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ABSTRACT
A truly human-centred approach to Machine Learning (ML) must consider how to support people
modelling phenomena beyond those receiving the bulk of industry and academic attention, including
phenomena relevant only to niche communities and for which large datasets may never exist. While
deep feature learning is often viewed as a panacea that obviates the task of feature engineering, it
may be insufficient to support users with small datasets, novel data sources, and unusual learning
problems. We argue that it is therefore necessary to investigate how to support users who are not
ML experts in deriving suitable feature representations for new ML problems. We also report on the
results of a preliminary study comparing user-driven and automated feature engineering approaches
in a sensor-based gesture recognition task.
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INTRODUCTIONExamples of novel systems designed with
IML
• Using light sensors to control a new musical
instrument: “MARtLET” by Michelle Nagai
(https://vimeo.com/19980514, Figure 1)

• Using computer vision to recognise and aug-
ment shadow puppets: “Machine learning
shadow play” by Isabella Ong and Marianna
Chrapana (https://vimeo.com/253056211, Fig-
ure 2)

• Using audio of live musicians to drive vi-
sualisations: Analema Group’s “KIMA: The
Wheel” (https://www.youtube.com/watch?
v=yGBPjv2Sgbk)

• Using game controllers to build musical inter-
faces that can be played by a wide variety of
physical motions, including by people with
physical disabilities [7]

• Using Kinect to create full-body games con-
trolled by “low power” and “high power”
poses: Nightmare Kitty by Perry and Fox [9]

Sidebar 1

Machine learning (ML) can be a powerful tool even in the hands of people who lack expertise in
computer science, mathematics, programming, and other skills normally associated with ML practice.
Given appropriate user interfaces and ML workflows, end users are capable of employing ML to
perform tasks such as creating animal behaviour recognisers, clustering medical images, filtering
nuclear facility surveillance data, and creating new user interfaces for music and accessibility [4].

Yet little research considers how to support end users in choosing and reasoning about the feature
representations employed by ML systems. In this paper, we argue that more work is needed to
understand how to design user interfaces and ML workflows to support effective end-user ML in
applications where the choice of representation is non-trivial, cannot be learned directly from the data,
and cannot be determined in advance for the user by an ML expert. We also report results from a user
study that suggest even when implementations of potentially relevant features are made available,
users may struggle to select good features using a GUI. Further, some light-weight automated methods
may select better-performing feature sets in short enough time to accommodate an IML workflow.

INTERACTIVE ML AND FEATURE REPRESENTATIONS
Interactive machine learning (IML) approaches are often useful in enabling end-user ML. Amershi et
al. describe IML as characterised by more “focused, frequent, and incremental” iterations of users
supplying information (e.g., new training examples) to a learning system, then examining the behaviour
of the system [1, p.107]. This “allows users to interactively examine the impact of their actions and
adapt subsequent inputs to obtain desired behaviours. As a result of these rapid interaction cycles,
even users with little or no machine-learning expertise can steer machine-learning behaviors through
low-cost trial and error or focused experimentation with inputs and outputs” [1, p.106].

While IML is sometimes used to support end-user training of systems whose structure (e.g., feature
representation, choice of learning algorithm, usage of trained models) has been pre-defined by experts,
IML can also be used to support end-user design of entirely new and unique systems. For instance,
tools such as Wekinator [5] and GRT [6] place few constraints on the type of data being modelled or
the ways model outputs are used; rather, they merely provide ML algorithm implementations and
interfaces for users to interactively train supervised learning models. Users must find or implement
code to extract features from their chosen data source and send these to the IML tool. Users must
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also implement logic (potentially in a high-level or domain-specific programming environment) for
receiving model outputs and using them in some way (e.g., to influence a game, music, or smart-home
device). These tools have enabled users to design systems as diverse as those listed in Sidebar 1. To
build each of these systems, a designer iteratively employed IML to build models from their own
training examples of sensor features paired with the classification or regression output(s) that they
desired in response to those feature values.

Feature Representation Challenges Facing Non-Experts

Figure 1: The MARtLET instrument, cre-
ated with IML, uses gestured sensed with
photoresistors to control sound.

Figure 2: “Machine learning shadow play”
uses IML to recognise shadow puppets
and augment them with digital content.

