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Abstract 

A growing body of correlational research has revealed systematic relationships between 

various aspects of visuospatial processing and representational drawing ability. However, 

very few studies have sought to examine the longitudinal development of the relation 

between drawing and visuospatial ability. The current investigation explored change in 

drawing and visuospatial skill in art students taking a foundational drawing course (n = 42) in 

a longitudinal design. Measures of representational drawing skill, dispositional traits, and 

visuospatial skill were taken at three time points over the course of five months. The findings 

reveal improvements in representational drawing, mental rotation, disembedding figures, and 

attentional switching. However, individual differences in change over time on one task did 

not predict change in another, revealing implications for domain-specific and domain-general 

aspects of art and design expertise. 
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Learning to See by Learning to Draw: A Longitudinal Analysis of the Relationship Between 

Representational Drawing Training and Visuospatial Skill 

The basis of expert performance, and the extent to which its acquisition can be 

attributed to innate versus experiential factors, is a venerable, multi-faceted, and still-

contested issue within psychology (see, e.g., Ericsson, Hoffman, Kozbelt, & Williams, 2018; 

Hambrick, Campitelli, & Macnamara, 2017). Among the many domains of expertise that 

have been studied, that of representational drawing is one of the most intriguing (Kozbelt & 

Ostrofsky, 2018), given that drawing is a near-ubiquitous activity in childhood, yet few 

individuals master the ability to create sophisticated, accurate representations in adulthood. 

Yet, there is also evidence of children showing adult-like depictive skills prior to any formal 

training, suggesting drawing may have an innate component (Drake & Winner, 2012). 

Moreover, unlike many prototypical domains of expertise (like chess), which rely on a 

thoroughly artificial knowledge base, many scholars have argued that drawing skill builds on, 

or is at least associated with, basic and universal aspects of visuospatial processing (see 

Kozbelt & Seeley, 2007). 

Artists’ Visuospatial Advantages 

 A growing body of evidence suggests that artists see the world differently from non-

artists, as drawing expertise is associated with the enhanced ability to attend to, manipulate, 

or more effectively process certain (but not all) aspects of visual information. Several specific 

perceptual or attentional advantages have been proposed as correlates of superior drawing 

skill. These include: the ability to overcome shape constancy (Cohen & Jones, 2008) and size 

constancy (Ostrofsky, Kozbelt, & Seidel, 2012), enhanced local processing of visual details 

(Chamberlain, McManus, Riley, Rankin, & Brunswick, 2013; Chamberlain & Wagemans, 

2015; Drake & Winner, 2011) and reduction in holistic processing (Zhou, Cheng, Zhang, & 

Wong, 2012), greater field independence (Gaines, 1975), better visual memory (McManus et 
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al., 2010; Winner, Casey, Dasilva, & Hayes, 1991; Winner & Casey, 1992), reduced 

attentional cost in switching between global and local aspects of visual displays 

(Chamberlain & Wagemans, 2015), an enhanced ability to recognize degraded images or to 

pick out embedded visual patterns (Chamberlain et al., 2013; Kozbelt, 2001), lower 

susceptibility to visual illusions (Mitchell, Ropar, Ackroyd, & Rajendran, 2005; Ostrofsky, 

Kozbelt, & Cohen, 2015), and access to and greater understanding of robust representations 

of object structure in memory, which permit efficient encoding and depiction of the most 

important aspects of objects (Kozbelt, Seidel, ElBassiouny, Mark, & Owen, 2010; Kozbelt, 

2001; Ostrofsky et al., 2012; Perdreau & Cavanagh, 2011, 2013, 2014).  

Not all of these claims about artists’ superior perceptual processing have gone 

unchallenged or yielded completely consistent patterns of results. For instance, several 

studies (McManus, Loo, Chamberlain, Riley, & Brunswick, 2011; Ostrofsky et al., 2012) 

have failed to replicate earlier findings that artists outperform non-artists on shape constancy 

tasks. Chamberlain and Wagemans (2015) found no difference in artists’ and non-artists’ 

experience on a variety of visual illusions. Perdreau and Cavanagh (2011) similarly failed to 

find evidence for artists’ advantages on tests of size constancy, lightness constancy, and 

amodal completion. Ostrofsky, Kozbelt, and Kurylo (2013) found no differences between 

artists and non-artists in the ability to perceptually group different sets of elements in a noisy 

visual display. These findings may in part reflect the methodological challenges facing 

researchers in this area of inquiry, such as maintaining homogeneity of participant samples in 

terms of levels of drawing expertise and producing reliable and robust paradigms to measure 

visuospatial performance. Methodological challenges notwithstanding, such findings strongly 

suggest that artists’ perceptual advantages over non-artists are not monolithic.  

The Acquisition of Drawing Expertise and Its Visuospatial Correlates 
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The process by which artists acquire their drawing and perceptual expertise also 

remains mysterious, since the nature of this development, as well as which aspects of 

perception might be implicated as the strongest correlates of improving drawing ability, has 

as yet gone largely unstudied. The extant literature largely reports correlations between 

visuospatial advantages on the one hand and drawing or artistic skill on the other. From 

correlational research alone it is not possible to determine whether individuals with latent 

visuospatial skills are more likely to become skilled at drawing, or whether training in art and 

design confers visuospatial benefits on students.  

An exception to this pattern of correlational research is a recent study by Tree and 

colleagues (2017), in which a group of art students (n = 64) completed a year-long 

foundational art and design course with substantial training in portraiture, and completed tests 

of face recognition at the beginning and end of the course. There was no significant 

improvement in face recognition by the art students relative to a group of controls.  An 

additional behavioural and neuroimaging study assessed changes in brain structure and 

function in relation to an 11-week program of training in art and design (involving a 4-hour 

per week training session), alongside three measures of artistic and perceptual ability 

(Schlegel et al., 2015). Relative to a control group, the authors reported that the art students 

became more creative and improved in their ability to produce gesture drawings after art and 

design training but did not demonstrate any changes in perceptual ability (assessed through 

the strength of visual illusions) over time. Further, the authors found no correlation in 

changes in creative ability and changes in gesture drawing ability, suggesting that these two 

skills develop independently. In addition, art students showed changes in neuronal activity in 

the cerebellum and cerebral cortex relative to controls, but no structural changes. Notably, 

structural differences have been previously documented in a correlational study comparing a 

group of art-students and non-art students with substantial amounts of art and design training 
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(Chamberlain et al., 2014), suggesting that functional changes may give rise to structural 

differences over the long-term – that is, in the course of years of artistic training. However, as 

Schlegel et al. (2015) did not report baseline structural differences in art students and non-art 

students, it is not possible to confirm if structural differences were already present in the two 

samples.  

Whilst research by Schlegel et al. (2015) and Tree et al. (2017) provide an intriguing 

glimpse into the potential of art and design training to confer advantages in creative output, 

visual memory and perception, both studies were limited in the range of behavioural tasks 

utilised and the training regime employed. For instance, previous research has failed to find a 

reliable association between the strength of visual illusions and artistic expertise 

(Chamberlain & Wagemans, 2015), and the relationship between face processing and 

portraiture skill is still a subject of debate (Devue & Barsics, 2016; Tree et al., 2017). 

Therefore, it is not altogether surprising that the 11-week art and design training course did 

not give rise to differences in illusory strength. However, this null finding does not entail that 

art and design training never confers any benefits on perceptual processing – especially given 

the number of studies in the literature that have reported at least some artist advantages on 

perceptual measures, as described above. Therefore, in the current study, we aimed to 

evaluate the effect of a more rigorous and longer-term training regime (8-hours per week 

training plus substantial homework assignments for five months) encompassing a wider range 

of visuospatial skills that have previously been shown to reliably distinguish artists from non-

artists. 

