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Abstract 

Both movement and neural activity in humans can be entrained by the regularities of an external 

stimulus, such as the beat of musical rhythms. Neural entrainment to auditory rhythms supports temporal 

perception, and is enhanced by selective attention and by hierarchical temporal structure imposed on 

rhythms. However, it is not known how neural entrainment to rhythms is related to the subjective 

experience of groove (the desire to move along with music or rhythm), the perception of a regular beat, the 

perception of complexity, and the experience of pleasure. In two experiments, we used musical rhythms 

(from Steve Reich’s Clapping Music) to investigate whether rhythms that are performed by humans (with 

naturally variable timing) and rhythms that are mechanical (with precise timing), elicit differences in 1) 

neural entrainment, as measured by inter-trial phase coherence, and 2) subjective ratings of the complexity, 

preference, groove, and beat strength of rhythms. We also combined results from the two experiments to 

investigate relationships between neural entrainment and subjective perception of musical rhythms. We 

found that mechanical rhythms elicited a greater degree of neural entrainment than performed rhythms, 

likely due to the greater temporal precision in the stimulus, and the two types only elicited different ratings 

for some individual rhythms. Neural entrainment to performed rhythms, but not to mechanical ones, 

correlated with subjective desire to move and subjective complexity. These data therefore suggest multiple 

interacting influences on neural entrainment to rhythms, from low-level stimulus properties to high-level 

cognition and perception. 
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Introduction 

Western musical rhythms typically have hierarchical metrical structures that elicit the perception of a 

periodic ‘beat’ (Sethares 2007), to which listeners tend to synchronize movements. Groove, or the desire to 

move along with musical rhythms, is highly associated with the experience of pleasure (Madison, Gouyon, 

Ullén, and Hörnstöm 2011; Janata, Tomic, and Haberman 2012; Witek, Clarke, Wallentin, Kringelbach, 

and Vuust 2014), and has an inverted-U relationship (or Wundt curve; see Wundt 1874; Berlyne 1971; 

Margulis and Beatty 2008) with rhythmic complexity (i.e., syncopation) so that both high and low levels of 

syncopation produce less grove than a moderate level (Sioros et al., 2014; Witek et al. 2014). However, the 

cognitive and neural underpinnings of this subjective experience associated with musical rhythm are 

largely uncharacterized (Levitin et al., 2018; Senn et al., 2016). 

 

The perception of rhythm and beat depend on both stimulus characteristics and endogenous 

mechanisms, as the perceived beat is not an objective property of rhythms, but also mentally constructed 

by the listener (London 2012). One purported neural mechanism of rhythm and beat perception is the 

entrainment of ongoing neural oscillations to regularities in stimulus rhythms (Large and Snyder 2009). 

Neural entrainment is driven in part by external stimuli: inter-trial phase coherence (ITPC), a measure of 

phase consistency of stimulus-locked brain responses across repetitions (Makeig et al. 2001), increases 

during and immediately after listening to isochronous sounds (Will and Berg 2007), and the spectral EEG 

power at the frequency of isochronous sound presentation is also increased during listening (Nozaradan et 

al. 2011). However, neural entrainment is also governed by endogenous processes: imagining an emphasis 

on every second or third event of an isochronous rhythm increases the spectral EEG power at the 

frequency of the internally-generated (imagined) emphasis (Iversen et al, 2009; Nozaradan et al. 2011). 

Unsurprisingly, neural entrainment can enhance perception and behaviour. For example, entrainment to 

predicted onsets of rhythmic auditory stimuli (including speech) improves the perception of those stimuli 

by aligning the excitable phase of an oscillation with the timing of expected stimuli (Calderone, Lakatos, 

and Butler 2014; Henry and Obleser 2012, 2014; Lakatos, Karmos, Mehta, Ulbert, and Schroeder 2008; 

Peelle and Davis 2012; Riecke, Formisano, Sorger, Başkent, and Gaudrain 2018). Attention to rhythmic 

stimuli enhances neural entrainment to, and perception of, those stimuli (Lakatos et al. 2008; Calderone, et 
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al., 2014), and entrainment to rhythms is correlated with the predictability of rhythmic events and also with 

reaction times to those events (Stefanics, Hangya, Hernádi, Winkler, Lakatos, and Ulbert, 2010). These 

perceptual, behavioural, and cognitive interactions with neural entrainment may be relevant to the 

subjective experience of musical rhythms (e.g., the pleasure, groove, beat strength, and perceived 

complexity associated with a rhythm), although that link is not currently well understood.  