Choosing and reasoning about feature representations can be a monumental challenge for end users
applying ML to novel problems such as those in Sidebar 1. In many domains, including audio and
image analysis, it may be impossible to create useful models directly from the raw data. (Certain deep
neural networks can learn from raw audio and images, though these require many more examples than
the dozens to hundreds often supplied by IML users creating datasets from scratch for each learning
problem.) In other domains, models may be accurately built from raw data for certain problems but
others require feature engineering. For instance, a user working with simple hand-held accelerometers
might build an accurate model for sensing tilt from the raw data, but a model for classifying actions
based on shaking speed would require additional features to be extracted.
A suitable choice of features can dramatically increase the ability to create an accurate model for

a given problem; a poor choice can prevent anything useful from being learned. Moreover, in many
end-user ML design applications, users have considerable flexibility in defining the learning problem:
for instance, they must decide what gestures should be recognised in a new game, or how a live
visualisation should change in response to perceptual properties of musical audio. Understanding
what characteristics of the data are captured in a given feature representation should be useful in
helping a system creator reason about which definitions of the learning problem will likely be feasible.
People with expertise in domain-specific data and signal processing draw on this expertise to

choose or implement appropriate features, and to reason about what will likely be learnable for a
given set of features. Yet many people—e.g., many artists and musicians, disabled people, athletes,
gamers, educators—who would benefit from the ability to build novel systems with machine learning
and sensors or other complex data sources lack this expertise.

Automated Methods
In some applications, automated feature learning has drastically reduced the need for manual feature
engineering [13]. However, this typically requires large datasets (thousands of examples or many
more); no such datasets are available for many of the niche data analysis tasks of interest to many
IML users, and IML users themselves may not be able to easily create new large datasets. Certain
IML users may be aided by transfer learning (e.g., [13]) using features learned from existing data
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sets, but this does not help users designing with sensors or data sources for which such datasets
do not exist. Further, transfer learning is only effective when the new problem being learnt will
benefit from the features generated by the larger dataset. For example, the representation learned
from a neural network trained on the ImageNet dataset can give good results for new everyday
object classification tasks (e.g., mugs, shoes), but less so on tasks involving medical or astronomical
imaging. Similarly, large benchmarking datasets of everyday gestures may be of limited use in learning
features that are relevant for modelling the motions of a dancer in a particular piece, or of a disabled
person making a personalised alternative gaming controller. Automated feature selection methods
(e.g., wrapper selection [8] or filtering by metrics such as information gain [2]) have been used to
search for an appropriate choice of features for problems for which a potentially suitable set of
features can be enumerated, though these can be computationally expensive and may be prone to
overfitting [10]. Of course, even when automated methods can feasibly derive or select a suitable
feature representation, it may be difficult to communicate to non-expert users what information is
captured in this representation and for what types of analysis problems this representation is suitable.

Figure 3: The feature selection and evalu-
ation interface employed in our study: (1)
Diagram illustrating the feature currently
highlighted with the mouse; (2) Text de-
scription of this feature; (3) Plots the value
of this feature in real-time; (4) Plots all fea-
tures currently selected for use in classi-
fication; (5) Plots real-time output of the
trained classifier; (6) Shows confusion ma-
trix for current classifier or 2D projection
of current training examples.

.

OpenQuestions: Human-Centred Approaches to End-User Engineering and
Understanding of Features
While much research in IML has investigated mechanisms for leveraging domain- and task-specific
information elicited from users—and has shown practical benefits to doing so—very little research has
investigated mechanisms for eliciting information from users that can directly inform the choice of fea-
tures for a new problem. The main exceptions appear in domains with features that are understandable
to non-expert users (e.g., words chosen as relevant to a text modelling task [12]). Little research has
investigated how to help users understand what may be learnable from a given feature representation,
or how to give users feedback about the suitability of a particular feature representation for a target
problem. Little work has explored how automated or user-driven approaches to feature selection
should be used in IML contexts in which other aspects of the problem (e.g., the training data) may be
frequently changing, and users rely on rapidly switching between adjusting and re-evaluating the ML
system. Nor has research investigated trade-offs between automated and user-driven approaches in
terms of system accuracy and efficacy, or user satisfaction or cognitive load.

COMPARING FEATURE SELECTION METHODS IN A GESTURE RECOGNITION TASK
We have conducted a short study investigating how to support amateurs creating gesture recognisers.
We asked 17 participants (students and faculty at our university) to pick 5 dynamic gestures that could
be performed holding an iPhone, and then had 20 minutes to use a modified version of the Wekinator
user interface (Fig. 3) to build a classifier using IML. This interface allowed users to choose from over
200 common motion features (from [11]) computed from the 6 inputs of the 3-axis accelerometer and
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gyroscope on the phone. Each feature had an accompanying explanatory description and diagram,
and participants could view its output plotted in realtime. After 20 minutes, we asked users to record
a separate test set for their 5 gesture types and conducted a short interview.

Feature selection methods chosen for
comparison (computation and comparison
performed after the user study)

• Raw : Just the raw sensor data.
• All: All 202 available features.
• User : The final feature set chosen by the par-
ticipant using the GUI.

