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study of complex adaptive systems. A large part of the review is attributed to agent- 7

based computational economics (ACE). In this chapter, we review the frontier of 8
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markets, market processes, and macroeconomics. Regarding financial markets, 10

we show how the research focus has shifted from trading strategies to trading 11

institutions, and from human traders to robot traders; as to market processes, we 12

empathetically point out the role of learning, information, and social networks 13

in shaping market (trading) processes; finally, in relation to macroeconomics, we 14

demonstrate how the competition among firms in innovation can affect the growth 15

pattern. A minor part of the review is attributed to the recent econometric computing, 16

and methodology-related developments which are pertinent to the study of complex 17

adaptive systems. 18
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For many years, the post-conference publications had always been in the form of 26

journals’ special issues, which, unfortunately, have ceased to continue in recent 27

years. Consequently, although the voices of CEF had been loud and clear for 28

many years on many prominent issues, they may have been forgotten as time goes 29

by. Without proper archives, it will be difficult for the new-comers to trace the 30

important contributions that the conferences have made in the field of computational 31

economics. 32

Two years ago, Springer launched a new series, Springer Proceedings in 33

Complexity, to publish proceedings from scholarly meetings on topics related to the 34

interdisciplinary studies of the science of complex systems. The scope of CEF fits 35

the mission of this series perfectly well. Not only does CEF deal with problems 36

which are sufficiently complex to defy an analytical solution from Newtonian 37

Microeconomics [9], but CEF methods also treat economics as a science of 38

complex systems, which requires complexity thinking both in terms of ontology and 39

epistemology [22]. Therefore, when Christopher Coughlin, the publishing editor 40

of the series, invited us contribute a volume, we considered it to be a golden 41

opportunity to archive the works presented at CEF 2015, in a way similar to what 42

we had done previously in the form of journals’ special issues. 43

However, CEF 2015 had a total of 312 presentations, which covered many 44

aspects of CEF. To include all of them in a single volume is doubtlessly impossible. 45

A more practical alternative would be to select an inclusive and involving theme, 46

which can present a sharp focus that is neither too narrow nor too shallow. It is 47

because of this consideration that we have chosen one of the most active areas 48

of CEF, namely agent-based computational economics (ACE), as the main theme 49

of this book and have included ten chapters which contribute to this topic. These 50

ten chapters are further divided into three distinct but related categories: financial 51

markets, market processes and the macroeconomy. Although there are other areas of 52

ACE that have also made important advances, we believe that without tracking the 53

development of these three research areas, the view of ACE will become partial or 54

fragmented. These ten chapters, constituting the first part of the book, will be briefly 55

reviewed in Sect. 1. 56

In addition to these ten chapters, we include three chapters that present new 57

methodologies and technologies to study the complex economic dynamics. Three 58

chapters are contributions of this kind. The first one is an econometric contribution 59

to the identification of the existence and the extent of financial integration. The 60

second one addresses the role of supercomputers in developing large-scale agent- 61

based models. The last one challenges the capability of formal reasoning in 62

modeling economic and financial uncertainties. It also advocates a reform of the 63

economic methodology of modeling the real-world economy. These three chapters, 64

constituting the second part of the book, will be briefly reviewed in Sect. 2. 65
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1 Agent-Based Computational Economics 66

One core issue that ACE seeks to address in economics is how well the real economy 67

performs when it is composed of heterogeneous and, to some extent, boundedly 68

rational and highly social agents. In fact, a large body of published ACE works can 69

be connected to this thread. This issue is of particular importance when students of 70

economics are nowadays still largely trained under Newtonian economics using the 71

device of a representative agent who is assumed to be fully rational in seeking to 72

maximize a utility function. As an alternative research paradigm to the mainstream, 73

