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               “Do you know that our soul is composed of harmony?” 
Leonardo Da Vinci,  

 

 

Despite evidence for music-specific mechanisms at the level of pitch-pattern 

representations, the most fascinating aspect of music is its transmodality. Recent 

psychological and neuroscientific evidence suggest that music is unique in the 

coupling of perception, cognition, action and emotion. This potentially explains why 

music has been since time immemorial almost inextricably linked to healing 

processes and should continue to be. 

 

Introduction  

Music captures our attention almost automatically, moves us emotionally, 

activates a wide range of brain regions, both at cortical and subcortical level, and 

engages a spectrum of processes pertaining to attentional, perceptual, memory, 

emotional, sensorimotor, mental simulation, perception-action, and communication 

(Koelsch, 2012). Therefore, it is not surprising that music has therapeutic effects on the 

physiological and psychological well beings of individuals (Wheeler, 1996). In fact, 

music therapy is defined as a systematic process in which carefully controlled music is 

used “in the treatment, rehabilitation, education and training of children and adults 

suffering from physical, mental or emotional disorder” (Alvin, 1975, p.4; see also Bunt 

and Stige, 2014). The American Music Therapy Association defines it as “the clinical 

and evidence-based use of music interventions to accomplish individualized goals 

within a therapeutic relationship by a credentialed professional who has completed an 

approved music therapy program” (Juslin and Sloboda, 2011).  

Despite anthropological and ethnomusicological evidence showing ancient belief 

on the healing powers of music (Gouk, 2000; Merriam, 1964), music therapy is a 
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relatively new research field whose formalization of education and research started only 

a few decades ago (Bunt and Stige, 2014). Music can have widespread beneficial 

effects, but the underlying mechanisms are not well understood or even adequately 

investigated. Therefore, music therapy as such was not considered amongst the  

mainstream medical intervention techniques till recently. In fact, medical practitioners 

in Western and westernized societies, differently from the non-Western medical and 

healing traditions (Gouk, 2000), have been careful and even skeptical in considering 

music as an effective medium of healing and/or fitting into scientific procedures 

(Bonny, 1986). The reason for this might reside on the fact that the final product of 

music is the “invisible” (sounds) with a great power of evoking emotions, making music 

the art that best lends itself to abstraction of our feelings. Indeed, for all pre-literate 

cultures, music had a sacred character, conveying cosmogonic and existentialist 

meanings, serving as an articulation point between the physical and the metaphysical 

(Andrade, 2004). Although psychophysiological effects of music (e.g., on 

electrocardiogram and blood pressure) were documented almost a century ago (Hyde 

and Scalapino, 1918), it is only from 1990s that an increasing amount of empirical 

studies investigating music-based intervention methods has taken place (Thaut, 2005).  

Investigations on music-therapy, however, have faced two major problems 

(Hillecke et al., 2005). The first is related to specificity, or a lack of it, i.e. the question 

whether observed outcomes are due to music-specific ingredients or to other factors 

common in the treatment of psychological disorders. In other words, the problem of 

specificity is a result of the adoption of the psychotherapy research tradition which did 

not control for unspecific factors influencing music-based intervention outcomes, such 

as extra-therapeutic aspects, therapeutic relationship, expectancy and placebo effects 

(Hillecke et al., 2005). The second problem is due to the theoretical heterogeneity 

among several music therapy approaches such as psychoanalytic music therapy, 

humanistic music therapy, behavioral music therapy, Nordoff-Robins music therapy, 

and music medicine. Such heterogeneity creates difficulties not only for an effective 

communication between music therapy centers but also in the search for working 

ingredients underlying successful music-based interventions, a crucial knowledge that 

could help both improving current interventions and guiding new hypotheses. 

Accordingly, the best way to handle these problems is to develop theories which are 

both coherent with available empirical knowledge and amenable to be tested and 

falsified. 
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Cognitive neuroscience has emerged as a promising scientific field which could 

give to music therapy its deserved scientific status. Particularly from 2000s, the 

development of advanced neuroimaging techniques has yielded important insights into 

the neural correlates of both listening to and engaging with music. It has been shown 

that music involves a multitude of brain areas dedicated to perception, cognition, i.e. 

short and long-term memory mechanisms, language, visuospatial processing, sequential 

processing and prediction, etc., motor skills, sensory-motor integration (Andrade and 

Bhattacharya, 2014; Levitin and Tirovolas, 2009; Zatorre, 2005). Studies on the 

processing of musical emotions reveal activations of ancient structures in the limbic 

(e.g. hippocampus, amygdala) and paralimbic (e.g. caudal orbitofrontal cortex, insula, 

temporal pole, parahippocampal gyrus) brain regions (Koelsch, 2010) as well as 

associated neurochemical changes related to reward, motivation, pleasure, stress and 

arousal (e.g. fear) (Chanda and Levitin, 2013).  

These findings from cognitive neuroscience of music have served as the basis for 

the development of music-based interventions to ameliorate memory, attention, 

language, spatial awareness, motor and executive functions (Koelsch, 2009; Shannon, 

2010; Thaut, 2005). Psychophysiological effects of music-evoked emotions are guiding 

interventions aimed at reducing anxiety, stress, pain, treatment of depression, etc. 

(Chanda and Levitin, 2013; Koelsch, 2015).  

A neurological music therapy has been proposed and defined as “the therapeutic 

application of music to cognitive, sensory, and motor dysfunctions due to neurologic 

disease of the human nervous system” (Thaut, 2005, p.126). In the same line, other 

authors offer explanative models of the factors or working ingredients of music-therapy 

underlying the positive effect of music on the psychological and physiological health of 

individuals, such as modulation of attention, emotion, cognition, behavior, and 

communication (Hillecke et al. 2005; Koelsch, 2009).  

There has been an upsurge in the number of research publications on the main 

neurobiological and neurocognitive principles underlying evidence-based music 

therapy. Nonetheless, it is important to keep in mind that music therapy is a growing 

and multidisciplinary field that builds on knowledge from acoustics to neurobiology and 

biomedical research, from psychology to neurology, from sociology to musicology and 

ethnomusicology (Hillecke et al., 2005).  In this chapter we intend to offer an integrated 

and convergent framework in which we directly address the connections of universal 

features and functions of musical behavior with the neuroscientific perspective of music 
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therapy, linking anthropological/ethnomusicological and developmental data with the 

set of already known working ingredients underlying successful music therapy. Our 

main aim is to provide readers with the relevant references and sufficient information to 

enable them to form a theoretical and empirical framework with which the available 

research findings could be critically evaluated and testable hypotheses be formulated for 

future research.   

