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Abstract Anxiety results in sub-optimal motor learning, but the precise mechanisms through

which this effect occurs remain unknown. Using a motor sequence learning paradigm with separate

phases for initial exploration and reward-based learning, we show that anxiety states in humans

impair learning by attenuating the update of reward estimates. Further, when such estimates are

perceived as unstable over time (volatility), anxiety constrains adaptive behavioral changes.

Neurally, anxiety during initial exploration increased the amplitude and the rate of long bursts of

sensorimotor and prefrontal beta oscillations (13–30 Hz). These changes extended to the

subsequent learning phase, where phasic increases in beta power and burst rate following reward

feedback were linked to smaller updates in reward estimates, with a higher anxiety-related increase

explaining the attenuated belief updating. These data suggest that state anxiety alters the

dynamics of beta oscillations during reward processing, thereby impairing proper updating of

motor predictions when learning in unstable environments.

IntroductionAnxiety involves anticipatory changes in physiological and psychological responses to

an uncertain future threat (Grupe and Nitschke, 2013; Bishop, 2007). Previous studies

have established that trait anxiety interferes with prefrontal control of attention in perceptual tasks,

whereas state anxiety modulates the amygdala during detection of threat-related stimuli

(Bishop, 2007; Bishop, 2009). An emerging literature additionally identifies the dorsomedial and

dorsolateral prefrontal cortex (dmPPC and dlPFC) and the dorsal anterior cingulate cortex (dACC)

as central brain regions modulating sustained anxiety, both in subclinical and clinical populations

(Robinson et al., 2019).

Computational modeling work has started to examine the mechanisms through which anxiety

might impair learning, revealing that individuals with high trait anxiety do not correctly estimate the

likelihood of outcomes during aversive or reward learning in uncertain environments

(Browning et al., 2015; Huang et al., 2017, Pulcu and Browning, 2019). In the area of motor con-

trol, research has shown that stress and anxiety have detrimental effects on performance (Baumeis-

ter, 1984; Beilock and Carr, 2001). These results have been interpreted as anxiety interferring with

information-processing resources, and as a shift towards an inward focus of attention and an

increase in conscious processing of movement (Eysenck and Calvo, 1992; Pijpers et al., 2005). The

effects of anxiety on motor learning are, however, often inconsistent, and a mechanistic understand-

ing of these effects is still lacking. Delineating mechanisms through which anxiety influences motor

learning is important to ameliorate the impact of anxiety in different settings, including in motor

rehabilitation programs.

Motor variability could be one component of motor learning that is affected by anxiety; it is

defined as the variation of performance across repetitions (van Beers et al., 2004), and is affected
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by various factors including sensory and neuromuscular noise (He et al., 2016). As a form of action

exploration, movement variability is increasingly recognized to benefit motor learning (Todorov and

Jordan, 2002; Wu et al., 2014; Pekny et al., 2015), particularly during reward-based learning, with

discrepant effects in motor adaptation paradigms (He et al., 2016; Singh et al., 2016). These find-

ings are consistent with the vast amount of research on reinforcement learning that demonstrates

increased learning following initial exploration (Sutton and Barto, 1998; Olveczky et al., 2005).

Yet contextual factors can reduce variability. For instance, an induced anxiety state leads to ritual-

istic behavior, characterized by movement redundancy, repetition, and rigidity (Lang et al., 2015).

This finding resembles the reduction in behavioral variability and exploration that manifests across

animal species during phasic fear in reaction to certain imminent threats (Morgan and Tromborg,

2007). On the basis of these results, we set out to test the hypothesis that state anxiety modulates

motor learning through a reduction in motor variability.

A second component that could be influenced by anxiety is the flexibility to adapt to changes in

the task structure during learning. Individuals who are affected by anxiety disorders exhibit an intol-

erance of uncertainty, which contributes to excessive worry and emotional dysregulation

(Ouellet et al., 2019). Turning to non-clinical populations, computational studies have established

that highly anxious individuals exhibit difficulties in estimating environmental uncertainty both in

eLife digest Feeling anxious can hinder how well someone performs a task, a phenomenon that

is sometimes called “choking under pressure”. Anxiety may also impair a person’s ability to learn a

new manual task, like juggling or playing the piano; however, it remains unclear exactly how this

happens.

People learn manual tasks more quickly if they can practice first, and the more someone varies

their movements during these trial runs, the faster they learn afterwards. Yet, anxiety can affect

movement; for example, anxious people often make repetitive motions like hand-wringing or

fidgeting. There is also evidence that very anxious people may learn less from the outcomes of their

actions.

To understand how anxiety may affect the learning of manual tasks, Sporn et al designed

experiments where people learned to play a short sequence of notes on a piano. The main

experiment involved 60 participants and was split over two phases. In the first ‘exploration’ phase,

participants had to play the piano sequence using any timing they liked and were encouraged to

explore different rhythms. In the second ‘learning’ phase, participants were rewarded with a higher

score the closer they got to playing the notes with a certain rhythm, without being told that this was

their specific goal.

To see how anxiety affected performance, the participants were split into three groups. One

group were told in the initial exploration phase that they would give a public talk after they

completed the piano task, which reliably made them more anxious. A second group were told about

the anxiety-inducing public speaking only during the learning phase; while a third group – the

controls – were not aware of any public speaking task.

People in the second group could learn the rhythm as well as the controls. Participants who were

made anxious during the exploration phase, however, scored fewer points and were less likely to

learn the piano sequence in the second phase. They also varied their movements less in the first

phase.

As a follow-up, Sporn et al. repeated the experiment with 26 people but without the initial

exploration phase. This time the anxious participants were less able to learn the piano sequence and

scored fewer points. This suggests that the initial exploration in the previous experiment had

enabled later anxious participants to succeed in the learning phase despite being anxious.

Finally, Sporn et al. also used a technique called electroencephalography (or EEG for short) to

record brain activity and observed differences in participants with and without anxiety, particularly

when they received their scores. The EEG signals showed that anxiety altered rhythmic patterns of

brain activity called “sensorimotor beta oscillations”, which are known to be involved in both

movement and learning.
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aversive and reward-based tasks (Browning et al., 2015; Huang et al., 2017; Pulcu and Browning,

2019). Failure to adapt to volatile or unstable environments thus impairs learning of action-outcome

contingencies in these settings. Accordingly, in the context of motor learning, and more specifically,

in reward-based motor learning, we proposed that an increase in anxiety would affect individuals’

estimation of uncertainty about the stability of the task structure, such as the rewarded movement.

On the neural level, we posited that changes in motor variability are driven by activity in premotor

and motor areas. Support for our hypothesis comes from animal studies demonstrating that variabil-

ity in the primate premotor cortex tracks behavioral variability during motor planning

(Churchland et al., 2006). Further evidence supports the hypothesis that changes in variability in sin-

gle-neuron activity in motor cortex drive motor exploration during initial learning, and reduce it fol-

lowing intensive training (Mandelblat-Cerf et al., 2009; Santos et al., 2015). In addition, the basal

ganglia are crucial for modulating variability during learning and production, as shown in songbirds

and, indirectly, in patients with Parkinson’s disease (Kao et al., 2005; Olveczky et al., 2005;

Pekny et al., 2015).

In the present study, we analyzed sensorimotor beta oscillations (13–30 Hz) as a candidate brain

rhythm associated with the modulation of motor exploration and variability. Beta oscillations are

modulated with different aspects of performance and motor learning (Herrojo Ruiz et al., 2014;

Bartolo and Merchant, 2015; Tan et al., 2014), as well as in reward-based learning

(HajiHosseini et al., 2012). Increases in sensorimotor beta power following movement have been

proposed to signal greater reliance on prior information about the optimal movement (Tan et al.,

2016), which would reduce the impact of new evidence on the update of motor commands. We

therefore tested the additional hypothesis that changes in sensorimotor beta oscillations mediate

the effect of anxiety on belief updates and the estimation of uncertainty driving reward-based motor

learning. Crucially, in addition to assessing sensorimotor brain regions, we were interested in pre-

frontal areas because of prior work in clinical and subclinical anxiety linking the prefrontal cortex

(dmPFC and dlPFC) and the dACC to the maintenance of anxiety states, including worry and threat

appraisal (Grupe and Nitschke, 2013; Robinson et al., 2019). Thus, beta oscillations across sensori-

motor and prefrontal electrode regions were evaluated.

Traditionally, the primary focus of research on oscillations was on power changes, although there

is a renewed interest in assessing dynamic properties of oscillatory activity, such as the presence of

brief bursts (Poil et al., 2008). Brief oscillation bursts are considered to be a central feature of physi-

ological beta waves in motor-premotor cortex and the basal ganglia (Feingold et al., 2015;

Tinkhauser et al., 2017; Little et al., 2018). Accordingly, we assessed both the power and burst dis-

tribution of beta oscillations to capture dynamic changes in neural activity that were induced by anxi-

ety and their link to behavioral effects. To test our hypotheses, we recorded

electroencephalography (EEG) in three groups of participants while they completed a reward-based

motor sequence learning paradigm, with separate phases for motor exploration (without reinforce-

ment) and reward-based learning (using reinforcement). We manipulated anxiety by informing par-

ticipants about an upcoming public speaking task (Lang et al., 2015). Using a between-subject

design, the anxiety manipulation targeted either the motor exploration or the reward-based learning

phase. Analysis of the EEG signals aimed to assess anxiety-related changes in the power and burst

distribution in sensorimotor and prefrontal beta oscillations in relation to changes in behavioral vari-

ability and reward-based learning.