ACE attempts to see how our understanding of the economy can become different 74

or remain the same when these simplifications are removed. 75

Part of ACE was originated by a group of researchers, including Brian Arthur, 76

John Holland, Blake LeBaron, Richard Palmer, and Paul Tayler, who developed an 77

agent-based model called the Santa Fe Artificial Stock Market to study financial 78

markets [1, 5]. Quite interestingly, their original focus was not so much on the 79

financial market per se, i.e., the financial market as an institutional parameter, 80

but on the exploration of trading strategies under evolutionary learning, the co- 81

evolution of trading strategies and the emergence of market price dynamics. This 82

focus drove the early ACE research away from the role of trading mechanisms and 83

institutional arrangements in the financial markets, which was later found to be a 84

substantially important subject in computational economics and finance. Section 1.1 85

will summarize the three ACE works that focus on trading institutions, rather than 86

trading strategies. 87

Market process theory investigates how a market moves toward a state of general 88

economic equilibrium and how production and consumption become coordinated. 89

Agent-based modeling is a modern tool used to analyze the ideas associated with 90

a theoretical market process. In Sect. 1.2, we will give an overview of six works 91

that investigate the price discovery process, market dynamics under individual, and 92

social learning and market herding behaviors using agent-based simulation. 93

Macroeconomics studies the performance, structure, behavior, and decision- 94

making of an economy as a whole. ACE is a modern methodology that is applied to 95

examine the macroeconomy. In Sect. 1.3, we introduce the work using ACE models 96

to analyze the macroeconomic dynamics under product innovation. 97

1.1 Financial Markets 98

Dark Pools is an alternative trading institution to the regular exchanges that have 99

gained popularity in recent years. In dark pools trading, there is no order book 100

visible to the public; hence the intention of trading is not known until the order 101

is executed. This provides some advantages for the institutional traders who can 102

obtain a better realized price than would be the case if the sale were executed on a 103

regular exchange. However, there are also disadvantages in that the order may not 104
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be executed because of the lack of information for the order’s counter parties. With 105

the growing usage of dark pools trading, concerns have been raised about its impact 106

on the market quality. In the chapter, entitled “Dark Pool Usage and Equity Market 107

Volatility,” Yibing Xiong, Takashi Yamada, and Takao Terano develop a continuous 108

double-auction artificial stock market that has many real-world market features. 109

Using various institutional parametric setups, they conduct market simulations to 110

investigate the market’s stability under dark pools trading. 111

The institutional-level parameters that they investigated are: 112

• Dark pool usage probability (0, 0.2 or 0.4); 113

• Market-order proportion (0.3–0.8); 114

• Dark pool cross-probability (0.1–1.0), which is the probability that the buy orders 115

and sell orders in the dark pool are being crossed at the mid-price of the exchange. 116

A lower cross-probability indicates a relatively longer order execution delay in 117

the dark pool. 118

Their simulation results indicated that the use of mid-price dark pools decreases 119

market volatility, which makes sense because the transaction is not visible to the 120

public until the order is completed. The transactional impact on the market stock 121

prices is therefore minimized. Moreover, they found that the volatility-suppressing 122

effect is stronger when the dark pool usage is higher and when the market-order 123

proportion submitted to the dark pool is lower.1 They also reported that the dark 124

pool cross-probability did not have any effects on the market volatility. 125

Another trend in recent financial markets is the use of computer algorithms 126

to perform high frequency trading (HFT). Since computer programs can execute 127

trades much faster than humans, stocks and other instruments exhibit rapid price 128

fluctuations (fractures) over sub-second time intervals. One infamous example is 129

the flash crash on May 6, 2010 when the Dow Jones Industrial Average (DJIA) 130

plunged by around 7% (US$1 trillion) in 5 min, before recovering most of the fall 131

over the following 20 min. To understand the impact of HFT on financial markets, 132

in the chapter, entitled “Modelling Complex Financial Markets Using Real-Time 133

Human-Agent Trading Experiments,” John Cartlidge and Dave Cliff used a real- 134

time financial-market simulator (OpEx) to conduct economic trading experiments 135

between humans and automated trading algorithms (robots). 136

The institutional-level parameters that they investigated included: 137

• Robots’ trading speed, which is controlled by the sleep-wake cycle (ts) of robots. 138

