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Conversation between two people involves subtle non-verbal coordination but the 

parameters and timing of this coordination remain unclear, which limits our models of social 

coordination mechanisms.  We implemented high-resolution motion capture of human head 

motion during structured conversations.  Using pre-registered analyses, we quantify cross-

participant wavelet coherence of head motion as a measure of non-verbal coordination, and 

report two novel results. First, head pitch (nodding) at 2.6 – 6.5 Hz shows below-chance 

coherence between people.  This is driven by fast-nodding behaviour from the person 

listening, and is a newly defined nonverbal behaviour which may act as an important social 

signal.  Second, head pitch movements at 0.2-1.1 Hz show above-chance coherence with a 

constant lag of around 600msec between a leader and follower. This is consistent with 

reactive (rather than predictive) models of mimicry behaviour. These results provide a step 

towards the quantification of real-world human behaviour and reveal mechanisms of social 

coordination. 

 

 

  



3 

 

Introduction 

Face-to-face conversation between two people is the fundamental basis of our social 

interaction (Clark, 1996) and is of increasing interest in both clinical (Ramseyer & Tschacher, 

2011) and neuroscientific (Schilbach et al., 2013) research.  Despite this, we have only 

limited data on the precise timing and patterns of coordination which are found in real world 

conversation behaviours.  Early work coding actions from videos shows that people tend to 

move coherently with one another, which has been described as mimicry or synchrony 

(Bernieri & Rosenthal, 1991).  Behavioural studies suggest that this coordination acts as a 

‘social glue’ (Lakin, Jefferis, Cheng, & Chartrand, 2003) that predicts the success of a 

negotiation or meeting (Pentland, 2008).   

The initial aim of the present study was to use high precision motion capture to 

record the head motion of dyads in conversation, and then perform an advanced analyses to 

reveal the time course of mimicry.  Our data show these features, but also revealed novel 

patterns of anti-coherence behaviour going beyond simple mimicry or synchrony.  We 

conducted a pre-registered study to confirm the existence of this novel behaviour, and report 

here a detailed analysis of both mimicry in head motion and anti-coordination in head 

motion, as found in a naturalistic conversation task. 

Background 

It is increasingly recognised that neuroscience needs to examine real-world 

behaviour in detail (Krakauer, Ghazanfar, Gomez-Marin, Maciver, & Poeppel, 2017), and 

that social neuroscience needs to understand the interactions of two real people rather than 

just studying solo participants watching videos of people (Schilbach et al., 2013). A long 

tradition of research into human interpersonal coordination and conversation describes 

patterns of synchrony and mimicry as key behaviours in dyadic interactions.  From early 

work (Condon & Ogston, 1966; Kendon, 1970) to the present (Chartrand & Bargh, 1999; 

Ramseyer & Tschacher, 2011), it is clear that people tend to move their heads and bodies in 

coordination both with each other and with their own speech rhythms.  Untrained observers 

can perceive a gestalt of coordination in videos of conversation, and rate higher coordination 

in genuine interactions compared to ‘pseudo interactions’ where interaction partners from 

different videos were randomly paired together to make it look as though they were having a 

real interaction (Bernieri, 1988).  Such studies clearly demonstrate that something important 

and interesting is happening in live dyadic interactions, but it is less clear exactly what this 

something is, and what mechanisms might support it. 

A detailed understanding of dyadic coordination is important because it can constrain 
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our theories of the mechanisms underlying such coordination.  For a simple coordination 

between two people, we can imagine four different mechanisms with different timing 

properties.  First, if each person is able to predict the other’s action, then they will be able to 

show precise synchrony (0 msec lag) with both people making the same movement at the 

same time; this is seen in musical coordination (Konvalinka, Vuust, Roepstorff, & Frith, 2010) 

and implies a predictive mechanism.  Second, mimicry could arise via an immediate reactive 

mechanism in response to another person, similar to visuomotor priming (Heyes, 2011); this 

type of mimicry might occur 300-1000 msec after a stimulus.  Third, social mimicry might 

happen on much longer timescales of 2-10 seconds (Leander, Chartrand, & Bargh, 2012; 

Stel, van Dijk, & Olivier, 2009) which implies the involvement of a short-term memory 

mechanism.  Finally, social behaviours might be governed by a particular pattern of phase 

relationships, such as in-phase movements being preferred (Oullier, de Guzman, Jantzen, 

Lagarde, & Kelso, 2008).  If a constant phase-relationship is found across a range of motion 

frequencies, this implies a mechanism tuned to phase-lag rather than a fixed lag time.  Thus, 

understanding the timing of social coordination and the frequency at which it occurs will help 

us understand the computational mechanisms which implement coordination. 

Current data on the timing of mimicry and social coordination in real-world dyads are 

limited and of low resolution.  It has been suggested that mimicry occurs with natural delays 

of 2-5 seconds (Leander et al., 2012; van Baaren, Decety, Dijksterhuis, van der Leij, & van 

Leeuwen, 2009), although estimates vary from 0 to 10 seconds (Chartrand & Bargh, 1999; 

Stel et al., 2009).  This implies movement coherence within a frequency band of roughly 0.5 

– 0.2 Hz.  Coordination has also been linked to the natural rhythm of speech (Condon & 

Ogston, 1966; Hadar, Steiner, Grant, & Rose, 1983a, 1983b; Kendon, 1970), which is 

around 5 Hz (Morrill, Paukner, Ferrari, & Ghazanfar, 2012; Ohala, 1975). Further research 

suggests that facial expressions at frequencies of approximately 2 - 7 Hz are also important 

for the interpretation of speech (Chandrasekaran, Trubanova, Stillittano, Caplier, & 

Ghazanfar, 2009). Other studies have demonstrated entrainment in covert rhythms such as 

heart rate (1 – 1.7 Hz; Konvalinka et al., 2011) and breathing (0.2 - 0.3 Hz; Pellegrini & 

Ciceri, 2012; Warner, 1996). Human body movement is also thought to be tuned to 

frequencies around 2 Hz based on musical preference and recall of these tempi (Noorden & 

Moelants, 1999).  Based on these results, it is hard to make firm predictions about the 

frequencies at which people naturally coordinate, so in the present study, we examine 

coordination of head moment over the range from 0.2 to 8Hz, covering the frequencies of 

behaviours previously described. 

