. In DFO, the dis-
turbance mechanism, which breaks part of the swarm to discover new loca-
tions in the search space, promotes diversity, decreases the risk of pre-mature
convergence, and provides a balance between global exploration and local
exploitation. In this experiment, the ∆ is empirically set to 0.05. This guaran-
tees that a percentage of the flies are randomly initialised to a new position
in the search space, increasing the global exploration and lowering the risk
of being trapped at the local optimum.

A balance between global exploration and local exploitation is important
in any swarm intelligence algorithm to achieve good performance. If there is
a high rate of exploitation and less exploration, the algorithm may converge
quicker but probably to the local optimum. On the other hand, if there is a
high rate of exploration and less exploitation, the flies will wander around
the search space (increase randomness) which will slow the convergence.
Therefore, setting a balance between global exploration and local exploita-
tion ultimately leads to the best algorithm performance. However, it has
been found that achieving a good balance is still a problem as no algorithm
has claimed to achieve this balance (Yang, 2014). In other words, the bal-
ance in any algorithm is an optimisation problem, as it is an optimisation of
optimisation problem. Moreover, this balance has many factors such as the
population size, search space and the number of iterations. Therefore, tuning
these parameters is a challenge in any optimisation problem.

4.6.4 Summary

This experiment investigated DFO performance to simultaneously optimise
the kernel’s parameter values for C and γ whilst selecting the optimal fea-
ture subset on two widely used microarray datasets. The results indicate
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FIGURE 4.18: Reducing the number of features over one gener-
ation in the SRBCT dataset (Accuracy)

F-macro Accuracy
 

Nu
m

be
r o

f f
ea

tu
re

s

0

10

20

30

40

50

0

10

20

30

40

50

Generations
0 2 4 6 8 10

0 2 4 6 8 10

Nu
m

be
r o

f f
ea

tu
re

s

0

10

20

30

40

50

0

10

20

30

40

50

Generations

0 2 4 6 8 10

0 2 4 6 8 10

Nu
m

be
r o

f F
ea

tu
re

s

0

10

20

30

40

50

0

10

20

30

40

50

Generations
0 2 4 6 8 10

0 2 4 6 8 10

Nu
m

be
r o

f f
ea

tu
re

s

0

10

20

30

40

50

0

10

20

30

40

50

Generations

0 2 4 6 8 10

0 2 4 6 8 10

FIGURE 4.19: DFO-SVM feature selection over generations on
SRBCT (top) and MLL (bottom) datasets over 30 trials.

that the proposed approach is capable of finding the optimal kernel param-
eter values for SVM and performing feature selection while improving the
overall model performance. Moreover, the use of a combination of feature
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selection and parameter optimisation was found to improve the model per-
formance when compared with feature selection only. In this experiment, re-
sults were obtained using the RBF kernel of the SVM. The simplicity of DFO
makes it applicable in solving complex search and optimisation problems.
Moreover, when compared to other swarm intelligence algorithms, DFO has
fewer parameters to tune, apart from the population size; the only parameter
to tune is the disturbance threshold. Future work includes experiments using
other kernel types and other datasets with different ranges of dimensionality.
Moreover, finding a theoretically optimal value for ∆, considering dimension
dependent value for ∆ and an adaptable and dynamically changing ∆ value
depending on the problem.
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Chapter 5

Discussion

This chapter discusses the conducted experiments in the context of the results
found and their main achievements. It also discusses the limitations of the
experiments.

Class imbalance occurs when the number of instances in the majority
class is significantly higher than in the minority class. Thus, the dataset is
not evenly distributed. Various data mining preprocessing techniques have
been applied to solve the issue of imbalanced data. However, these solutions
face problems such as over-fitting. Despite these problems, researchers are
still implementing various data mining preprocessing techniques to over-
come the class imbalance issue. The literature review suggests three main
approaches to deal with class imbalance: sampling, algorithmic solutions,
and feature selection. There is no clear general answer yet as to which solu-
tion to choose. Batuwita and Palade, 2013 concluded that solutions to the
class imbalance problem are dependent on the datasets. Therefore, there
is no solution that fits all, and applying various data level and algorithmic
level solutions and evaluating their performance on imbalanced datasets is
highly recommended. This has also been suggested by Longadge and Don-
gre, 2013 in their review of the class imbalance problem. The authors found
that applying two or more techniques gives better results when dealing with
imbalanced datasets. It has also been found that a larger number of stud-
ies suggest solutions to class imbalance for binary classification, while only
a few tackle the problem in multi-class classification. This is possibly due to
two reasons, as stated by Ali, Shamsuddin, and Ralescu, 2013. One reason
is that the class imbalance problem occurs more often in applications with
binary classifications, such as medical diagnoses (patients versus controls).
Another reason is that it is more complicated and computationally expen-
sive to deal with multi-class problems. Moreover, an increasing number of
models are using various state-of-the art swarm intelligence techniques such
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as PSO as a solution to the class imbalance problem. There is also an in-
crease in the number of hybrid techniques that combine swarm intelligence
algorithms with various data mining techniques to overcome the class im-
balance problem. GA and PSO remain the most commonly used methods,
along with various classification algorithms such as SVM (Deep Singh and
Chug, 2017). However, the existing techniques have limitations, and more
research is needed to investigate other swarm based algorithms and their ca-
pabilities in handling the class imbalance problem in order to overcome these
limitations. For example, it has been found that PSO suffers from premature
convergence. This is likely because particles might converge to a point that is
between the personal best and the global best and that point might be a local
optimum. Another limitation is the loss of diversity found in PSO because of
the fast flow of information between the particles (Trelea, 2003).