 

Musical behavior: universal, ancient and precocious 

The notion that music is a universal behavior which goes back to the origins of 

human species appears undisputable (Conard, Malina, and Münzel, 2009; Mithen, 

2006). Musical ubiquity across space and time has led many scholars, since Darwin's 

publication of Descent of Man in 1871, to propose that music might be a biological 

adaptation (Mithen, 2006; Wallin et al., 2001; but see also Justus and Hutsler, 2005; 

Patel, 2010; Pinker, 1997). It is though debatable which musical traits were under 

selection pressure (Fitch, 2005; Honing et al. 2015; McDermott, 2008; Merker et al. 

2015; Trainor, 2015).  

One perhaps wonders why a book chapter on the therapeutic use of music would 

explore some universals and evolutionary issues of music. Strange as it may seem, this 

link is of crucial relevance for understanding the profound impact of music on human 

beings and, hence, its relevance and potential use in clinical and therapeutic settings. 

Our idea on the importance of understanding typicality of musical behaviors for the 

cognitive neuroscience of music is well illustrated in the epigraph by Shepherd (1994, 

p.9) “nothing in neurobiology makes sense except in the light of behavior”. In other 

words, naturally occurring, ancient and universal behaviors, as is the case of music and 

language, are presumed to be mediated by neural circuits with a deep evolutionary 

history. Thus, deepening the understanding of what is relevant in terms of behaviors 

feeds the knowledge of what is relevant in terms of neural circuits and vice-versa. 

Actually, several features of musical behaviors that are consistent with an 

evolutionary account of music represent, in our view, the substrate from which the most 

cogent arguments for its therapeutic use arises. Music is universal across extant and 

extinct human cultures. Despite cultural idiosyncrasies, there are important similarities 

(universalities) in pitch and rhythm structures and in the functions of music across 

cultures, and most importantly, perception of and attraction for music emerge very early 

in ontogenetic development. Processing of musical patterns by infants is similar to that 
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of adults so that they respond better to melodies in diatonic scales as well as to 

consonant patterns and to complex metric rhythm, and further they possess absolute 

pitch early in life which changes to relative pitch later and have long-term musical 

memory as well. Finally, there is evidence that structural components such as pitch 

contour and pitch interval are encoded automatically, even by non-musicians. Taken 

together these evidence suggests that our auditory pathways are likely to be hard-wired 

to deal with music-related stimuli (Andrade and Bhattacharya, 2003; Justus and Hutsler, 

2005; McDermott and Hauser, 2005; Zatorre, 2005).   

Music is also a nonverbal form of communication. Historically it is a shared 

group activity, spontaneous and improvisational involving sound-movement 

synchronizations (Juslin and Sloboda, 2011). Although music is usually defined in 

terms of an aural phenomenon based on patterned sound along pitch and time 

dimensions, there is, nevertheless, an emergent consensus is that music is inseparable 

from movement, i.e. it is both sonic and embodied (Cross, 2001; Dissanayake, 2009, 

Merker et al. 2015). Moreover, the deep links between music, emotion and movement 

occurring from infancy to adulthood are also universal.  

These profoundly organic features of music together along with its polysemic 

nature are perhaps the principal reason why serving as an important medium of healing 

is amongst the universal functions of music across societies, including courtship, 

praying, mourning and instructing (Blacking, 1973; Cross, 2001; Gouk, 2000; 

Dissanayke, 2009).  

 

Music-and-movement therapy 

A main feature of music across cultures is that it is a shared activity involving 

body movements, such as toe-tapping, head-nodding, hand-clapping (even in solitary 

appreciation recently allowed by the phonographic industry) and mainly dance 

(Blacking, 1973; Cross, 2001; Mithen et al., 2006). In other words, when one moves, 

plays or sing along with music, the sensory experience of musical patterns is intimately 

coupled with action. Unsurprisingly some cultures employ terms to define music that 

are far more inclusive than the Western notion of music, like the word nkwa that for the 

Igbo people of Nigeria denotes “singing, playing instruments and dancing” (Cross, 

2001, p. 29). Or take sangeet, the Sanskrit word for music, which literally means 

singing together.  
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Moreover, developmental precursors of music in infancy through early 

childhood musical behaviors reveal an intense interest in music in the form of universal 

proto-musical behaviors which are exploratory and kinesthetically embedded and 

closely bound to vocal play and whole body movement. This scenario displaying an 

inextricable link between music, emotion and movement actually continues to unfold 

through adulthood by developing to some new forms of shared (or not) activities such 

as singing and dance (Dissanayake, 2000; Trehub, 2003; Trevarthen, 2000). 

Indeed, in a way consistent with the view that music and dance are intertwined, 

some researchers propose that entrainment, i.e. coordination between internal and 

external rhythms (Merker et al. 2015), also referred to as sensorimotor synchronization 

(Repp and Su, 2013), constitutes the most distinctive musical behavior. It is further 

argued that entrainment is at the heart of protomusical behaviors and music evolution, 

being vital to organism’s adaptation for conferring survival benefits originated from 

primary selection pressures, such as better perceptual and predictive capacities, and 

from secondary selection pressures such as facilitation of social interactions both at the 

level of mother-baby connections and group cohesion (Merker et al., 2015). 

Furthermore, similar to primary reward, like food and sex, with high adaptation value, 

music engages mesolimbic reward network (Koelsch, 2015; Zatorre and Salimpoor, 

2013). 

Consistent with the notion that music is both sound and action, and 

spontaneously elicits movements in the listeners, neuroimaging studies have frequently 

reported activations of motor areas in the brain, even during simple listening to music 

(Koelsch, 2009). Particularly bilateral frontal and inferior frontal activations, mainly 

premotor frontal areas BA6, dorsolateral prefrontal areas (BA8/9), as well as inferior 

frontal areas as Broca (BA44/45), insula, and more anterior middle and inferior frontal 

cortices (46/47), are frequently observed in non-musicians (Platel et al., 1997; Zatorre et 

al., 1994) and musicians (Zatorre et al., 1998) even during passive listening to pitch 

sequences or Bach’s music (Ohnishi et al., 2001), and during a task of musical imagery 

(Halpern and Zatorre, 1999; Meister et al., 2004). Premotor cortex and supplementary 

motor areas and cerebellum are also activated during both reproduction (Sakai et al., 

1999) and passive listening to rhythms (Chen et al. 2008). 

More recent neurological findings have provided additional support for the 

existence of a natural link between sound and movement, with different sub-regions in 

the premotor cortex mediating distinct auditory-motor transformations. The ventral part 
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of premotor cortex is particularly involved in anticipation and tap along with rhythms 

whereas the dorsal part is also recruited during movement synchronization and metrical 

organization. Even those sounds not clearly connected with a given action elicited 

activations in premotor sub-regions falling in between ventral and dorsal parts, 

supplementary motor areas and cerebellum as well (Chen et al. 2008).  