 

Perceived groove and pleasure in rhythms are highly correlated (Witek et al. 2014), and are associated 

with complexity (i.e., syncopation or the intentional shifting of temporal emphases away from expected, 

regular positions, in musical rhythms (Temperley 1999)). Neural entrainment is influenced by complexity 

of rhythmic structure (Nozaradan, Peretz, and Mouraux, 2012), although the exact nature of the   

relationships between neural entrainment and either structural or perceived complexity are not yet 

understood. Since we expected both neural entrainment and the perception of groove to be influenced by 

rhythmic complexity and by top-down factors like endogenous attention, we hypothesized that neural 

entrainment may be positively associated with subjective perception of groove, pleasure (which tends to be 

correlated with groove), and complexity.  

 

Interactions with cognition and perception notwithstanding, neural entrainment is stimulus-

dependent—in the absence of other factors (e.g., predictability, learning), stimuli with highly regular 

temporal structure entrain neural oscillations and those that are temporally irregular do not (e.g., Fujioka, 

Trainor, Large, and Ross, 2012). Music (like speech) is a curious case in this context, as it often relies on 

regularity in its temporal structure (rhythm, beat, and meter), but its real-world performance is not usually 

perfectly precise. Performers introduce temporal variability to musical rhythms, and rather than being 

erroneous, this variability of human performance is an inherent part of music, preferred over mechanical 

rhythms (i.e., computer-generated, with sub-millisecond precision: Hellmer and Madison 2015; Hennig et 

al. 2011; Räsänen, Pulkkinen Virtanen, Zollner, and Hennig 2015). It is often believed that such expressive 

deviations from precise timing make the music more engaging and increase the listener’s desire to move 

with the music (Iyer, 2002; Fitch, 2016).   For example, a behavioural study found that when listening to 

expressively-timed music compared to mechanical, precisely-timed music, participants tapped the beat at 
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higher levels of the metrical hierarchy which corresponded more closely to the temporal structure 

suggested by music theory (Drake, Penel, and Bigand 2000). To the degree that neural entrainment may 

increase with preference and meter perception (due to, for example, engagement, attention, perceptual 

salience), neural entrainment to music may be greater when rhythms are human-performed, containing the 

temporal variability of expressive timing that listeners enjoy and use to infer meter. On the other hand, 

neural entrainment is also driven by temporal regularity (i.e., the opposite of variability) in a stimulus 

stream, which suggests that rhythms that are more precisely regular (i.e., that lack the timing variability of 

human performance) will elicit greater neural entrainment. Thus, manipulating the temporal precision of 

rhythms may reveal positive relationships between neural entrainment to rhythms and expressive timing 

(driven by subjective factors such as preference or beat perception), or negative relationships (driven by 

reduced temporal precision in human performed stimuli).  

 

Here, we measured neural entrainment, as measured by ITPC, during listening to a piece of rhythmic 

music, Steve Reich’s Clapping Music (1972), that contains 12 distinct rhythms of varying complexity, as 

measured by the normalized pairwise variability index, nPVI (Patel and Daniele 2003). Critically, listeners 

heard two versions of the music, a mechanical version created digitally with precise timing, and a 

performed version with expressive timing natural to human performance. We recorded EEG from 

musicians while they listened to Clapping Music and analyzed the ITPC values in the delta band (1-4 Hz), 

which contains the frequencies associated with the perceived beat and metrical structure. From a separate 

group of musicians, we collected ratings for each rhythm on four subjective measures of musical rhythm: 

the desire to move in time with the rhythm, the perception of a steady beat, the perception of rhythmic 

complexity, and the experience of pleasure. We hypothesized that neural entrainment to musical rhythms is 

positively associated with these aspects of subjective perception. Thus, we predicted positive correlations 

between ITPC and behavioural ratings of groove, complexity, pleasure, and beat for the individual rhythms 

of Clapping Music. Although complexity (e.g., syncopation) has been shown to have an inverted-U 

relationship with groove and pleasure, the rhythms from Clapping Music were expected not to reach the 

highest levels of syncopation used in previous studies (e.g., Witek et al. 2014), and therefore we predicted 

a positive linear relationship between ITPC and complexity. We also predicted that all four subjective 
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ratings would be higher for rhythms with expressive timing of human performance than for the mechanical 

versions. Finally, we expected that listeners’ relatively greater engagement and attention associated with 

performed, compared to mechanical, rhythms would lead to stronger correlations between neural 

entrainment and subjective ratings.  