In this thesis, various experiments were carried out to investigate avail-
able solutions for overcoming the class imbalance problem by combining
two or more solutions to improve the classifier performance on imbalanced
datasets. In experiment I, a model using a hybrid of data level and algorith-
mic level solutions was proposed to tackle imbalanced data. At the data level,
random undersampling and SMOTE were combined to balance the dataset.
Moreover, grid search was used to optimise the SVM parameters: the ker-
nel type, the misclassification cost C, and γ. The dataset used in this work
was the direct marketing dataset. For better evaluation, the proposed model
used various performance metrics to evaluate the model performance: AUC,
accuracy, sensitivity, and specificity. The proposed model performed com-
petitively when compared with other models on the same dataset. Despite
the promising results of the combined approach, the model still cannot be
generalised, as only one dataset was used. Another limitation is the use of
grid search to optimise the kernel parameters. Grid search is a time con-
suming and computationally expensive method to optimise the values (see
section 2.3.1). Future work can evaluate the performance of the suggested
model on other datasets from different fields with different class distribution.
Moreover, it could investigate the use of meta-heuristic search algorithms to
optimise the SVM kernel parameters and overcome the grid search limita-
tions (for more details on the experiment, see section 4.1).

As previously mentioned, there has been an increase in the use of swarm
intelligence techniques to solve the class imbalance problem. This is because
swarm intelligence algorithms have performed well in tackling the class im-
balance problem in various applications (for more details, see section 3.4).
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This research explored the possibility of using SDS to handle the class im-
balance problem, taking advantage of its speed (thanks to the partial func-
tion evaluation) and the various recruitment strategies that can be used to
balance the global exploration and local exploitation in the search problem.
Experiment II was a first attempt to use SDS in undersampling and investi-
gated a new approach for balancing the marketing dataset using SDS. In the
context of the results reported in Experiment II, the proposed model, which
used SDS, could potentially serve as a computationally cheap yet competi-
tive swarm intelligence approach that could be applied in the growing field
of data mining to re-sample frequently imbalanced classes in real-world ap-
plications. The results of this experiment have shown that while comparable
to the comprehensive yet impractical Euclidean distance tool, SDS offers a
promising alternative. It can be used to perform an “informed” undersam-
pling of the majority class, as opposed to random undersampling, which
might cause loss of information. However, there are some limitations in
experiment II. Firstly, only one dataset was used to evaluate the proposed
model, so it should be evaluated on other imbalanced datasets. Moreover,
the performance of the proposed model has not been compared with that of
other swarm based techniques. Finally, the population size is constant over
the iterations allowed. Thus, a dynamically changing population size should
be considered to reduce computational time and memory (more details about
the experiment can be found in section 4.2).