Some additional hints about the longitudinal relation between perceptual and drawing 

skill and perceptual performance may be obtained from a few studies that have examined 

their general relations. For instance, Kozbelt (2001) found that artists outperformed non-

artists on both drawing and perceptual tasks, supporting the idea that artists perceive the 
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world differently than non-artists; moreover, performance on the two sets of tasks was 

positively correlated. Statistically controlling for one or the other kind of task revealed that 

artists’ perceptual advantages appear to be developed in the service of their drawing skills. 

Thus, artists’ perceptual advantages are best viewed as a subset of their drawing advantages. 

A recent extension of this work is a more comprehensive study by Chamberlain et a. (2019), 

examining artists’ and non-artists’ performance on a wide range of perception and drawing 

tasks, and largely replicating this basic finding (see also Kozbelt & Seeley, 2007).  

The upshot of these two studies (Chamberlain et al., 2019; Kozbelt, 2001) is that 

artists’ perceptual advantages appear to be developed largely to the extent that they are useful 

in drawing. This suggests that the acquisition of drawing skill drives changes in perception, 

but it does not rule out the possibility that artist may have some initial perceptual advantages 

as well. Along these lines, Chamberlain et al. (2019) found that art students, even at the very 

beginning of their college-level art and design education, outperformed college-level non-

artists on several standard visuospatial tasks, including mental rotation, embedded figures, 

and bistable figure perception. In other low-level visual tasks, such as visual illusions and 

identifying degraded pictures, art students performed similarly to non-art students. The 

overall findings indicated that tasks that emphasize top-down (i.e., knowledge-, expectation-, 

or endogenous attention-driven) influences on visual attention appear to be already facilitated 

among art students before they embark on their undergraduate studies, either as a result of 

latent ability or prior training. These findings (alongside the aforementioned correlational 

research; e.g. Chamberlain et al., 2013; Chamberlain & Wagemans, 2015; Kozbelt, 2001; 

McManus et al., 2010; Ostrofsky et al., 2015, 2012; Zhou et al., 2012) suggest artists’ 

perceptual advantages are best viewed as a subset of their drawing advantages.  

The Current Study 
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While the preceding studies have begun to constrain the nature of the relation between 

perception and drawing, the longitudinal relation between the two – a potentially rich source 

of evidence – has received little attention. It is thus the main motivation for the current study. 

Specifically, we examined a sample of college-level art students as they progressed through 

an intensive first-year drawing curriculum at Pratt Institute for Art and Design, New York. 

We compared their performance on a wide range of drawing and visuospatial tasks at three 

points, spanning five months. The group of visuospatial tasks measured: mental rotation, 

local and global visual processing (embedded figures, out-of-focus picture test, visual 

illusions, Navon hierarchical shape task) and attentional flexibility (bistable perception). 

These tasks were selected to represent a range of levels of visual processing (top-down and 

bottom-up) and have been validated and investigated in relation to artistic skill in previous 

research (Chamberlain, Heeren, Swinnen, & Wagemans, 2018; Chamberlain et al., 2013; 

Chamberlain & Wagemans, 2015; Kozbelt, 2001). As mentioned previously, those tasks 

which emphasize top-down effects on visual perception, are most reliably found to be 

correlated with drawing skill, while tasks representing bottom-up mechanisms usually 

produce null effects. It was valuable to include tasks of the latter variety (e.g. visual illusions) 

as a form of control measure, such that it was not anticipated that participants would improve 

on these measures. Since artists’ perceptual advantages still represent a nascent area of 

inquiry, it is important to attempt to replicate even previous null findings. 

The data from the first testing session are the same as the art student data reported by 

Chamberlain et al. (2019); the longitudinal aspect of the data, from the remaining two testing 

sessions, is new and speaks directly to the question of how drawing skill emerges, and what 

its perceptual correlates are.  

We expect drawing performance to improve over the three sessions, since after all this 

is what the art students are being trained in. More open is the question of what will happen to 
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performance in the various visuospatial tasks over time, and how those tasks are themselves 

inter-related. Given the relatively low correlations among visuospatial tasks previously 

reported (Chamberlain et al. 2019), we expect that many of our visuospatial tasks will be 

largely independent. Even if this is the case, we expect that at least a subset of the 

visuospatial tasks will show improvement over time. Which ones? On the one hand, tasks on 

which art students already show early advantages (as found by Chamberlain et al. 2019) 

might already be approaching a ceiling effect, even if there is some slight room for continued 

improvement; in this view, other visuospatial tasks relevant to drawing might have greater 

scope for improvement, simply because of their initial lower performance level. On the other 

hand, tasks that already show an art student advantage might inherently be more important 

for drawing (at least the kind of drawing emphasized in the training regimen we are studying) 

and more amenable to ongoing improvement; thus, artists may continue to make marginal 

gains in performance on such tasks, beyond their initial advantages. This is an empirical 

question, one at the heart of the present study. 

Besides possible longitudinal changes in drawing and perceptual abilities taken one 

task at a time, we are also interested in exploring the extent to which different tasks show 

similar trajectories. That is, are individual differences in longitudinal improvement on one 

kind of visuospatial task related to individual differences in longitudinal improvement in 

drawing? This is a more exploratory question, but one which the acquired data will allow us 

to answer. In a similar vein, we will compare observed longitudinal changes in drawing and 

perception with certain demographic factors such as personality, approaches to learning, and 

non-verbal IQ. These background variables have previously been shown to be correlated with 

representational drawing ability in a large sample of art students, and as such may shape 

aspects of drawing skill as it develops (Chamberlain, McManus, Brunswick, Rankin, & 

Riley, 2015).  
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Method 

Participants 

The sample consisted of 42 first-year art students enrolled at Pratt Institute, who were 

taking an intensive foundation drawing course (37 females; Mage = 18.6; SD = 1.0).  

The foundation year drawing course at Pratt Institute includes courses in Drawing, 

Light, Color and Design, Material and Three-dimensional Form, Stills to Motion, and 

Shaping Time. The drawing training component of the course constitutes eight hours of 

instruction per week, with additional homework assignments. This is aimed at developing 

skills in understanding and analysing space and 3D structure, and synthesising and inventing 

new forms.  Art students were registered for a wide range of artistic majors: animation (n = 

8), graphic design (n = 7), fine arts (n = 6), illustration (n = 5), industrial design (n = 4), 

advertising (n = 4), interior and fashion design (n = 3), photography and film (n = 3), and art 

therapy (n = 1). Most art students (n = 35) reported practicing drawing every day or a few 

times a week for the past two years, both inside and outside of class (for full practice data see 

Table 1 in Chamberlain et al., 2019).  

Materials and Procedure 

All participants were tested in three 1.5-hour sessions spanning a five-month period. 

Testing sessions took place in a quiet room on the Pratt Institute campus. The first testing 

session (T1) took place within the first two weeks of the fall semester, as students were 

starting their studies. The second testing session (T2) took place approximately two months 

after the first, when the students were halfway through the intensive drawing training 

component of the course. Between T1 and T2 students had learnt two-point perspective and 

how to construct paraline drawings, and they had begun to draw invented forms in 

perspective. The final testing session (T3) took place approximately three months later (i.e., 

five months after the initial session), at the end of the drawing training component of the 
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foundation course, before the students began work on their final semester projects. Between 

T2 and T3 students had learnt how to convey tonal contrast in their drawings, how to 

integrate tonal contrast with structural drawing elements (e.g. contour lines) and how to 

convey movement in drawing. For practical reasons, tasks were administered in a 

standardized order, the same order in which they are described below, with participants 

completing visuospatial tasks on the computer first, followed by pencil and paper drawing 

tasks. In the first session, participants also completed questionnaires prior to the series of 

computer-based visuospatial tasks and non-computer-based drawing tasks. In subsequent 

sessions, participants completed only the computer-based visuospatial tasks and non-

computer-based drawing tasks. All computer tasks were performed on a 13-in. liquid crystal 

computer screen with a 60 Hz refresh rate. Stimulus presentation was presented using the 

Psychopy package (Peirce, 2007). Each participant received $100 for participating in all three 

testing sessions. 