Results Sixty participants completed our reward-based motor sequence learning task, consisting

of three blocks of 100 trials each over two phases (Figure 1): an initial motor exploration (block1,

termed exploration hereafter) and a reward-based learning phase (block2 and block3: termed learn-

ing hereafter). The rationale for including a motor exploration phase in which participants did not

receive trial-based feedback or reinforcement was based on findings indicating that initial motor var-

iability (in the absence of reinforcement) can influence the rate at which participants learn in a subse-

quent motor task (Wu et al., 2014). If state anxiety reduces the expression of motor variability

during the exploration phase, subsequent motor learning would be affected.

Prior to the experimental task, we recorded 3 min of EEG at rest with eyes open in each partici-

pant. Next, on a digital piano, participants played two different sequences of seven and eight notes

during the exploration and learning phases, respectively (Figure 1B). The sequence patterns were

designed so that the key presses would span a range of four neighboring keys on the piano. Partici-

pants were explicitly taught the tone sequences prior to the start of the experiment, yet precise
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instructions about the timing or loudness (keystroke velocity, Kvel) were not provided. The rationale

for selecting two different sequences for the exploration and learning phases was to avoid carry-

over effects of learning or a preferred performance pattern from the exploration period into the

reward-based learning phase (following Wu et al., 2014).

During the initial exploration phase, participants were informed that they could freely change the

pattern of temporal intervals between key presses (inter-keystroke intervals, IKIs) and/or the loud-

ness of the performance in every trial, and that no reward or feedback would be provided. During

learning, performance-based feedback in the form of a 0–100 score was provided at the end of each

trial. Participants were informed that the overall average score would be translated into monetary

reward. They were directly instructed to explore the temporal or loudness dimension (or both) and

to use feedback scores to discover the unknown performance objective (which, unbeknownst to

them, was related to the pattern of IKIs). The task-related dimension was therefore timing, whereas

keystroke velocity was the non-task related dimension.

The performance measure that was rewarded during learning was the vector norm of the pattern

of temporal differences between adjacent IKIs (see ’Materials and experimental design’). Different

combinations of IKIs could lead to the same rewarded norm of IKI-difference values, and therefore

to the same score. Participants were unaware of the existence of these multiple solutions. The multi-

plicity in the mapping between performance and score could lead participants to perceive an

Figure 1. A novel paradigm for testing reward-based motor sequence learning. (A) Schematic of the task. Participants performed sequence1 during 100

initial exploration trials, followed by 200 trials over two blocks of reward-based learning performing sequence2. During the learning blocks, participants

received a performance-related score between 0–100 that would lead to monetary reward. (B) The pitch content of the sequences used in the

exploration (sequence1) and reward-based learning blocks (sequence2), respectively. (C) Schematic of the anxiety manipulation. The shaded area

denotes the phase in which anxiety was induced in each group, using the threat of an upcoming public speaking task, which took place immediately

after that block was completed.
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increased level of volatility in the environment (changes in the rewarded performance over time).

This motivated us to assess their estimation of volatility during reward-based learning and its modu-

lation by anxiety. In addition, we investigated whether higher initial variability would lead to higher

scores during subsequent reward-based learning, independently of changes in variability during this

latter phase. If initial exploration improves learning of the mapping between the actions and their

sensory consequences (even without external feedback), then participants could learn better from

performance-related feedback during the learning phase regardless of their use of variability in this

phase. Alternatively, it could be that participants who also use more variability during learning dis-

cover the hidden goal by chance.

Participants were pseudo-randomly allocated to either a control group or to one of two experi-

mental groups (Figure 1C): anxiety during exploration (anx1); and anxiety during the first block of

learning (anx2). We measured changes in heart-rate variability (HRV) and heart-rate (HR) four times

throughout the experimental session: resting state (3 min, prior to performance blocks); block1;

block2; and block3. In addition, the state subscale from the State-Trait Anxiety Inventory (STAI, state

scale X1, 20 items; Spielberger, 1970) was assessed four times: prior to the resting state recording

and also immediately before the beginning of each block, and thus after the induction of anxiety in

the experimental groups. The HRV index and STAI state anxiety subscale were able to dissociate in

each experimental group between the phase targeted by the anxiety manipulation and the initial

resting phase (within-group effects, see statistical results in Figure 2). In addition, significant

between-group differences in HRV (not in STAI) further confirmed the specificity of the HRV changes

in the targeted blocks (statistical details in Figure 2). These results confirmed that the experimental

manipulation succeeded in inducing physiological and psychological responses within each experi-

mental group that were consistent with an anxious state during the targeted phase, as reported pre-

viously (Feldman et al., 2004).

Statistical analysis of behavioral and neural measures focused on the separate comparison

between each experimental group and the control group (contrasts: anx1 – controls, anx2 – con-

trols). See ’Materials and methods’.

Behavioral resultsLower initial task-related variability is associated with poorer
reward-based learning All groups of participants demonstrated significant improvement in the

achieved scores during reward-based learning, confirming that they effectively used feedback to

approach the hidden target performance (changes in average score from block2 to block3 — anx1:

p=0.008, non-parametric effect size estimator for dependent samples, Ddep = 0.93, confidence inter-

val or CI = [0.86, 0.99]; anx2: p=0.004, Ddep = 0.83, CI = [0.61, 0.95]; controls: p=0.001, Ddep = 0.92,

CI = [0.72, 0.98]).

Assessment of motor variability was performed separately in the task-related temporal dimension

and in the non-task-related keystroke velocity dimension. Temporal variability—and similarly

for Kvel variability—was estimated using the across-trials coefficient of variation of IKI (termed cvIKI

hereafter; Figure 3A–B). This index was computed in bins of 25 trials, which therefore provided four

values per experimental block. We hypothesized that in the total population, a higher degree of

task-related variability during the exploration phase (that is, playing different temporal patterns in

each trial), and therefore higher cvIKI, would improve subsequent reward-based learning, as this lat-

ter phase rewarded the temporal dimension. A non-parametric rank correlation analysis across the

60 participants revealed that participants who achieved higher scores in the learning phase exhibited

a larger across-trials cvIKI during the exploration period (Spearman � ¼ 0:45;P ¼ 0:003; Figure 3C).

A similar result was obtained when excluding anx1 participants from the correlation analysis, sup-

porting the hypothesis that in the subsample of 40 participants who did not undergo the anxiety

manipulation during exploration there was a significant association between the level of task-related

variability and the subsequent score (� ¼ 0:41;P ¼ 0:04). No significant rank correlation was found

between the scores and cvKvel (P>0:05).

We also assessed whether the degree of cvIKI during learning was associated with the average

score and found an inverted pattern: there was a significant negative non-parametric rank correlation

between the cvIKI index and the mean score (� ¼ �0:44;P ¼ 0:002; Figure 3D). No significant effect

was found for the cvKvel parameter (P>0:05).

Notably, the amount of variability in timing and keystroke velocity used by participants was not

correlated (cvIKI and cvKvel during initial exploration: � ¼ 0:021;P ¼ 0:788, and during learning:

� ¼ �0:030;P ¼ 0:844). This indicates that in our task, participants could vary the temporal and
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Figure 2. Heart-rate variability (HRV) modulation by the anxiety manipulation. (A) The average HRV measured as

the coefficient of variation (CV) of the inter-beat-interval is displayed across the experimental blocks: initial resting

state recording (Pre), initial exploration (Explor), first block of learning (Learn1) and, last block of learning (Learn2).

Relative to Pre, there was a significant drop in HRV in anx1 participants during initial exploration (within-subject

statistics with paired permutation tests, P<0:05 after controlling the false discovery rate [FDR] at level q = 0.05 due

to multiple comparisons, termed PFDR : PFDR<0:05;Ddep ¼ 0:81;CI ¼ ½0:75; 0:87�). In anx2 participants, the drop in

HRV was found during the first learning block, which was targeted by the anxiety manipulation

(PFDR<0:05;Ddep ¼ 0:78;CI ¼ ½0:71; 0:85�). Between-group comparisons revealed that anx1, relative to the control

group, exhibited a significantly lower HRV during the exploration phase (PFDR<0:05;D ¼ 0:75;CI ¼ ½0:65; 0:85�,

purple bar at the bottom). The anx2 group manifested a significant drop in HRV relative to controls during the first

learning block (PFDR<0:05;D ¼ 0:71;CI ¼ ½0:62; 0:80�, red bar at the bottom). These results demonstrate a group-

Figure 2 continued on next page
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velocity dimensions separately. On the other side, however, the generally lower cvKvel values in all

blocks and groups further indicate that participants may not have been able to substantially vary this

dimension. Finally, the degree of cvIKI during the learning and exploration phases were not corre-

lated (� ¼ 0:029;P ¼ 0:848). These findings suggest that achieving higher scores during reward-based

learning in our paradigm cannot be accounted for by a general tendency towards more exploration

throughout all experimental blocks. In fact, larger sustained variability during learning was detrimen-

tal to maintaining the performance close to the inferred target (Figure 3D).