Studies of human behaviour in conversation have traditionally been based on video 

of behaviour which can be coded by trained observers to understand the detail of what 
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participants do.  However, hand coding of videos in these studies may introduce biases 

(Cappella, 1981) and limits the amount of data which can be processed as well as its 

resolution (Grammer, Kruck, & Magnusson, 1998).  More recently, researchers have begun 

to use automated methods to calculate motion energy or other parameters from video 

(Fujiwara & Daibo, 2016; Paxton & Dale, 2013; Ramseyer & Tschacher, 2010; Schmidt, 

Morr, Fitzpatrick, & Richardson, 2012), but resolution is still limited to the pixels which 

change in a flat image.  Motion capture provides much higher resolution (Feese, Arnrich, 

Tröster, Meyer, & Jonas, 2011; Poppe, Van Der Zee, Heylen, & Taylor, 2013), so we use 

this method here.  To extract meaning from the rich motion capture data, we use wavelet 

analysis in which each motion trace is represented in terms of wavelets at different 

frequencies and time points.  The cross-wavelet coherence between the wavelets of two 

different people gives a measure of the time-frequency coordination between their 

movements (Fujiwara & Daibo, 2016; Issartel, Bardainne, Gaillot, & Marin, 2014).  Proof of 

concept studies using wavelet methods have found that coordination exists during musical 

improvisation (Walton, Richardson, Langland-Hassan, & Chemero, 2015), and telling knock-

knock jokes (Schmidt, Nie, Franco, & Richardson, 2014).  Such studies suggest that 

coordination occurs at multiple timescales (Schmidt et al., 2014) and frequencies (Fujiwara & 

Daibo, 2016) with less coherence at high frequencies close to 4 Hz.  However, previous 

studies have not always used detailed analyses nor performed the most robust comparisons 

between real dyads and pseudo dyads.   

The present study 
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In the present study we recorded movements from pairs of participants (dyads) 

engaged in a picture description task (Figure 1). This task has been used previously in 

behavioural (Chartrand & Bargh, 1999) and mocap studies (Shockley, Santana, & Fowler, 

2003). In each trial of our task, one participant had the role of Leader, holding a picture of a 

complex scene while the other had the role of Follower (Figure 1).  Each trial lasted 90 

seconds; for the first 30 seconds the Leader described the picture and the Follower 

remained silent (monologue section); for the remaining 60 seconds the Follower could ask 

questions and both participants could converse together about the picture (dialogue section).  

We recorded the position and rotation of motion sensors on each participant’s head and 

torso, at a rate of 60 Hz. We use wavelet coherence measures to quantify the interpersonal 

coordination at different frequency bands from 0.2-8 Hz, for three distinct head motion 

signals: head yaw (turning), head pitch (nodding), and head roll (tilting). As wavelet analysis 

is a relatively new technique in social cognitive research, the present study consisted of a 

pilot phase and a final phase. The pilot phase was highly exploratory and the data was used 

to develop and test our analysis algorithms.  We then pre-registered our methods and 

collected a second independent dataset (n=31 dyads), which we report here.  Our aim was 

to precisely characterise the frequency, phases and patterns of head motion coordination in 

a conversation, and to test cognitive models of this coordination. 
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Results 

Novel patterns of Cross-wavelet coherence of head movements in real vs. pseudo 

interactions (pre-registered analysis) 

Each dyad completed 16 trials of the conversation task, 8 with person “X” as the 

leader, and 8 with “Y” as the leader.  For each trial and each head motion parameter (yaw, 

pitch, roll), we calculated the wavelet transform and then the wavelet coherence (Figure 2).  

To provide a null contrast to the true interactions, we calculated the wavelet coherence for 

pseudo interactions where we shuffle the data within pairs and within leader/follower roles.  

For example, if trials 1, 3, 7 and 9 have X as leader and Y as follower, the true trials are 1-1; 

3-3; etc, while the pseudo trials are 1-3; 7-3; etc.  This strict definition of pseudo trials within-

pair and within-role gives the strongest possible test that any differences between the 

coherence levels in the real and pseudo pairs must be due to the live interaction and not to 

differences in participants or roles.  

Levels of coherence at each motion frequency are shown in Figure 3.  The top row of the 

figure shows the mean coherence in the real trials (red) and pseudo trials (blue).  To assess 

the difference in cross-wavelet coherence between real and pseudo interactions, we 

performed t-tests at each frequency (89 tests). The plots in the lower row show the effect 

size (Cohen’s d) for the difference between real and pseudo interactions, plotted for head 
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pitch, roll, and yaw respectively. Red dots indicate frequencies where there was a significant 

difference between real data and pseudo data, with FDR correction for multiple comparisons 

(Benjamini & Hochberg, 1995).  Two patterns are noticeable in this data, especially with 

head pitch (Figure 3A&D).  First, there is greater coherence in real pairs than pseudo pairs 

at low frequencies (significant for head pitch at 0.21 – 1.1 Hz).  We term this ‘low frequency 

mimicry’ and examine the phase & lag patterns in this frequency range below.  Second, 

there is a marked dip in coherence in the real pairs at higher frequencies (significant for pitch 

at 2.6 – 6.5 Hz), compared to coherence between pseudo pairs.  We term this ‘high 

frequency anti-coherence’.  