Questionnaire measures. In the first testing session only, participants completed a 

demographic questionnaire on their date of birth, gender, ethnicity, handedness, academic 

major, and the amount of time they spent drawing in the two years prior to the study. In 

addition, participants completed a series of validated questionnaires: 

Study habits/approaches to learning. The Study Process Questionnaire (SPQ) 

assessed the self-rated study habits and approaches to learning on three separate scales 

(Surface Learning, Deep Learning and Achieving [Strategic] Learning). A shortened version 

of the questionnaire was presented (Fox, McManus, & Winder, 2001), which had 18 items 

that were each rated on a 4-point scale (1 = Strongly disagree; 4 = Strongly agree). Surface 

approaches learning are motivated by a fear of failure, a deep approach learning is motivated 

by interest in the subject matter itself, and an achieving learning style is motivated by a desire 

for success. This questionnaire was previously used in a study relating drawing skills to 



Representational Drawing Training and Visuospatial Skill 

	

 11	

personality factors in a sample of art students (Chamberlain et al., 2015), but the content 

refers to learning in a general sense rather than being tailored to learning in an art and design 

context.  

 Big Five personality measures. Participants were provided with the 15-item list of 

questions from the Household Panel Survey based on the Big Five Inventory (John, 

Naumann, & Soto, 2008). Items were each rated on a 5-point scale (1 = Strongly disagree; 5 

= Strongly agree). Scores were calculated for the standard Big Five dimensions of 

Neuroticism, Extraversion, Openness to Experience, Agreeableness and Conscientiousness. 

Visuospatial tasks.  

Raven’s Advanced Progressive Matrices. (RAPM: Arthur, Tubre, Paul, & Sanchez-

ku, 1999). Participants completed a shortened version of the RAPM, which represents a valid 

and normalized predictor of non-verbal IQ. Participants were given one practice item from 

Set I of the RAPM. They were then given 12 items from Set II of the longer 36-item RAPM 

to complete in 15 min.  

Mental Rotation Task (MRT). Individual differences in the manipulation of 

visuospatial information were tested using a Mental Rotation Task (Hunt, Davidson, & 

Lansman, 1981; Shepard & Metzler, 1971). Pairs of 2D drawings rendering 3D block 

constructions were presented to participants. The stimuli were presented as black drawings on 

a white background. There were 10 practice trials followed by 16 experimental trials, 

presented in a randomized order. In each trial, participants had to indicate via key press 

whether the drawings presented depicted the same object from two different angles (key = S) 

or two different objects (key = D). There was no per trial time limit, but participants had a 

time limit of 3 min to complete as many of the 16 trials as they could. Accuracy and reaction 

times were recorded.  
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Out-of-Focus Pictures Task.  Individual differences in the processing and recognition 

of degraded images were tested using an Out-of-Focus Pictures Task similar to that used by 

Kozbelt (2001). We selected 125 photographs from the International Affective Picture 

System (IAPS: Lang, Bradley, & Cuthbert, 1999) because of their easily recognizable subject 

matter. In Photoshop, each image was resized to 4 inches in height at 100 pixels per inch and 

converted to grayscale. We then modified each image into four progressively blurrier 

versions based on a Gaussian blur of 100 pixels at 2-, 4-, 6-, and 8-pixel radii. Thus, each 

image had five versions (the original and the four levels of blurriness). A pilot test on the 

images was conducted with 100 participants using Amazon’s Mechanical Turk. We created 

five sets of images with no image duplicated within the set and randomly assigned 

participants to view one of the sets. For each image, participants were asked to indicate the 

scene or object depicted. Based on the pilot data, 45 of the 125 images were selected for 

inclusion in the main study; these elicited good variation in performance, without floor or 

ceiling effects. These were then separated into three groups of 15 stimuli for use in the three 

testing sessions. Each group of 15 had an even distribution of easy and difficult images. 

In the main task, participants were instructed that they would be shown a series of 15 

blurred pictures for up to 15s each and that they should try to identify what was in each 

picture by typing a free response after the image was shown. Participants were given 

unlimited time to type their response before proceeding to the next trial. Participants first 

completed two practice trials (with feedback) and then completed 15 test trials. Free-

responses were coded for accuracy by two independent raters (inter-rater reliability r = .96). 

Responses that named an exemplar or the class of the object (e.g., tulip or flower) were 

counted as correct. Summed accuracy scores were calculated for each participant. 

Embedded Figures Task (EFT). Individual differences in disembedding performance 

were examined using a modified version of the Embedded Figures Test (Witkin, 1950),  
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which has been validated and used in previous research (Chamberlain, Van der Hallen, 

Huygelier, Van de Cruys, & Wagemans, 2017; Chamberlain & Wagemans, 2015; de-Wit, 

Huygelier, Van der Hallen, Chamberlain, & Wagemans, 2017; Huygelier, Van der Hallen, 

Wagemans, de-Wit, & Chamberlain, 2018). Stimuli were presented as black patterns on a 

white background. Participants were presented with complex 2D or 3D patterns presented 

below a 2D target shape. Participants were asked to search for the upper target shape in the 

lower complex pattern and report whether the target was present (key = J) or absent (key = F) 

within 12s. Participants were given six practice trials with feedback before completing the 

experimental trials. There were 40 experimental trials containing an equal number of target 

present and absent trials. The order of trials was randomized for each participant. Accuracy 

and reaction times were recorded.   

Navon Hierarchical Shape Task. Individual differences in local and global visual 

processing were assessed in a selective attention Navon shape task, similar to that used in 

Caparos, Linnell, Bremner, de Fockert, and Davidoff (2013). On each trial, a large shape 

made up of smaller white shapes on a black background was presented. On some trials, many 

small shapes comprised the larger shape; on other trials, the shapes that made up the larger 

shape were fewer and larger (Figure 1). This created trials in which the local level (small 

shapes) was more salient and trials in which the global level (large shape) was more salient.  

Participants were instructed to focus on either the large shape or the small shapes in 

blocks of 16 trials. There were 32 practice trials (two blocks) followed by 128 experimental 

trials (eight blocks). In each trial participants were instructed to respond to the identity of the 

shape (square = F key, triangle = J key) at the allocated level of attention (local/global). The 

stimulus shape was presented onscreen for 300ms and participants were given up to 2s to 

respond. The inter-trial interval was 1s. Participants were given positive or negative feedback 
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with a colored fixation cross after each trial in both the practice and experimental blocks. 

Accuracy and reaction times were recorded.  

Visual illusions task. Individual differences in the strength of visual illusions were 

investigated via three illusions: the Ebbinghaus, Muller-Lyer, and Rod-Frame. The method of 

continuous adjustment was used to measure participants’ responses. Illusions were presented 

as black shapes on a white background. For each trial, an illusory stimulus was presented on 

one half of the screen while a test shape was presented on the other half (the locations of the 

illusory stimulus and the match stimulus were randomized). Participants were required to 

match the test shape (a line or a circle) to the illusory stimulus on the screen, adjusting the 

relevant parameters (line angle or length/circle radius) using the up and down arrow keys. 