Taken together, anthropological/ethnomusicological, developmental and 

neurological findings are consistent with the hypothesis that the capacity of music to 

spontaneously and unconsciously modulate motoric behavior is a relevant working 

ingredient of music therapy. This has been confirmed by the therapeutic potential of 

music in gait rehabilitation of stroke patients and other motoric problems such as those 

found in Parkinsons disease, autism, etc. For example, Thaut and colleagues (1997) 

found that combination of conventional physical therapy and rhythmic auditory 

stimulation where patients listen to a metronome or music tapes played over headsets 

while training their walking, has significantly ameliorated the walking patterns 

measured at post-test were compared to physical therapy alone.  

According to Jankovic (2008) the four cardinal features of Parkinson’s are: 

tremor at rest, rigidity, bradykinesia (the most important clinical feature characterized 

by slowness of movement) and postural instability, referred together as TRAP. The 

neurobiochemical signature of Parkinson’s patients is a marked deficit in dopamine 

concentrations in the striatum (part of the subcortical structure in the brain known as 

basal ganglia).  

There is evidence that the auditory-motor integration also occurs at the level of 

basal ganglia, i.e. amygdala, striatum (dorsal: caudate nucleus and putamen, ventral: 

nucleus accumbens) and globus pallidus via auditory association areas’ projections to 

these sub-cortical structures. The basal ganglia are particularly involved in the voluntary 

control of complex movements (Pinel, 2011), such as auditory sequencing and timing, 

musical rhythms (Janata and Grafton, 2003;Thaut, 2010; Zatorre et al., 2007) and 

speech and language as well (Enard, 2011). As pointed out by Thaut (2010) these 

pathways may play a critical role in the facilitative effect of music and auditory rhythm 

on motor output in Parkinson’s disease.   

Further, the basal ganglia is also a part of a timing network particularly involved 

in the extraction of durations using regular beats as a reference (e.g. perception of 

metrical rhythms), whereas the cerebellum is involved in the perception of absolute 

duration regardless of the presence of regular beats (Teki et al., 2011). Teki and 
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colleagues (2011) have shown that a striato-thalamo-cortical timing network, in which 

striatum and supplementary motor areas (also known for its involvement in timing) are 

interconnected, is crucial for the beat-based duration perception. Of particular relevance 

here is the close neurobiological link between rhythmic abilities and Parkinson’s disease 

which is characterized by a primary loss of dopaminergic neurones in a structure of the 

mesencephalon named substantia nigra (Hughes et al., 1992). More specifically, the 

nigrostriatal neurons, i.e. neurons from the dopaminergic pathway connecting substantia 

nigra to the dorsal striatum also known as mesostriatal dopamine pathway, are critical 

for interval timing so that Parkinson’s patients are also impaired on time and rhythmic 

discrimination tasks (Teki et al., 2011). Actually, these connections between 

rhythmicity, motoric functions and dopamine have been confirmed by empirical 

findings that faster rhythmic auditory stimulation significantly enhanced gait velocity, 

cadence and walking pattern in Parkinson patients with and without medication (Thaut, 

2010). 

Since release of dopamine in the striatum is necessary for basal ganglia mediated 

motor behaviors, the evidence suggests that positive effects of music on impaired 

motoric abilities of Parkinson’s patients include effects of rhythmicity on the 

mesostriatal dopamine pathway traditionally known for its motoric functions (planned 

movements) (Chanda and Levitin, 2013; Wise, 2009). There is an emerging agreement 

that the mesostriatal pathway also contributes to reward (Wise, 2009). So it is likely that 

mesostriatal pathway also contributes to motivation beyond motoric functions. 

In this motoric context, let us briefly discuss another neurological disorder, 

Autism Spectrum Disorders (ASD). ASD is mainly characterized by the social 

communication impairments (difficulties in acquire language and its idiosyncratic use, 

and impaired social interaction) but often accompanied by stereotyped repetitive 

behaviors, and increasing evidence indicates that perceptual-motor impairments may be 

common in this disorder (Srinivasan and Bhat, 2013). For example, in the motor 

domain, patients suffering from ASD have problems with dual and multi-limb 

coordination, postural control, gait, and imitation and praxis (Srinivasan and Bhat, 

2013). As perception-action is intricately coupled for music, potentially it could be 

utilized to facilitate motoric processes in autistic patients (Overy et al., 2009; 

Srinivasan, and Bhat, 2013).  

 

Music-and-emotion therapy 
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Possibly the most fascinating aspect of music is its power to induce emotions 

and influence mood. Music can leave people happy or sad, calm or anxious. Music’s 

extraordinary ability to evoke powerful emotions is likely the main reason why we 

listen to music and why it is generally referred to as the “language of emotions” (Juslin 

and Sloboda, 2011). 

For example, Panksepp (1995) asked hundreds of young men and women why 

they felt music to be important in their lives, and 70% of both sexes responded it was 

“because it elicits emotions and feelings”, and in the second place came “to alleviate 

boredom”. Interestingly, the neural processes underlying aesthetic responses to music 

are much more clear and easily detectable scientifically than those elicited by the visual 

arts, probably because music has a more direct and powerful influence on subcortical 

emotional systems than the visual arts (Hirstein and Ramachandran, 1999). 

Indeed, of great relevance to the use of music in clinical and therapeutic settings 

on the basis of its putative emotional powers is the notion that music elicits emotions 

rather than merely expresses an emotion that the listener recognizes. Actually, most 

people experience a particularly intense, euphoric response to music, frequently 

accompanied by an autonomic or psychophysiological component, described as 

‘‘shivers-down-the-spine’’ or ‘‘chills’’. Indeed, listening to music automatically elicits 

physiological changes in blood circulation, respiration, skin conductivity, body 

temperature, heart rate, etc. (Krumhansl, 1997; Khalfa et al., 2002; Khalfa et al., 2008) 

which are autonomic responses of the sympathetic nervous system regulated by 

noradrenergic neurons in the brainstem and midbrain (Bernatzky et al., 2011; Chanda 

and Levitin, 2013). Recent research provides direct evidence of dopamine release in the 

striatal dopaminergic region during the experience of chills (Salimpoor et al, 2001) 

 Consistent with the autonomic responses of the sympathetic nervous system 

elicited by music, the available literature provides cogent evidence that like biologically 

relevant visual stimuli, music activates primitive structures in the limbic and paralimbic 

areas of the brain involved in reward and fear (Blood and Zatorre, 2001; Brown et al., 

2004). Activation of limbic areas during listening to music was even observed in 

neonates (Perani et al., 2010). Therefore, music resonates with our basic emotional 

systems, bringing out many phylogenetically ancient affective emotions and it appears 

fair to assume that “our love of music reflects the ancestral ability of our mammalian 

brain to transmit and receive basic emotional sounds that can arouse affective feelings 
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which are implicit indicators of evolutionary fitness” (Panksepp and Bernatzky, 2002, p. 