After each decision (buy, sell, or do nothing) is made, a robot will sleep for ts 139

milliseconds before waking up to make the next decision. The smaller that ts is, 140

the faster the robots’ trading speed and the higher their trading frequency. 141

• Cyclical vs. random markets: In each experiment, there are six pre-generated 142

assignment permits, each of which contains a permit number and a limit price— 143

the maximum value at which to buy, or the minimum value at which to sell. 144

1See [16] for similar findings using empirical data.
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The lower the permit number is, the farther away the limit price is from the 145

equilibrium. In a cyclical market, the permits are issued to humans and robots 146

following the permit numbers. By contrast, the permits are issued in random 147

order in a random market. 148

Their simulation results showed that, under all robot and human market setups, 149

robots outperform humans consistently. In addition, faster robot agents can reduce 150

market efficiency and this can lead to market fragmentation, where humans trade 151

with humans and robots trade with robots more than would be expected by chance. 152

In terms of market type, the cyclical markets gave very different results from those 153

of random markets. Since the demand and supply in the real-world markets do not 154

arrive in neat price-ordered cycles like those in the cyclical markets, the results from 155

cyclical markets cannot be used to explain what happened in the real-world financial 156

markets. The authors used these two types of markets to demonstrate that, if we want 157

to understand complexity in the real-world financial markets, we should move away 158

from the simple experimental economic models first introduced in the 1960s. 159

In the chapter, entitled “Does High-Frequency Trading Matter?”, Chia-Hsuan 160

Yeh and Chun-Yi Yang also investigated the impact of HFT on market stability, price 161

discovery, trading volume, and market efficiency. However, instead of conducting 162

real-time experiments using humans and robots, they developed an agent-based 163

artificial stock market to simulate the interaction between HFT and non-HFT agents. 164

In addition, unlike the robots in the previous chapter that used pre-generated permits 165

to submit buy and sell orders for price matching, the agents in this study are more 166

sophisticated in terms of using heuristics to make trading decisions. Moreover, the 167

agents have learning ability to improve their trading strategies through experiences. 168

In their agent-based model, the trading speed is implemented as the agents’ 169

capability to process market information for decision-making. Although instant 170

market information, such as the best bid and ask, is observable for all traders, only 171

HFT agents have the capability to quickly process all available information and to 172

calculate expected returns for trading decisions. Non-HFT agents, however, only 173

have the capability to process the most recent k periods’ information. The smaller 174

that k is, the greater the advantage that the HFT agents have over non-HFT agents. 175

The institutional-level parameters that they investigated include: 176

• The number of HFT agents in the market (5, 15, 20); 177

• The activation frequency of HFT agents, which is specified by the number of 178

non-HFT agents (m = 40, 20, 10) that have posted their quotes before an HFT 179

agent can participate in the market. The smaller that m is, the more active the 180

HFT agents are in participating in the trading. 181

Their simulation results indicated that market volatilities are greater when there 182

are more HFT agents in the market. Moreover, a higher activation frequency of the 183

HFT agents results in greater volatility. In addition, HFT hinders the price discovery 184

process as long as the market is dominated by HFT activities. Finally, the market 185

efficiency is reduced when the number of HFT agents exceeds a threshold, which is 186

similar to that reported in the previous chapter. 187
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1.2 Market Processes 188

The agriculture market in Luxembourg is thin, in terms of volume turnover, and 189

the number of trades in all commodities is small. While the information on market 190

products can be obtained through an annual survey of the farmers, the market 191

products trading price information is not accessible to the public. In the chapter, 192

entitled “Modelling Price Discovery in an Agent Based Model for Agriculture 193

in Luxembourg,” Sameer Rege, Tomás Navarrete Gutiérrez, Antonino Marvuglia, 194

Enrico Benetto, and Didier Stilmant have proposed an agent-based model to 195

simulate the endogenous price discovery process under buyers and sellers who are 196

patient or impatient in submitting their bid/ask quotes. 197

In this model, agents are farmers whose properties (area, type, crops, etc.) are 198

calibrated using the available survey data. The model is then used to simulate a 199

market that contains 2242 farmers and ten buyers to trade 22 crops for four rounds. 200

