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optimization and decision making technique4 that has been applied 
to diverse problems such as site selection for wireless networks,5 
mobile robot self-localization,6 object recognition7 and text search3. 
Additionally, a hybrid SDS method was successfully used to track 
facial features in video sequences.7,8 Previous analysis of SDS has 
investigated its global convergence,9 linear time complexity10 and 
resource allocation11 under a variety of search conditions. For a recent 
review of the theoretical foundations and applications of SDS by Al-
Rifaie and Bishop.12

In SDS, a set of agents individually test for the presence of a small 
part of the target pattern at a specific location in the search space. The 
robot foraging task can be seen as a pattern recognition task in which 
the target parts are uniform; the test then simply equates to a test for 
the presence of `food’ at a location. If an agent passes the test, i.e. 
finds a partial match, it tries to attract other agents to co-examine the 
same region in the search space (diffusion of information). An agent 
failing the test can either be recruited by another agent successfully 
examining a (partial) match, or otherwise randomly adopt a new 
search location. 

By iterating through test and diffusion phases agents will 
stochastically explore the whole search space. However, since tests 
will succeed more often in regions having a large overlap with 
the target pattern than in regions with irrelevant information, an 
individual agent will spend more time examining these regions, at the 
same time attracting other agents, which in turn attract even more 
agents. Thus, potential matches to the target pattern are identified by 
concentrations of a substantial population of agents. Because such 
populations develop dynamically, SDS is able to track changing and 
moving patterns. 

The `attention’ of a dynamic population of agents to a part of 
the search space has been suggested as an alternative mechanism 
solving a persistent problem in neuroscience, the binding problem.13 
Classical connectionist models view neurons as simple computational 
devices; however, a neural network model of SDS grounded upon 
communication as a metaphor for neuronal operation14 has now been 
implemented. Emergent synchronization across a large population 
of neurons in this network can be interpreted as a mechanism of 
attentional amplification.15 

The basic properties of SDS are well understood: convergence to 
the global optimal solution;7,16 convergence time, increasing at most 
linearly with search space size;16 resource allocation dynamics.6 The 
algorithm is robust to noise distortion and multiple instantiations 
of the target.6 SDS also provides a solution for an old problem in 
Artificial Intelligence, the problem of stimulus equivalence: the 
ability to recognize a pattern independent of its potential distortions 
or transformations in the search space.3,7 

As a general class of search and optimization algorithms, Stochastic 
Diffusion Processes have many features in common with other 
population-based algorithms inspired by nature: Genetic Algorithms, 
pheromone trail-based Ant Search and Mimetic Algorithms. Moreover, 
the well understood theoretical properties, together with the elegance, 
speed and robustness of the algorithm make it a valuable additional 
tool in addressing many search and optimization problems where 
partial evaluations of candidate solutions provide useful information 
about the global search problem.
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A Letter to Nature1 demonstrated that a simple ant-inspired 

`tandem calling’ recruitment mechanism2 Improved task performance 
in a group of robots. In these experiments a group of robots attempt 
to locate `food’ and return it to base. On its return a successful robot 
tries to recruit another to help exploit its find. As a result a population 
of robots rapidly expands to exploit the resource, resulting in greater 
foraging efficacy. In this note we observe that the type of recruitment 
and information sharing mechanism employed by the robots is one 
instance of a general class of Swarm Intelligence parallel search and 
optimization methods, known as Stochastic Diffusion Search (SDS).3 

SDS is an efficient probabilistic multi-agent global search, 
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