The high frequency anti-coherence pattern was entirely unexpected and has never 

(to our knowledge) been described before.  When we first saw this pattern in our pilot data 

(Hale, 2017), we worried about its robustness and so conducted a replication study with a 

larger sample size and a pre-registered data analysis pathway (Hale & Hamilton, 2016).  It is 

the pre-registered results which we report here (Fig 3).  These data show that the high 

frequency anti-coherence is reliable and replicable.  We have conducted further exploratory 

analyses to understand the origins of this unexpected behaviour. 

Exploring high frequency anti-coherence in head motion. 

To understand the anti-coherence pattern, it helps to clarify what this data actually 

means.  In a cross-wavelet analysis, two signals have high coherence if both have energy at 
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the same frequency (Issartel et al., 2014), regardless of the phase relationship between the 

two signals. Anti-coherence in a wavelet analysis means that two people are moving at 

different frequencies, for example, when one moves at 2.5Hz, the other moves at 3.5Hz.  It 

is not the same as anti-phase coherence, where two people move at the same frequency but 

out of phase which each other.  We present a number of exploratory analyses to understand 

the characteristics of the anti-coherence occurring at frequencies broadly between 2.6 and 

6.5 Hz.  The results we report here focus on the head pitch data, where the anti-coherence 

effect was strongest.  Equivalent analyses on roll and yaw are presented in supplementary 

information.   

First, we tested if this anti-coherence was present in both the monologue and 

dialogue phases of the conversation.  For example, if anti-coherence arose because the 

Leader’s head moved at 3Hz while speaking but the Follower remained still, then we might 

expect the signal to be clearer in the monologue phase of the trial compared to the dialogue.  

Figure 4A&E illustrates that the anti-coherence effect does not reach significance when 

examined in the monologue phase only, but is reliable in the dialogue phase (Fig 4B&F).  

This suggests that anti-coherence is a general property of conversation and is not limited to 

the more artificial context where one participant is not allowed to speak. 

Second, we checked if the anti-coherence could be driven by global changes in the 

signal power at each frequency.  For example, if one participant moved much less than the 

other at 3Hz, then there would be no power to drive coherence at 3Hz.  As we have used a 

strict, within-dyad comparison between real trials and pseudo-trials, it is unlikely that power 

differences drive our effects, because data with similar power occur in both the real and 

pseudo trial analyses.  To double-check this, we calculated spectral power over the whole 

trial (and compared power spectrum between leader and follower roles. In the monologue 

case (Fig 4C&G), we show that leaders have more power than followers at low frequencies 

(the range where we identified low-frequency mimicry). This corresponds to the fact that 

leaders do all the talking during monologue. But at higher frequencies, and throughout most 

of the dialogue case, as shown in Fig 4D&H, the leader and follower power levels are evenly 

matched.   

These results suggest that the higher-frequency anti-coherence seen in head motion 

between two people in live conversation is not driven by global differences in signal power or 

by changes to the task context from monologue to dialogue. Rather, there must be a more 

subtle change in behaviour.  To explore this, we identified segments of conversation where 

one participant is moving at a frequency between 1.5 and 8Hz (ie. above the cross-over 

point in Fig 3D) and label these as ‘fast nods’.  We then characterise them in relation to what 
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the other participant is doing, as outlined below. 

Detecting and understanding 

fast nods 

 To detect fast-nods in 

the head motion data of a 

single participant, we built a 

simple detector which 

estimated the dominant 

frequency in head pitch 

using a zero-crossing 

method (see method 

section).  Using this detector, 

we coded each 1-second 

window in our data as 

containing a fast nod from 

the leader, the follower, both, or neither.  Figure 5 A illustrates the fast nods detected in 

dialogue from one sample trial, classified by Leader and Follower roles.   We find that 

followers spend 22% of the trial engaged in fast-nod behaviour while leaders spend only 

10% of the trial engaged in this behaviour, and this difference is significant (t(25)=5.83, 

p<0.00001, effect size d = 1.394). Figure 5 B illustrates this result. In terms of classifier 

precision (where precision = nodding time as follower / total nodding time), 67% of any 

reported fast nods are performed by a person who is in the follower role.   

 This effect suggests that fast nodding is probably related to listening behaviour, since 

the role of the Follower is to listen to the Leader. However, it is possible to examine the 

relationship between listening and fast-nodding in more detail by using audio recordings of 

each trial.  We recorded audio signals from each participant onto the left and right channels 

of a single audio file, and thus can classify who was speaking at each time point in the trial 

using a simple thresholding of signal energy in the left and right channels.  We then test, for 

each trial, how the speaking behaviour of X (speaking / not speaking) predicts the fast-

nodding behaviour of Y (nodding / not nodding) and vice versa, irrespective of 

leader/follower roles.   We find that participants are more likely to be nodding when their 

partner is speaking than not (t(23)=4.08, p<0.001, effect d size = 0.843). Figure 5 C plots 

this difference in terms of the proportion of fast nods Y made while their partner X was 

speaking (17%) or not speaking (11%).  The precision of this classifier is a high 94%. This 
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means that if one person is fast-nodding, it is extremely likely that their conversation partner 

is speaking.  