134).  

Yes, music elicits real emotions! However, in our view, crucial for the study of 

therapeutic uses of music emotions is understanding what the main structural 

components of music are, how these components elicit emotions and at what extent 

these components are universal and/or culturally determined. This knowledge is 

important for the understanding of neurophysiological data but also for the formulation 

of hypotheses and experimental designs grounded on knowledge about musical 

parameters and related emotional effects. 

Evidence indicates that different configurations of musical characteristics can 

induce different emotions, and some of these characteristics are both universal and 

shared with language. Overall, literature indicates that emotions in music can vary 

across many dimensions, such as mode (major-like or minor-like scales), 

consonance/dissonance, pitch register, tempo (i.e. number of beats per minute, can be 

fast or slow), loudness, and complexity (Juslin and Sloboda, 2001; Laukka et al., 2013). 

Particularly tempo (fast or slow) and mode (major or minor), which are associated with 

listeners’ arousal levels and moods, respectively, have been the most extensively 

examined central features underlying music emotions in comparison to other 

dimensions. Both major and minor scales are considered as mainly having consonant 

intervals, i.e. musical notes whose fundamental frequencies form small integer ratios 

with the first degree (Tonic), such as octave (2:1), perfect fifths (3:2) and fourths (4:3). 

The Western’s major scale, however, contains more consonant intervals, such as a 

major third (5:4) and major sixth (5:3), compared to Western’s minor scale which has a 

minor third (6:5) and minor sixth (8:3). Dissonant musical stimuli, in contrast, are those 

based on intervals whose fundamental frequencies stand in more complex ratios such as 

augmented fourth (45:32), minor second (16:15), and major seventh (15:8), this last 

being present in both major scale and harmonic minor scale commonly used in the 

Western music (Bidelman and Krishnan, 2009; Tramo et al, 2001). 

Music is capable of inducing strong emotions with both positive and negative 

valence consistently across subjects (Krumhansl, 1997) and cultures (Laukka et al., 

2013).  Cross-culturally, individuals tend to readily associate melodies in major modes 

at fast tempos as happy and melodies in minor modes at slow tempos as sad, responses 

that are considered the most consistent emotional judgements in music (Fritz et al., 

2009; Laukka et al., 2013). Whereas emotional responses to tempo are really precocious 
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and appear to depend less on experience (Hannon and Trainor, 2007), judgements based 

solely on mode are evident only from 6 years of age (Dalla Bella et al., 2001).  

Expectation (hence prediction) constitutes another basic component of music 

perception (Huron, 2006). It operates on a variety of levels, including melodic, 

harmonic, metrical, and rhythmic, and it addresses the question “what” and “when”, that 

is, what tones or chords are expected to occur and when, in a given musical sequence. It 

is not only presumed to play an important role in how listeners group the sounded 

events into coherent patterns, but also to appreciate patterns of tension and relaxation 

contributing to music's emotional effects. Both cognitive and emotional responses to 

music depend on whether, when, and how the expectations are fulfilled (Juslin and 

Västfjäll, 2008). For instance, there is a hierarchy of stability in the tones forming the 

Western major scale in which the most stable note is the first degree (and the octave) of 

the scale, i.e. the Tonic, that gives to the listener a sensation of resolution. The Tonic is 

followed in stability by the fifth and the third scale tones, respectively, for their 

harmonic frequencies/components being more closely related to the Tonic; the stability 

decreases from fourth to sixth , with the second and seventh degrees the most unstable 

in this order. In the C major key this continuum from stability to instability will be C, G, 

E, F, A, D and B, respectively.  

The main method used in cross-cultural comparisons of musical expectations is 

the probe tone task, first developed by Krumhansl and Shepard (1979) for quantifying 

the perceived hierarchy of stability of tones. Here a melody is presented to the listeners 

many times, but followed on each occasion by a single probe-tone with varying degree 

of fitness. Using a rating scale, the listeners assess the degree to which the probe-tone 

fits their expectations about how the melody might continue (Krumhansl et al., 2000). 

Cross-cultural studies comparing the fitness ratings given by Indian and Western 

listeners to North Indian ragas (Castellano et al., 1984), by Western and Balinese 

listeners to Balinese music (Kessler et al., 1984), native Chinese and American 

listeners’ responses to Chinese and British folk songs (see Thompson et al., 1997) all 

found strong agreement between listeners from these different musical cultures. Of 

course, there were effects of expertise depending on the listeners' familiarity with the 

particular musical culture.  

Recent cross-cultural works on melodic expectancies, with Korean music (Nam, 

1998) and with music of indigenous people of the Scandinavian Peninsula (Krumhansl 

et al., 2000), have provided additional evidence for the universal reliance on the 
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hierarchical arrangement of pitches, indicating that music draws on common 

psychological principles of expectation even if musical cultures have a distinct effect in 

these principles, although the exact way it is accomplished varies with culture. Given 

the universal presence of consonant intervals in musical scales across cultures, it is   

reasonable to assume that consonance influences judgment in these probe tone tasks 

(Laukka et al., 2013). However, another factor underlying probe tone tasks after 

controlling for consonance/dissonance is the statistical properties of the music, such as 

the number of times that different tones and tone combinations appear in the presented 

musical contexts (Krumhansl and Cuddy, 2010). 

Actually, an interaction between biology and culture appears to underlie the 

development of emotions. For instance, although evidence indicates that sad-happy 

judgments based on mode are the result of enculturation, being consistent around the 

age of six (DallaBella et al., 2001), this learning seems to depend on the sensitivity to 

consonance/dissonance (Cousineau, McDermott, and Peretz, 2012; Hannon and Trainor, 

2007; Gosselin et al., 2015) which appears to be innate.  Although findings on the 

innate preference for consonance in infants are mixed, sensitivity to 

consonance/dissonance and processing advantages for consonant stimuli are both 

present in listeners of all cultures, in young infants (Plantinga and Trehub, 2014; Virtala 

and Tervaniemi, 2017, but see also McDermott et al, 2016) and neonates as well (Perani 

et al., 2010). Indeed, just like adults, infants can detect minor interval changes in 

melodies of the same contour when melodies are based on consonant intervals, but not 

when based on dissonant intervals, and are also better in detecting subtle changes in 

consonant than in dissonant intervals (for a review see McDermott and Hauser, 2005). 