Based on the promising results of experiment II, SDS’s behaviour in un-
dersampling was further explored and combined with other methods on var-
ious datasets in Experiment III. In this experiment, a hybrid approach was
proposed to deal with real-world imbalanced datasets. The proposed model
used SMOTE to perform the oversampling and the agents of SDS to per-
form an “informed” undersampling of the majority classes. Moreover, grid
search was used to tune the C and γ SVM parameters. Acknowledging the
role of SDS in removing exact duplicates (redundancies) of instances from
the majority on the outcome of the classifiers, as seen in Experiment II, the
proposed SDS algorithm in this experiment, Experiment III, conducted its
process at the feature-level (attribute-level) of the datasets using a feature-
level threshold (more details on the threshold calculation in section 4.3.1). In
other words, the undersampling was carried out in the feature space, not in
the instance space. This algorithm demonstrated effectiveness in identifying
feature-level duplications, which were shown to also play an important role
in the performance of the classifier. This experiment presented an analysis of
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both instance- and feature-level redundancies and established a link between
the feature-level duplications and the role of the feature-level undersampling
mechanism. This analysis was accompanied by an investigation of the be-
haviour of the agents through their activity level during the undersampling
process. It was shown that agents’ activity is directly proportional to the level
of redundancy in the datasets. In other words, the higher the level of feature-
level duplications, the higher the level of agent activity, which also resulted
in faster convergence of the population. This experiment also investigated
the ability of the algorithm to comprehensively explore the search space by
forming a quick decision using the partial function evaluation and without
having to visit all the features of each instance in the datasets. This was done
using two methods: calculating the percentage of the instances visited by
the SDS agent and the percentage of features visited (see Fig 4.5 in section
4.3). In this experiment, SDS proved to be an effective technique for under-
sampling imbalanced datasets with a high feature duplication rate because
it limited the effect of removing useful information from the majority class
while improving the model’s overall performance. In spite of the promis-
ing results, there are some limitations to the proposed model. First, it was
noted that during the undersampling process, there was a gradual decrease
in the size of the search space. By establishing a more dynamic population
size and iteration numbers, the coverage of the search space could be made
homogeneous throughout the undersampling process. Moreover, the pro-
posed model removes one instance at time. Therefore, more work is needed
to improve the proposed approach to make it able to remove more than one
instance at a time, thus speeding up the undersampling process, and make it
applicable for large datasets (more details about the experiment can be found
in section 4.3).

Experiments II and III demonstrated that SDS can be used in perform-
ing an informed undersampling of the majority class to remove redundant
data while protecting useful information. Based on the promising results,
SDS was extended further to tackle the class imbalance problem at the fea-
ture level by performing feature selection to find the most relevant feature
subset for the classification task. In Experiment IV, SDS was adapted to find
a suitable feature subset. Moreover, SVM was used as a classifier to evaluate
the predictive accuracy of the agent. In other words, the fitness function of
SDS was the SVM classification accuracy. The proposed method exhibited
a statistically significant outperformance when compared with the perfor-
mance of the classifier without SDS-powered feature selection. The results
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were also compared with other methods from the literature over nine real-
world datasets. It was shown that the proposed SDS based feature selec-
tion (SDS-FS) offered a competitive performance compared to other methods
on datasets with a feature size greater than 10. In this experiment, the be-
haviour of the proposed algorithm was investigated in the context of global
exploration and local exploitation. SDS-FS uses a context sensitive recruitment
strategy. In this, if an active agent finds another active agent with whom it
shares the same hypothesis, the active agent is set to inactive. This frees the
agent, improves the agent’s diversity and increases its global exploration.
Moreover, to improve the local exploitation the proposed approach used an
offset mechanism. When an inactive agent picks an active agent it copies its
hypothesis with one random feature offsetted or changed (for example, 1 is
changed to 0 or 0 is changed to 1). By combining both approaches, context
sensitive strategy and offset mechanism, a balance between the global explo-
ration and local exploitation was achieved. Despite the promising results of
the novel approach, there are a few limitations. One is that the size of the
feature subset is empirically set to half of the original feature size, so the size
of the feature subset needs to be set beforehand by the user. Therefore, more
work needs to be carried out to find the optimal and adaptive feature subset
size.

In terms of the algorithmic level solution, Experiment v explored the use
of DFO as a continuous optimiser to optimise the SVM kernel’s parameters (C
and γ) and perform cost sensitive learning to improve the classifier’s perfor-
mance on imbalanced datasets. In this experiment, the use of the swarming
behaviour of the flies and their diversity (attributed to the ∆ at the update
phase) in the search space in conducting cost sensitive learning was investi-
gated on eight real-world datasets. The proposed model was compared with
other techniques for optimising the classifier’s parameters, which include the
well-known PSO, the frequently used grid search, and random search, which
is used as a control algorithm. The results demonstrate the statistically signif-
icant outperformance of the proposed optimisation technique over the other
techniques on the same datasets. In this experiment, ∆, which was the only
parameter to set, was set to 0.5 to improve the algorithm’s diversity (50%
of the flies would commence the search in another random location within
the search space). The purpose was to explore new locations in the search
space and avoid being trapped at a local optimum. Moreover, to investigate
the effect of ∆, DFO was applied to optimise the kernel’s parameters with
a ∆ equal to 0.001. As shown in Fig 4.13, the performance of DFO with ∆
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equal to 0.5 was better than the DFO with a ∆ equal to 0.001 and the com-
plete random search. Moreover, the performance of DFO with ∆ equal to 0.5
was better than a random search for optimising the SVM kernel’s parame-
ters. The motivation to use DFO is its simplicity as an SVM kernel optimiser.
DFO has fewer parameters to adjust or tune, as opposed to the widely used
GA and PSO (more details can be found in Chapter 3). In DFO, the only
parameter is ∆ at the update phase. The simplicity of this algorithm, with
its fewer components and fewer tunable parameters, makes it applicable in
solving search and optimisation problems. In this experiment, one limitation
is that the value of ∆ was empirically chosen. Thus, more work is needed to
theoretically set the value of ∆ to control stochasticity in the algorithm and
provide a balance between global exploration and local exploitation.