Exploring the characteristics of low frequency mimicry 

In addition to the fast nods described above, our data also revealed a positive 

coherence between dyads at 0.2 – 1.1 Hz in head pitch.  These frequencies are commonly 

linked to mimicry behaviour, and this positive coherence is a plausible signature of the 

mimicry of one participant’s head movement by the other.  As before, we focus primarily on 

head pitch.  In this data, head yaw and roll did not reach FDR significance for positive 

coherence at any frequency.  To understand the mechanisms of this behaviour, we first 

tested how the positive coherence related to conversation in terms of monologue / dialogue 

segments and who was speaking at each time.  Figure 4A&E illustrates that the coherence 

effect is partly significant (between 0.4 – 0.96 Hz) when examined in the monologue data, 

and is consistently significant (between 0.2 – 1.1 Hz) in the dialogue data (Fig 4B&F).  This 

means that low-frequency coherent head motion is seen in both monologue and dialogue 

segments of the conversation. 

A key question in examining this mimicry behaviour concerns the time delays or 

phase lags between participants – do they move synchronously, with a fixed time delay or 

with a fixed phase delay?  Our first analysis of this question examined the cross-correlation 

between the Leader’s head pitch and the follower’s head pitch over each whole trial. Leader 
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to Follower cross-correlation was calculated across a range of different lag times (-4 to 4 s) 

for real and pseudo trials. These results are averaged and shown with standard error (Figure 

6A), and with Cohen’s-d effect size (Figure 6D) for the comparison between the real and 

pseudo conditions. We find that real trials have greater cross-correlation than pseudo trials 

across a range of lags from -3 to 0.8 seconds, with a peak at -0.6 seconds. This implies that 

the follower tends to match the head movements of the leader with around a 600 msec 

delay. 

We also examined the phase relationship between the two participants for the 

regions of the frequency spectrum with positive coherence.  That is, for each wavelet 

coherence plot of each trial, we calculated the phase relationship between leader and 

follower at every time-frequency point (see methods).  We plot these as histograms of 

phase-angle counts (quantized into 24-bins) for each frequency band in Figure 2 G&H with 

movement frequency on the y axis and phase-bins on the x axis in Fig 2H  We averaged the 

phase histograms over trials and participants for both real trial pairs and pseudo trial pairs. 

Figure 6 shows the combined phase plot over all trials for real (Fig. 6 B) vs. pseudo pairs 

(Fig. 6 E) with the difference between these in Fig 6C.  The highlighted areas of positive 

significance (p<0.05 in a paired t-test, df=25) show that coherence occurs in the 0.2 – 0.5 Hz 

frequency range with approximately 30-90 degree phase shift between leader and follower.  

This means that the head motion of the participant holding the picture leads the head motion 

of the follower by 30-90 degrees of phase. Note also that the dark blue areas in the top half 

of Figure 6C reflect the high-

frequency anti-coherence 

described above, confirming 

that this pattern can also be 

seen in a different analysis. 

 Two different 

mechanisms could potentially 

drive the phase effect shown 

in Fig 6C.  Followers could be 

in sync with leaders, 

maintaining a specific phase 

relationship (e.g. 40° of 

phase) across a range of 

frequencies (‘constant-phase’ 

mechanism).  Or followers 

could lag behind leaders with 
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a fixed delay (e.g. 600 ms; ‘constant-lag’ mechanism).  The appearance of Fig 6C, with 

slightly greater phase shifts for slightly higher frequencies, suggests the latter explanation.  

To test this formally, we built simple models of the two potential mechanisms – a constant 

phase model and a constant lag model (see methods).  Each model had two free 

parameters and which were optimised with Matlab’s fminsearch.  The results with the 

optimal parameters are shown in Figure 7.  The RMSE of the constant-lag model was lower 

than the constant-phase model, indicating that this gives a better explanation of the data.  

The optimal constant-lag parameter of 0.588s is close to the mean lag of 0.63s in the 

covariance analysis of Figure 6 A.  Thus, both analyses support the idea that leader-follower 

head motion can be characterised by a constant-lag model with a lag of approximately 0.6 

seconds. 

 

Discussion 

 This paper presents a detailed analysis of a rich dataset describing head motion of 

dyads during a structured conversation.  Using high-resolution recordings and robust 

advanced analysis methods, we find evidence for important motion features which have not 

previously been described.  First, real pairs of participants show head pitch (nodding) 

coherence at low frequencies (0.2-1.1Hz) and this coherent motion has a timing lag of 0.6 s 

between leader and follower.  Second, significant anti-coherence in head pitch is seen at 

high frequencies (2.6-6.5 Hz frequency band), with evidence that this is driven by fast-

nodding behaviour on the part of listeners (not speakers).  We consider what this means for 

our models of human social interaction and for future studies. 

Low frequency coherence 

 Our data reveals low-frequency coherence between 0.2 and 1.1 Hz with a time lag 

around 600ms between speaker and listener.  This pattern is consistent with many early 

reports of mimicry (Condon & Ogston, 1966) as well as more recent motion capture studies 

(Fujiwara & Daibo, 2016; Schmidt et al., 2014).  The frequency range below 1.1 Hz is also 

consistent with timescales traditionally associated with behavioural mimicry (Chartrand & 

Bargh, 1999; Stel et al., 2009).  The lag of around 600 ms suggests that this behaviour is not 

driven by an anticipatory mechanism which perfectly synchronises the motion between two 

people.  Such mechanisms can be seen in tasks involving musical rhythms (Konvalinka et 

al., 2010) but do not seem to apply here.  We also do not see clear evidence for coherence 

at long time scales (2-5sec lag) which might imply a role for memory in producing mimicry, 

though we note that our trial duration of 90 seconds might limit our ability to detect 
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coherence over timescales as long as 10 seconds.  Rather, the low-frequency coherence we 

find has a time-lag around 600 msecs, and fits better to a constant-lag model than to a 

constant-phase model. This pattern of behaviour is consistent with a reactive mechanism in 

which one person sees an action and does a similar action around 600 msec later, which 

can be implemented by simple visuomotor priming (Heyes, 2011).  There is no need for 

either prediction or memory of the other’s action in explaining the patterns of behaviour we 

see.   