Anxiety during initial exploration reduces task-related variability and impairs

subsequent reward-based learning Next, we assessed pair-wise differences in the behavioral

measures between the control group and each experimental group (anx1 and anx2) separately. Par-

ticipants who were affected by state anxiety during initial exploration (anx1) achieved significantly

lower scores in the subsequent reward-based learning phase relative to control participants

(Figure 4A: P<0:05 after controlling the false discovery rate [FDR] at level q ¼ 0:05 due to multiple

comparisons, termed PFDR thereafter; D ¼ 0:78;CI ¼ ½0:54; 0:92�). By contrast, in the anx2 group

scores did not statistically differ from the scores in the control group (PFDR>0:05). A planned compar-

ison between both experimental groups demonstrated significantly higher scores in anx2 than in

anx1 (PFDR<0:05;D ¼ 0:67;CI ¼ ½0:51; 0:80�).

During the initial exploration block, anx1 used a lower degree of cvIKI than the control group

(Figure 4B; PFDR<0:05;D ¼ 0:67;CI ¼ ½0:52; 0:85�). There was no between-groups (anx1, controls) dif-

ference in cvKvel (Figure 4C; PFDR>0:05). Performance in anx2 in this phase did not significantly dif-

fer from performance in the control group, either for cvIKI or for cvKvel (PFDR>0:05).

Subsequently, during the learning blocks, there were no significant between-group differences in

cvIKI or cvKvel (PFDR>0:05). In each group, there was a significant drop in the use of temporal vari-

ability from the first to the second learning block, corresponding to a transition from exploration to

the exploitation of the rewarded options (significant drop in cvIKI from block2 to block3 in control,

anx1, and anx2 participants; PFDR<0:05; effect size — Ddep ¼ 0:77;CI ¼ ½0:53; 0:87� in controls;

Ddep ¼ 0:55;CI ¼ ½0:50; 0:61� in anx1; Ddep ¼ 0:83;CI ¼ ½0:62; 0:94� in anx2). This outcome further indi-

cated that all groups successfully completed the reward-based learning task, although anx1 partici-

pants achieved lower scores than the reference control group.

Detailed analyses of the trial-by-trial changes in scores and performance using a Bayesian learning

model and their modulation by anxiety are reported below. General performance parameters, such

as the average performance tempo or the mean keystroke velocity did not differ between groups,

either during initial exploration or learning (P>0:05). Participants completed sequence1 in 3.0 (0.1)

seconds on average, between 0.68 (0.05) and 3.68 (0.10) s after the GO signal (non-significant differ-

ences between groups, P>0:05). During learning, they played sequence2 with an average duration of

4.7 (0.1) s, between 0.72 (0.03) and 5.35 (0.10) s (non-significant differences between groups,

P>0:05). The mean learned solution was not significantly different between groups, either during the

first or second learning block (P>0:05; Figure 4—figure supplement 1; but see trial-by-trial changes

below).

These outcomes demonstrate that in our paradigm, state anxiety reduced task-related motor vari-

ability when induced during the exploration phase and this effect was associated with lower scores

during subsequent reward-based learning. State anxiety, however, did not modulate task-related

motor variability or the scores achieved when induced during reward-based learning. Finally, the dif-

ferent experimental manipulations did not affect the mean learned solution in each group.

State anxiety during reward-based learning reduces learning rates if there is no prior

Figure 2 continued

specific modulation of anxiety relative to controls during the targeted blocks. The mean HR did not change within

or between groups (P>0:05). (B) STAI state anxiety score in each group across the different experimental phases.

Participants completed the STAI state anxiety subscale first at the start of the experiment before the resting state

recording (Pre) and subsequently again immediately before each experimental block (and right after the anxiety

induction: Explor, Learn1, Learn2). There was a within-group significant increase in the score for each experimental

group during the phase targeted by the anxiety manipulation (anx1: Explor relative to Pre, average score 40 [2]

and 31 [2], respectively; PFDR<0:05;Ddep ¼ 0:74;CI ¼ ½0:68; 0:80�; anx2: Learn1 relative to Pre, average score 39 [2]

and 34 [2], respectively; PFDR<0:05;Ddep ¼ 0:78;CI ¼ ½0:68; 0:86�). Between-group differences were non-significant.
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Figure 3. Temporal variability during initial exploration and during reward-based learning. (A, B) Illustration of timing performance during initial

exploration (A) and learning (B) blocks for one representative participant, s1. The x-axis represents the position of the inter-keystroke interval

(sequence1: seven notes, corresponding to six inter-keystroke temporal intervals; sequence2: eight notes, corresponding to seven inter-keystroke

intervals). The y-axis shows the inter-keystroke interval (IKI) in ms. Black lines represent the mean IKI pattern. Red-colored traces represent the individual

timing performance in each of the 100 (A) and 200 (B) trials during exploration and learning blocks, respectively. Task-related temporal variability was

measured using the across-trials coefficient of variation of IKI, cvIKI. This measure was computed in successive bins of 25 trials, which allowed us to

track changes in cvIKI across time. (C) Non-parametric rank correlation in the total population (N = 60) between the across-trials cvIKI during

Figure 3 continued on next page
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exploration phase Because anx2 participants performed at a level that was not significantly dif-

ferent from that found in control participants during learning, we asked whether the initial uncon-

strained motor exploration during the initial phase might have counteracted the effect of anxiety

during learning blocks. Alternatively, it could be that the anxiety manipulation was not salient

enough in the context of reward-based learning. To assess these alternative scenarios, we performed

a control behavioral experiment with new experimental (anx3) and control groups (N = 13 each, see

sample size estimation in ’Materials and methods’). Participants in each group performed the two

learning blocks 2 and 3 (Figure 1C), but without completing a preceding exploration block. In anx3,

state anxiety was induced exclusively during the first learning block, as in the original experiment.

We found that the HRV index was significantly reduced in anx3 relative to controls during the manip-

ulation phase (PFDR<0:05;D ¼ 0:72;CI ¼ ½0:62; 0:83�), but not during the final learning phase (block3,

PFDR>0:05). STAI state subscale scores rose during the anxiety manipulation in anx3 (but not in

controls) relative to the initial scores (within-group effect, PFDR<0:05;D ¼ 0:68;CI ¼ ½0:59; 0:78�).

Overall, the anx3 group achieved a lower average score (and final monetary reward) than control

participants (P ¼ 0:0256;D ¼ 0:64;CI ¼ ½0:50; 0:71�). In addition, anx3 participants achieved signifi-

cantly lower scores than control participants during the first learning block

(PFDR<0:05;D ¼ 0:68;CI ¼ ½0:54; 0:79�, Figure 4D), but not during the second learning block

(PFDR>0:05). Notably, however, the degree of cvIKI or cvKvel did not differ between groups

(PFDR<0:05, Figure 4E–F). The mean performance tempo, loudness and the mean learned solution

during learning did not differ significantly between groups, as in the main experiment (P>0:05). Thus,

removal of the initial exploration phase led to the impairment of reward-based learning by the anxi-

ety manipulation, and this effect was not associated with a change in the use of task-related variabil-

ity or in general average performance parameters.

Bayesian learning modeling reveals the effects of state anxiety on reward-based

motor learning To assess our hypotheses regarding the mechanisms underlying participants’

performance during reward-based learning, we used several versions of a Bayesian learning model,

which were based on the two-level hierarchical Gaussian filter for continuous input data (HGF;

Mathys et al., 2011; Mathys et al., 2014). The HGF was introduced by Mathys et al. (2011) to

model how an agent infers a hidden state in the environment (a random variable), x1, as well as its

rate of change over time (x2, environmental volatility). This corresponds to a perceptual model, which

is further coupled with a response model to generate responses based on those inferred states. In

the two-level HGF, beliefs about those hierarchically related hidden states (x1; x2) are continuous vari-

ables evolving as Gaussian random walks coupled through their variance. Their value (xi; i ¼ 1; 2) at

trial k will be normally distributed around their previous value at trial k � 1 . Thus, the posterior distri-

bution of beliefs about these states is fully determined by the sufficient statistics �i (mean) and si

(variance). Beliefs are updated given new sensory input via prediction errors (PEs). In some imple-

mentations of the HGF, the series of sensory inputs are replaced by a sequence of outcomes, such

as reward value in a binary lottery (Mathys et al., 2014; Diaconescu et al., 2017) or electric shock

delivery in a one-armed bandit task (de Berker et al., 2016). In these cases, similarly to the case of

sensory input, an agent can learn the causes of the observed outcomes and thus the likelihood that

a particular event will occur. In our study, the trial-by-trial input observed by the participants was the

series of feedback scores (hereafter input refers to feedback scores). Crucial to the HGF is the

weighting of the PEs by the ratio between the estimation uncertainty of the current level and the

lower level, or the inverse ratio when using precision (inverse variance or uncertainty of a distribu-

tion). Further details are provided in the ’Materials and methods’.