After the promising results of using DFO to perform cost sensitive learn-
ing, the use of DFO was extended to provide a model that optimises the
kernel parameters and performs feature selection simultaneously, as shown
in Experiment VI. The model was evaluated on two multi-class microarray
datasets, in which the experiment was conducted twice using two evaluation
metrics: accuracy and the F-macro. Accuracy was used for comparison pur-
poses as most work in the literature uses accuracy as an evaluation metric
in the fitness function. However, accuracy as an evaluation metric is irrel-
evant when the classifier is trained on imbalanced datasets. Therefore, it is
recommended to employ other evaluation metrics when training a model on
skewed datasets. The F-macro was thus used to optimise performance. The
proposed model was compared with other models from the literature. Re-
sults show that the model is capable of optimising the kernel parameters, C
and γ, and perform feature selection. In terms of the F-macro, the model out-
performed the other technique that uses the F-macro in the fitness function,
known as the FrPA technique (You and Li, 2011). DFO has therefore been
demonstrated to be applicable in overcoming the class imbalance problem by
tuning the SVM and removing irrelevant features. However, the results can-
not be generalised as only two datasets were used. The proposed approach
thus needs to be conducted with other datasets that have different imbal-
ance ratios. As with Experiment V, more work is needed to theoretically set
the ∆ value in DFO. Moreover, like other nature-inspired population-based
algorithms consisting of both stochastic and guided parts, the features gen-
erated in this experiment varied from one trial to the next. Thus, more work
is needed to improve the stability in the feature selection, especially in appli-
cations like bioinformatics and medical diagnoses.
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In this thesis, the problem of class imbalance was studied. Various solu-
tions including novel approaches were examined using six different exper-
iments. The investigation used six different approaches, each with its own
way of handling the class imbalance problem. There were a number of goals:
The first was to understand how different techniques can be used to solve
the class imbalance issue, what preprocessing steps are required to prepare
the data for the classification algorithm, and how swarm intelligence can be
used to improve the performance of the learning algorithm on imbalanced
datasets. The second advantage is dealing with datasets that have different
dimensions, different distributions, and different feature types. The third ad-
vantage is that they provide an opportunity to explore the possible solutions
for the class imbalance problem and how this problem can be solved at the
data, algorithmic, and feature level using swarm intelligence techniques. The
final goal was to introduce various novel swarm-based approaches to handle
the class imbalance issue in data mining. Based on the results, there is no sys-
temic approach or general framework to follow when dealing with the prob-
lem of class imbalance, and research is still needed to identify which method
or combination of methods works better. For example, when it comes to
choosing between oversampling or undersampling the dataset, more work
needs to be done so that the techniques or algorithms can automatically
identify whether data should be removed from the majority class or more
instances should be added to the minority class. More work also needs to
be done to combine different techniques and evaluate these combinations to
find out which works better in which problem domain. Rather than trying
only a combination of algorithm level and data level techniques, it could be
interesting to find a combination of different swarm algorithms and a com-
bination of swarm algorithms with non-swarm algorithms such as feature
selection methods that can supplement each other and reduce the customisa-
tion effort of sorting out the class imbalance problem. The scenario in which
there is more than one majority or minority class (multi-classification) is an-
other future dimension that needs more research, as different classes may
advocate for different combinations of attributes that may conflict with each
other. This could make undersampling or oversampling challenging. The
next chapter will outline directions for future research.
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Chapter 6

Conclusion and Future Work

This chapter provides a summary and conclusion. Recommendations for fu-
ture research are also given.

6.1 Summary

The aim of this thesis was to provide a review of current work on the class
imbalance problem in data mining. It offered a definition of key swarm in-
telligence algorithms and highlighted the applications of these algorithms in
solving various aspects of the class imbalance issue. The knowledge gained
from the research activities was then used to implement applications and
evaluate various solutions for imbalanced datasets. First, the possibility of
combining existing techniques to improve the classifier performance on a di-
rect marketing imbalanced dataset was investigated. The performance of the
hybrid data and algorithmic level solution, HybridDA, was compared with
other methods from the literature on the same dataset, and the results show
the outperformance of the proposed model. This highlights the benefits of
combining existing techniques when tackling the class imbalance problem.
Following that, a novel approach that used SDS to undersample the majority
class in the direct marketing datasets was introduced. SDS was combined
with SMOTE to combat the class imbalance problem at the data level. The
outcome of this novel approach was the introduction of an informed under-
sampling technique that reduces the number of instances in the majority class
without removing useful information.