When participants were satisfied with their match, they could continue to the next trial. There 

was no time limit. Participants matched stimuli in two illusion trials and two control trials per 

illusion. Control trials consisted of matching the size of two circles without surrounding 

circular inducers (Ebbinghaus), matching the length of two lines without surrounding arrow 

inducers (Muller-Lyer), and matching the angle of two lines without a surrounding frame 

inducer (Rod-Frame). 

Bistable Figure Task. Individual differences in the ability to manipulate internal 

perceptual representations were tested using the Bistable Figure Task. Specifically, 

participants viewed a structure-from-motion (SFM) rotating cylinder consisting of two 

transparent planes of random white dots (6 pixels in diameter) moving in opposite directions 

on a black background, along a vertical axis (Chamberlain et al., 2018). There were 400 dots 

on screen at any time moving at a speed of 0.20 full cycles per second. The global percept of 

motion of the stimulus can be perceived as going from left to right or from right to left (that 

is, as counter-clockwise or clockwise rotation, if one imagines viewing the cylinder from the 

top). Participants were shown a practice stimulus and instructed how to access each percept. 
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Only when participants had reported that they could experience each percept were they 

allowed to proceed to the experimental trials.  

Three trials were presented to each participant, each lasting 120s. In each trial 

participants were asked to gently fixate on a red point in the centre of the visual stimulus. As 

they viewed the stimulus they were asked to indicate which of two competing percepts they 

were currently experiencing. They did this by holding down one of two keys (F = clockwise, 

J = counter-clockwise) on the keyboard for as long as they experienced that direction. If they 

saw a mixture of the two percepts or no one percept dominated they were asked to refrain 

from pressing either of the response keys. Participants completed three trials one of each of 

the following conditions, presented in a fixed order: 

1. Passive fixation: Participants were instructed to focus on the stimulus but not to try to 

control which percept they saw at any given time.  

2. Hold fixation: Participants were asked to hold one percept in mind for as long as 

possible.  

3. Switch fixation: Participants were asked to switch between percepts as quickly as 

possible.   

Participants were encouraged to take breaks between trials to avoid fatigue. Rates of reversal 

and percept duration were measured by recording the length of time the key corresponding to 

each percept was pressed as well as the number of times the participant changed keys during 

each trial. For efficiency of data analysis, only the Switch trials of the Bistable Figure Task 

were analysed, as these have been shown in a previous study to relate to artistic expertise 

(Chamberlain et al., 2018).  

 Drawing tasks.  

Observational Drawing Task. To assess freehand drawing skill, participants were 

given a still-life set-up consisting of common objects including a cup, bowl, fork, bottle, and 
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paper bag. Participants were asked to draw the arrangement as accurately and completely as 

possible in 10 min; if they had time, they were permitted to add shading and detail. 

Participants were instructed not to move the objects while drawing.  

Limited-Line Tracing Task. Individual differences in the ability to select the most 

important information to include in a depiction were tested using a Limited-Line Tracing 

Task, developed by Kozbelt et al. (2010). Here the stimulus was a grayscale photograph of an 

elephant on a white piece of 8.5×11-in letter paper (as in Ostrofsky et al., 2012). For the 

tracing task, the photo was placed inside a clear plastic folder. Participants were instructed to 

create depictions of the elephant by tracing over the photo directly onto the folder using 40 

2cm × 2mm pieces of dark brown duct tape. A white piece of paper was available for sliding 

between the tracing and the photograph, so participants could see their tracing without 

interference from the photo underneath. Participants were instructed to use all the available 

line segments to create a tracing that was as accurate as possible, given the constraints of the 

medium. Participants could bend segments but could not tear them into smaller pieces; they 

could also move a piece of tape after having used it in the tracing if they decided it would go 

better somewhere else. Participants had 10 min to complete the task.  

Drawing ratings. Participants’ drawings for the Observational Drawing Task were 

rated by a sample of 10 non-expert student judges from Brooklyn College and six expert 

judges who were art and design tutors teaching the foundational drawing course at the Pratt 

Institute, who were blind to the identity of the creator of each drawing. Each judge was asked 

to rate the quality of each drawing by sorting them into seven categories. Judges were asked 

to rate the overall quality of the drawings based on the following rubric: 

1. Does the drawing follow a consistent viewpoint? 

2. Is the 3D rendering of oval shapes correct (cup, bowl, bottle)? 

3. Are the relationships between the objects rendered appropriately? 
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4. Does the drawing hold together? 

5. Is the drawing sitting on a ground plane? 

6. Do the details in the picture follow the form of the objects? 

7. Does the drawing sit well on the page? 

8. Is the line-quality effective in depicting depth? 

The same judges rated the Limited Line Tracing Task in terms of overall accuracy relative to 

the original photograph. 

The judges were not restricted in terms of how many drawings they could put into any 

one category from 1 being the worst to 7 being the best. When the judges were satisfied with 

their distribution of drawings, each drawing was assigned the number of the category in 

which it was placed in (1 = worst, 7 = best). Inter-judge reliability indices (equivalent to 

Cronbach’s alpha) were very high for both judge groups (artist judges = 0.95 for the Limited-

Line Tracing Task and 0.98 for the Observational Drawing Task, non-artist judges = 0.97 for 

the Limited-Line Tracing Task and 0.95 for the Observational Drawing Task). The ratings of 

non-expert and expert raters correlated strongly for both the Observational Drawing Task (r 

[155] = 0.81, p < .001) and the Limited Line Tracing Task (r [153] = 0.58, p < .001). 

Therefore, a composite rating score for each participant was calculated by averaging the 

ratings of all 16 raters for each task.  

Abbreviated Torrance Test of Creative Thinking. As a proxy measure of creativity 

focusing on divergent thinking, we used one form (A: figural) of the Abbreviated Torrance 

Test of Creative Thinking (ATTA; Goff, 2002). The task consisted of two subtests, both 

timed at 3 min. The first required participants to create a drawing from their imagination 

based on a simple shape provided on a sheet of paper. In the second, participants were 

required to make a series of drawings based on a simple repeated shape of triangles. After 

completing each subtest, participants were asked to provide titles for their drawings. 
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Participants were encouraged to create drawings that were as novel and as interesting as 

possible. Responses to the ATTA were scored by two independent judges (post-graduate 

psychology students at Brooklyn College, City University New York) according to criteria 

specified in the ATTA handbook (Goff, 2002). Four key creative facets were derived from 

the two subtests of the ATTA: 

1. Fluency: the ability to produce a number of task-relevant ideas. 

2. Originality: the ability to produce uncommon or unique ideas. 

3. Elaboration: the ability to embellish ideas with details. 

4. Flexibility: the ability to produce a variety of different ideas 

Inter-rater reliability was 0.72 for Test 1 and 0.80 for Test 2. For each drawing, a 

score was calculated for each of the four creative facets based on the average of the two 

raters. These four facets were then averaged to give total scores for Test 1 and Test 2. Scores 

for the two tests were then averaged to give a total creativity score for each participant. 

Ethics 

The study was approved by the Institutional Review Board at Brooklyn College, City 

University New York.   