In each round, after all buyers and farmers have submitted the quantity and price for 201

a commodity to buy or sell, the buyer who offers the highest price gets to purchase 202

the desired quantity. If only partial quantity is satisfied under the offered price, the 203

unmet quantity is carried over to the remaining rounds. Similarly, the sellers whose 204

products do not get sold under the offered price are carried over to the remaining 205

rounds. Based on the trading price in the initial round, buyers and sellers can adjust 206

their bid/ask prices in the remaining rounds to achieve their trading goals. 207

Some buyers/sellers are impatient and want to complete the trading in the next 208

round by increasing/decreasing the bid/ask prices to the extreme, while others are 209

more patient and willing to gradually adjust the prices during each of the remaining 210

three rounds. Based on their simulation, they found that the trading quantities and 211

prices produced by patient and by impatient traders have very different distributions, 212

indicating that traders’ behaviors in submitting their bids/asks can impact the price 213

discovery process in an economic market. 214

In the chapter, entitled “Heterogeneity, Price Discovery and Inequality in an 215

Agent-Based Scarf Economy,” Shu-Heng Chen, Bin-Tzong Chie, Ying-Fang Kao, 216

Wolfgang Magerl, and Ragupathy Venkatachalam also used an agent-based model 217

to investigate the price discovery process of an economic market. However, their 218

agents are different from those in the previous chapter in that they apply individual 219

and social learning to revise their subjective prices. The focus of this work is to 220

understand how agents’ learning behaviors impact the efficacy of price discovery 221

and how prices are coordinated to reach the Walrasian equilibrium. 222

The model is a pure exchange economy with no market makers. Each agent has 223

its own subjective prices for the commodities and agents are randomly matched for 224

trading. The learning behavior of an agent is influenced by the intensity of choice 225

λ, which specifies the bias toward the better-performing prices in the past. When λ 226

is high, the agent trusts the prices that have done well (the prices can be from self 227

and from other agents) and uses them to adjust its prices for the future trades. If λ 228

is low, the agent is more willing to take risk incorporating prices that have not done 229

well in the past for the future trades. 230
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Their simulation results showed that agents with a low λ (0–3) have their 231

subjective prices converging close to the Walrasian equilibrium. This means risk- 232

taking agents are good at discovering prices toward the general equilibrium. 233

Moreover, some agents with a large λ (>4) also have their market prices converging 234

to the general equilibrium. The authors analyzed those high λ (>4) agents in more 235

detail and found those agents to also be imitators who copied prices that have done 236

well in the past to conduct most of their trades. This strategy enhanced their price 237

coordination toward the general equilibrium. 238

In terms of accumulated payoffs, the agents with low λ (0–3) who also mixed 239

innovation and imitation in adjusting their subjective prices have obtained medium 240

or high payoffs. Meanwhile, the agents with high λ (>4) who are also imitators have 241

received very high payoffs. Finally, the high λ (>4) agents who are also reluctant 242

to imitate other agents’ prices have received abysmal accumulated payoffs. Based 243

on this emerging inequality of payoffs, the authors suggested that different learning 244

behaviors among individuals may have contributed to the inequality of wealth in an 245

economy. 246

In the chapter, entitled “Rational Versus Adaptive Expectations in an Agent- 247

Based Model of a Barter Economy,” Shyam Gouri Suresh also investigated market 248

dynamics under agents with learning ability in a pure exchange or barter economy. 249