Another novel undersampling approach based on SDS was proposed in
which SDS was combined with SMOTE at the data level and the SVM pa-
rameters were tuned using a grid search at the algorithmic level. The pur-
pose was to improve the classifier performance on imbalanced datasets. The
proposed approach was compared with random undersampling and other
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techniques on nine imbalanced datasets. The results show the outperfor-
mance of the SDS based model when dealing with the class imbalance prob-
lem. Moreover, an analysis of the agent-led approach in undersampling was
provided, in which a link between the feature-level duplications and the role
feature-level undersampling mechanism was found. The analysis found that
the agents activity is directly proportional to the level of redundancy in the
datasets at both instance level and feature level.

Following the promising results of SDS in performing undersampling at
the data level (in both instance space and feature space), the use of SDS was
extended to perform feature selection. SDS was used to reduce the size of the
feature to half of the feature size and improve the SVM performance on nine
imbalanced datasets with different dimensions. The outcome of the investi-
gation shows that SDS based feature selection performs competitively with
other methods on datasets when the original feature size is greater than 10.

In this thesis, DFO was used to investigate the problem of class imbal-
ance and its behaviour was analysed. First, DFO was applied as a contin-
uous optimiser for the SVM kernel parameters. The outcome of this model
is a novel approach for cost sensitive learning from imbalanced datasets us-
ing DFO. The proposed approach gives a higher F-measure, when compared
with other techniques from the literature on all eight datasets. Following
these promising results, the model was extended further to deal with high
dimensionality and to perform feature selection and parameters tuning on
two microarray datasets. Optimising the feature subset and kernel parame-
ters was conducted using two different fitness functions with two different
evaluation metrics including classification accuracy and F-macro. The results
indicate that the proposed DFO based approach can be used to perform fea-
ture selection and tune the kernel parameters. Moreover, the combined ap-
proach gives better results when compared with feature selection only.

Class imbalance is a challenging issue in data mining that occurs in many
real-world applications, and it is not always sufficient to solve the imbalance
problem by adjusting the class distribution. Therefore, research was carried
out to investigate the problem and explore various solutions. Although nu-
merous approaches have been proposed in the literature, the class imbalance
problem remains a challenge in the development of the learning model. This
challenge will become more significant due to recent developments in big
data . Despite the amount of research conducted thus far, there is still no uni-
fied framework to deal with class imbalance. This is because there are various
challenges when dealing with imbalanced datasets, such as class distribution
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and the training samples size. Moreover, it is a dataset dependent problem
as each dataset has its own characteristics, which might affect the classifier
performance. Thus, no solution fits all.

This research has mainly focused on the class imbalance problem. It in-
vestigated the use of combined approaches and swarm intelligence based
techniques, SDS and DFO, to combat the class imbalance problem at all lev-
els: data, algorithmic, and feature level. The results of the various approaches
in this research leads to the same conclusion that no solution fits all. Depend-
ing on the characteristics of the dataset, such as the number of features, the
imbalance rate, and the size, solutions may vary. One should try two or more
techniques because hybrid approaches give better results when dealing with
imbalanced datasets. When employing a hybrid approach, the use of two or
more evaluation metrics to compare the model performance on the imbal-
anced dataset is recommended for a better understanding. The findings also
suggest that more work is needed to analyse the nature of the majority and
minority classes in order to gain a better understanding of the reasons for the
difficulties that arise when learning from the imbalanced dataset. There are
many more directions where further developments to the solutions for han-
dling imbalanced datasets can be considered. The next section lists the most
important future research directions.

6.2 Future work

Research and experiments conducted in this study suggest that many more
directions can be identified for investigating further solutions to the class
imbalance problem. This section lists the most important potential directions
for future work.

• Investigate the use of SDS to oversample the minority class by picking
an instance as a model, finding the closest instance, and then generating
a new one. This will create an informed oversampling technique using
SDS. The performance of SDS can be evaluated using various bench-
marks, and its performance can be compared with other oversampling
techniques from the literature.

• Another suggestion is to investigate the use of SDS to oversample the
minority class. This can be achieved by using feature similarities where
values like the median of value difference of each feature is calculated,
then a threshold is used to create instances to increase the number of
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minority class examples until the minority class balances with the ma-
jority class. This approach performs informed oversampling to balance
the dataset.