 

Results 

The results are organized into two sections. First, we analyze change in performance 

on each dependent measure (drawing and visuospatial tasks) over the three sessions, using 

linear mixed effects analyses. Second, we assess the roles of various dispositional 

characteristics and visuospatial skill in understanding individual differences in the rate of 

change in representational drawing performance over time. Descriptive statistics (Table A1) 

and correlations between variables at each time point (Table A2) are included in the 

Appendix. 
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 The variables selected for the linear mixed effects analysis were the same ones 

analyzed previously in a between-groups design comparing art students and non-art students 

(Chamberlain et al. 2019; the art student data in that study were identical to the session 1 data 

analyzed here; the current study adds the longitudinal element of data from the second and 

third sessions). These variables were:  

1. Visuospatial tasks: accuracy and RT in the Navon hierarchical shape task, Bistable 

figure reversals, error in visual illusions (Muller-Lyer; Rod-Frame and Ebinghaus), 

accuracy in the out-of-focus pictures task, accuracy and RT in the EFT, and accuracy 

and RT in the mental rotation task.  

2. Drawing tasks: rated performance on the ATTA, Limited-Line Tracing Task, and 

Observational Drawing Task 

Correlation matrices (Table A2) at each time point showed few inter-task dependencies, 

justifying analysis of each visuospatial task independently, rather than as amalgamated 

variables.  

We used the program R (R Core Team, 2013) and package nlme (Pinheiro, Bates, 

DebRoy, Sarkar, & R Core Team, 2018) to perform a linear mixed effects analysis of the 

relationship between the independent variable of time (that is, session number) and 

performance on each experimental task. Linear mixed effects analyses model hierarchical or 

nested data, which are common in longitudinal datasets: here, time points (T1/T2/T3) in a 

longitudinal dataset are nested within each participant. Linear mixed effects analysis was 

used to characterise overall patterns in the data (i.e., mean trajectories of time-related change) 

and, within these overall patterns, to assess individual variation in intercepts (i.e., baseline 

performance) and slopes (i.e., patterns of change over time). This approach enabled us to 

include fixed effects that account for a mean trajectory, characterising the mean skill 
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development of the whole sample, whilst simultaneously including random effects that 

identify individual-level variation among the intercepts and slopes.  

Change in Drawing and Visuospatial Performance Over Time 

           To test for the effect of time on performance for each of the drawing and visuospatial 

tasks, we followed a formal model-fitting procedure.  

1. We started with a null (unconditional) model with a fixed intercept only (variable ~ 

1).  

2. We then created a model with random intercepts, to allow for individual differences 

in starting points (variable ~ 1|subject).  

3. We then added a fixed effect for time (T1/T2/T3) to the model (variable ~ 

time|subject).  

4. Finally, we added random slopes for the effect of time (full model; variable ~ time + 

(1 + time|subject).  

Where inspection of residual plots indicated a deviation from homoscedasticity and normality 

we performed appropriate transformation of the raw data.1 Statistical p values were obtained 

by likelihood ratio tests for each model against the previous model.  

Table 1 shows the longitudinal results for the linear mixed effects analysis for each 

task. First, we report the fixed effect of change in performance over time. Most importantly, 

art student performance changed reliably over time on several tasks, evident in the column 

showing estimates for fixed effect of Time. Specifically, among the drawing tasks, 

participants showed reliable improvements on the Observational Drawing Task over time 

(Figure 1) – a sensible result consistent with participants’ intensive training in drawing – but 

no improvement on the Limited-Line Tracing Task or the ATTA. In terms of visuospatial 

                                                
1 A logarithmic transformation was applied to the reaction time data of the Mental Rotation 
Task as it was positively skewed.  
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task performance, participants showed a reliable decrease in reaction time on both the Mental 

Rotation Task and the Embedded Figures Task, implying greater efficiency in performing 

these tasks as their training progressed, with the caveat that we cannot rule out the influence 

of practice effects (see Discussion). In addition, participants showed a decrease in accuracy 

on the Mental Rotation Task, indicating a speed-accuracy trade-off, however with a much 

greater decrease in reaction time than in accuracy (Table 1). In addition, there was a reliable 

increase in the number of voluntary reversals participants could make on the Bistable Figure 

Task. There were no reliable changes in performance on the Out-of-Focus Pictures Task, the 

Visual Illusions Tasks, or the Navon Task.  

 

Figure 1. Score change over time in the Observational Drawing Task. The black dotted line 

indicates fixed effect of time in linear mixed effects analysis and the red dots represent mean 

scores at each time point. Grey lines represent participants’ random slopes between time 

points.  
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Table 1 

Linear mixed effects models with time as fixed effect and intercepts and slopes as random effects. 

Variable Fixed Effect (time) 
Random Effects (Intercept and Slope) 

Intercept Time 

Drawing Tasks Coefficient SE t test SD Chi-squared test SD Chi-squared test 

Observational Drawing 0.17 0.06 2.82** 0.54 24.27*** 0.009 < .01 

Limited-Line Tracing 0.07 0.09 0.80 0.84 2.14 0.43 10.05** 

ATTA -0.03 0.54 0.06 5.48 7.77** 1.82 1.93 

Visuospatial Tasks        

MRT RT -0.26 0.03 8.42*** 0.50 20.22*** 0.10 5.63 

MRT Accuracy  -0.04 0.01 3.04** 0.11 10.27** 0.02 0.75 

EFT RT -0.55 0.07 7.65*** 0.52 1.92 0.25 2.81 

EFT Accuracy  -0.02 0.01 1.44 0.11 <0.001 0.05 1.61 

Out-of-Focus 0.31 0.19 1.62 2.13 9.84** 0.56 3.33 

Muller-Lyer -0.43 1.82 0.24 16.73 13.12*** 6.58 1.69 

Rod-Frame -0.14 0.15 0.93 0.80 < .001 0.32 0.25 
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Ebbinghaus -0.35 0.78 0.45 10.85 10.42** 3.85 13.16** 

Bistable switch reversals 2.67 0.84 3.18** 7.14 26.70*** 0.85 0.49 

Navon Local Inter RT -0.01 0.008 1.17 0.06 <.001 0.02 1.20 

Navon Global Inter RT 0.001 0.006 0.17 0.006 0.02 <0.001 0.001 

Notes: *p < .05, **p<.01, ***p < .001; ATTA = Abbreviated Torrance Test for Adults; MRT = Mental Rotation Task; EFT = Embedded Figures 

Task; RT = Reaction Time; Inter = Interference. n = 42
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Time-point specific changes. We explored the extent to which significant fixed effects 

revealed in the linear mixed effects analysis, were indicative of improvements in task 

performance between specific time-points (T1/T2/T3). Table 2 shows a series of within-

subjects t tests for changes in the dependent variable between each time-point. With 

Bonferroni correction (p < .004) comparisons between all time-points are significant for the 

MRT and EFT RT. However, only T1-T3 comparisons remain significant for accuracy on the 

observational drawing task and the number of voluntary switches made in the bistable 

perception task.  

Table 2 

Between time-point comparisons for tasks showing a significant fixed effect of time in the 

linear mixed effects analysis.  

 T1 – T2 T2 – T3 T1 – T3 

Observational drawing t(38) = 0.08,  p = .94 t(38) = 2.59, p = .01 t(38) = 3.03, p = .004* 

MRT RT t(37) = 4.51, p < .001* t(37) = 4.49, p < .001* t(37) = 8.19, p < .001* 

EFT RT t(37) = 4.65, p < .001* t(37) = 3.82, p < .001* t(37) = 7.19, p < .001* 

Bistable switch reversals t(35) = 1.91, p = .06 t(35) = 1.35, p = .19 t(35) = 3.44, p = .002* 

Notes: *significant after Bonferroni correction for multiple comparisons (p <. 004); MRT = 

Mental Rotation Task; EFT = Embedded Figures Task 

In sum, artist participants showed longitudinal gains in some (but not all) aspects of 

drawing performance and visuospatial processing. In addition, many tasks also showed 

substantial remaining unexplained variability in intercepts or slope, as given by the 

significant chi-squared statistics in Table 1. This mixed pattern of longitudinal change 

(together with the low correlations among tasks within each session, reported in Appendix 

Table A2) suggests that the perceptual and performative basis of skilled drawing is not 

monolithic, but rather is nuanced and highly multi-faceted.  
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While such probing for longitudinal changes on each task is useful for establishing 

which measures might be amenable to improvement through training, this approach does not 

inform the longitudinal relations among the variables. That is, how might different measures 

change in tandem as training progresses? Of greatest interest, which measures co-vary with 

the observed improvement in drawing skill? The second part of the Results section takes up 

this question.  