In this direct exchange market, an agent can apply individual or social learning to 250

predict the productivity level of his next exchange partner. Based on the prediction, 251

the agent then decides his own productivity level. Under the individual learning 252

mode, the prediction is based on the productivity level of the agent’s current 253

exchange partner while in the social learning mode, the prediction is based on the 254

productivity level of the entire population. 255

In this model, the productivity level of an agent can be either high or low and 256

there is a transition table that all agents use to decide their current productivity 257

level according to their previous productivity. Additionally, an agent can incorporate 258

his prediction about the productivity level of his next exchange partner to decide 259

his current productivity level. This prediction can be carried out through either 260

individual or social learning. Finally, to maximize his utility, an agent only adopts 261

high productivity when his transition table indicates high productivity and his next 262

exchange partner is also predicted to have high productivity. 263

The simulation results showed that the market per capita outputs or average 264

outputs converged to low productivity under individual learning. This is because 265

each time when an agent trades with another agent with low productivity, the agent 266

will decide to produce low outputs in the next period regardless of the productivity 267

specified by the transition table. This action in turn causes the agent he interacts 268

with in the next period to produce low outputs in the period subsequent to the next. 269

When an agent encounters another agent who has produced a high level of outputs, 270

the agent will only adopt high productivity in the next period if the transition table 271

also specifies high productivity. As a result, the market average outputs converge to 272

low productivity. 273
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By contrast, the market average outputs converge to high productivity under 274

social learning, when the population size is large (100 in their case). This is because, 275

in a large population, the likelihood of the population-wide distribution of produc- 276

tivity level being extreme enough to cause it to fall below the high-productivity 277

threshold is low. Consequently, as all agents started with high productivity, the 278

market average outputs remained high throughout the simulation runs. 279

In addition to the price discovery process and productivity level prediction, 280

traders’ learning behaviors might have impacted the forward premium in the foreign 281

exchange market. In the chapter, entitled “Does Persistent Learning or Limited 282

Information Matter in the Forward Premium Puzzle?, Ya-Chi Lin investigated 283

whether the interactions between adaptive learning and limited market information 284

flows can be used to explain the forward premium puzzle. 285

The forward premium puzzle in the foreign exchange market refers to the well- 286

documented empirical finding that the domestic currency is expected to appreciate 287

when domestic nominal interest rates exceed foreign interest rates [4, 10, 14]. This 288

is puzzling because economic theory suggests that if all international currencies are 289

equally risky, investors would demand higher interest rates on currencies expected 290

to fall, and not to increase in value. To examine if investors’ learning behaviors 291

and their limited accessibility to market information may explain this puzzle, Lin 292

designed a model where each agent can learn to predict the expected exchange rates 293

using either full information (day t and prior) or limited information in the past (day 294

t − 1 and prior). 295

In this model, the proportion of agents that have access to full information, n, is 296

an exogenous parameter. In addition, an agent has a learning gain parameter γ that 297

reflects the learning strength. They simulated the model under different values of n, 298

from 0.1 to 1, and γ , from 0.02 to 0.1, and found that the forward premium puzzle 299

exists under small n for all values of γ . Moreover, when agents were allowed to 300

choose between using limited or full information for forecasting, all agents switched 301

to using full information (i.e., n = 1) and the puzzle disappeared for all values of 302

γ . This suggests that limited information might play a more important role than 303

learning in explaining the forward premium puzzle. However, regardless of the 304

values of n and γ , the puzzle disappeared when tested in the multi-period mode. 305

This indicates that limited information alone is not sufficient to explain the puzzle. 306

There are other factors involved that will cause the puzzle to occur. 307

Herding is a well-documented phenomenon in financial markets. For example, 308

using trading data from US brokerages, Barber et al. [3] and Kumar and Lee [13] 309

showed that the trading of individual investors is strongly correlated. Furthermore, 310

based on trading data from an Australian brokerage, Jackson [12] reported that 311

individual investors moved their money in and out of equity markets in a systematic 312

manner. To macroscopically study the effects of herding behavior on the stock return 313

rates and on the price volatility under investors with different interaction patterns, 314

in the chapter, entitled “Price Volatility on the Investor’s Social Network,” Yangrui 315