 

We measured neural entrainment only in the delta band (1-4 Hz), a frequency range that excludes the 

rate of the minimum inter-onset intervals in the stimulus (5.33 Hz), which is prominent in the rhythms but 

faster than listeners tend to perceive as the beat. We examined the delta band only, as it contains the 

frequencies of the metrical regularities that are most important for the perception of beat and meter, and to 

which movements tend to synchronize during music listening. Relatedly, our focus on beat and meter-

related frequencies partly explains why we predicted a positive relationship between perceived complexity 

and neural entrainment (i.e., in contrast to the faster stimulus regularity, for which we would expect a 

negative relationship). The degree of rhythmic complexity in Clapping Music was not thought to be so 

high as to inhibit beat perception or groove for any particular rhythm, or to substantially reduce stimulus-

driven neural entrainment to the beat- and meter-related frequencies that are still present in the most 

complex stimuli. 

 

Materials and Methods 

Experiment 1 

Participants and Stimuli 

Twenty (14 female, mean age 25 yrs, range 19-39 yrs) trained, active musicians (with minimum 5 years 

of formal music training) participated in the EEG experiment. All participants gave written informed 

consent and received financial compensation for their participation. The experimental protocols were 

approved by the local ethics committee at Goldsmiths, University of London. All participants reported 

being unfamiliar with the musical source of the experimental stimuli, Clapping Music. 

 

The stimulus was Steve Reich’s Clapping Music, a piece of contemporary classical music containing 

12 distinct rhythms created by the application of a simple process of repetition and transformation applied 
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to a basic rhythm by two performers clapping. Each rhythm has 12 metrical positions at which a single 

clap, two simultaneous claps, or a rest (silence) can occur. In common practice, each of the 12 rhythms is 

played 12 times sequentially before the transition to the next rhythm. The piece closes with the initial 

rhythm, played 12 times. 

 

We presented two versions of Clapping Music. First, a version with expressive timing (the performed 

version): a commercial recording of the piece (Reich 1987) performed by two individuals clapping, 

digitally manipulated to have a slower tempo and to have each repetition begin precisely 2.25s after the 

onset of the previous repetition. Second, a version with mechanical timing (the mechanical version):  

created in MIDI using five samples from the commercial recording for each of five types of clapping 

sounds that account for the structure of the composition and performance instructions of the composer, 

specifically that performers should emphasize claps that occur on the downbeat in each rhythm.. The five 

clapping sounds are: Performer 1 downbeat, Performer 1 non-downbeat, Performer 2 non-downbeat, both 

performers downbeat, and both performers non-downbeat. Clapping samples were placed in time exactly 

according to the notated intention of the composer (eliminating the subtle expressive shifts in intensity and 

timing that occur with human performance). The two versions, in full, are each 351s in duration, 

presenting the 12 iterations of each of the 12 rhythms in continuous sequence (there is no gap between 

rhythms). See Figure 1 for a representation of the 12 unique rhythms and waveforms of mechanical and 

performed versions of one rhythm. The two versions differed in stimulus intensity. Mechanical rhythms 

were slightly louder than performed rhythms (by 6.67 average momentary loudness units relative to full 

scale).  

 

To obtain an objective measure of rhythmic complexity for each individual rhythm (as notated in 

the original score), we calculated normalized Pairwise Variability Index, nPVI (Grabe and Low 2002; 

Patel and Daniele 2003), a measure of the relative durational variability of a sequence (e.g., a rhythm): 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
100
𝑚𝑚− 1

 � �
𝑑𝑑𝑘𝑘 − 𝑑𝑑𝑘𝑘+1

(𝑑𝑑𝑘𝑘 + 𝑑𝑑𝑘𝑘+1)  2⁄
� ,

𝑚𝑚−1

𝑘𝑘=1

 

where m is the number of events in the rhythm and dk is duration of the kth event.  
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  ---------Figure 1 here--------- 

Fig. 1 Top: the 12 unique rhythms from Clapping Music used as stimuli. Vertical lines indicate time 
positions at which a clap occurs. Dots indicate rests. For each rhythm, the two component rhythms 
(performed by different people clapping, labeled A and B) are shown, as well as the resultant rhythm, in 
darker lines and dots. Normalized Pairwise Variability Index (nPVI) values are included for each rhythm. 
This part of the figure is adapted from a figure in Cameron, et al., (2017). Bottom: Waveforms of four 
repetitions of mechanical and performed versions of rhythm 1. Dashed grey lines indicate the onset of 
individual repetitions 
 

EEG Procedure, Data Collection, Preprocessing, and Analysis 

Participants were presented with the full excerpt of the mechanical and performed versions once each 

(order counterbalanced across participants); participants were instructed to listen attentively to the music 

with eyes closed. Stimuli were played through two external speakers placed approximately 40 cm directly 

in front of participants.  