• The hybridisation of the two swarm intelligence algorithms, DFO and
SDS, in which DFO is used to optimise the best values for the SDS’s
agent size and iterations are allowed when undersampling the dataset
and in order to study the relationship between both values and the cov-
erage percentage of the shrinking search space of the dataset being un-
dersampled. The simplicity of DFO, which has only one parameter to
tune, that is the ∆ the update phase, makes it applicable to solve com-
plex search and optimisation problems. DFO is a numerical optimiser
over a continuous search space. In this future work, the possibility of
using DFO as a discrete optimiser for integer values will be investigated
and the quality of the solution found will be evaluated using various
benchmarks.

• The hybridisation of SDS and DFO on high dimensional and imbal-
anced datasets, in which SDS is used for feature selection and DFO is
used for parameters tuning. The purpose is to take the best of both. SDS
is a discrete optimiser which can be used for feature selection, while
DFO is a continuous optimiser that can be used to optimise the kernel
parameters, C and γ. The hybridisation of the two population-based
meta-heuristic techniques provides a hybrid to simultaneously perform
feature selection and parameters tuning. The performance of the pro-
posed approach can be evaluated against other hybrid models from the
literature.
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Teodorović, D. (2008). “Swarm intelligence systems for transportation engi-
neering: Principles and applications”. In: Transportation Research Part C:
Emerging Technologies 16.6, pp. 651–667.

Thai-Nghe, N., Z. Gantner, and L. Schmidt-Thieme (2010). “Cost-sensitive
learning methods for imbalanced data”. In: The 2010 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8.



BIBLIOGRAPHY 169

Ting, K. M. (2000). “A Comparative Study of Cost-Sensitive Boosting Algo-
rithms”. In: Proceedings of the Seventeenth International Conference on Ma-
chine Learning. ICML ’00. Morgan Kaufmann Publishers Inc., pp. 983–990.

Tiwari, D. (2014). “Handling Class Imbalance Problem Using Feature Selec-
tion”. In: International Journal of Advanced Research in Computer Science &
Technology 2.2, pp. 516–520.

Toksari, M. D. (2006). “Ant colony optimization for finding the global mini-
mum”. In: Applied Mathematics and Computation 176.1, pp. 308–316.

Tomek, I. (1976). “Two Modifications of CNN”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics SMC-6.11, pp. 769–772.

Tran, B. et al. (2016). “Investigation on particle swarm optimisation for fea-
ture selection on high-dimensional data: Local search and selection bias”.
In: Connection Science 28.3, pp. 270–294.

Trelea, I. C. (2003). “The particle swarm optimization algorithm: convergence
analysis and parameter selection”. In: Information Processing Letters 85.6,
pp. 317–325.

Tu, C.-J. et al. (2007). “Feature selection using PSO-SVM”. In: International
Journal of Computer Science.

Unler, A., A. Murat, and R. B. Chinnam (2011). “mr 2 PSO: a maximum rel-
evance minimum redundancy feature selection method based on swarm
intelligence for support vector machine classification”. In: Information Sci-
ences 181.20, pp. 4625–4641.

Vajiramedhin, C. and A. Suebsing (2014). “Feature selection with data bal-
ancing for prediction of bank telemarketing”. In: Applied Mathematical Sci-
ences 8.114, pp. 5667–5672.

Valdés, J. (2004). “Building virtual reality spaces for visual data mining with
hybrid evolutionary-classical optimization: Application to microarray gene
expression data”. In: 2004 IASTED International Joint Conference on Artifi-
cial Intelligence and Soft Computing, ASC, pp. 161–166.

Vuk, Miha and Tomaz Curk (2006). “ROC curve, lift chart and calibration
plot”. In: Metodoloski zvezki 3.1, p. 89.

Wallace, B. C. et al. (2011). “Class Imbalance, Redux”. In: 2011 IEEE 11th In-
ternational Conference on Data Mining, pp. 754–763.

Walton, S. et al. (2011). “Modified cuckoo search: a new gradient free optimi-
sation algorithm”. In: Chaos, Solitons & Fractals 44.9, pp. 710–718.

Wang, H.-b., Y. Yu, and Z. Liu (2005). “SVM classifier incorporating feature
selection using GA for spam detection”. In: Embedded and Ubiquitous Com-
puting – EUC 2005, pp. 1147–1154.



BIBLIOGRAPHY 170

Wang, H. Y. (2008). “Combination approach of SMOTE and biased-SVM for
imbalanced datasets”. In: 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), pp. 228–231.

Wang, J. et al. (2012). “An annual load forecasting model based on support
vector regression with differential evolution algorithm”. In: Applied En-
ergy 94, pp. 65–70.

Wang, K.-J. et al. (2014). “A hybrid classifier combining SMOTE with PSO
to estimate 5-year survivability of breast cancer patients”. In: Applied Soft
Computing 20. Hybrid intelligent methods for health technologies, pp. 15–
24.