Different implementations of the HGF have recently been used in combination with neuroimaging

data to investigate how the brain processes different types of hierarchically-related prediction errors

(PEs) within the framework of predictive coding (Diaconescu et al., 2017; Weber et al., 2019). The

HGF can be fit to the behavioral data from each individual participant, thus providing dynamic trial-

Figure 3 continued

exploration (averaged across the four 25-trial bins) and the average score achieved subsequently during learning (Spearman � ¼ 0:45;P ¼ 0:003). (D)

Same as panel (C) but using the individual value of the across-trials cvIKI from the learning phase (cvIKI was averaged here across all eight 25-trial bins;

Spearman � ¼ �0:44;P ¼ 0:002).
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Figure 4. Effects of anxiety on behavioral variability and reward-based learning. The score was computed as a 0–100 normalized measure of proximity

between the norm of the pattern of differences in inter-keystroke intervals performed in each trial and the target norm. All of the behavioral measures

shown in this figure are averaged within bins of 25 trials. (A) Scores achieved by participants in the anx1 (N = 20), anx2 (N = 20), and control (N = 20)

groups across bins 5:12 (trial range 101–300), corresponding to blocks 2 and 3 and the learning phase. Participants in anx1 achieved significantly lower

scores than control participants (PFDR<0:05, denoted by the bottom purple line). (B) Changes in across-trials cvIKI, revealing a significant drop in task-

related exploration during the initial phase in anx1 relative to control participants (PFDR<0:05). Anx2 participants did not differ from control participants.

(C) Same as panel (B) but for the across-trials cvKvel. (D–F) Control experiment: effect of anxiety on variability and learning after removal of the initial

exploration phase. Panels (D-F) are displayed in the same way as panels (A–C) for experimental (N = 13) and control (N = 13) groups. Significant

between-group differences are denoted by the black bar at the bottom (PFDR<0:05;D ¼ 0:71;CI ¼ ½0:64; 0:78�). (F) In anx3 participants (green), there was

Figure 4 continued on next page
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wise estimates of belief updates that depend on hierarchical PEs weighted by precision (precision-

weighted PE or pwPE). In predictive coding models, precision is viewed as crucial for representing

uncertainty and updating the posterior expectations about the hidden states (Sedley et al., 2016).

In the HGF, time-varying pwPEs reflect how participants learn stimulus-outcome or response-out-

come associations and their changes over time (Mathys et al., 2014; Diaconescu et al., 2017).

Here, we adapted the HGF to model participants’ estimation of quantity x1, which represented

their beliefs about the expected reward (input score, normalized 0–1) for the current trial. Beliefs

about x1 on trial k were thus determined by the expectation of reward �k
1
(mean of the posterior dis-

tribution of x1) and the uncertainty about this estimate (variance, sk
1
). The model also estimated par-

ticipants’ beliefs about environmental volatility x2, related to changes in the reward tendency and

determined by (�k
2
;sk

2
) on trial k. The belief trajectories about the external states x1 and x2 generated

by the model were further used to estimate the most likely response corresponding with those

beliefs. A schematic illustrating the model structure and the belief trajectories is shown in Figure 5.

Volatility in our paradigm emerged from the multiplicity of performance-to-score mappings, as dif-

ferent temporal patterns of the performance with identical norm of IKI-difference values led to the

same scores (e.g. IKI: [0.2, 0.5, 0.2, 0.5, 0.2, 0.5] s and [0.6, 0.3, 0.6, 0.3, 0.6, 0.3, 0.6] s).

Assessment of the HGF for simulated responses revealed that the expectation of volatility

(change in reward tendency) was higher in participants who modulated their performance to a

greater extent across trials and thereby observed a broader range of feedback scores (see different

examples for simulated performances in Figure 5—figure supplement 1).

We implemented eight versions of the HGF with different response models. The response model

defines the mapping from the trajectories of perceptual beliefs onto the observed responses of each

participant. We were interested in how HGF quantities on the previous trial explained changes in

performance on the subsequent trial. To assess that relationship, we considered two scenarios char-

acterized by the choice of a different performance measure in the response model. The performance

measures used were: (1) the trialwise coefficient of variation of consecutive IKI values (cv across

sequence positions; termed cvIKItrial to dissociate it from the measure of across-trials variability,

cvIKI); (2) the trialwise performance tempo (mean of IKI within the trial across sequence positions,

termed mIKItrial; here we used the logarithm of this measure in milliseconds, logðmIKItrialÞ, as in

Marshall et al. (2016). Accordingly, we constructed two families of models describing the link

between a participant’s inferred perceptual quantities on the previous trial k � 1 and their changes

from trial k � 1 to k in one of those performance measures:

DcvIKIktrial ¼ cvIKIktrial � cvIKIk�1
trial

DlogðmIKItrialÞ
k ¼ logðmIKIktrialÞ� logðmIKIk�1

trialÞ

Variable cvIKItrial was chosen because it is tightly linked to the variable associated with reward:

higher differences in IKI values between neighboring positions lead not only to a higher vector norm

of IKI patterns but also to a higher coefficient of variation of IKI values in that trial (and indeed

cvIKItrial was positively correlated with the feedback score across participants, nonparametric Spear-

man �¼ 0:69;P<10�5). Alternatively, we considered the scenario in which participants would speed

or slow down their performance without altering the relationship between successive intervals.

Therefore, we used a performance measure related to the mean tempo, mIKI. We did not choose a

performance measure associated with keystroke velocity because our results in the previous sections

demonstrate that participants did not consistently modulate cvKvel across trials—either because

they realized that this parameter was non-task-related or because they were not able to substantially

vary the loudness of the key press. Similarly to Marshall et al. (2016), in each family of models we

Figure 4 continued

a significant drop in the mean scores during the first learning block relative to control participants (PFDR<0:05;D ¼ 0:77;CI ¼ ½0:68; 0:86�). Bars around

the mean show ± SEM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Mean learned solution in each group.
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Figure 5. Two-level Hierarchical Gaussian Filter for continuous inputs. (A) Schematic of the two-level HGF, which models how an agent infers a hidden

state in the environment (a random variable), x1, as well as its rate of change over time (x2, environmental volatility). Beliefs about those two

hierarchically related hidden states (x1, x2) at trial k are updated by the sensory input (uk , observed feedback scores in our study) for that trial via

prediction errors (PEs). The states x1 and x2 are continuous variables evolving as coupled Gaussian random walks, where the step size (variance) of the

Figure 5 continued on next page
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defined four types of response models to explain the performance measure as a linear function of

relevant HGF perceptual parameters on the previous trial, such as the expectation of reward (�1) or

volatility (�2) and the pwPEs on these estimates (labeled �1 and �2, respectively; see Equation 14

and Equation 15). One example is illustrated here:

DcvIKIktrial ¼ b0 þb1�
k�1

1
þb2�

k�1

1
þ z (1)

where b0 represents a constant value (intercept) and z is a Gaussian noise variable. Details on the

alternative models are provided in the ’Materials and methods’ section.

In each model, the feedback scores and the performance measure at each trial k were used to

update model parameters, and the log model-evidence was used to optimize the model fit

(Diaconescu et al., 2017; Soch and Allefeld, 2018). More details on the modeling approach can be

found in the ’Materials and methods’ section and in Figure 5.

Between-group comparison focused on four variables, the mean trajectories of perceptual beliefs

(�1 and �2, means of the posterior distributions for x1 and x2; Figure 5), and the uncertainty about

those beliefs (variance of the posterior distributions, s1 and s2; note that the inverse variance is the

precision, termed p1 and p2, corresponding with the confidence placed on those beliefs). As indi-

cated above, volatility estimates are related to the rate of change in reward estimates, and accord-

ingly we predicted a higher expectation of volatility �2 for participants exhibiting more variation in

�1 values. In addition, the perceptual model parameters !1 and !2, which characterize the learning

style of each participant (see Figure 5—figure supplement 2), and the parameters b0;b1;b2; z, char-

acterizing the response model, were contrasted between groups.

Random Effects Bayesian Model Selection (BMS) was used to assess at the group level (N = 60)

the different models of learning (Stephan et al., 2009); code freely available from the MACS tool-

box, (Soch and Allefeld, 2018). First, the models were grouped into two families corresponding

with each performance measure (DcvIKItrial and DlogðmIKItrialÞ). The log-family evidence (LFE) was

calculated from the log-model evidence (LME). BMS then determined which family of models pro-

vided more evidence. In the winner family, additional BMS determined the final optimal model. BMS

provided stronger evidence for the family of models defined for DcvIKItrial, with an exceedance

probability of 1, and an expected frequency of 0.9353 (similar values in experimental and control

groups). Next, among all four models in that family, the winning model (exceedance probability 1,

model frequency 0.8614) explained the performance measure DcvIKItrial as a linear function of the

pwPE relating to reward, �1, and volatility, �2, on the previous trial:

DcvIKIktrial ¼ b0 þb1�
k�1

1
þb2�

k�1

2
þ z (2)

The b0 and b1 coefficients were significantly different than zero in each experimental and control

Figure 5 continued

random walk depends on a set of parameters (shown in yellow boxes). The lowest level is coupled to the level above through the variance of the

random walk: xk
1
~N xk�1

1
; expðkxk�1

2
þ !1Þ

� �

. The posterior distribution of beliefs about these states is fully determined by the sufficient statistics �i

(mean) and si (variance) for levels i ¼ 1; 2. The equations describing how expectations (�i) change from trial k � 1 to k are Equation 6 and Equation 10.