 

We recorded EEG from 28 Ag/AgCl scalp electrodes placed according to the 10-20 system using 

electrode AFz as ground. Eye movements were recorded from electrode pairs placed around the eyes. All 

electrode impedances were kept below 5 kΩ. EEG signals were amplified (Synamps Amplifiers, 

Neuroscan Inc.), filtered (dc to 100 Hz), and sampled at 500 Hz. The average of two earlobe electrodes 

was used as reference. Data were epoched in 156 segments of 2.25 seconds length (1125 samples), aligned 

with each of the 12 repetitions of the 13 rhythmic figures. Artifacts were detected by visual inspection and 

excluded from further analysis (< 0.5%). Ocular artifacts were removed by Independent Component 

Analysis using the EEGLAB toolbox (Delorme and Makeig 2004). 

 

For each 2.25s segment, we zero-padded an additional 5.75s and applied a 4000-point fast Fourier 

transform (FFT) to obtain the amplitude (complex modulus of the FFT) and the phase (angle of the FFT) at 

individual frequencies, resulting in a frequency resolution of 0.125 Hz. The phase consistency over 

repetitions of the rhythm was measured by inter-trial phase coherence, ITPC (Makeig et al. 2001; Tallon-

Baudry, Bertrand, Delpuech, and Pernier 1996), varying between 0 (no consistency) and 1 (perfectly phase 
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consistent across repetitions of the rhythm). ITPC was averaged across the frequencies of the delta band 

(1-4 Hz).  

 

We used ITPC as an index of neural entrainment rather than spectral power, which has been used 

elsewhere (e.g., Will and Berg, 2007; Henry and Obleser, 2012; Doelling and Poeppel, 2015). While 

spectral power may reflect neural entrainment, it is also sensitive to the amplitude of evoked potentials that 

occur at regular intervals. Because ITPC is more reliably related to neural entrainment than spectral power 

is (see Rajendran and Schnupp, 2019; Haegens and Golumbic, 2018; Zoefel, ten Oever, and Sack, 2018), 

and also for the more specific reason that our stimuli differed in terms of intensity, which would lead to 

differences in amplitude of evoked responses. 

 

Repeated-measures analysis of variance (ANOVA) was performed on delta-band ITPC values with the 

factors, Version (mechanical vs. performed) and Rhythm (1-13). Mean ITPC values for each rhythm, in 

each version, were then tested for correlation with the mean behavioural ratings for those same rhythms 

which were obtained in Experiment 2.  

 

Experiment 2 

Participants and Stimuli 

Twenty-two (17 female, mean age 25 yrs, range 19-32 yrs) trained, active musicians (with minimum 5 

years of formal music training) participated in this behavioural experiment. The two samples were 

independent as no participant took part in both experiments. All participants gave written informed consent 

and received financial compensation for their participation. The experimental protocols were approved by 

the local ethics committee at Goldsmiths, University of London. All participants reported being unfamiliar 

with Clapping Music. 

 

Stimuli were taken from the same mechanical and performed version of Clapping Music as described 

above for Experiment 1. Rather than the full piece of music, participants were presented with four 

repetitions each of the individual rhythms (9s), in each version (mechanical and performed) 
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Behavioural Procedure, Data Collection, and Analysis 

For each rhythm, in each of the two types, participants provided ratings on a 7-point Likert scale, to 

four questions about their experience of the rhythm as follows: 

1) Complexity: “How complex is this rhythm? 1 = extremely simple; 7 = extremely complex” 

2) Pleasure: “How much pleasure do you experience listening to this rhythm? 1 = I experience no 

pleasure from this rhythm; 7 = I experience a great deal of pleasure” 

3) Beat perception: “How strong was your sense of ‘beat’ in this rhythm? 1 = My sense of a regular 

‘beat’ was extremely weak; 7 = My sense of a regular ‘beat’ was extremely strong” 

4) Groove perception: “How much did this rhythm make you want to move?  1 = This rhythm did not 

make me want to move at all; 7 = This rhythm gave me a strong urge to move” 

 

Stimulus order was randomized individually for each participant, and rhythms were presented via 

headphones and ratings were collected via a laptop keyboard.  