Wang, S. (2011). “Ensemble diversity for class imbalance learning”. PhD the-
sis. University of Birmingham.

Wang, W. et al. (2003). “Determination of the spread parameter in the Gaus-
sian kernel for classification and regression”. In: Neurocomputing 55.3, pp. 643–
663.

Wasikowski, M. and X.-w. Chen (2010). “Combating the small sample class
imbalance problem using feature selection”. In: IEEE Transactions on Knowl-
edge and Data Engineering 22.10, pp. 1388–1400.

Wei, C. and Y. Hui-Mei (2014). “An improved GA-SVM algorithm”. In: 2014
9th IEEE Conference on Industrial Electronics and Applications, pp. 2137–
2141.

Weiss, G., K. McCarthy, and B. Zabar (2007). “Cost-Sensitive Learning vs.
Sampling: Which is Best for Handling Unbalanced Classes with Unequal
Error Costs?” In: DMIN. CSREA Press, pp. 35–41.

Weiss, G. M. (2004). “Mining with Rarity: A Unifying Framework”. In: SIGKDD
Explor. Newsl. 6.1, pp. 7–19.

Weiss, G. M. and F. Provost (2001). The effect of class distribution on classifier
learning: an empirical study. Tech. rep. Rutgers Univ.

Weng, S.-S. and Y.-H. Liu (2006). “Mining time series data for segmentation
by using Ant Colony Optimization”. In: European Journal of Operational
Research 173.3, pp. 921–937.

Wilson, D. L. (1972). “Asymptotic properties of nearest neighbor rules us-
ing edited data”. In: IEEE Transactions on Systems, Man, and Cybernetics 3,
pp. 408–421.

Witten, I. H. and E. Frank (2005). Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann.



BIBLIOGRAPHY 171

Wolpert, D. H. and W. G. Macready (1997). “No free lunch theorems for op-
timization”. In: IEEE Transactions on Evolutionary Computation 1.1, pp. 67–
82.

Wu, C.-H. et al. (2007). “A real-valued genetic algorithm to optimize the pa-
rameters of support vector machine for predicting bankruptcy”. In: Expert
Systems with Applications 32.2, pp. 397–408.

Wu, Y. et al. (2017). “Large-Scale Online Feature Selection for Ultra-High Di-
mensional Sparse Data”. In: ACM Trans. Knowl. Discov. Data 11.4, pp. 1–
22.

Xie, Y. et al. (2018). “An Improved Multi-label Relief Feature Selection Al-
gorithm for Unbalanced Datasets”. In: Advances in Intelligent Systems and
Interactive Applications. Springer International Publishing, pp. 141–151.

Xing, E. P., M. I. Jordan, R. M. Karp, et al. (2001). “Feature selection for high-
dimensional genomic microarray data”. In: ICML. Vol. 1. Citeseer, pp. 601–
608.

Xiong, M., X. Fang, and J. Zhao (2001). “Biomarker identification by feature
wrappers”. In: Genome Research 11.11, pp. 1878–1887.

Xue, B., M. Zhang, and W. N. Browne (2013). “Particle swarm optimiza-
tion for feature selection in classification: A multi-objective approach”.
In: IEEE Transactions on Cybernetics 43.6, pp. 1656–1671.

Xue, B. et al. (2016). “A Survey on Evolutionary Computation Approaches to
Feature Selection”. In: IEEE Transactions on Evolutionary Computation 20.4,
pp. 606–626.

Yang, J. and V. Honavar (1998). “Feature subset selection using a genetic algo-
rithm”. In: Feature Extraction, Construction and Selection. Springer, pp. 117–
136.

Yang, X.-S. (2014). “Swarm intelligence based algorithms: a critical analysis”.
In: Evolutionary Intelligence 7.1, pp. 17–28.

Yang, X.-S. and S. Deb (2009). “Cuckoo search via Lévy flights”. In: Nature &
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE,
pp. 210–214.

Yang, Xin-She (2012). “Swarm-based metaheuristic algorithms and no-free-
lunch theorems”. In: Theory and New Applications of Swarm Intelligence. In-
Tech.

Yang, Xin-She and Mehmet Karamanoglu (2013). “Swarm intelligence and
bio-inspired computation: an overview”. In: Swarm Intelligence and Bio-
Inspired Computation. Elsevier, pp. 3–23.



BIBLIOGRAPHY 172

Ye, N. et al. (2012). “Optimizing F-measure: A Tale of Two Approaches”. In:
CoRR abs/1206.4625.

Yen, S.-J. and Y.-S. Lee (2009). “Cluster-based under-sampling approaches for
imbalanced data distributions”. In: Expert Systems with Applications 36.3,
Part 1, pp. 5718–5727.