The response model generates the most probable response, yk , according to the current beliefs, and is modulated by the response model parameters

b0;b1;b2; z. In the winning model, the response parameter was the change between trial k � 1 and kin the degree of temporal variability across

keystrokes: yk ¼ DcvIKIktrial, normalized to range 0–1. (B, C) Example of belief trajectories (mean, variance) associated with the two levels of the HGF for

continuous inputs. Panel (C) displays the expectation on the first level, �k
1
, which represents an individual’s mean estimate of the true reward values for

the trial, xk
1
. Black dots represent the trial-wise input (feedback scores, uk ). Panel (B) shows the trial-by-trial beliefs about volatility xk

2
, determined by the

expectation �k
2
and associated variance. Shaded areas denote the variance or estimation uncertainty on that level. (D) Illustration of the performance

measure used as response in the winning model, yk ¼ DcvIKIktrial.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Trial-by-trial belief trajectories for simulated performances.

Figure supplement 2. Simulated trial-by-trial belief trajectories in an ideal learner.

Figure supplement 3. b coefficients of the winning response model.

Figure supplement 4. Example in one control participant of the association between pwPEs and performance.

Figure supplement 5. Example in one anx1 participant of the association between pwPEs and performance.

Figure supplement 6. Grand-average trialwise residuals.
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group (PFDR<0:05, controlled for multiple comparisons arising from three group tests; Figure 5—fig-

ure supplement 3). On average, b0 was positive, and b1 was negative. By contrast, b2 was positive

in the control group yet negative in the anx1 and anx2 groups (PFDR<0:05). Because pwPEs directly

modulate the update in the expectation of beliefs, these findings imply that smaller pwPEs

relating to reward on the previous trial (smaller update in the expectation of reward at k� 1) were

associated in all groups with increases in cvIKIktrialfor the next trial. On the other side, a negative b1

also indicates that larger pwPE for reward on the previous trial decreased changes in the perfor-

mance variable on the following trial. In addition, exclusively in control participants, there was a posi-

tive association between larger pwPE relating to volatility at k� 1 (greater update in the expectation

on volatility on the last trial) and a follow-up increment in cvIKIktrial. In anx1 and anx2 participants,

however, trials of larger pwPE driving updates on volatility were followed by reduced changes in

trial-wise temporal variability. The results imply that a larger increase in the expectation of volatility

on the previous trial promoted larger subsequent changes in the relevant performance variable in

control participants (Figure 5—figure supplement 4), whereas in anx1 and anx2, it led to reductions

in task-related behavioral changes (Figure 5—figure supplement 5).

The HGF and the winning response model provided a good fit to the behavioral data from each

group, as shown in the examination of the residuals (Figure 5—figure supplement 6). Further, there

were no systematic differences in the model fits across groups (trial-averaged residuals were com-

pared between each experimental and control group with permutation tests; P>0:05 in both compar-

isons; P ¼ 0:1598 for anx1 and control groups; P ¼ 0:5646 for anx2 and control groups). The low

mean residual values further indicate that the model captured the fluctuations in data well (trial-aver-

aged residuals and SEM: 0:0004½0:00095� in controls; �0:001½0:0013� in anx1; and 0:0003½0:0003� in

anx2).

Using the winning model, we next evaluated between-group differences in the mean trajectories

of perceptual beliefs and their uncertainty throughout learning (Figure 6A–C). Participants in the

anx1 relative to the control group had a lower estimate of the mean tendency for x1

(PFDR<0:05;D ¼ 0:75;CI ¼ ½0:59; 0:89�). This indicates a lower expectation of reward in the current

trial. Note that this outcome could be anticipated from the behavioral results shown in Figure 4A.

The expectation on log-volatility was significantly smaller in anx1 than in control participants

(PFDR<0:05;D ¼ 0:71;CI ¼ ½0:60; 0:81�). This quantity was also partly reduced in the anx2

group relative to the control group (PFDR<0:05;D ¼ 0:69;CI ¼ ½0:53; 0:75�). In addition, the uncertainty

about environmental volatility, s2, was larger in the anx1 and anx2 participants when compared to

control participants (control relative to anx1, PFDR<0:05, D ¼ 0:71;CI ¼ ½0:65; 0:89�; control relative to

anx2, PFDR<0:05, D ¼ 0:65;CI ¼ ½0:52; 0:86�). Because larger estimation uncertainty on the current

HGF level contributes toward larger steps in the update equations for that level (due to larger preci-

sion weights on the PEs, Equation 5), this last outcome suggests that anx1 and anx2 participants

updated their estimates of environmental volatility with larger steps (albeit in a negative direction as

indicated by the negative slope of the underlying trends in Figure 6C, reducing �2). No differences

between anx2 and control participants in the �1 estimates were found. Neither did we obtain

between-group differences in s1.

To understand why anx2 did not substantially differ from the control group in their expectation of

reward yet had significantly lower volatility estimates (resembling those of the anx1 group), we

looked more closely at Figure 5—figure supplement 1. This figure shows the HGF trajectories for

perceptual beliefs and related quantities for a series of simulated responses. The results indicate

that lower expectation of volatility can result from a smaller variance in the distribution of observed

feedback scores, but also from a behavior characterized by smaller changes from trial to trial in the

performance variable (DcvIKItrial). Accordingly, as a post-hoc analysis, we tested whether anx2 par-

ticipants had smaller variance in the distribution of feedback scores when compared to control par-

ticipants. This was the case (means [SEM]) were 0.064 [0.004] in control participants and 0.052

[0.003] in anx2, PFDR<0:05). Anx1 participants also contributed to a similar effect (means [SEM] were

0.051 [0.002], PFDR<0:05, smaller in anx1 than in the control group). Furthermore, anx2 participants

had, on average, smaller DcvIKItrial values than the control group (means [SEM] were 0.005 [0.0011]

in controls and 0.0032 [0.0007] in anx2, PFDR<0:05). The same results were obtained for the anx1

group (0.0013 [0.0009], PFDR<0:05). Thus, anx2 participants achieved high scores, as did control par-

ticipants, yet they observed a reduced set of scores. In addition, their task-related behavioral
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Figure 6. Computational modeling analysis. Data shown as mean and ± SEM. (A) In the main experiment, anx1 participants underestimated the

tendency for x1 (meaning their expectation on reward in the current trial was lower; PFDR<0:05;D ¼ 0:75;CI ¼ ½0:59; 0:89�, purple bar at the bottom). (B)

In addition, the expectation on environmental (phasic) log-volatility (logð�2Þ) was significantly smaller in anx1 participants than in control participants

(PFDR<0:05;D ¼ 0:71;CI ¼ ½0:60; 0:81�). Similar results were obtained in the anx2 group as compared to the control group

(PFDR<0:05;D ¼ 0:69;CI ¼ ½0:53; 0:75�). (C) The uncertainty about environmental volatility was higher in anx1 and anx2 relative to control participants

Figure 6 continued on next page
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changes from trial to trial were more constrained. These smaller trial-to-trial behavioral changes in

anx2 indicated a tendency to exploit their inferred optimal performance, leading to consistently high

scores. This different strategy of successful performance ultimately accounted for the reduced esti-

mation of environmental volatility in this group, and contrasted with the higher �2 values obtained in

control participants.

As an additional post-hoc analysis, and based on the insights obtained from Figure 5—figure

supplement 1, we assessed in the total population whether volatility estimates were associated with

the change in performance variable DcvIKItrial or with the variance of the distribution of feedback

scores. There was only a small yet significant non-parametric correlation between the HGF log-vola-

tility estimates logð�2Þ and the variance of the distribution of feedback scores across the 200 trials

(Spearman � ¼ 0:3029;P<0:0190, Figure 6—figure supplement 1). This outcome suggests that par-

ticipants who encountered more variable feedback scores in association with their performance also

had a higher expectation of volatility.

Along with the above-mentioned group effects on relevant expectation and uncertainty trajecto-

ries, we found significant differences between anx1 and control participants in the perceptual param-

eter !2 (mean and SEM values: �5.2 [0.50] in controls, �3.6 [0.49] in anx1; PFDR<0:05), but not in !1

(�4.8 [0.72] in controls, �4.8 [0.52] in anx1; P>0:05). Parameter !2 modulates the rate at which vola-

tility changes, with higher values—as obtained in anx1 participants—leading to sharper and more

pronounced steps of update in volatility (Figure 5—figure supplement 2C). This can also be

described as a different learning style (Weber et al., 2019). Participants in the anx2 group did not

differ from control participants in !1 (�4.1 [0.47], P>0:05) or !2 (�4.0 [0.74], P>0:05).