 Head pitch data showed the strongest pattern of coherence among the signals we 

measured (pitch, yaw and roll), and this pattern was seen in both monologue and dialogue.  

In terms of simple behaviours, one possible description is that followers mimic the head 

posture and nods of the other (Chartrand & Bargh, 1999).  A related possibility is that 

leaders in this picture description task must alternate their gaze between looking at the face 

of their partner and looking down at the picture which is being described, and followers may 

copy this gaze pattern (Friesen & Kingstone, 1998; Tomasello, 1995) even though they 

cannot see the picture.  Our data does not discriminate between ‘pure mimicry’ and ‘gaze 

following’ but both are interactive social behaviours which occur in true interactive dyads and 

not in pseudo data or solo behaviour.  In our data, both are also compatible with a simple 

reactive model rather than a prediction model or memory model.  The high resolution data 

recordings in the present data set allow us to explore the characteristics of real-world 

interactive behaviour and to precisely parameterise it. 

High frequency Anti-coherence 

The most surprising finding in our data was a pattern of high frequency (2.6 Hz – 

6.5Hz) anti-coherence, whereby the two participants show systematically less-than-chance 

coherence in their head motion.  Note that anti-coherence is not the same as coherence in 

anti-phase, where two people move at the same frequency but out of phase; here, 

participants do not move at the same frequency at all.  Previous data suggests that head 

movements in the frequency range of 2.6 – 6.5 Hz are fairly typical in conversations. Hadar 

et al. (1983b) recorded head rotations while dyads engaged in free conversations and found 

that ‘ordinary’ head motion occurred within a range of 1.8 – 3.7 Hz, while ‘fast’ movements 

were characterised as above 3.7 Hz. Although their study was based on a very small sample 

size (N = 4), Hadar et al.’s account suggests that the decoupling we observed was within a 

normal to fast range for head movements in conversation. Therefore, given the wealth of 

evidence that people spontaneously coordinate other movements (Bernieri, Davis, 

Rosenthal, & Knee, 1994; Grammer et al., 1998; Ramseyer & Tschacher, 2010; Schmidt et 

al., 2012), it is surprising we should see active decoupling of head movements at typical 
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frequencies for conversation.  In fact, we were so surprised by this result in our pilot data 

that we ran the current replication with a fully pre-registered analysis pathway to verify the 

existence of the anti-coherence, and found that it is a robust effect.  Further exploratory 

analysis shows that anti-coherence is tightly linked to each person’s speaking or listening 

status. We found that leaders (who mainly speak) and followers (who mainly listen) nod with 

similar energy between 2.6 - 6.5 Hz when data is averaged over whole trials (Fig4 C and D).  

However, there also a specific fast-nod pattern at 2.6-6.5Hz which occurs in the person who 

is listening (Fig 5).  A simple zero-crossing estimation of dominant frequency in this range 

allowed us to classify a participant as a follower with 67% precision, and as listening to their 

partner speaking (based on audio recordings) with 94% precision. 

 We term this listening behaviour a ‘fast nod’ and consider several possible 

behavioural explanations of it.  2-5Hz is a frequency band dominated by speech rhythms 

(Chandrasekaran et al., 2009; Hadar et al., 1983b), so if fast-nodding at this frequency 

occurred in the speaker (rather than the listener) then we would consider it a side effect of 

jaw & vocal movements during speech.  The fact that it occurs in the listener is thus rather 

surprising.  One possibility is that the listener is attuning to the speech rhythms of the 

speaker and reflects this in fast nodding, possibly to aid comprehension.  For example, 

seeing natural head motion aids speech comprehension (Munhall, Jones, Callan, Kuratate, 

& Vatikiotis-Bateson, 2004) and it is possible that performing movements also contributes.  

This could be tested in future studies by exploring the relationship between speech rhythm 

and head motion.  A second possibility is that fast-nodding reflects a communication back-

channel (Clark, 1996), whereby the listener is sending a signal of attentiveness and 

engagement to the speaker.  Many previous studies also report a ‘nodding’ backchannel in 

human communication (Kendon, 1970). However, our result is novel because this is not a 

slow nod that might be recorded by a video camera, but is a very small and quick head 

motion, occurring at roughly the same frequency as human speech.  To test this, further 

studies would need to determine if listeners produced more fast-nodding when with another 

person (compared to alone) and if speakers can detect the fast-nodding behaviour (on some 

level). 

 One possible criticism of our fast-nodding result is that it is not easy, voluntarily, to 

produce a small head nod at 2-5 Hz – certainly not at the 5 Hz end of this frequency band.  

We agree that this behaviour cannot easily be produced on command, but that is true of 

many other socially meaningful signals including genuine (Duchenne) smiles (Ekman, 

Davidson, & Friesen, 1990; Gunnery, Hall, & Ruben, 2013) and genuine laughter (Lavan, 

Scott, & McGettigan, 2016).  The lack of a voluntary pathway for a particular behaviour does 

not mean that this behaviour cannot have an important role in social signalling.  Rather, it 
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makes that behaviour hard to fake and means that it may have more values as an honest 

signal of listening / attentiveness (Pentland, 2008).  Further studies will be required to test 

this. 

Limitations & future directions 

 Our data provides a novel, high resolution recording of pairs of naïve participants 

performing a structured conversation task.  We specifically used large sample sizes and a 

pre-registered analysis pathway to ensure the robustness of our novel findings.  