Yen, S.-J. and Y.-S. Lee (2006). “Under-sampling approaches for improving
prediction of the minority class in an imbalanced dataset”. In: Intelligent
Control and Automation. Springer, pp. 731–740.

You, M. and G.-Z. Li (2011). “Feature selection for multi-class problems by
using pairwise-class and all-class techniques”. In: International Journal of
General Systems 40.04, pp. 381–394.

Yu, E. and S. Cho (2003). “GA-SVM wrapper approach for feature subset
selection in keystroke dynamics identity verification”. In: Proceedings of
the International Joint Conference on Neural Networks, 2003. Vol. 3. IEEE,
pp. 2253–2257.

Yu, H., J. Ni, and J. Zhao (2013). “ACOSampling: An Ant Colony Optimization-
based Undersampling Method for Classifying Imbalanced DNA Microar-
ray Data”. In: Neurocomput. 101, pp. 309–318.

Zadrozny, Bianca and Charles Elkan (2001). “Obtaining calibrated proba-
bility estimates from decision trees and naive Bayesian classifiers”. In:
Proceedings of the Eighteenth International Conference on Machine Learning
(ICML). Vol. 1. Citeseer, pp. 609–616.

Zahran, Bilal and Ghassan Kanan (2009). “Text Feature Selection using Parti-
cle Swarm Optimization Algorithm”. In: World Applied Sciences Journal 7,
pp. 69–74.

Zhang, D., J. Wang, and X. Zhao (2015). “Estimating the Uncertainty of Av-
erage F1 Scores”. In: Proceedings of the 2015 International Conference on The
Theory of Information Retrieval. ICTIR ’15. Northampton, Massachusetts,
USA: ACM, pp. 317–320.

Zhang, T., R. Ramakrishnan, and M. Livny (1996). “BIRCH: an efficient data
clustering method for very large databases”. In: ACM Sigmod Record. Vol. 25.
2. ACM, pp. 103–114.

Zhang, X. and Y. Li (2013). “A Positive-biased Nearest Neighbour Algorithm
for Imbalanced Classification”. In: Advances in Knowledge Discovery and
Data Mining. Springer Berlin Heidelberg, pp. 293–304.

Zhang, X. L., X. F. Chen, and Z. J. He (2010). “An ACO-based algorithm for
parameter optimization of support vector machines”. In: Expert Systems
with Applications 37.9, pp. 6618–6628.



BIBLIOGRAPHY 173

Zhang, X.-L. et al. (2008). “A grid-based ACO algorithm for parameters opti-
mization in support vector machines”. In: 2008 IEEE International Confer-
ence on Granular Computing, pp. 805–808.

Zhang, Y., N. Meratnia, and P. Havinga (2010). “Outlier detection techniques
for wireless sensor networks: A survey”. In: IEEE Communications Surveys
& Tutorials 12.2, pp. 159–170.

Zhang, Y. and D. Wang (2013). “A cost-sensitive ensemble method for class-
imbalanced datasets”. In: Abstract and Applied Analysis. Vol. 2013. Hindawi
Publishing Corporation.

Zhang, Y. et al. (2015). “Feature selection algorithm based on bare bones par-
ticle swarm optimization”. In: Neurocomputing 148, pp. 150–157.

Zhang, Yu, Xiaopeng Xie, and Taobo Cheng (2010). “Application of PSO and
SVM in image classification”. In: 2010 3rd International Conference on Com-
puter Science and Information Technology. Vol. 6, pp. 629–631.

Zhang, Z. et al. (2014). “On swarm intelligence inspired self-organized net-
working: its bionic mechanisms, designing principles and optimization
approaches”. In: IEEE Communications Surveys & Tutorials 16.1, pp. 513–
537.

Zhao, G. and Y. Wu (2016). “Feature Subset Selection for Cancer Classification
Using Weight Local Modularity”. In: Scientific Reports 6.

Zheng, Z., X. Wu, and R. Srihari (2004). “Feature Selection for Text Catego-
rization on Imbalanced Data”. In: SIGKDD Explor. Newsl. 6.1, pp. 80–89.

Zhou, Z.-H. and X.-Y. Liu (2006). “Training cost-sensitive neural networks
with methods addressing the class imbalance problem”. In: IEEE Transac-
tions on Knowledge and Data Engineering 18.1, pp. 63–77.

Zhu, G.-q., S.-r. Liu, and J.-s. Yu (2002). “Support vector machine and its ap-
plications to function approximation”. In: Journal-East China University Of
Science And Technology 28.5, pp. 555–559.

Zhu, X. and I. Davidson (2007). Knowledge Discovery and Data Mining: Chal-
lenges and Realities. IGI Global.
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