Perani and colleagues (2010) reported not only differential patterns of brain activations 

for consonant and dissonant musical stimuli in neonates, but also neural emotional 

responses in the limbic system for dissonance. 

Evidence suggests that consonance/dissonance sensitivity appears to be the 

universal guide of scale construction across musical cultures of either extant (see Justus, 

and Hutsler, 2005) or extinct human societies (Conard et al., 2009). 

Consonance/dissonance sensitivity, jointly with tempo and complexity (Laukka et al., 

2013) is an important mechanism underlying valence-based judgments of music 

emotions cross-culturally (Fritz et al., 2009). A good evidence for the relevance of 

consonance/dissonance sensitivity to emotional evaluations based on mode comes from 

congenital amusics. Congenital amusia is a neurogenetic disorder apparently specific of 
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musical abilities that affects, beyond singing in tune and dancing, pitch processing 

abilities such as melody discrimination and recognition, pitch direction, small pitch 

deviations, and sensitivity to consonance/dissonance (Cousineau et al., 2012; Cousineau 

et al., 2015; Gosselin et al., 2015). Congenital amusics’ deficits in fine-grained pitch 

perception, harmonicity perception, high abnormal perception of consonance and 

dissonance and no preference for consonance is causally associated with their inability 

to make happy-sad judgments based uniquely on mode changes (Cousineau et al., 2015; 

Gosselin, 2015).  

We can conclude that substantial evidence suggests that sensitivity to 

consonance/dissonance is the main innate ability that serves as a fundamental building 

block of musical enculturation, such as the implicit knowledge of the hierarchical 

organization of the musical notes in the tonal system (notes and chords that best fit to 

complete the musical expectations and, hence, to conclude the song), and of the 

valence-based judgements of music (Hannon and Trainor, 2007; Laukka et al., 2013).  

In short, musical excerpts played in major mode and fast tempos are frequently 

associated with happiness, whereas minor mode and slow tempos are considered sad. 

Considering tempo in isolation, fast-tempos is taken as happier than slow-tempos, 

although it is more correct to say that faster tempos reflect high-arousal emotions such 

as happiness, fear and anger, whereas slow tempos is used to express low-arousal 

emotions such as sadness, tenderness and love. In general, sounds that are loud, 

dissonant and fast induce high arousal with a negative valence of in the listeners and 

associated with negative and high arousal emotions such as anger, fear, whereas sounds 

that are smooth, consonant and at a slow or intermediate tempos induce low arousal and 

positive feelings such as peacefulness, love, etc., regardless of being music, speech or 

environmental sounds. Low-pitched sounds are less pleasant and associated with fear or 

anxiety and used to express negative valences in music. Unexpectedness and 

irregularity, jointly with dissonance, are consistently associated with negative valence 

of fear (Laukka et al., 2013; Vieillard et al., 2008).  

 

Music structure, music emotions and music therapy 

Whereas the mesostriatal pathway is involved in both motor and reward-related 

functions,  the mesolimbic and mesocortical dopamine pathways, often referred as to 

mesocorticolimbic pathways, appear to be specifically dedicated to process rewarding 

stimuli (e.g. pleasure) and rewarding aspects of reinforcement learning (Wise, 2009). 
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Mesocorticolimbic dopamine pathways are characterized by projections from the 

ventral tegmental area (mesencephalon) to nucleus accumbens (ventral striatum) and to 

the prefrontal cortex, respectively (Wise, 2009).  

Imaging and lesion studies reveal the subcortical foundations of emotional 

musical experiences in many brain areas that are homologous between humans and all 

of the other mammals (Blood and Zatorre, 2001; Brown et al., 2004). 

Pleasant/consonant music stimuli are systematically associated with activations of both 

paralimbic areas (e.g. insula, orbitofrontal cortex and ventromedial prefrontal cortex), 

involved in reward/motivation, emotion, and arousal, and the mesocorticolimbic 

dopamine pathways, which is the most important reward pathway; in contrast, 

unpleasant/dissonant music are associated with activations parahippocampal gyrus 

(Blood and Zatorre, 2001; Menon and Levitin, 2005), a paralimbic structure which, 

jointly with amygdalae, is involved in unpleasant emotional states evoked by pictures 

with negative emotional valence (Lane et al., 1997); the amygdalae, in its turn, is a key 

structure in fear processing, and has strong reciprocal connections with 

parahippocampal gyrus (Mesulam, 1998) which is deactivated with consonant music 

(Blood and Zatorre, 2001). Recently it has been demonstrated that unilateral damage to 

amygdala selectively impairs the perception of emotional expression of fear in scary 

music (minor chords on the third and sixth degrees, implying the use of many out-of-

key notes, and fast tempos), while recognition of happiness (major mode and fast 

tempo) was normal, and recognition of peacefulness (major mode and intermediate 

tempo played with pedal and arpeggio accompaniment) and sadness (minor mode at an 

average slow tempo) in music was less clearly affected by the medial temporal lobe 

resection (Gosselin et al., 2005; see also Khalfa et al., 2008). Further, patients with 

lesions in left amygdala show reduced hedonic pleasure in music listening (Griffiths et 

al., 2004).   

We have seen that music can change heart rate variability (HRV), a measure of 

cardiac autonomic balance. For example, an early study (Uemura and Honda, 1998) 

showed an increases in HRV, an indicator of less stress and greater resilience, during 

listening to classical music, i.e. Coeur Fragile by Richard Clayderman (minor mode, 

slow tempo) and Waltz of the Flowers by Tchaikovsky (major mode and slow tempo), 

which also induced comfort in the listeners. In contrast, decreases in HRV, an indicator 

of greater stress, was observed during listening to rock music which induced 

discomfort. However, it is important to note that these results reflect the effects of the 
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musical excerpts specifically selected for this study and not a necessary difference 

between classical music and rock. In fact, both classical musical excerpts were 

consonant and in slow tempo. Although the authors did not inform about the rock 

music, it is likely that it was in fast tempo and had a greater degree of dissonance.  

Actually, relaxing music (consonant and in slow tempos) can reduce autonomic 

responses such as heart rate, blood pressure, and respiratory rate, whereas music 

excerpts eliciting high arousal emotions such as happy and fear, are characterized by 

faster tempos and accentuated rhythms, and are often associated with increases in 

respiration rate, heart rate and blood pressure and skin conductance as well which is 

better than other measures of the autonomic nervous system such as heart rate, because 

it is under strict control of the sympathetic branch of the nervous system (Khalfa et al., 

2002). Reciprocally, sad music (slow tempo) has smaller responses on these autonomic 

measures when compared to happy music (Khalfa et al. 2002, 2008; Krumhansl, 1997). 