Nevertheless, there remain some limitations to our data, and our project opens up many 

future directions for further studies.  First, we explored only one task (picture description) 

which may induce artificial up-down head movements to look at the picture, and it remains to 

be seen if all the mimicry and anti-coherence patterns which we report here generalise to 

other tasks.  Second, the audio data we recorded was of rather low quality – data was 

sufficient to detect who was speaking but not to allow a detailed analysis of speech rhythms, 

so further studies will be required to determine if head motion anticoherence is linked to 

specific speech rhythms.  Third, our trials were only 90 seconds long, with only 60 seconds 

of dialogue which limited our ability to detect mimicry behaviour over long time windows 

(around 10 seconds).  Finally, we recorded only head motion, and a richer dataset involving 

capture of hand motions, gaze and facial expressions would allow an even more detailed 

characterisation of human conversation behaviour.  Setting the standard for such datasets 

and defining the way to analyse this data will allow us to explore individual differences in 

conversation behaviour and how clinical populations differ from typical populations, creating 

a new science of ecologically valid social interactions.  

Conclusions 

This paper describes a rich dataset of head movements in naturalistic conversations 

and provides new insights into the patterns and mechanisms of social coordination.  We 

show a reliable anti-coherence at high frequencies (2.6 - 6.5Hz) which may be linked to fast-

nodding behaviour on the part of the listener.  We also show coherent head motion at low 

frequencies (0.21 – 1.1 Hz) with a time lag around 600 msec.  This implies a simple reactive 

visuomotor mechanism which is likely to reflect a combination of mimicry and gaze following. 

The present study builds on a growing literature exploring interpersonal coordination through 

automatic motion capture and spectrum analysis.  Such detailed analysis of the ‘big data’ of 

human social interactions will be critical in creating a new understanding of our everyday 

social behaviour and the neurocognitive mechanisms which support it. 
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Materials and methods,  

Participants 

For this study, we recruited 31 dyads and after data exclusions (see below), we 

report results from 26 dyads (Mage = 22.3 years, SDage = 2.9 years).  There were 16 same-

gender dyads and 10 mixed-gender dyads (34 female and 18 male participants).  

Participants were recruited from a local mailing list and paired up as dyads on the basis of 

their availability and preference for the same time slot. All participants gave written consent 

and were paid £7.50 for 1 hour. The study received ethical approval from the UCL Research 

Ethics Committee and was performed in accordance with the 1964 Declaration of Helsinki.  

Lab setup 

The room was set up with two wooden stools for the participants, facing each other at 

a distance of approximately 1.5m. Between the stools, a wooden frame held a Polhemus 

transmitter device which generated an electromagnetic field of approximately 2m diameter 

around the participants. A projector screen to the side of the participants showed instructions 

throughout the session, and audio speakers behind the projector provided audio cues. A 

curtain separated participants from the experimenter, who remained in the room but did not 

interact with participants during the experiment and could not be seen.  

A Polhemus magnetic motion tracking device (Polhemus Inc., Vermont) recorded the 

head and torso movements of each participant at 60Hz.  One sensor was fixed on the 

participant’s forehead using a Velcro cloth band. Another sensor was attached to the 

participant’s upper back using microporous tape. Both participants wore a lapel microphone 

and their voices were recorded on the left and right channels of a single audio file. A video 

camera mounted on a tripod recorded the session, offering a clear view of the participants’ 

seated bodies. We used Vizard software (WorldViz, California) to display instructions on the 

projector screen, trigger audio cues and record data. 

Procedure 

Pairs of participants arrived and gave informed consent to take part.  They were fitted 

with motion sensors and microphones, and randomly assigned to be the ‘X’ participant or ‘Y’ 
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participant. These labels were used to distinguish dyad members during the experiment and 

in the recorded data. Participants completed one practice block followed by four 

experimental blocks.  Each block was made up of a short language task, followed by four 

trials of the picture description task.  The language task was a social priming task as used in 

Wang & Hamilton (2013), which was designed to activate prosocial or antisocial concepts in 

the participants.  Both participants completed the same type of priming (prosocial or 

antisocial) with different exemplars.  As the priming had no discernible impact on behaviour 

in the task, we do not discuss it further. 

The picture description task was based on Chartrand & Bargh (1999) with a more 

controlled time-course to allow averaging between trials.  On each trial, one participant held 

a picture of a complex social scene, taken from the National Geographic website and printed 

on heavy card. The participant with the picture was the Leader for that trial, and had 30 

seconds to describe the picture to the Follower, while the follower could not speak 

(monologue period).  When a beep signalled the start of the 60 second dialogue phase, the 

follower was allowed to ask questions and the dyad could converse freely about the picture.  

Audible beeps indicated the start of the trial, the start of the monologue section and the end 

of the trial. A timer on the projector screen also counted down the time left in the monologue 

and dialogue sections. Thus, each picture description trial lasted 90 seconds with a fixed 

time structure in all trials.  Each dyad completed 16 trials, alternating between speaker and 

listener roles (Fig 1). 

At the end of the study, participants individually completed a questionnaire about the 

quality of their interaction. The questionnaire data is not analysed or reported here. Finally, 

participants were asked to write down what they thought was the purpose of the study, and 

were debriefed and paid by the experimenter. 

Analyses 

In line with our pre-registered plan, we excluded data from dyads who met any of the 

following criteria: 

1. Participants knew each other before the study 

2. Motion data was not recorded due to technical failure of the equipment or task 

software 

3. Motion sensor(s) moved or fell off during the study 

4. More than 50% of their data is missing or not suitable for wavelet analysis 

Data were excluded from one dyad based on criteria 1 (familiarity), two dyads on criteria 3 
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(sensors fell off) and two dyads on criteria 4 (missing data). When carrying out the analyses, 

we also excluded individual trials if wavelet analysis could not be performed (e.g. this could 

happen if there is a very large jerk or jump in the motion data).  