 

Ratings for each of the four questions for mechanical and performed rhythms were compared using 1-

tailed paired t-tests, as we expected higher ratings for performed than mechanical rhythms.  

 

Analyses Comparing Results from Experiments 1 and 2 

To investigate the relationships between subjective evaluation of musical rhythms and neural 

entrainment, we calculated the Spearman rank correlation coefficient (ρ) between average ITPC values 

(i.e., averaged across participants) for each of the 12 rhythms, and the average rating for those same 

rhythms, for mechanical and performed versions separately. As we predicted positive correlations between 

ITPC and subjective ratings, we used 1-tailed tests. To test whether listeners’ perception of rhythmic 

complexity is associated with an objective measure of rhythmic complexity, we tested the correlation 

between complexity ratings and nPVI. Finally, to test whether neural entrainment is associated with 

objective rhythmic complexity, we tested for correlation between ITPC and nPVI. Given the absence of 

data (to our knowledge) on the relationship between nPVI and perceived complexity in rhythms, and given 
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the conflicting potential influences of rhythmic complexity on neural entrainment (i.e., stimulus- and 

perception-dependent factors as discussed above), correlation tests between nPVI and complexity ratings, 

and between nPVI and neural entrainment, were 2-tailed. 

 

We also calculated Spearman’s ρ between perceptual ratings for mechanical and performed rhythms 

separately, predicting positive correlations between all pairs of 1) complexity, 2) pleasure, 3) beat, and 4) 

groove (therefore, we used 1-tailed tests).   

 

All correlation tests were corrected for multiple comparisons using the false discovery rate (FDR: 

Benjamini and Hochberg 1995), separately for the correlations between ITPC, ratings, and nPVI, and the 

correlations between the different individual ratings (e.g., between groove ratings and complexity ratings, 

for mechanical and performed rhythms separately). 

 

Results 

Experiment 1 

Mechanical versions of rhythms elicited greater delta band entrainment, as measured by ITPC, than 

performed versions (main effect of Version: F(1,19) = 23.62, p < .001, η2 = .55): mean entrainment to the 

mechanical version of each individual rhythm was higher (i.e. higher ITPC) than for the performed version 

(Figure 2A). Individual rhythms differed in the degree of entrainment they elicited (main effect of Rhythm: 

F(1,19) = 8.51, p < .001, η2 = .31). Rhythms with greater objective complexity (i.e., higher nPVI) elicited 

greater entrainment (i.e., higher ITPC) for both mechanical (Spearman’s rank correlation coefficient, ρ = 

.81, p = .001) and performed rhythms (ρ = .82, p = .001). The three rhythms with least objective 

complexity (or lowest nPVI; rhythms 2, 7, and 12) have the lowest mean ITPC values;  the low complexity 

in these rhythms is related to the fact that they have sound onsets in every possible metrical position (no 

rests). The relationship between nPVI and entrainment is shown in Figure 2B.   

 

---------Figure 2 here--------- 
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Fig. 2 A) Mean neural entrainment (ITPC) in the delta band of EEG across participants during listening to 
mechanical (dark bars) and performed (light bars) versions of the 12 rhythms of Clapping Music. Mean 
entrainment was greater for mechanical than performed rhythms. B) Mean delta band neural entrainment 
(ITPC) and normalized Pairwise Variability Index (nPVI) values (higher nPVI values indicate greater 
durational variability, taken as an objective measure of rhythmic complexity) for each rhythm. Dark 
squares are mechanical rhythms, and light circles are performed rhythms. Entrainment and objective 
rhythmic complexity are positively correlated (i.e., ITPC correlates positively with nPVI). For the 
correlation, p-values are 2-tailed, FDR-corrected for multiple comparisons 

 

Experiment 2 

Mean behavioural ratings did not differ between mechanical and performed versions of rhythms for any 

of the attributes (complexity, groove, pleasure, or beat; p > .05). 