Zhang and Honggang Li developed an agent-based artificial stock market model 316

with different network structures. 317
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In their interaction-based herding model, the trading decision of an agent 318

is influenced by three factors: (1) personal belief; (2) public information, and 319

(3) neighbors’ opinions. Their work investigated the following institutional-level 320

parameters: 321

• Agents’ interaction structures: regular, small-world, scale-free, and random 322

networks; 323

• Agents’ trust in their neighbors’ opinions (1–3); 324

Their simulation results showed that the market volatility is the lowest when 325

the agents are connected in a regular network structure. The volatility increases 326

when agents are connected under small-world or scale-free structures. The market 327

volatility is the highest when agents are connected under a random network 328

structure. This makes sense as the more irregular the agents’ interaction pattern 329

is, the higher the price fluctuations and market volatility. In addition, they found 330

that the more an agent trusts in his neighbors’ opinions, the greater the volatility of 331

the stock price. This is also expected, as the more weight an agent attaches to his 332

neighbors’ opinions, the more diverse the trading decisions can be, and hence the 333

higher that the price volatility becomes. 334

In the chapter, entitled “The Transition from Brownian Motion to Boom- 335

and-Bust Dynamics in Financial and Economic Systems,” Harbir Lamba also 336

investigated herding behaviors in financial markets. However, instead of using a 337

network model, he proposed a stochastic particle system where each particle is 338

an agent and agents do not interact with each other. Agents’ herding behavior is 339

controlled by a herding parameter C, which drives the agents’ states toward the 340

market sentiment. Using this system, Lamba demonstrated that even a very low 341

level of herding pressure can cause a financial market to transition to a multi-year 342

boom-and-bust. 343

At time t , each agent i in the system can be in one of two possible states, 344

owning the asset (+1) or not owning the asset (−1), according to its pricing strategy 345

[Li(t), Ui(t)]. When the asset market price rt falls outside the interval of Li(t) 346

and Ui(t), agent i switches its state to the opposite state. In addition, when an 347

agent’s state is different from the state of the majority agents, its pricing strategy 348

is updated at a rate of C|σ |, where σ is the market sentiment, defined as the average 349

state of all agents. Hence, agents have a tendency to evolve toward the state of the 350

majority agents. Finally, the market price rt is the result of exogenous information 351

and endogenous agent states generated by the agents’ evolving pricing strategies. 352

Using 10,000 agents to simulate the market for 40 years, their results showed 353

that even with a low herding parameter value C = 20, which is much lower than 354

the estimated real market herding pressure of C = 100, the deviations of market 355

prices away from the equilibrium resemble the characteristics of “boom-and-bust”: 356

a multi-year period of low-level endogenous activities that convince equilibrium- 357

believers the system is in an equilibrium state with slowly varying parameters. 358

There then comes a sudden and large reversal involving cascades of agents switching 359

states, triggered by the change in market price. 360
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1.3 Macroeconomy 361

Product innovation has been shown to play an important role in a firm’s perfor- 362

mance, growth, and survival in the modern economy. To understand how product 363

innovation drives the growth of the entire economy, causing business cycle fluctua- 364

tions, in the chapter, entitled “Product Innovation and Macroeconomic Dynamics,” 365

Christophre Georges has developed an agent-based macroeconomic model. In this 366

model, a hedonic approach is used, where product characteristics are specified and 367

evaluated against consumer preferences. 368

The macroeconomic environment consists of a single representative consumer 369

and m firms whose products are described by characteristics that the consumer 370

cares about. To satisfy the consumer’s utility function, firms improve their product 371

characteristic values through R&D investment. If the R&D indeed leads to product 372

innovation that also recovers the cost, the firm grows. Otherwise, the firm becomes 373

insolvent and is replaced by a new firm. 374

A firm can choose to invest or not to invest in R&D activities. The decision is based 375