Pre-processing  

Raw data was recorded as x-y-z coordinates and yaw-pitch-roll signals from 4 

sensors – a head sensor and torso sensor of each participant, giving 24 channels of data at 

60Hz for each 90 second trial.  We trimmed data by discarding the first 100 time points (1.7s 

of the trial), all time points after the 5,250th point (87.5s into the trial; note that we originally 

specified 5300 in our pre-registration but some trials were shorter than 5300 data points). 

This removes irregularities at the start / end of trials and ensures that all trials are the same 

length.  We corrected for circularity in the rotation data, to deal with cases where a change in 

orientation from -355° to 5° appears to Matlab like a large change rather than only a 10° 

movement past zero. To correct for small inaccuracies in timing, we resampled the data 

using a polyphase anti-aliasing filter (using the Matlab resample function). This was to 

ensure that we had a uniform fixed sample rate that exactly matched the number of 

expected data points. Each data channel was then de-trended by subtracting the mean 

value. Finally we applied a 7th order Butterworth low pass filter with cut-off frequency of 30 

Hz to reduce noise.  

Of the 24 data channels collected, the final analysis focused primarily on head pitch because 

this was the most informative signal in our pilot analysis.  Other signals are presented in 

supplementary information.  We conducted several different analyses, which we describe in 

relation to the figures. 

Wavelet coherence analysis (Figure 2) 

The raw data signals for the X and Y participants (Figure 2A&B) were subject to a 

wavelet transform and then the cross-wavelet coherence was calculated, using the Matlab 

toolbox from Grinsted et al. (2004) with default parameters (Morlet wavelet, w=6). To prevent 

edge effects from the start and stop times of the interaction (as well as the times surrounding 

the prompted switch from monologue to dialogue), we removed all coherence results falling 

outside the so-called ‘cone of influence’ (COI) (i.e. the pale areas in the corners of Fig 2C,D 

and E).  In a very small minority of trials (mainly those with a single very jerky movement), 

the wavelet toolbox is unable to calculate the wavelet transform. Such trials were excluded 

from all analyses, and reported as missing data. 

Next, we averaged the cross-wavelet coherence over the time course of each trial to 
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obtain a simple measure of the frequency of coherence without regard to timing within a trial 

(Figure 2F).  We truncated the wavelet output to frequencies from 0.2 – 8 Hz, resulting in a 1 

x 89 vector of coherence values. This is a smaller frequency range that our original plan, 

because we found that data above 16 Hz could have been contaminated by dropped frames 

(affecting 2.7% of data points).  Also, there was not enough data below 0.2 Hz (5 s period) to 

give a meaningful result, because with the COI removed, less than 10 seconds of useable 

monologue data remains below 0.2 Hz. Thus, our final output from the wavelet analysis is a 

coherence vector for each trial of each dyad, giving values of interpersonal coherence 

across frequencies from 0.2-0.8Hz. 

Comparison to pseudo-pairs (Figure 3) 

To fully quantify the levels of interpersonal coherence we observe in our data, we 

need to compare this to a null dataset where coherences is not present.  We can do this by 

calculating the coherence present in pseudo-trials, where data from two different interactions 

are entered into the algorithm as if they were the X & Y participants (Bernieri & Rosenthal, 

1991; Fujiwara & Daibo, 2016). Previous studies using this approach created pseudo trials 

by mixing datasets from different participants. We adopted a stricter approach where we 

create pseudo-trials using data from trials of the same dyad with the same leader-follower 

assignment.  For example, we match X-trial 1 to Y-trial 3 where X is Leader and Y is 

Follower in both cases.  Thus, our pseudo trials had the same general movement 

characteristics (e.g. overall signal power) as our real trials, and differed only in that the real 

trials represent a genuine live social interaction.  We carried out wavelet analysis on the 

pseudo dataset using the same pipeline as above, and thus calculated the overall coherence 

values for all possible pseudo-trials of each dyad. 

To implement group-level comparisons, we compare each dyad’s real trial coherence 

to that dyad’s pseudo trial coherence, using paired t-tests for each frequency bin.  We 

correct for multiple comparisons using FDR (Benjamini & Hochberg, 1995) and plot the 

results both in terms of mean coherence levels and effect sizes for head pitch (Fig 3A and 

D), head roll (Fig 3B and E) and head yaw (Fig 3C and F). 

Comparison of monologue and dialogue data (Figure 4) 

 The analysis described above used the full-trial data, with both monologue and 

dialogue analysed together.  To explore potential differences between monologue and 

dialogue, we repeated the wavelet coherence analyses with the data separated into these 

two trial sections.  Results are shown in Figure 4A, B, E and F.  In addition, we used a basic 

analysis of power spectral density (PSD) over the whole trial (without breaking the data into 
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wavelets) to check for global differences in signal power between participants and trial 

sections.  For each participant and trial, we calculated the PSD using Matlab’s pwelch 

function.  Then we averaged data according to the participant’s role as Leader or Follower in 

that trial.  This allowed us to determine if there were overall differences in participants’ 

movement behaviour between the leader / follower roles and monologue / dialogue sections 

(Figure 4, C, D, G and H). 