Predictors of Change in Representational Drawing Ability Over Time 

The sum of random conditional models and the fixed effect coefficients per 

participant were derived from the previous linear mixed effects models with time as a fixed 

effect and performance on each drawing or visuospatial task as the dependent variable. The 

slopes of the drawing tasks were then correlated with the slopes of each visuospatial task, 

alongside the personality measures (Big Five, Study Process Questionnaire) and the measure 

of baseline drawing ability – that is, performance on the Observational Drawing Task at T1 

(Table 3). The change in drawing performance as a function of time predicted change in the 

Limited-Line Tracing Task performance (despite the non-significant overall effect for the 

Limited-Line Tracing task reported above) after Bonferroni correction, but it did not reliably 

predict change in performance on those tasks that also showed improvement over time: 

Embedded Figures, Mental Rotation or Bistable Figures tasks (Table 3). Drawing change 

over time was mildly negatively predicted by drawing score at T1, deep and achieving 

approaches to learning, and conscientiousness, and positively by neuroticism. Change in the 

Limited-Line tracing task was significantly correlated with drawing change and a reduction 

in interference by local elements in the Navon figure task, while changes in performance on 

the ATTA were only mildly negatively correlated with deep approaches to learning and 

errors on the Ebbinghaus illusion, and did not survive statistical correction (Table 2). A full 
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correlation matrix of all the visuospatial task random slopes and background variables can be 

found in the Appendix (Table A3). 
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Table 3 

Pearson correlations between individual participant slopes representing score change on the 

Observational Drawing Task, Limited-Line Tracing Task, and ATTA, compared to individual 

participant dispositional variables and visuospatial task slopes (n range = 39-42).  

 Observational 

Drawing 

Limited-Line  

Tracing 

 

ATTA 

Dispositional Variable    

Visual IQ  -0.09 0.14 -0.20 

T1 observational 

drawing 
-0.26 

-0.20 -0.28 

Deep approach -0.25 -0.21 -0.37* 

Achieving approach -0.25 -0.15 0.09 

Surface approach 0.08 0.25 0.20 

Neuroticism 0.32* 0.14 -0.22 

Extraversion 0.01 -0.01 0.03 

Agreeableness -0.01 0.11 0.04 

Openness -0.09 -0.14 -0.16 

Conscientiousness -0.33* -0.31 -0.01 

Drawing Task Slope    

Observational drawing 1.00 0.50*** -0.11 

Limited-Line Tracing 0.50*** 1.00 0.05 

ATTA -0.11 0.05 1.00 

Visuospatial Task Slope    

MRT RT 0.19 0.20 -0.27 
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MRT Accuracy  0.03 -0.03 -0.14 

EFT RT -0.05 0.002 0.02 

EFT Accuracy 0.05 0.16 0.15 

Out of focus -0.05 0.06 0.23 

Muller-Lyer -0.19 -0.22 0.07 

Rod-frame 0.04 -0.04 0.006 

Ebbinghaus 0.06 -0.03 -0.35* 

Bistable reversals -0.11 0.02 -0.11 

Navon Global Inter RT 0.06 -0.12 0.04 

Navon Local Inter RT -0.36* -0.43** -0.15 

Note. *p < .05, **p < .01, ***p < .0007 (Bonferroni corrected p-value = 0.05/72 = 0.0007). 

The slopes for each drawing and visuospatial task are computed as the sum of random 

conditional modes and the fixed effect coefficients per participant for that task. 

 

Discussion 

The current study tracked the development of drawing and visuospatial skills in 

foundation level college art students taking a five-month intensive drawing training course. 

The study of the acquisition of drawing skill – and its perceptual correlates – speaks to active 

psychological debates surrounding the nature of expertise (Ericsson, Hoffman, Kozbelt & 

Williams, 2018), and it provides new evidence on the role of practice and talent in the visual 

arts (Kozbelt & Ostrofsky, 2018).  

Our present findings indicate that art students improved in several aspects of 

visuospatial and artistic skill over the observed five-month period. Specifically, their 

performance on observational drawing, mental rotation, disembedding figures, and attention 

switching tasks increased over the course of the study. However, other aspects of perceptual 
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processing did not change: susceptibility to visual illusions, local and global attentional 

processing, identification of degraded images, as well as performance on the limited-line 

tracing and creativity tasks. In terms of correlations among patterns of change across tasks, 

the results were somewhat haphazard, with a few learning approaches and personality 

measures, as well as some perceptual measures, being associated with changes in 

performance on the three drawing measures here and there. No clear, consistent overall 

pattern emerged that would be suggestive of a core set of associated skills that develop as an 

ensemble over the course of drawing training.  

Among these various results, one notably discrepant finding was that participants did 

not improve in performance on the ATTA, a result that conflicts with the findings of a 

previous study (Schlegel et al., 2015), which showed longitudinal improvements in creative 

performance and gestural drawing. However, there are key differences between the current 

study and that of Schlegel and colleagues. First, the participants in Schlegel et al.’s (2015) 

study were non-art students, and as such had little prior artistic training. In contrast, the art 

students in the current study already had amassed several years of artistic experience and had 

gained entry to a prestigious art and design school. As our prior study demonstrated 

(Chamberlain et al. 2019), these students were already outperforming non-art students prior 

to starting their foundation course. Therefore, it is possible that the ATTA may not have been 

sensitive enough to measure changes in artistic creative output over time in an expert group. 

Moreover, recent research has also shown complex interactions between divergent thinking 

tasks and self-report measures of actual artistic creative activity (Lunke & Meier, 2016), 

suggesting that there may not be a clear link between artistic training and performance on 

standard creativity or divergent thinking tasks. This highlights the importance of matching 

specific training regimes (i.e., the intensity and duration of the training as well as the kinds of 

skills it targets) to specific sets of perceptual and cognitive skills.  
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 As noted above, it was not possible to directly link the impact of drawing training on 

the change in visuospatial skills, as there were almost no reliable correlations between 

drawing performance change and visuospatial performance change; perhaps other aspects of 

the course that the students were engaged in were responsible for their improvement on skills 

such as mental rotation (e.g., 3D design work). In the case of mental rotation, decreases in 

reaction time could be linked to the degree of rotation of the stimulus from the target, making 

more specific characterization of the gains in mental rotational abilities conferred by the 

development of a specific artistic skill. It was not possible to clarify this from the stimuli used 

in the current study, but future research may be able to tie improvements in mental rotation to 

underlying stimulus parameters which would better link into the type of training undertaken. 

This discussion further motivates the need for research in which numerous intervention 

groups are employed, with specific kinds of art and design skills isolated (e.g., expressive 

drawing versus technical drawing). Individual differences in change in drawing performance 

were moderately correlated with performance at baseline (those who started with lower 

performance improved the most) as well as with deep and achieving approaches to studying 

and conscientiousness and neuroticism. The most likely explanation for these latter findings 

is that those low in deep/achieving motivations and conscientiousness started off with poorer 

drawing performance, and therefore began the study with more room for improvement. This 

tallies with the fact that those scoring lowest in drawing at T1 showed the most improvement 

over the course of the study.  