 

For both mechanical and performed rhythms, perceived complexity correlated with the subjective 

ratings of both beat strength (mechanical: ρ = .69, p = .024; performed: ρ = .72, p = .024) and groove 

(mechanical: ρ = .78, p = .024; performed: ρ = .61, p = .034). For performed but not mechanical rhythms, 

perceived complexity was also correlated with pleasure (ρ = .65, p = .026) and pleasure was correlated 

with beat strength (ρ = .68, p = .024). Between-rating correlations are shown in Table 1.  

Table 1. Spearman correlations between mean subjective ratings across rhythms. 

Mechanical Rhythms  Performed Rhythms 

 Complexity Pleasure Beat Groove  Complexity Pleasure Beat Groove 

Complexity -     -    

Pleasure .363 
n.s. -    .649 

p = .026 -   

Beat .691 
p = .024 

.157 
n.s. -   .716 

p = .024 
.677 

p = .024 -  

Groove .784 
p = .024 

.466 
n.s. 

.228 
n.s. -  .611 

p = .034 
.431 
n.s. 

.240 
n.s. - 

 

 ---------Figure 3 here--------- 

  

Fig. 3 Neural entrainment (delta band ITPC) and subjective ratings for perceptions of complexity (top left), 
induction to move (top right), pleasure (middle left), and beat strength (middle right), associated with 
mechanical (in darker shade) and performed (in lighter shade) rhythms. Spearman’s ρ and p-values under 
.05 (1-tailed, FDR-corrected) are displayed for each condition in each chart. Neural entrainment to 
performed (but not mechanical) rhythms was found to correlate with perceived complexity and induction 
to move. Bar charts to the right of correlation figures show corresponding mean ratings across all rhythms; 
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error bars indicate standard error of the mean. The bottom graph shows that objective rhythmic complexity 
correlates with perceived complexity of performed but not mechanical rhythms. 
 

Comparing Neural and Behavioural Responses 

Spearman correlations between neural entrainment (delta band ITPC) and behavioural ratings were 

statistically significant only for performed rhythms for ratings of perceived complexity (ρ = .64, p = .034) 

and perceived groove (ρ = .65, p = .034). Additionally, ratings of perceived complexity correlated 

significantly with objective complexity (nPVI) for performed rhythms (ρ = .79, p = .004). Other 

correlations were not significant (p > .05). 

 

Discussion 

Participants listened to mechanical (precisely timed) and human performed (with natural timing 

variability) versions of a piece of rhythmic music, Clapping Music, and their EEG was recorded to 

measure neural entrainment (the delta band ITPC) to the 12 unique rhythms of the piece. A separate group 

of participants rated each of the rhythms, from mechanical and performed versions, and provided their 

subjective evaluations of rhythms on complexity, pleasure, beat, and groove. Neural entrainment, as 

measured by the delta band ITPC, was greater when the rhythms were presented in a temporally precise, 

mechanical version compared to a performed version. We suggest that this difference in neural entrainment 

is likely due to the increased temporal precision of the mechanical rhythms—because the stimulus is more 

consistently timed, the entrained oscillations are more consistent, resulting in greater ITPC. However, 

overall subjective ratings of complexity, groove (the desire to move along to the rhythms), beat perception, 

and pleasure did not differ between performed and mechanical versions. Importantly, we observed  

relationships between neural entrainment and perceived complexity and groove only for the performed 

rhythms, but not for the precisely timed ones. Although subjective groove and complexity ratings did not 

differ between mechanical and performed rhythms, it may be that the functional relationships between 

neural entrainment and the experiences of subjective groove and complexity are different for the two types 

of rhythms. For example, it may be that the temporal variability of performed rhythms requires greater use 

of neural entrainment to attend to and assess the rhythms, or that when rhythms are perceptibly human-

generated, subjective perception influences neural entrainment in a top-down fashion, possibly mediated 
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by attention (i.e., a rhythm may be more salient when it is evidently produced by humans than if it is 

computer generated). It is further possible that the presence of relationships between neural entrainment 

and subjective perception for one but not the other stimulus type is due to different underlying influences 

on neural entrainment. This account is bolstered by the fact that both stimulus regularity (stronger for 

mechanical rhythms) and attention (possibly stronger for performed rhythms) can both increase neural 

entrainment (Fujioka, et al., 2012; Lakatos, et al., 2008; Calderone, et al., 2014), but of those two factors, 

attention is more plausibly related to subjective perception. Alternatively, relationships between subjective 

perception of rhythms and neural entrainment to those rhythms could be present for mechanical rhythms 

but unobserved because the relationship is so subtle that it is dominated by the relatively strong stimulus-

driven component of neural entrainment. The present data cannot distinguish between the likelihood of 

these accounts (or others), so further research is needed to clarify the relationships between neural 

entrainment to stimulus characteristics and subjective perception of musical rhythms. 