• EarlyInfo: A small feature set chosen using
information gain. All features are ranked by
information gain and a limited number of
increasingly large sets are chosen. We choose
the smallest such feature set whose cross-
validation accuracy is better than that of All.

• BestInfo: Identical to above, except the set
with the very best cross-validation is chosen.

• Wrapper : A set selected by forwards wrapper
selection with 5-fold cross-validation evalua-
tion and a search termination of 10 [8].

Empirical Comparison of User-Selected and Automated Feature Sets
Following [3], we used a Friedman Test and a Nemenyi post-hoc test to compare, for each user, the
the test-set accuracy of the user-selected features with a number of automated feature selection
methods (enumerated in the sidebar). Shown in Fig 4, we found that the User and the Raw sets had
significantly worse accuracy (p = 0.05) than EarlyInfo, BestInfo and All features, and Wrapper had
significantly worse accuracy (p = 0.10) than EarlyInfo, BestInfo and All features (p = 0.05).

Another clear difference between the User and Wrapper selection and the sets that returned higher
test set accuracy is their size. The size of BestInfo feature set for each participant is significantly larger
than the User set (t(7.5) = 7.97, p <0.05) and Wrapper set (t(7.5) = 8.21, p <0.05).
With an average execution time of 16m 32s (using a mid 2015 MacBook Pro, 2.2 GHz Intel Core

i7),Wrapper selection took far too long to reasonably fit into a standard IML workflow. Calculating
BestInfo was much faster at 64.4s, and EarlyInfo faster again at 48.6s.

Analysis of User-Driven Feature Selection
Empirical test set accuracy rates contrast strongly with participants’ own perception of their success.
When asked “How well were you able to complete the task?” 10 out 17 participants reported that
they had been able to complete the task to their satisfaction, whilst a further 5 were happy with
performance on some gestures but not others. This either demonstrates that these users are poor
judges of accuracy, have low thresholds for what they consider good accuracy, or evaluated the quality
of the classifier using criteria not closely correlated with accuracy.

In the interview, we asked participants how they decided which features to use. 8 out of 17 reported
evaluating new features by selecting them in the GUI, re-training the classifier, then moving the
sensor and observing the model output graph. This graph was also rated as the most useful interface
item in the exit questionnaire (mean 4.0 of 5).

Figure 4: Top: Average within-user accu-
racy ranking and feature set size for each
feature selectionmethod. Bottom: Propor-
tion of sets containing each feature type
for each user’s final set and the set of fea-
tures used at any time.

When asked what motivated their choice of features, 7 participants mentioned choosing features
they had knowledge of previously; most often, these were means and first-order differences. Fig 3
shows these were present in 26.8% and 25.1% of all user-chosen feature sets, respectively, in comparison
to less than 5% for interquartile range, FFT, minima, standard deviations, magnitudes and correlations.
When we expand the analysis to the set of features each participant explored at any point in the
study, we see most participants barely experimented outside of their comfort zone (Fig 4, bottom).
This demonstrates that users may avoid using features whose function is not immediately clear, at
least initially.
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DISCUSSIONQuestions Informed by the Study
• How might alternative interfaces for end-
user-driven feature selection discourage
users from picking feature sets that are too
small, inaccurate, and limited to familiar fea-
tures? (For instance, can aUI encourage users
to experiment with larger numbers of fea-
tures, as well as unfamiliar features, by en-
couraging the choice of features in subsets
rather than one at a time?)

• How might feature selection (automated or
user-driven) be better integrated into the it-
erative IML process (e.g., by applying the
faster information gain-based approaches
each time new training data is added, and
by enabling users to experimentally adjust
information gain thresholds)?

• Howmight information about feature quality
be communicated to users (e.g., by showing
users information about features’ informa-
tion gain according to the current training
set)?

• Can we design mixed-initiative workflows
that take advantage of users’ task knowledge
and reasoning abilities to inform the choice
of feature representation, in order to improve
accuracy beyond both simplistic approaches
to user-driven and automated feature selec-
tion?

Sidebar 2

We found that, given a simple interface and a short task, people were bad at choosing features, but
they did not realise they were bad at it. They also picked small sets with low accuracies and—being
initially reticent to explore new features—focused on features they thought they understood. Larger
features sets, chosen using automated methods, proved more accurate.

This study has informed our current work exploring the questions in Sidebar 2. Our current work also
seeks to empirically investigate our intuition that giving users some control over feature engineering
and/or insight into the problem characteristics captured by a given feature set is likely to be helpful in
informing IML users’ design decisions about what to model and how to adjust the modelling problem
and/or training examples in order to improve model performance.
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