Fast-nod detector (Figure 5) 

 Our wavelet analysis highlighted the 2.6-6.5Hz frequency range as an interesting 

band where one participant might engage in a fast-nodding behaviour while the other does 

not show coherent head motion.  To explore this, we developed a simple ‘fast nod detector’ 

and test which participant shows fast-nods and when.  Fast nods are defined in this work as 

head-pitch movements with a dominant frequency within the wider range of 1.5 to 8 Hz. This 

range is selected (rather than the significant findings of 2.6 to 6.5 Hz) to account for the 

approximate nature of our detector, and covers the range of frequency bands in Fig 3D with 

an effect size less than zero.  One simple way of automatically detecting these frequencies 

is by thresholding on an estimate of the dominant frequency obtained from the zero-crossing 

rate (ZC). The ZC algorithm works by counting the number of times a signal crosses the zero 

(or window mean) within a given window, and is implemented here as follows:       

1. slide a 2 second window across the pitch data,  

2. high-pass filter by removing the window mean,  

3. count the number of times the signal makes a zero crossing in one second (ZC),  

4. calculate the zero-crossing rate as an approximation of the frequency (ZC/2 

approximates frequency in Hz),  

5. select those time windows where the approximate frequency falls within the wider 

range of ‘fast nods’ (between 1.5 and 8 Hz). 

Dominant frequency can be computed by other means, like Fast Fourier Transform (FFT), 

however the ZC method has the advantage of simplicity and ease of implementation for 

future real-time execution. (One of the planned follow-on projects from this work is to 

implement an interactive virtual agent that can detect and respond to the head nods of 

human interlocutors in real time.)  

 The output of the fast-nod detector is a vector of 0/1 for each time point in each trial 

marking the presence / absence of a fast nod.  Examples are shown in Figure 5A and B.  

Averaging this vector for each participant and trial gives an estimate of the rate of fast-

nodding for that trial, and a paired t-test was used to compare rates between trials where 
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that participant had a Leader role and those with a Follower role (Figure 5C).  In addition, a 

speech-detector which thresholded the audio data was used to mark each timepoint in the 

data as ‘X speaking’, ‘Y speaking’ ‘Both speaking’ or ‘neither speaking’.  Note that audio 

quality was too low to detect who was speaking in 2 dyads, so the sample size for this 

analysis is n=24 dyads.  We used this to calculate the rate of fast nods for each participant 

when speaking and when not speaking, and then used a paired t-test to compare fast-

nodding rates between Listening and Speaking phases within trials (Fig 5D).  We can 

characterise the performance of the detector in terms of precision and recall. Precision 

measures the proportion of nods that occur during listening/following against all detected 

nods. Recall measures the proportion of nods that occur during listening/following against all 

periods marked as listening/following (Fawcett, 2003)  

Exploring mimicry behaviour with phase – frequency histograms (Figure 6) 

 The wavelet coherence analysis revealed interpersonal coherence at low frequencies 

in our data.  To explore the time-lags involved in more detail, we first used a cross-

correlation analysis on our raw head-pitch data.  We calculated the time-series cross-

correlations between two participants for real trials and for pseudo-trials using Matlab’s xcorr 

function.   This compares the correlation of two time-series for a range of temporal lags (in 

this case -4 to 4 seconds).  We then averaged over trials and dyads, and used paired t-tests 

with FDR correction to contrast real and pseudo trial data (Fig 6 A and D). 

When calculating wavelet coherence, it is possible to obtain information on both the 

coherence level and the phase difference between the two signals.  Phase can only be 

meaningfully interpreted when there is positive coherence – that is, two signals are active in 

the same frequency range. For this reason we only store phase data when coherence meets 

a minimum threshold; here we choose a mid-range threshold of 0.5. For every dyad and trial, 

we calculated the phase difference between Leader and Follower (Fig 2G), and then 

thresholded this image to show only data points with a coherence over 0.5.  For each 

frequency band, we then counted the number of supra-threshold points falling into each of 

24 phase bins from -180o to 180o.  This collapses the data over time and reveals the 

distribution of phases, and we can plot this data as a phase-frequency histogram (Fig 2H).  

We then average phase-frequency histograms over all trials and all dyads for both real trials 

and pseudo trials (Fig 6B and E).   The difference between phase-frequency plots for real 

and pseudo trials (Fig 6C) reveals the frequency bands at which participants are in phase 

with a specific lag (yellow areas) and where less data is present than chance (blue areas).  

Thresholds on this map were created with paired-sample t-tests.   

Modelling the phase-frequency histograms (Figure 7) 
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 We aimed to test if the phase-frequency relationship seen in the lower part of Fig 6B 

(repeated in Fig 7A) is generated by a constant-phase mechanism or a constant-lag 

mechanism.  To do this, we built two simple generative models, one for each mechanism.  

The constant-phase model had two parameters – phase lag and variability – and was 

modelled as a Gaussian distribution of phases about a fixed mean (Fig 7C).  The constant 

lag model also had two parameters – time lag and variability – and was modelled by 

sampling individual trials, offsetting the ‘X participant’ movement by the time lag relative to 

the Y participant, then calculating the wavelet coherence and phase-frequency histogram for 

that sample trial.  This process was repeated for 416 iterations (because the original dataset 

had 16x26 = 416 trials) using time-lags drawn from a Gaussian with mean & variability 

specified by the model parameters.  The results of the 416 iterations were averaged to give 

the final result (Fig 7D).  For each model, we used Matlab’s fminsearch function to find the 

parameter values which gave the best fit between the model and the data, that is, to 

minimise the root-mean-squared error (RMSE) between the generated data (Fig7C or D) 

and the original data (Fig 7A).  The model outputs shown in Fig 7 C and D represent the 

model using the optimal parameters.  Comparing the RMSE values for the two models 

shows that the constant-lag model has a better fit to the data (Fig 7B).  This implies that the 

cognitive mechanisms generating mimicry of head nods act with a constant lag of around 

0.588 msec. 

Data availability 

Anonymised data & analysis code will be uploaded to OSF when this manuscript is 

accepted. 
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