Some neurochemical findings are consistent with these results. In healthy subjects, 

stimulating music played at fast tempos, such as techno, increases plasma levels of 

stress hormones along the hypothalamic-pituitary-adrenal (HPA) axis , such as cortisol 

and  adrenocorticotropic hormone, and other neurochemicals known to mediate stress 

response, such as norepinephrine (produced in the brainstem locus ceruleus and central 

and peripheral autonomic nervous system and known to regulate autonomic responses 

of heart rate, blood pressure, and respiration) and  ß-endorphin. Consistently with the 

role of the amygdale in stress-related responses, this structure is “rich in cortisol 

receptors and interacts with norepinephrine input and hippocampal connections” 

(Chanda and Levitin, p. 183). In contrast, relaxing music (characterized by slow tempos 

and consonance) has been found to decrease these stress-related neurochemicals such as 

cortisol, norepinephrine and ß-endorphin (for a review see Chanda and Levitin, 2013). 

Interestingly, musical pleasure was shown to be associated with deactivation in the 

amygdala, supporting the anxiolytic effects of consonant music (Blood and Zatorre 

2001). 

It is important to remember that both relaxing and happy music are positively 

valenced and elicit activations of both mesostriatal and mesocortical dopamine 

pathways involved in reward. However, it is important to remind that dopamine is not 

the only neurochemical involved in reward (and could not be a ‘pleasure’ 

neurochemical per se), and the feeling of pleasure appears to depend on both the release 

of dopamine and endogenous opioids within the nucleus accumbens (Chanda and 
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Levitin, 2013, p. 180). In fact, subjective feelings of pleasure is the product of dynamic 

interactions of neurochemical concentrations including dopamine, opiods and 

norepinephrin. Nevertheless, the subjective feelings of pleasure associated with 

consonant music (happy or calming) and its potential use to soothe pain appear to be 

related, among other things, to opioid transmission in the nucleus accumbens associated 

with dopamine release in the mesocorticolimbic pathways (Chanda and Levitin, 2013).  

Despite several methodological limitations, an old study by Goldstein (1980) 

observed that by administering naloxone, a well-known opioid antagonist, responses of 

thrill and chills during music listening were attenuated, suggesting a causal link between 

positive-valenced music and release of endogenous opiods.  

For its robust impact on emotions and socioemotional processes as well as for its 

associated psychophysiological effect, brain activations, and neurochemical effects 

(Bernatzky et al., 2011; Chanda and Levitin, 2013; Juslin and Sloboda, 2011; Koelsch, 

2015), the potential of music as an effective medium for reducing anxiety, pain, stress 

and depression has been investigated.  

In a meta-analysis including 51 studies using randomized controlled trials, 

Cepeda and colleagues (2006) concluded that adding music therapy to standard care in 

patients with chronic pain or cancer significantly reduced pain and opioid requirements. 

In a randomized clinical trial, Bringman et al. (2009) found that the relaxing music was 

more efficient than preoperative administration of the benzodiazepine midazolam. i.e. 

an anxiolytic drug used worldwide for sedation during minor operations and intensive 

care, with relaxing music.  

In a randomized controlled clinical trial, Siedliecki and Good (2006) assigned 

their 60 subjects with chronic non-malignant pain syndromes (with back, neck and/or 

joint pain for at least 6 months and receiving at least one form of traditional medical or 

surgical pain management) to a music group with music selected by researchers, a 

music group with music selected by patients or a control group (without music 

intervention). Although no statistically significant difference was found between the 

two music groups, both groups had diminished pain and depression symptoms as well 

as better motor power and abilities in comparison to the control group. 

In the same line, cancer patients have a high level of physical and psychological 

distress. Although therapeutic effects of music have not been clearly demonstrated in 

the end-of-life care (Bradt and Dileo, 2010), there is evidence that just listening to 

music can improve the psychological state of patients and promote their physical well-
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being in different oncological contexts (Richardson, Babiak-Vazquez, and Frenkel, 

2008) including palliative care (Hilliard, 2005), radiotherapy (Dileo C, Bradt J, Grocke 

D, Magill, 2009) and chemotherapy (Lee et al., 2012). When combined with 

conventional cancer treatments, music therapy can alleviate anxiety and pain 

(Richardson et al., 2008) and also reduce analgesic requirements (Pyati and Gan, 2007). 

The most distressing form of cancer treatment is chemotherapy during which 

patients are in high need of alleviating anxiety, pain and ameliorating psychological 

state as well. In a pilot study, Lee and colleagues (2012) carried out the first 

investigation that systematically compared the EEG responses to relaxation treatment 

using either monochord or progressive muscle relaxation, thus pioneering for providing 

information on the possible neural mechanisms underlying the therapeutic effects by 

music in the oncological context and for testing music therapy against a proven 

psychological relaxation method. Both groups of patients showed significant 

improvement in their physical and psychological states and in state anxiety. Further, the 

EEG signals for both groups showed an increase of posterior theta band (3.5—7.5 Hz) 

and a decrease of midfrontal beta-2 band (20—29.5 Hz) oscillations during the latter 

phase of music therapy session. Interestingly, these combination of EEG markers reflect 

brain’s response to relaxed states. These results are also consistent with the findings by 

Sammler et al. (2007) who reported an increase of frontal midline theta power during 

listening to pleasant music. Furthermore, only the music therapy group showed a 

change in the neuronal complexity in the theta band oscillations (Bhattacharya and Lee, 

2016).  

Music-based interventions to reduce pain and anxiety, and promoting well-being 

also extend to children under different oncological (Barrera, Rykov, and Doyle, 2002; 

Daveson, 2001; Kain et al., 2004) and cardiac contexts (Hatem, Lira, and Mattos, 2006). 

In general, the effectiveness of music as an additional medium to reduce pain in 

comparison to standard care has been demonstrated in a diversity of clinical populations 

since 1960’s. However, most studies only compared treatments with and without music 

and did not inform about the action mechanisms underlying music-specific analgesic 

effects; a more parsimonious explanation could be that music just exerted a distraction 

effect. Roy and colleagues (2008) induced pain with thermal stimulations in the subjects 

to investigate the valence effects of pleasant (positive) and unpleasant (negative) 

musical excerpts which were matched in terms of arousal. Although valence did not 

change warmth perception and unpleasant music did not significantly affect pain, the 
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pleasant excerpts, in contrast, significantly reduced pain intensity. This supports the 

notion that positive-valenced music contributes to analgesic effects.  