Also, whilst recent research has characterized the role of practice in drawing expertise 

(Chamberlain et al., 2015) in finding that certain kinds of practice and dispositional traits 

predict high-level drawing ability, little evidence has been advanced to suggest that there is a 

causal relationship between training in drawing and other skills putatively associated with 

artistic expertise. As such, it is not known whether individuals with certain (predominantly 
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visuospatial) skills are more inclined to pursue further training in art and design, or whether 

the training and practice itself confers these benefits. This is in stark contrast to the large 

body of evidence from longitudinal designs suggesting that musical training exerts causal 

impacts on perceptual and cognitive abilities (e.g. Hallam, 2001; Moreno et al., 2011; 

Rodrigues, Loureiro, & Caramelli, 2013; Tierney, Krizman, & Kraus, 2015).    

A more significant limitation of the current study was that there was no control group 

in which to measure change in visuospatial performance over time without a drawing 

intervention. Previous research (albeit with much larger sets of stimuli) demonstrated that 

reaction times decrease as a function of practice in mental rotation (Heil et al. 1998; Kail & 

Park, 1990) and embedded figures tasks (Ludwig & Lachnit, 2004). However, a few factors 

support the notion that the improvements witnessed in drawing and visuospatial skill over 

time are due to some aspect of the students’ foundational art and design training. First, we 

ensured that the stimuli presented were sufficiently different in each testing session and 

participants were given practice sessions for each task prior to the onset of each task, such 

that practice effects were minimized as much as possible. Furthermore, it is pertinent to note 

that art students did not improve uniformly across experimental tasks, and that they 

significantly improved in the same tasks in which they outperformed non-art students at 

baseline (Chamberlain et al. 2019). Undoubtedly in future studies it would be advantageous 

to include a control group without a drawing training intervention, with a focus on those tasks 

that are likely to elicit change over time, in order to robustly demonstrate that the 

improvement in these tasks could not be explained by practice effects.  

In conclusion, the current study is the first to our knowledge to explore the 

longitudinal development of drawing and visuospatial skills via intensive drawing training 

using a large battery of well-validated tasks. The results demonstrate the malleability of a 

range of visuospatial abilities, including disembedding figures and mental rotation, although 



Representational Drawing Training and Visuospatial Skill 

	

 33	

it was not possible to directly link these improvements to improvements of the variable of 

interest: representational drawing. Notably, those particular tasks that show improvement 

over time – including mental rotation, disembedding figures, and attentional switching – are 

for the most part the same tasks that have been shown to distinguish artists from non-artists at 

baseline (Chamberlain et al. 2019). This suggests that this subset of visuospatial tasks may 

play a role in the development of artistic skill, and represents a clear focus for future attempts 

at replication and extension. 

Identifying which perceptual processes contribute to and undergird drawing skill is 

important because it helps demarcate the nature of artistic expertise. This domain differs from 

many prototypical domains of expertise (like chess) in its flexible, non-artificial nature, in 

that artists must solve precisely the same kinds of problems in creating depictions that the 

visual system does generally (Kozbelt & Ostrofsky, 2018). This line of research also raises 

other issues in the study of expertise, such as the degree to which training in an expert 

domain transfers benefits inside (near) or outside (far) of that domain, a question under 

considerable debate. Recent research has produced conflicting findings with regards to the 

impact of musical and computer game training on attention, intelligence, working memory 

and processing speed, calling into question whether training in these domains truly leads to 

far transfer (Sala & Gobet, 2017; Sala, Tatlidil, & Gobet, 2018). As there is very little extant 

research in this domain, the current study focuses on aspects of near-transfer; those skills 

such as mental rotation and flexible visual attention that have robust links to artistic ability 

already, and are conceivably domain-specific (see Chamberlain, 2018 and Kozbelt  & 

Ostrofsky, 2018, for discussions on what constitutes the domain of artistic expertise). 

However, if drawing training is seen to lead to tangible benefits in skills like mental rotation 

and attention switching, there may be downstream effects for more domain-general skills, 

such as analogical or mathematical reasoning (Goldsmith, Hetland, Hoyle, & Winner, 2016). 
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This, like many other issues raised in this project, is an empirical question and a promising 

avenue for future research.  
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Table A1. Descriptive Statistics (n = 42) 

Experimental Measure 

T1 T2 T3 

Mean SD Mean SD Mean SD 

Drawing Tasks       

Observational Drawing  Rating (/7) 3.48 0.76 3.51 0.71 3.82 0.81 

Limited-Line Tracing Rating (/7) 2.71 0.67 2.70 0.65 2.85 0.79 

ATTA Total score (/19) 13.20 6.04 15.03 5.33 13.07 4.40 

Visuospatial Tasks       

Visual IQ  Acc (/12) 6.95 2.51 - - - - 

MRT  Acc (%) 0.82 0.14 0.79 0.12 0.75 0.13 

MRT  RT (s) 9.59 5.95 7.38 4.58 5.41 2.00 

EFT Acc (%) 0.78 0.14 0.84 0.08 0.73 0.11 

EFT  RT (s) 6.07 0.62 5.48 0.82 4.99 0.77 

Out-of-focus  Acc (/15) 5.44 2.26 6.21 1.87 6.05 1.85 

Muller-Lyer  Length error (deviation from baseline in pixels) 32.82 20.49 32.12 15.80 32.58 19.54 

Rod-frame  Angle error (°) 1.35 1.33 3.68 1.26 1.08 1.26 

Ebbinghaus  Radius error (deviation from baseline in pixels) -4.44 9.49 -5.18 3.80 -5.22 6.98 

Bistable reversals Switch (number per minute) 17.62 10.70 19.92 11.08 22.71 11.28 

Navon Global RT (s) 0.61 0.13 0.64 0.10 0.64 0.11 

 Local RT (s) 0.65 0.15 0.70 0.11 0.68 0.12 

 Global Interference RT (s) 0.03 0.06 0.02 0.05 0.03 0.06 
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 Local Interference RT (s) 0.02 0.07 0.02 0.08 0.04 0.07 

 

Table A2. Correlations between visuospatial and drawing variables at T1, T2 and T3 (n range = 34-42)  

  Min 

Line 

ATTA MRT 

Acc 

MRT 

RT 

EFT 

Acc 

EFT 

RT 

Out-of-

Focus 

Muller-

Lyer 

Rod-

frame 

Ebbing-

haus 

Bistable 

Switch 

Navon 

Global 

RT 

Inter. 

Navon 

Local 

RT 

Inter. 