In the second experiment, in which anx3 participants demonstrated a pronounced drop in scores

relative to those of control participants during the anxiety manipulation, we found that on the group

level, the winning family of models was also the one associated with the performance parameter

DcvIKItrial (model frequency 0.8747 and exceedance probability of 1). Further, the best individual

model within that family was the one that explained DcvIKIktrial as a function of �k�1

1
and �k�1

2
(exceed-

ance probability of 1, and model frequency of 0.9051). Between-group comparisons in relevant

model parameters demonstrated that, like anx1 participants in the main study, anx3 participants in

this control experiment had a lower estimate of the mean tendency for x1

(PFDR<0:05;D ¼ 0:80;CI ¼ ½0:68; 0:95�; Figure 6D–F), and also had a reduced expectation on environ-

mental volatility (PFDR<0:05;D ¼ 0:67;CI ¼ ½0:55; 0:76�). In addition, the anxiety manipulation led par-

ticipants to have higher uncertainty about their phasic volatility estimates relative to control

participants (PFDR<0:05;D ¼ 0:65;CI ¼ ½0:51; 0:77�). No differences in the uncertainty about estimates

for x1 were found. The perceptual parameters !1 and !2 did not differ between groups (P>0:05; aver-

age values of !1 and !2 were �4.9 [SEM 0.32] and �3.4 [0.41] in the control group, and �5.6 [0.39]

and �4.4 [0.44] in the anx3 group). Last, among all response parameters, b0;b1;b2; z, we found that

exclusively b2 (modulating the impact of �k�1

2
on DcvIKIktrial) was significantly different between

groups (larger in control participants; P ¼ 0:041;D ¼ 0:68;CI ¼ ½0:55; 0:76�). Converging with the main

experiment, parameters b0 and b1 were on average positive and negative, respectively, in each

group.

Electrophysiological analysis The analysis of the EEG signals focused on sensorimotor and

prefrontal (anterior) beta oscillations and aimed to assess separately (i) tonic and (ii) phasic (or event-

related) changes in spectral power and burst rate. Tonic changes in average beta activity would be

an indication that the anxiety manipulation had an effect on the general modulation of underlying

Figure 6 continued

(anx1: PFDR<0:05;D ¼ 0:71;CI ¼ ½0:65; 0:89�; anx2: PFDR<0:05;D ¼ 0:65;CI ¼ ½0:52; 0:86�). Larger s2 in the anx1 and anx2 groups contributed to the larger

update steps of the estimate �2, shown in panel (B). (D–F) Same as panels (A–C) but in the separate control experiment. (D) The expectation on the

reward tendency, �1, was lower for anx3 participants relative to control participants (PFDR<0:05;D ¼ 0:80;CI ¼ ½0:68; 0:95�, denoted by the black bar at

the bottom). (E) Same as panel (B): anx3 participants had a reduced expectation of environmental volatility (PFDR<0:05;D ¼ 0:67;CI ¼ ½0:55; 0:76�). (F)

Anx3 participants were also more uncertain about their phasic volatility estimates relative to control participants (PFDR<0:05;D ¼ 0:65;CI ¼ ½0:51; 0:77�).

Thus, the anxiety manipulation in the control experiment biased participants to make larger updates of their expectation of phasic volatility.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Correlation between HGF volatility estimates and the variance of the distribution of feedback scores.
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beta oscillatory properties. Complementing this analysis, assessment of the phasic changes in the

measures of beta activity during trial performance and following feedback presentation allowed us

to investigate the neural processes that drive reward-based motor learning and their alteration by

anxiety. These analyses focused either on all channels (tonic changes) or on a subset of channels

across contralateral sensorimotor cortices and anterior regions (phasic changes; see statistical analy-

sis details in ’Materials and methods’).

State anxiety prolongs beta bursts and enhances beta power during exploration We

first looked at the general averaged properties of beta activity in this phase and their modulation by

anxiety. The first measure we used was the standard averaged normalized power spectral density

(PSD) of beta oscillations. Normalization of the raw PSD into decibels (dB) was carried out using the

average PSD from the initial rest recordings (3 min) as reference. This analysis revealed a significantly

higher beta-band power in a small contralateral sensorimotor region in anx1 participants relative to

that in control participants during initial exploration (P<0:025, two-sided cluster-based permutation

test, FWE-corrected; Figure 7—figure supplement 1). In anx2 participants, the beta power in this

phase was not significantly different than that in controls (Figure 7—figure supplement 1, P>0:05).

No significant between-group changes in PSD were found in lower (< 13Hz) or higher (> 30Hz) fre-

quency ranges (P>0:05).

Next, we analyzed the between-group differences in the distribution of beta bursts extracted

from the amplitude envelope of beta oscillations during initial exploration (Figure 7A). This analysis

was motivated by evidence from recent studies suggesting that differences in the duration, rate, and

onset of beta bursts could account for the association between beta power and movement in

humans (Little et al., 2018; Torrecillos et al., 2018). To identify burst events and to assess the dis-

tribution of their duration, we applied an above-threshold detection method, which was adapted

from previously described procedures (Poil et al., 2008; Tinkhauser et al., 2017; Figure 7B). In this

analysis, we selected epochs locked to the GO signal at 0 s and extending up to 11 s. This interval

included the STOP signal at 7 s and—in reward-based learning trials only—the feedback score at 9

s. Bursts extending for at least one cycle were selected. Using a double-logarithmic representation

of the probability distribution of burst durations, we obtained a power law and extracted the (abso-

lute) slope, t , also termed the ‘life-time’ exponent (Poil et al., 2008). Modeling work has revealed

that a power law in the burst-duration distribution, reflecting the fact that the oscillation bursts have

no characteristic scale, indicates that the underlying neural dynamics operate in a state close to criti-

cality, and thus are beneficial for information processing (Poil et al., 2008; Chialvo, 2010).

Crucially, because the burst duration, rate, and slope provide complementary information, we

focused our statistical analysis of the tonic beta burst properties on the slope or life-time exponent,

t . A smaller slope corresponds to a burst distribution that is biased towards more frequent long

bursts.

In all of our participants, the double-logarithmic representation of the distribution of burst dura-

tion followed a decaying power-law with slope values t in the range 1.4–1.9. The life-time exponents

were smaller in the anx1 group than in the control group at left sensorimotor electrodes, corre-

sponding with a long-tailed distribution (1.43 [0.30]; 1.70 [0.15];

PFDR<0:05;D ¼ 0:81;CI ¼ ½0:75; 0:87�). No differences in slope values t were found between anx2 and

control participants. The smaller life-time exponents in anx1 in sensorimotor electrodes were also

reflected in a longer mean burst duration: 182 (10) ms in the anx1 group, 153 (2) ms in control partic-

ipants (166 [6] ms in anx2 participants). The differences in slope in the distribution of burst duration

in anx1 reflected the more frequent presence of long bursts ( >500 ms) and the less frequent brief

bursts in this group relative to control participants (Figure 7D–E).

We next turned to our main goal and asked whether there were between-group differences in

the beta oscillatory properties at specific periods throughout the initial exploration trials, above and

beyond the general block-averaged changes reported above. The results in Figure 4 establish that

state anxiety during the initial exploration phase reduced task-related motor variability, but also sub-

sequently led to impaired reward-based learning. We therefore sought to assess whether the anxi-

ety-related reduction in motor variability during exploration was associated with altered dynamics in

beta-band oscillatory activity at specific time intervals during trial performance.

In anx1 participants, the mean beta power increased after completion of the sequence perfor-

mance and further following the STOP signal, and these changes were significantly more pro-

nounced than in control participants (PFDR<0:05;D ¼ 0:72;CI ¼ ½0:63; 0:80�; Figure 8A). This
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Figure 7. Anxiety during initial exploration prolongs the life-time of sensorimotor beta-band oscillation bursts. (A) Illustration of the amplitude of beta

oscillations (gray line) and the amplitude envelope (black line) for one representative subject and channel. (B) Schematic overview of the threshold-

crossing procedure used to detect beta oscillation bursts. A threshold of 75% of the beta-band amplitude envelope was selected and beta bursts

extending for at least one cycle were accepted. Windows of above-threshold amplitude crossings detected in the beta-band amplitude envelope (black

line) are denoted by the green lines, whereas the windows of the associated bursts are marked by the magenta lines. (C) Scalp topography for

between-group changes in the scaling exponent t during initial exploration. A significant positive cluster was found in an extended cluster of left

sensorimotor electrodes, resulting from a smaller life-time exponent in anx1 than in control participants. (Black dots indicate significant electrodes, two-

tailed cluster-based permutation test, PFWE<0:025.) (D) Probability distribution of beta-band oscillation-burst life-times within the 50–2000 ms range for

Figure 7 continued on next page
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significant effect was localized to contralateral sensorimotor and right prefrontal channels. As a

post-hoc analysis, the time course of the burst rate was assessed separately in beta bursts of shorter

(<300 ms) and longer (>500 ms) duration, following the results from Figure 7 showing a pronounced

dissociation between longer and brief bursts in the experimental and control groups. In addition,

this split was motivated by previous studies linking longer beta bursts to detrimental performance

(e.g. beta bursts longer than 500 ms in the basal ganglia of Parkinson’s disease patients are associ-

ated with worse motor symptoms; Tinkhauser et al., 2017).

The rate of long oscillation bursts displayed a similar time course and topography to those of the

power analysis, with an increased burst rate after movement termination and after the STOP signal

in anx1 participants relative to control participants (PFDR<0:05;D ¼ 0:69;CI ¼ ½0:61; 0:78�; Figure 8B).

By contrast, brief burst events were less frequent in anx1 than in control participants, albeit exclu-

sively during performance (PFDR<0:05;D ¼ 0:74;CI ¼ ½0:65; 0:82�; Figure 8C). No significant effects

were found when comparing any of these measures between anx2 and control participants.