One problem with the study by Roy and colleagues (2008) is that all pleasant 

musical stimuli were at fast tempos, i.e. high in arousal, to match with the high arousal 

levels of unpleasant excerpts. Therefore, further studies should be conducted to assess 

specific effects of high (fast tempos) and low (slow tempos) arousal in pleasant musical 

stimuli. Moreover, some of the pleasant excerpts in the study by Roy et al. (2008) were 

based on minor modes and some of those based on major modes had a certain degree of 

dissonance and modulations, thereby increasing the musical complexity. Music 

parameters like consonance/dissonance, mode and tempo, and complexity as well, are 

well known factors underlying music emotions.   

 

Music, emotional communication and socio-cognitive therapy 

Basic emotions (e.g. happiness, sadness, anger, and fear), are more easily 

communicated through music, and emotional prosody virtually share with music the 

same patterns in tempo, mode (major/minor), harmony, tonality, pitch, intonation, 

contour, interval, rhythm, amplitude, timbre, etc., that are specifically involved in 

communicating emotions (Juslin and Sloboda, 2011). Within the perspective that music 

and movement and music are inseparable we suggest that protomusical behaviors 

represent deeper links between music, language and social-cognition. 

Human infants interact with their caregivers producing and responding to 

patterns of sound and action, a rhythmicity that is manifestation of a fundamental 

musical competence, a musicality that is part of a “natural drive in human sociocultural 

learning which begins in infancy" (Trevarthen, 1999, p. 194). Thus, innate sensitivity to 

pitch and rhythm structure does not seem to be in vain since infant-directed speech (also 

known as baby talk or motherese), a sing-song-like way adults instinctively use to 

communicate with children which is slower, with higher average pitch and exaggerated 

pitch contours which greatly facilitates speech perception and language acquisition 

(Kuhl, 2004; Trehub, 2003).  

Beyond speaking melodiously, adults also sing play songs and lullabies to 

children, special genres of music whose common features among cultures are simple 

pitch contour, repetitions and narrow pitch range (Trehub, 2003). Musicality also allows 

infants to follow and respond accordingly to temporal regularities in vocalization, 
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movement, and time, allowing the initiation of temporally regular sets of vocalizations 

and movements (Trevarthen, 1999).  

These protomusical behaviors are so intertwined with protoverbal behaviors that 

“preverbal origins of musical skills cannot easily be differentiated from the prelinguistic 

stages of speech acquisition and from the basic alphabet of emotional communication” 

(Papousek, 1996b, p. 92). It is even argued that the musical elements that participate in 

the process of early communicative development “pave the way to linguistic capacities 

earlier than phonetic elements” (Papousek, 1996a, p. 43). In the pitch dimension, infant-

caregiver interactions, cross-culturally, tend to exhibit the same range of characteristics 

such as exaggerated pitch contours on the caregiver's part ('motherese') and melodic 

modulation and primitive articulation on the infant's part, all in the context of the 

rhythmic and kinesthetic interactions. On the part of the infant, these activities develop 

into exploratory vocal play (between 4 and 6 months) which gives rise to repetitive 

babbling (from 7 to 11 months) from which emerges both variegated babbling and early 

words (between 9 and 13 months) (Kuhl, 2004; Papousek, 1996a, 1996b). 

These temporally-controlled interactions involving synchrony and turn-taking 

are employed in the modulation and regulation of affective state (Dissanayake, 2000), 

and in the achievement and control of joint attention also referred as to 'primary inter-

subjectivity' (Trevarthen, 1999). Arguably, protomusical behaviors are often 

reciprocally imitative and also clearly emotionally charged and linked to social and 

emotion regulations in infancy. The turn-taking aspect of these games is the “rhythmic 

dance” between mother and child and adults across cultures play reciprocal imitative 

games with their children that embody the temporal turn-taking. As the infant develops, 

protomusic becomes music and continues to play this social role throughout life as an 

indispensable component of most diverse kinds of gatherings from occasional to 

magnificent ones, rituals and ceremonies (religious, social, healing, etc.). We know that 

imitation games with music and dance are universal, and the tribal dances itself can be 

seen as one of the most frequent forms of imitation game, used to develop the in-group 

sense, the feeling of both “being like the other” and “the other is like me”, and thus 

pertaining to a group (Dissanayake, 2000; Trevarthenm 1999). 

 Finally, there is preliminary evidence that motherese (Seltzer, Ziegler, and 

Pollak, 2010) and relaxing music (Nilsson, 2009) are associated with increases in 

oxytocin a neuropeptide released by the posterior pituitary gland which is known to 

mediate social bonding and affiliation (for a review see Chanda and Levitin, 2013). 
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It is in the universal role of music in the modulation and regulation of affective 

state and inter-subjectivity that relies the potential of music as an intervention tool in 

clinical contexts related to social communication impairments such as autism (Overy, 

and Molnar-Szakacs, 2009). Autism Spectrum Disorders (ASDs) are a group of 

neurological disorders characterized by social communication impairments, presence of 

stereotyped and repetitive behaviors and interests, with frequently co-ocurring motor 

impairments (Srinivasan, and Bhat, 2013). It was also recently demonstrated that mirror 

neurons in the posterior inferior frontal gyrus of high-functioning autistic children with 

autism showed no activity compared matched controls, during tasks involving imitation 

and observation of emotion expressions.  Subserved by a fronto-parietal network in the 

human brain the mirror neuron system is fronto-parietal neural network involved in both 

other’s action observation and execution thus allowing imitation processes and grasping 

of other’s intention (theory of mind). The findings by Dapretto and colleagues (2006) 

indicate that social-cognitive deficits in autism could be due to a dysfunction of the 

mirror neuron system.  

Since proto-musical  behaviors are  inextricably linked to imitation and 

emotionally charged and linked to social and emotion regulations in infancy, features 

that continue to characterize music behaviors throughout life,  it is proposed that the 

human mirror neuron system and the limbic system interacts in the understanding of and 

attribution of emotion to complex musical patterns (Overy and Molnar-Szakacs 2006). 

In the Shared Affective Motion Experience model, SAME, proposed by Overy and  

Molnar-Szakacs (2009), music is not only patterned sound sequences but also the 

resulting intentionally and hierarchically organized sequences of expressive motor acts 

with emotional meaning, thus involving imitation, synchronization, emotion and social 

cognition.  From this perspective, SAME model has important implications for music 

therapy and special education.  

Improvisational music therapy, defined as the interactive use of live music for 

engaging clients to meet their therapeutic needs (Bruscia, 1998), resembles musical 

behaviors as typically occurring in the natural social contexts of proto-musical 

behaviors and shared and improvisational group activities (Juslin and Sloboda, 2011). 