 

Groove, complexity (e.g., nPVI, syncopation), and pleasure have been shown to correlate with each 

other (Witek et al. 2014), and our behavioural ratings showed a similar pattern. Perceived complexity was   

correlated with groove for both mechanical and performed rhythms while pleasure was correlated with 

complexity and beat only for performed rhythms. Pleasure and groove did not correlate for either version. 

The limited observed relationships between rated pleasure and groove, complexity, and neural entrainment 

may be due to the limited stimulus set (i.e., all short rhythms performed by clapping). The enjoyment of 

these particular rhythms was expected to be lower, and less variable, compared to the popular music 

recordings or drum kit performances used in previous studies of groove (Janata, Tomic, and Haberman 

2012; Witek et al. 2014). Perceived complexity (ratings) and objective complexity (nPVI) were only 

correlated for performed, and not for mechanical, rhythms, despite complexity ratings not differing 

between rhythm conditions. However, it is not clear why the relationship between objective rhythmic 

complexity (nPVI) and perceived complexity would be different for performed vs. mechanical rhythms. 

 

Surprisingly, ratings did not differ between performed and mechanical rhythms. We expected that the 

expressive timing in performed rhythms would lead to higher ratings, particularly of pleasure and groove, 
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based on previous literature (Hellmer and Madison 2015; Hennig et al. 2011; Räsänen, Pulkkinen 

Virtanen, Zollner, and Hennig 2015). It may be that the particular performed and mechanical stimuli used 

here are not sufficiently distinct in temporal variability to elicit differences in explicit ratings, despite their 

different association with neural entrainment. This is consistent with other EEG research showing that 

electrophysiological measures are in some cases more sensitive than behavioural measures (e.g., Francois 

and Schön 2011; Peretz et al. 2009). On the other hand, pleasure was significantly correlated with 

complexity and beat only in the expressive condition suggesting that expressive timing may be a necessary 

condition for complexity and meter perception to exert influence on pleasure.  

 

Neural entrainment was greater for rhythms with greater objective rhythmic complexity (nPVI). The 

three rhythms with lowest objective complexity (nPVI = 0; rhythms 2, 7, and 12) elicited the lowest levels 

of neural entrainment. Although this may seem contrary to the expected positive relationship between strict 

regularity in a stimulus and neural entrainment, it is worth noting again that we measured neural 

entrainment only in the delta band (1-4 Hz), a band that excludes the stimulus rate in these three 

isochronous rhythms (5.33 Hz).  

 

It is worth considering our findings in the context of recent interest in entrained neural oscillations, its 

disentanglement from regularly occurring evoked neural responses, and its possible functions (see recent 

reviews by Zoefel, ten Oever, and Sack (2018), and Haegens and Golumbic (2018)). We showed that 

phase-locking in the delta band EEG to rhythms depends both on objective properties of the rhythms and 

on subjective perception of them. We suggest that these results do not reflect differences in evoked 

responses arising after sound onsets in rhythms. Although ITPC was greater for the more precisely timed 

mechanical rhythms than for performed rhythms (a difference which could be due—at least in part—to 

sound-evoked responses that were more precisely regular), ITPC was not greater for the more structurally 

regular (less complex) rhythms, and in fact was greater for more complex rhythms when they were of the 

performed type. This suggests that differences in endogenous neural oscillations could contribute to the 

observed differences in ITPC.  
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Endogenous neural oscillations are thought to support temporal predictions (Lakatos et al. 2008; Arnal 

and Giraud 2012; Calderone, Lakatos, and Butler 2014; Zoefel, ten Oever, and Sack 2018), and can be 

driven by temporal predictability in stimulus streams. Here, we showed that neural entrainment was greater 

for more temporally regular (mechanical) rhythms, but also for more complex rhythms (both objectively 

and subjectively complex) if they were performed rather than mechanical. The correlations between 

subjective experience and neural entrainment to performed rhythms may support a recent proposal that 

complexity in musical rhythms is associated with bodily movement and pleasure by way of predictive 

neural mechanisms, and that beat-entrained movements not only elicit pleasure but aid sensory predictions 

(Vuust and Witek, 2014). Thus, it may be that the predictive function of entrained endogenous oscillations 

supports neural and cognitive processing of complex rhythms, leading to the correlations between 

entrainment to performed rhythms and their perceived groove, and both objective and subjective 

complexity. 