Additional post-hoc control analyses were carried out to dissociate the separate effects of anxiety

and motor performance on the time course of the beta-band oscillation properties during initial

exploration. These analyses demonstrated that, when controlling for changes in motor variability,

anxiety alone could explain the findings of larger post-movement beta-band PSD and rate of longer

bursts, while also explaining the reduced rate of brief bursts during performance (Figure 8—figure

supplement 1). Similar outcomes were found when controlling for changes in the mean total dura-

tion of the sequence (Figure 8—figure supplement 2), the variability of the sequence length (the

coefficient of variation of sequence duration; Figure 8—figure supplement 3), and mean keystroke

velocity (Figure 8—figure supplement 4).

Motor variability did also partially modulate the beta power and burst measures, after excluding

anxious participants. This effect, however, had a small effect size and was limited to contralateral

sensorimotor electrodes (Figure 8—figure supplement 5). In a last post-hoc analysis, we found that

the average beta power following the STOP signal in those same significant sensorimotor electrodes

was negatively correlated with the across-trials temporal variability, such that participants with a

smaller increase in sensorimotor beta power after the STOP signal had a larger expression of task-

related variability in this initial block (Spearman � ¼ �0:4397;P ¼ 0:0001; Figure 8—figure supple-

ment 6).

Reduced beta power and the presence of long beta bursts during feedback processing
promotes the update of beliefs about reward During learning, the general average level of

PSD did not differ between groups (PFDR<0:05; Figure 9—figure supplement 1A–C), neither was

there a significant between-group difference in the scaling exponent of the distribution of beta-

band oscillation bursts (PFDR>0:05, Figure 9—figure supplement 1D–E; mean t across contralateral

and prefrontal electrodes: 1.78 [0.06] in control, 1.61 [0.10] in anx1, 1.70 [0.06] in anx2 group). The

lack of significant between-group differences in these measures indicated that during reward-based

motor learning, there were no pronounced tonic changes in average beta activity induced by the

previous (anx1) or concurrent (anx2) anxiety manipulation.

Figure 4 had established that motor variability (or other motor output variables) did not differ in

learning blocks between experimental and control groups, and therefore could not explain the sig-

nificant and pronounced drop in scores in anx1 participants. Accordingly, we next aimed to assess

whether alterations in the beta-band measures over time during trial performance or in feedback

processing could account for that effect. In the anx1 group, the mean beta power increased towards

the end of the sequence performance more prominently than in control participants, and this effect

Figure 7 continued

each group during initial exploration. The double-logarithmic representation reveals a power law within the fitted range (first duration bin excluded

from the fit, as in Poil et al. [2008]). For each power law, we extracted the slope, t , also termed the life-time exponent. The dashed line illustrates a

power law with t = 1.5. The smaller scaling exponent found in anx1 participants, as compared to control participants, was associated with long-tailed

distributions of burst duration, reflecting the presence of frequent long bursts. Anx2 participants did not differ from control participants in the scaling

exponent. Data are shown as mean and ± SEM in the electrodes pertaining to the significant cluster in panel (C). (E) Enlarged display of panel (D)

showing that bursts of duration 500 ms or longer were more frequent in anx1 than in control participants.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Sensorimotor beta power is modulated by anxiety during initial exploration.
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Figure 8. Time course of the beta power and burst rate during trials in the exploration block. (A) The time representation of the beta power throughout

trial performance shows two distinct time windows of increased power in participants affected by the anxiety manipulation: following sequence

performance and after the STOP signal (PFDR<0:05;D ¼ 0:72;CI ¼ ½0:63; 0:80�; black bars at the bottom indicate the windows of significant differences).

Shaded areas indicate the SEM around the mean. Performance of sequence1 was completed on average between 680 (50) and 3680 (100) ms, denoted

by the gray rectangle at the top. The STOP signal was displayed at 7000 ms after the GO signal, and the trial ended at 9000 ms. (B) The rate of

oscillation bursts of longer duration (>500 ms) exhibited a similar temporal pattern, with increased burst rate in anx1 participants following movement

and the STOP signal (PFDR<0:05;D ¼ 0:69;CI ¼ ½0:61; 0:78�). (C) In contrast to the rate of long bursts, the rate of brief oscillation bursts was reduced in

anx1 relative to control participants, albeit during performance (PFDR<0:05;D ¼ 0:74;CI ¼ ½0:65; 0:82�). All averaged values in panels (A–C) are estimated

across the significant sensorimotor and prefrontal electrodes shown in the inset in panel (B).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure 8 continued on next page
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was significant in sensorimotor and prefrontal channels (PFDR<0:05;D ¼ 0:67;CI ¼ ½0:56; 0:78�;

Figure 9A). A significant increase with similar topography and latency was observed in the anx2

group relative to control participants (PFDR<0:05;D ¼ 0:61;CI ¼ ½0:56; 0:67�). An additional and partic-

ularly pronounced enhancement in beta power appeared in anx1 and anx2 participants within 400—

1600 ms following presentation of the feedback score. This post-feedback beta increase was signifi-

cantly larger in anx1 than in the control group (PFDR<0:05;D ¼ 0:65;CI ¼ ½0:55; 0:75�; no significant

effect in anx2, P>0:05).

Further, we found that the time course of the beta burst rate exhibited a significant increase in

anx1 participants relative to that in control participants within 400–1600 ms following feedback pre-

sentation, similar to the power results (Figure 9B; PFDR<0:05;D ¼ 0:82;CI ¼ ½0:70; 0:91�). The rate of

brief oscillation bursts was, by contrast, smaller in anx1 than in control participants, albeit exclusively

during performance and not during feedback processing (Figure 9C;

PFDR<0:05;D ¼ 0:70;CI ¼ ½0:56; 0:84�). The significant effects in anx1 participants were observed in

left sensorimotor and right prefrontal electrodes. There were no significant differences between

anx2 and control groups in the rate of brief or long bursts throughout the trial (P>0:05).

To rule out the possibility that the feedback-related changes in beta activity were accounted for

by concurrent movement-related artifacts (e.g. larger artifacts in anx1 than in control participants),

we performed a control analysis of higher gamma band activity, which has been consistently

associated with muscle artifacts in previous studies (Muthukumaraswamy, 2013). This control analy-

sis found no evidence for movement artifacts affecting differently anx1 or control groups (Figure 9—

figure supplement 2).

Having established that, relative to control participants, anx1 participants exhibited a phasic

increase in beta activity and an increase in the rate of long bursts 400–1600 ms following feedback

presentation, we next investigated whether these post-feedback beta changes could account for the

altered reward and volatility estimates in the anx1 group (Figure 6). In the proposed predictive cod-

ing framework, superficial pyramidal cells encode PEs weighted by precision (precision-weighed PEs

or pwPEs), and these are also the signals that are thought to dominate the EEG (Friston and Kiebel,

2009). A dissociation between high (gamma >30 Hz) and low (beta) frequency of oscillations has

been proposed to correspond with the encoding of bottom-up PEs and top-down predictions,

respectively (Arnal and Giraud, 2012). Operationally, however, beta oscillations have been associ-

ated with the change in predictions or expectations (D�i) rather than with predictions themselves

(Sedley et al., 2016). In the HGF, the update equations for �1 and �2 are determined exclusively by

the pwPE term in that level, such that the change in predictions, D�i, is equal to pwPE (see Equa-

tion 14 and Equation 15). Accordingly, we assessed whether the trialwise feedback-locked beta

power or burst rate represented the magnitude of pwPEs in that trial that serve to update

expectations on reward (�1) and environmental volatility (�2).

For each participant, we assessed simultaneously the effect of �1 and �2 on the trial-by-trial feed-

back-locked beta activity by running a multiple linear regression. These two regressors were not line-

arly correlated with each other (Pearson r coefficient in the total population was 0.1 on average

[median = 0.1], and individual correlation p-values were P>0:05 in 80% of all participants). For the

multiple linear regression analysis, trial-wise estimates of beta power (or burst rate) were averaged

Figure 8 continued

Figure supplement 1. Post-movement increases in the beta-band amplitude and burst rate can be explained by state anxiety after matching

participants on temporal variability.

Figure supplement 2. Post-movement increases in the beta-band amplitude and burst rate can be explained by state anxiety after matching

participants on the sequence duration.

Figure supplement 3. Post-movement increases in the beta-band amplitude and burst rate can be explained by state anxiety after matching

participants on the variability of the total sequence duration.

Figure supplement 4. Post-movement increases in the beta-band amplitude and burst rate can be explained by state anxiety after matching

participants on the mean keystroke velocity.

Figure supplement 5. Changes in motor variability without concurrent changes in state anxiety only partially account for the observed alterations in

post-movement beta amplitude and burst rate.