Observational 

Drawing 

T1 0.56 0.31 -0.04 -0.04 0.01 0.11 0.17 -0.04 0.07 0.03 -0.04 -0.01 -0.20 

T2 0.71 0.45 -0.15 -0.17 0.42 -0.06 0.10 -0.17 -0.26 0.18 0.20 -0.23 0.03 

T3 0.36 0.08 0.22 -0.04 -0.11 0.11 -0.02 -0.20 0.09 -0.17 0.006 -0.06 -0.09 

Limited-Line  T1 - 0.06 -0.11 0.16 0.003 0.16 0.15 -0.18 0.06 0.10 -0.13 0.05 -0.23 

T2 - 0.29 0.13 0.05 0.10 0.22 -0.11 -0.19 -0.18 0.28 -0.003 -0.12 0.18 

T3 - 0.31 0.19 0.04 0.36 0.04 -0.07 -0.23 0.01 0.36 -0.08 -0.19 -0.06 

ATTA Total T1 - - 0.10 -0.12 0.21 -0.09 -0.16 -0.19 -0.12 -0.14 0.06 -0.30 -0.12 

T2 - - -0.01 -0.38 0.23 -0.28 0.03 -0.24 -0.09 0.07 -0.15 -0.15 0.20 

T3 - - 0.11 -0.06 0.45 -0.21 -0.08 0.03 0.01 0.12 -0.20 0.07 -0.06 

MRT 

Accuracy  

T1 - - - 0.09 0.41 0.11 -0.10 -0.46 -0.21 0.04 0.12 -0.11 0.08 

T2 - - - 0.45 0.03 0.47 -0.07 0.07 -0.02 -0.11 -0.14 -0.21 0.23 

T3 - - - 0.31 0.01 0.03 0.05 -0.15 0.18 -0.31 -0.18 0.31 0.12 

MRT RT T1 - - - - 0.13 0.12 0.11 0.03 -0.17 0.04 -0.14 -0.05 0.12 

T2 - - - - 0.003 0.59 -0.27 0.21 0.04 -0.03 0.19 0.19 -0.06 
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T3 - - - - -0.02 0.37 -0.03 0.11 0.01 0.09 0.02 0.12 -0.19 

EFT 

Accuracy  

T1 - - - - - -0.10 -0.21 -0.38 0.07 -0.10 -0.05 -0.16 0.08 

T2 - - - - - 0.15 0.14 -0.11 -0.26 0.08 0.13 -0.22 0.03 

T3 - - - - - -0.01 0.09 -0.11 -0.14 0.43 0.25 -0.13 -0.05 

EFT RT T1 - - - - - - -0.25 -0.06 -0.11 0.14 -0.10 0.13 0.08 

T2 - - - - - - -0.13 0.07 -0.15 0.11 0.02 0.14 0.02 

T3 - - - - - - 0.30 0.009 0.01 0.17 0.22 -0.09 -0.06 

Out-of-Focus T1 - - - - - - - -0.16 -0.13 -0.30 -0.03 0.11 -0.16 

T2 - - - - - - - 0.09 -0.24 -0.10 -0.17 -0.24 0.11 

T3 - - - - - - - 0.03 0.03 0.21 0.25 -0.18 -0.02 

Muller-Lyer 

Error 

T1 - - - - - - - - 0.18 0.25 -0.05 0.02 -0.24 

T2 - - - - - - - - 0.09 -0.05 -0.09 0.01 0.03 

T3 - - - - - - - - 0.13 -0.11 0.03 0.23 -0.26 

Rod-Frame 

Error 

T1 - - - - - - - - - 0.27 -0.05 0.02 -0.24 

T2 - - - - - - - - - 0.09 0.05 0.07 0.05 

T3 - - - - - - - - - -0.17 -0.03 0.43 -0.07 

Ebbinghaus 

Error 

T1 - - - - - - - - - - -0.10 -0.02 0.19 

T2 - - - - - - - - - - 0.20 0.14 -0.06 

T3 - - - - - - - - - - 0.32 -0.21 -0.17 

Bistable 

Switch 

T1 - - - - - - - - - - - -0.21 -0.15 

T2 - - - - - - - - - - - -0.11 -0.18 
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T3 - - - - - - - - - - - -0.29 0.02 

Navon Global 

RT 

Interference 

T1 - - - - - - - - - - - - 0.06 

T2 - - - - - - - - - - - - -0.16 

T3 - - - - - - - - - - - - -0.07 

 

Table A3. Correlations between individual participant slopes (sum of random conditional modes and the fixed effect coefficients per participant) 

for drawing performance change and visuospatial task slopes, and dispositional variables (n range = 34-42).  

 

 
Obs 

Draw 

Min 

Line 
ATTA 

MRT 

RT 

MRT 

Acc 

EFT 

RT 

EFT 

Acc 

Out-

of-

focus 

Muller-

Lyer 

Rod-

frame 

Ebbing-

haus 

Bistable 

Switch 

Navon 

Glob RT 

Inter. 

Navon 

Loc RT 

Interfere 

Background 

Variable 
              

Visual IQ  -0.09 0.14 -0.20 0.02 -0.50 0.06 -0.39 -0.14 0.09 0.15 0.17 0.04 -0.004 -0.15 

T1 Observational 

drawing 
-0.26 -0.20 -0.28 0.04 0.01 0.06 -0.06 -0.22 -0.11 0.04 -0.01 0.10 -0.20 0.16 

Deep approach -0.25 -0.21 -0.37 -0.26 0.08 0.28 0.13 -0.20 -0.10 0.06 -0.10 0.14 0.01 0.07 

Achieving 

approach 
-0.20 -0.15 0.09 -0.12 0.25 0.09 0.22 0.06 -0.14 -0.15 0.01 0.26 -0.19 0.18 

Surface approach 0.10 0.25 0.20 -0.12 -0.01 -0.26 0.02 0.15 -0.15 -0.23 -0.13 -0.26 -0.20 -0.07 

Neuroticism 0.32 0.14 -0.22 0.08 0.04 -0.17 -0.002 -0.01 -0.20 0.20 0.13 -0.15 -0.04 0.14 



Representational Drawing Training and Visuospatial Skill 

	

 47	

Extraversion 0.01 -0.01 0.03 -0.15 0.41 0.05 -0.11 0.23 -0.26 -0.22 -0.15 -0.16 -0.04 -0.13 

Agreeableness -0.01 0.11 0.04 -0.15 0.10 0.02 0.09 0.04 -0.24 -0.20 0.20 0.13 0.04 0.17 

Openness -0.09 -0.14 -0.16 -0.07 0.27 0.23 -0.17 0.29 -0.14 -0.001 -0.01 0.35 -0.12 0.12 

Conscientiousness -0.33 -0.31 -0.01 -0.10 0.42 0.16 0.05 -0.06 -0.19 -0.29 0.10 0.17 -0.23 0.29 

Drawing Slopes               

Observational 

drawing 
- 0.50 -0.11 0.19 0.03 -0.05 0.05 -0.06 -0.19 0.04 0.06 -0.11 0.06 -0.36 

Limited-Line 

Tracing 
- - 0.05 0.20 -0.03 0.002 0.16 0.06 -0.22 -0.04 -0.03 0.02 -0.12 -0.43 

ATTA Total - - - -0.27 -0.14 0.02 0.15 0.23 0.07 0.01 -0.35 -0.11 0.04 -0.15 

Visuospatial 

Slopes 
              

MRT RT - - - - 0.41 -0.06 0.22 0.07 -0.25 -0.18 0.09 0.14 -0.20 0.04 

MRT Accuracy  - - - - - 0.12 0.31 -0.07 -0.37 -0.39 0.07 0.27 -0.35 0.26 

EFT RT - - - - - - 0.12 -0.23 -0.16 0.14 0.14 0.25 -0.01 -0.06 

EFT Accuracy - - - - - - - -0.10 -0.12 -0.12 -0.16 0.01 -0.43 0.11 

Out of focus - - - - - - - - -0.25 -0.03 -0.39 0.08 0.15 -0.01 

Muller-Lyer Error - - - - - - - - - 0.30 0.01 -0.03 0.12 -0.02 

Rod-frame Error - - - - - - - - - - 0.05 0.04 0.26 -0.09 

Ebbinghaus Error - - - - - - - - - - - 0.10 -0.07 0.24 

Bistable Switch - - - - - - - - - - - - -0.02 0.24 
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Navon Global RT 

Interference 
- - - - - - - - - - - - - -0.17 

 