on the recent profits of other firms engaging in R&D and then tuned by the firm’s 376

own intensity parameter γ . When a firm decides to engage in R&D, the probability 377

that the firm will experience successful product innovation increases. 378

Using 1000 firms and 50 product characteristics to run simulations, the results 379

showed that the evolution of the economy’s output (GDP) closely follows the 380

evolution of the R&D investment spending. Meanwhile, the customer’s utility grows 381

over time, due to a long-term net improvement in product quality. Moreover, when 382

the R&D intensity parameter γ is increased, the increased R&D spending drives up 383

consumption, output, and utility. Finally, ongoing endogenous product innovation 384

leads to ongoing changes in the relative qualities of the goods and the distribution 385

of product shares. The distribution tends to become skewed, with the degree of 386

skewness depending on the opportunities for niching in the product characteristics 387

space. As the number of firms grows large, the economy’s business cycle dynamics 388

tends to become dominated by the product innovation cycle of R&D investment. 389

2 New Methodologies and Technologies for Complex 390

Economic Dynamics 391

In addition to the previous ten chapters, this book also includes three chapters, which 392

may not be directly related to agent-based modeling that may provide some useful 393

ideas or tools that can help the modeling, simulation, and analysis of agent-based 394

modeling. We shall also briefly highlight each of them here. 395

This book is mainly focused on financial markets and market processes. One 396

issue naturally arising is related to how different markets are coupled or connected, 397

and to what degree. In the chapter, entitled “Measuring Market Integration: U.S. 398

Stock and REIT Markets,” Douglas Blackburn and N.K. Chidambaran take up 399
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the issue of identifying the existence and extent of financial integration. This is 400

an important methodological issue that empirical studies often encounter, given 401

the complex relationships and heterogeneity that underpins financial markets. The 402

authors identify a potential joint hypothesis problem that past studies testing for 403

financial integration may have suffered from. This problem arises when testing for 404

the equality of risk premia across markets for a common (assumed) set of risk 405

factors; nonetheless, there is a possibility that a conclusion claiming a rejection of 406

integration may actually stem from the markets not sharing a common factor. 407

Overcoming the joint hypothesis problem means disentangling the two issues and 408

examining them separately. They present an approach based on factor analysis and 409

canonical correlation analysis. This approach can be summarized in two steps. First, 410

one should determine the correct factor model in each market and determine whether 411

the markets share a common factor. Second, one should develop economic proxies 412

for the shared common factor and test for the equality of risk premia conditional on 413

a common factor being present. The equality of risk premia is tested only if common 414

factors exist. The authors argue that this procedure in fact gives more power to the 415

tests. They test their method on US REIT and stock markets for 1985–2013. 416

When one attempts to understand social systems as complex systems, for 417

instance, through agent-based models, computers and simulations play a very 418

important role. As the scale and scope of these studies increase, simulations can 419

be highly demanding in terms of data-storage and performance. This is likely 420

to motivate more and more researchers to use highly powerful, supercomputers 421

for their studies as the field matures. In the chapter, entitled “Supercomputer 422

Technologies in Social Sciences: Existing Experience and Future Perspectives,” 423

Valery Makarov and Albert Bakhtizin document several forays into supercomputing 424

in the social science literature. 425

The authors introduce some open-source platforms that already exist in the 426

scientific community to perform large-scale, parallel computations. They discuss 427

their hands-on experience in transforming a pre-existing agent-based model into 428

a structure that can be executed on supercomputers. They also present their own 429

valuable experiences and lessons in applying their models to supercomputers. From 430

their experiences, C++ appears to be more efficient than Java for developing soft- 431

wares running on supercomputers. The processes and issues related to translating a 432

Java-based system into a C++ based system are also explained in the chapter. 433

Social sciences are distinct from natural sciences in terms of the potential of 434

their theories to have an impact, for better or worse, on the actual lives of people. 435