Improvisational music therapy involves spontaneous self-expression, emotional 

communication and social engagement (Gold et al., 2006; Kim et al., 2009; Overy, and 

Molnar-Szakacs, 2009; Srinivasan, and Bhat, 2013). The use of improvisational music 

therapy with autistic children have been shown to enhance social skills by improving 
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eye contact, social engagement, spontaneous initiation and emotional understanding, as 

well as verbal and gestural communication (Gold et al., 2006; Kim et al., 2009, see 

Srinavasan and Bhat, 2013). 

 

Music cognition and intervention in learning disabilities 

Music is a highly structured sequential organization of sounds and, like 

language, an acoustically based form of communication with a set of rules for 

combining limited number of perceptual discrete acoustic elements (pitches in music, 

and phonemes in language) in an infinite number of ways. According to the shared 

syntactic integration resource hypothesis (SSIRH) music and language can represent 

distinct modular systems at the level of long-term representations but share cognitive 

mechanisms underlying online structural integration of these representations (Patel, 

2003) which appears to be inextricably linked to a domain general working memory 

system (Fedorenko et al. 2007). 

Evidence for shared cognitive mechanisms and neural resources involved in 

tracking auditory patterned sequences and underlying intrinsic rules (syntax) between 

both domains has been demonstrated in behavioral (Fedorenko et al., 2009),  imaging 

and lesion studies (see Koelsch, 2011). Similar evidence of likely sharing mechanisms 

has been made for children’s linguistic abilities (phonology and literacy) and perception 

of musical sequences controlling for fine-grained pitch perception and rhythm (Zuk et 

al., 2013), as well as for the prosody of language and music (Patel et al., 2005; Zioga, 

Luft and Bhattacharya, 2016). 

Music and language also seem to share some aspects of basic auditory 

perception. There is evidence that spectrotemporal auditory processing, particularly the 

processing of fast acoustic transitions, is essential for speech processing (and whose 

impairment can lead to reading disabilities) and that musical training can improve rapid 

temporal processing and reading as well (Gaab and Tallal, 2006).  

It is also argued that accurate detection of supra-segmental cues, i.e. non-

phonetic cues such as words, phrases and prosody (stress, rhythm and intonation), are 

key mechanisms underlying phonological development. Particularly the rhythmic 

prosody, such as perception of slow amplitude modulation in speech, is considered a 

key mechanism for segregating syllable onsets and rhymes which are essential for the 

acquisition of phonological representation in child development (Goswami et al., 2002). 

It is also proposed that infants build grammatical knowledge of the ambient language by 
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means of this ‘prosodic bootstrapping’, with rhythm playing one of the central roles 

(Goswami et al., 2002; Corriveau et al., 2007).  

Overlaps between music and other domains, such as auditory perception  

mechanism involved in speech perception and sequencing processing involved in 

syntax, is the first necessary requirement for hypothesizing the music can have an 

impact on these abilities. In fact, there is much evidence that musical experience shapes 

the brain and is associate with increases in white and gray matter in corpus callosum 

and auditory and motor cortices as well, and that musical training can have significant 

positive impact on academic abilities (Merret et al., 2013; Moreno et al., 2011; 

Schellenberg, 2004; Tierney and Kraus, 2013). These results can be taken as evidence 

for the great potential of music as an intervention tool for learning disabilities. 

 Nowadays literature abound with evidence the musical abilities correlate 

positively with language (e.g. phonological abilities) and literacy skills (Anvari et al., 

2002;  Zuk et al., 2013) and that musical training can improve speech perception 

abilities and neural coding of speech sounds (Schon et al., 2004; Kraus et al., 2009; 

Strait et al., 2012), phonological awareness and literacy abilities (Dege and Schwarzer, 

2011; Register et al,, 2007), working-memory (Ribeiro and Santos, 2012) and executive 

functions  (Moreno et al., 2011; Forgeard et al., 2008; Zuk et al., 2014), or even general 

intellectual abilities in the verbal and nonverbal domains (Schellenberg, 2004). 

Overy (2003) reported both a correlation between song-rhythm tapping and 

spelling and dyslexic children’s improvement in spelling after a music intervention 

based in song-rhythm tapping, suggesting that segmentation processes are common to 

both of these skills. 

Consistent with the notion of sharing cognitive mechanisms in the perception of 

rhythm and processing of patterned auditory sequences musicianship has been shown to 

improve or correlate positively with language skills in numerous areas such as reading 

ability, phonological awareness, pitch processing in speech, prosody perception, and 

other language related abilities (for a brief review see Zuk et al., 2013). 

Zuk et al. (2013) aimed at investigating the relations between music and 

language at the level of “patterned sequence processing” in a novel music task called 

Musical Sequence Transcription Task (MSTT). To control for fine-grained pitch 

processing they asked forty-three seven years old Brazilian students to listen to four-

sound sequences based on the combination of only two different sound types: one in the 

low register (thick sound), corresponding to a perfect fifth with fundamental frequencies 
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110Hz (A) and 165 Hz (E), and the other in the high register of (thin sound), 

corresponding to a perfect fourth, with 330Hz (E) and 440Hz (A). Children were 

required to mark the thin sound with a vertical line ‘|’ and the thick sound with an ‘O’, 

but were never told that the sequences only consist of four sounds. Performances of 

second graders on MSTT task were positively correlated with phonological processing 

and literacy skills, and predicted their literacy abilities 3 years after in the fifth grade 

(Figuccio, Andrade, Andrade, and Gaab, 2015). The authors claim that this task can 

potentially be used as a collective tool for the early screening for children at risk for 

reading disability. 

For its characteristics and for improving social competence music is also a 

promising medium of intervention with populations handicapped in social skills in 

general, including the populations with Attention Deficit Hyperactivity Disorder 

(ADHD) (Rickson, 2006; Treurnich et al., 2011). However, while music has been 

shown to be somewhat effective for autistic children, the results in children with ADHD 

are mixed (Treurnich et al., 2011). 

 

Conclusion 

 The field of neuroscience, especially the cognitive neuroscience, has been 

progressing rapidly. We now have myriad neuroimaging technologies available to 

reveal the intricate functioning of human brain operating across multiple spatiotemporal 

scales. This chapter presents an overview of the neuroscientific findings of music 

cognition and also attempts linking them with the working ingredients underlying music 

therapy. As an empirical research field, music therapy is in its infancy. Though 

cognitive neuroscience cannot answer sufficiently to all relevant issues in music 

therapy, we believe that with stronger dialogue between these two disciplines, our 

understanding about the underlying mechanisms of the healing power of music would 

be significantly improved (Magee and Stewart, 2015; O’Kelly, 2016).    
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