 

Subtle timing variation in rhythms, or micro-timing, may be related to the observed differences (and 

absence of differences) for performed and mechanical rhythms which differ in terms of temporal 

variability. Previous work has considered whether or not micro-timing in musical rhythms is related to 

groove, with mixed results (Butterfield, 2010; Davies, Madison, Silva, and Gouyon, 2013; Kilchenmann 

and Senn, 2015). When micro-timing effects on groove have been shown, they tend to be related to 

systematic timing variation rather than ongoing variability arising unintentionally from natural human 

performance, and in relation to specific music genres. The lack of any difference in groove between the 

performed and mechanical conditions may be related to the fact that the stimuli are from a piece of music 

in a style not usually associated with groove (minimalist 20th century art music), in the way that jazz and 

funk are, for example. Micro-timing may, however, be related to the differences between performed and 

mechanical rhythms in terms of relationships between neural entrainment and subjective perception of 

groove: micro-timing may impact attention, providing a functional link between neural entrainment and 

subjective perception, as discussed above.  
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Of note, the presentation order of rhythms was constant across EEG participants (the rhythms were 

presented as a musical composition in order to keep the ecological validity of musical listening), but 

differed across participants completing the behavioural experiment (randomized order of individual 

rhythms). While we do not expect that the order of rhythm presentation casts significant doubt on our main 

conclusions (as the order was the same for both mechanical and performed rhythms in the EEG 

experiment, and did not systematically differ between conditions in the behavioural experiment), a 

previous study showed that the rhythms (or rhythmic figures) of Clapping Music are more easily 

differentiated (rated as less similar) when heard within the context of the entire piece of music rather than 

as isolated pairs (Cameron, Potter, Wiggins, and Pearce 2017). Therefore, it is possible that relationships 

between perceptual ratings and neural entrainment would be stronger if presentation order were the same 

in the two experiments (although this would either reduce ecological validity in the EEG experiment or 

risk introducing order effects on subjective ratings).  

 

While we believe that the use of real music provides ecological validity to the study of rhythm 

perception and elicits greater engagement from participants, the need certainly exists to use a broader range 

of stimuli to investigate in further breadth and detail the relationships between neural entrainment to, and 

perception of, musical rhythms. For example, using a larger set of rhythms with a range of complexity 

(nPVI) that reached higher levels of complexity might replicate the correlation between complexity and 

neural entrainment observed here but might instead reveal an inverted-U relationship between neural 

entrainment with complexity, as observed previously for groove and preference (Witek et al. 2014).  

 

All participants were trained musicians in our two experiments; both behavioural and neural 

differences associated with rhythm and beat perception have been found between musicians and non-

musicians (e.g., Drake, Penel, and Bigand 2000; Grahn and Rowe 2009), including an enhancing effect of 

musical training on neural entrainment to music and rhythms (Doelling and Poeppel 2015; Stupacher, 

Wood, and Witte 2017). Additionally, participants were primarily trained in Western music and were all 

living in the UK (i.e., as a sample they did not represent global cultural diversity), and learning, 

enculturation, and experience are known to influence both musical rhythm perception (Hannon and Trehub 
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2005; Hannon and Trainor 2007; Hannon, Soley, and Ullal 2012; Stevens 2012; Cameron, Bentley, and 

Grahn 2015; Bouwer, Burgoyne, Odijk, Honing, and Grahn 2018; Polak, Jacoby, Fischinger, Goldberg, 

Holzapfel, and London 2018) and neural entrainment to music, rhythms, and speech (Doelling and Poeppel 

2015; Stupacher, Wood, and Witte 2017; Song and Iverson 2018). Therefore, although the phenomena of 

interest (beat perception and tendency to entrain to musical rhythms) are found widely across the world, in 

all cultures, and do not require training, enculturation and training may influence, and thus limit the 

generalizability of, the observed relationships between the perception of and neural entrainment to musical 

rhythms.  

 

Altogether, we demonstrate links between the subjective experience of, neural entrainment to, and 

complexity of performed (but not mechanical) musical rhythms. The causal links between these factors and 

measures remain to be understood—for example, neural entrainment could either cause or arise from the 

desire to move while listening to rhythms—but the presented results contribute to understanding the 

seeming magic that music exerts on our senses, bodies, brains, and lives.  
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