The great financial crisis of 2008, as some have argued, is a result of over reliance 436

on unrealistic models with a narrow world-view, ignoring the complexities of the 437

financial markets. Should more complex, sophisticated mathematical models be 438

the solution? In the chapter, entitled “Is Risk Quantifiable?”, Sami Al-Suwailem, 439

Francisco Doria, and Mahmoud Kamel take up this issue and examine the method- 440

ological issues related to the use of or over-reliance on “formal” models in the social 441

sciences, in particular in economics and finance. 442

The authors question whether the indeterminacy associated with future economic 443

losses or failures can be accurately modeled and systematically quantified using 444
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formal mathematical systems. Using insights from metamathematics—in particular, 445

Kurt Gödel’s famous theorems on incompleteness from the 1930s—they point to the 446

inherent epistemological limits that exist while using formal models. Consequently, 447

they argue that a systematic evaluation or quantification of risk using formal models 448

may remain an unachievable dream. They draw several examples and applications 449

from real-world financial markets to strengthen their argument and the chapter 450

serves as a cautionary message. 451

3 Conclusion and Outlook 452

Computational economics is a growing field [6]. With the advancement of technolo- 453

gies, modern economies exhibit complex dynamics that demand sophisticated meth- 454

ods to understand. As manifested in this book, agent-based modeling has been used 455

to investigate contemporary financial institutions of dark pools and high-frequency 456

trading (chapters “Dark Pool Usage and Equity Market Volatility”, “Modelling 457

Complex Financial Markets Using Real-Time Human-Agent Trading Experiments”, 458

and “Does High-Frequency Trading Matter?”). Meanwhile, agent-based modeling 459

is also used to shed light on the market processes or the price discovery processes by 460

examining the roles of traders’ characteristics (chapter “Modelling Price Discovery 461

in an Agent Based Model for Agriculture in Luxembourg”), learning schemes 462

(chapters “Heterogeneity, Price Discovery and Inequality in an Agent-Based Scarf 463

Economy” and “Rational Versus Adaptive Expectations in an Agent-Based Model 464

of a Barter Economy”), information exposure (chapter “Does Persistent Learning 465

or Limited Information Matter in Forward Premium Puzzle?”), social networks 466

(chapter “Price Volatility on Investor’s Social Network”), and herding pressure 467

(chapter “The Transition from Brownian Motion to Boom-and-Bust Dynamics in 468

Financial and Economic Systems”). Each of these efforts made is a contribution to 469

enhancing our understanding and awareness of market complexity. Given this extent 470

of complexity, markets may not perform well for many reasons, not just economic 471

ones, but also psychological, behavioral, sociological, cultural, and even humanistic 472

ones. Indeed, market phenomena have constituted an interdisciplinary subject for 473

decades [11, 15, 17–19]. What agent-based modeling can offer is a framework that 474

can integrate these interdisciplinary elements into a coherent body of knowledge. 475

Furthermore, agent-based modeling can also help modern economies that have 476

been greatly influenced by the big data phenomenon [7]. By applying computational 477

methods to big data, economists have addressed microeconomic issues in the 478

internet marketplaces, such as pricing and product design. For example, Michael 479

Dinerstein and his co-authors [8] ranked products in response to a consumer’s 480

search to decide which sellers get more business as well as the extent of price 481

competition. Susan Athey and Denis Nekipelov [2] modeled advertiser behavior and 482

looked at the impact of algorithm changes on welfare. To work with big data, Google 483

chief economist Hal Varian proposed machine learning tools as new computational 484

methods for econometrics [20]. What will the impact of machine learning be 485
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on economics? “Enormous” answered Susan Athey, Economics of Technology 486

Professor at Stanford Graduate School of Business. “Econometricians will modify 487

the methods and tailor them so that they meet the needs of social scientists primarily 488

interested in conducting inference about causal effects and estimating the impact of 489

counterfactual policies,” explained Athey [21]. We also expect the collaborations 490

between computer scientists and econometricians to be productive in the future. 491
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