Figure supplement 6. Correlation between average beta power and the degree of task-related behavioral variability across trials during the

exploration phase.
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Figure 9. Time course of the beta power and burst rate throughout trial performance and following reward feedback. (A) Time course of the feedback-

locked beta power during sequence performance in the learning blocks, shown separately for anx1, anx2 and control groups. Average across

sensorimotor and prefrontal electrode regions as in panel (B). Shaded areas indicate the SEM around the mean. Participants completed sequence2 on

average between 720(30) and 5350 (100) ms, denoted by the top gray box. The STOP signal was displayed 7000 ms after the GO signal, and was

followed at 9000 ms by the feedback score. This representation shows two distinct time windows of significant differences in beta activity between

the anx1 and control groups: at the end of the sequence performance and subsequently following feedback presentation

(PFDR<0:05;D ¼ 0:65;CI ¼ ½0:55; 0:75�, respectively, denoted by the purple bar at the bottom). Anx2 participants also exhibited an enhanced beta power

towards the end of the sequence performance (PFDR<0:05;D ¼ 0:61;CI ¼ ½0:56; 0:67�). (B) Time course of the rate of longer (>500 ms) oscillation bursts

during sequence performance in the learning blocks. Anx1 participants exhibited a prominent rise in the burst rate 400–1600 ms following the feedback

Figure 9 continued on next page
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within 400–1600 ms following feedback presentation and across the sensorimotor and prefrontal

electrodes where the post-feedback group effects were found (Figure 9). The results indicate that �1
had a significant negative effect on the measure of beta power (Figure 10; similarly for the rate of

long bursts, see Figure 10—figure supplement 1), as b1 was significantly smaller than zero in each

group (PFDR<0:05). In addition, the b1 coefficient was decreased in anx1 relative to the control group

(PFDR<0:05;D ¼ 0:72;CI ¼ ½0:57; 0:81�; there were no differences between anx2 and control group).

Thus, a reduction in �1 contributed to an increase in post-feedback beta power and the rate of long

beta bursts. The intercept also significantly differed between anx1 and control groups, with a larger

coefficient representing a larger level of post-feedback beta power as found in anx1

(PFDR<0:05;D ¼ 0:69;CI ¼ ½0:55; 0:75�; no differences were obtained in anx2 relative to control partici-

pants). The b2 coefficient modulating the contribution of �2to beta activity was not different than 0 in

any group (P>0:05). Accordingly, these results provide evidence for a pattern of neural oscillatory

modulation that is associated with the updating of beliefs about reward. Furthermore, they link

enhanced post-feedback beta activity—as found in anx1—to reduced pwPE about reward.

Discussion The results revealed several interrelated mechanisms through which state anxiety

impairs reward-based motor learning. First, state anxiety reduced motor variability during an initial

exploration phase. This was associated with limited improvement in scores during

subsequent learning. Second, the smaller change in the expectation of reward throughout time led

to a decrease in the expectation of volatility. Along with those results, we observed an overestima-

tion of uncertainty about volatility due to state anxiety, which promoted the drop in the volatility

estimate. Additional computational results demonstrated that larger precision-weighted prediction

errors relating to reward and volatility had the effect of constraining the trial-to-trial behavioral

adaptations in state anxiety. This contrasted with the findings for volatility in control participants,

where larger pwPE relating to this quantity promoted behavioral exploration.

On the neural level, anxiety during initial exploration was associated with elevated sensorimotor

beta power and a distribution of bursts of sensorimotor beta oscillations with a longer tail (smaller

scaling exponent). The latter result indicated a more frequent presence of longer bursts, resembling

recent findings of abnormal burst duration in movement disorders (Tinkhauser et al., 2017). The

anxiety-induced higher rate of long burst events and higher beta power during initial exploration

also manifested in prefrontal electrodes and extended to the following learning phase, where phasic

trial-by-trial feedback-locked increases in these measures accounted for the attenuated updating

of expectation on reward. These results provide the first evidence that state anxiety induces changes

in the distribution of sensorimotor and prefrontal beta bursts, as well as in beta power, which may

account for the observed deficits in the update of predictions during reward-based motor learning.

Evidence from our main experiment suggested that the finding of anxiety-related reduced motor

variability during exploration was associated with the outcome of subsequently impaired learning

from reward. These results validate previous accounts on the relationship between motor variability

and Bayesian inference (Wu et al., 2014). In addition, the association between larger initial task-

related variability and higher scores during the following learning phase extends results on the facili-

atory effect of exploration on motor learning, at least in tasks that require learning from reinforce-

ment (Wu et al., 2014; Pekny et al., 2015; Dhawale et al., 2017; see also critical view in He et al.,

2016).

Figure 9 continued

score, which was significantly larger than the rate in control participants (PFDR<0:05;D ¼ 0:82;CI ¼ ½0:70; 0:91�). Data display the mean and ± SEM. The

topographic map indicates the electrodes of significant effects for panels (A–C) (PFDR<0:05). (C) Same as panel (B) but showing the rate of shorter beta

bursts (<300 ms) during sequence performance in the learning blocks. Between-group comparisons demonstrated a significant drop in the rate of brief

oscillation bursts in anx1 participants relative to control participants at the beginning of the performance (PFDR<0:05;D ¼ 0:70;CI ¼ ½0:56; 0:84�), but not

after the presentation of the feedback score. In all panels, the traces of the mean power and burst rates were displayed after averaging across

the significant sensorimotor and prefrontal electrodes shown in the inset in panel (B).

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Beta power spectral density and burst rate during reward-based learning.

Figure supplement 2. Higher gamma band activity analysis rules out an explanation in which muscle artifacts influence feedback-related changes in

power.
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Crucially, state anxiety constrained the total amount of task-related variability only when induced

during the initial exploration phase. The lack of between-group differences in cvIKI during learning

in both experiments suggests that this measure could not account for the anxiety-related deficits in

reward-based learning. Our Bayesian learning model provided additional insight on this aspect. The
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Figure 10. Post-feedback increases in beta power represent attenuated precision-weighted prediction errors about reward estimates. (A–C) Mean (and

SEM) values of the b coefficients that explain the post-feedback beta power as a linear function of a constant value (beta power) (A), the precision-

weighted prediction errors driving updates in the expectation of reward (pwPE, �1) (B), and pwPE driving updates in the expectation of volatility (�2) (C).

The measure of beta power used here was the average within 400–1600 ms following feedback presentation and across sensorimotor and prefrontal

electrodes ,as shown in Figure 9. The b values are plotted separately for each control and experimental group. The b0 and b1 regression coefficients

were significantly different from 0 in all groups (PFDR<0:05). In addition, b0 was larger in the anx1 group relative to the control group (PFDR<0:05,

denoted by the horizontal black line and the asterisk). In anx1 relative to control participants, we found that b1 was negative and significantly smaller in

anx1 participants (PFDR<0:05). Thus, a reduction in �1 contributed to an increase in post-feedback beta power. The multiple regression analysis did not

support a significant contribution of the second regressor, pwPE relating to volatility, to explaining the changes in beta power (see main text, also b2

on average did not differ from 0 in any group of participants, P>0:05). (D) Illustration of the trajectories of pwPE �1 in one representative anx1 subject.

(E) The linear regression between the trial-wise beta power and pwPE �1 for the same representative subject.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. The rate of long beta bursts following feedback is modulated by the magnitude of precision-weighted prediction errors

relating to reward.

Figure supplement 2. Topographic map illustrating the EEG channels used for the feedback-locked oscillatory analysis.
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modelling results suggested that state anxiety can impair learning from reward not only by

influencing the posterior distributions of beliefs (expectations and uncertainty) but also by altering

how pwPE relating to those beliefs affect behavioral variability. The response model consistently

demonstrated in experimental and control groups that smaller pwPEs driving reward updates on the

previous trial (leading to decreased expectation of reward) were followed by an increase in task-

related motor variability (higher exploration). On the other side, trials of larger pwPE relating to

reward were followed by reduced task-related behavioral changes. By contrast, the effect of

pwPE on volatility differed substantially in control and anxiety groups. Although large pwPEs

on volatility promoted subsequent larger task-related behavioral changes in control participants,

they constrained behavioral exploration in the anx1 and anx2 groups.

Accordingly, state anxiety facilitated the use of task-related variability during reward-based learn-

ing only in trials following smaller pwPE reducing volatility estimates. This led participants

who were affected by the prior or concurrent state anxiety manipulation to underestimate environ-

mental volatility. Thus, they had the expectation that reward estimates are more stable throughout

time. Anx1 and anx2 participants also had larger uncertainty about volatility. This implies that they

were less confident about their volatility estimate, and allowed for a greater influence of new infor-

mation in updating this quantity. This finding is additionally reinforced in anx1 by the result of a

larger !2, reflecting a different learning style (Weber et al., 2019) that is characterized by sharper

and more pronounced steps of update in �2. The results align well with recent computational work

in decision-making tasks, showing that high trait anxiety leads to alterations in uncertainty estimates

and adaptation to the changing statistical properties of the environment (Browning et al., 2015;

Huang et al., 2017; Pulcu and Browning, 2019).

Notwithstanding the similarities in the anx1 and anx2 groups concerning the expectation of vola-

tility and associated uncertainty, the fact that anx2 participants achieved high scores in the task and

were not impaired in learning requires further clarification. Our post-hoc analyses revealed that the

drop in �2 in anx2 could be accounted for by the narrower distribution of scores encountered by this

group. In addition, these participants introduced smaller trial-to-trial changes in temporal variability

when compared to control participants. Thus, anx2 participants had a tendency to exploit the cur-

rent motor program more than control participants, suggesting a more conservative approach to

success. Anx1 participants also introduced smaller trial-to-trial changes in temporal variability, yet

their behavioral changes had a slower benefit on reward. In both groups, however, the more pro-

nounced tendency to exploit the current motor program was associated with alterations in how

pwPE relating to volatility influenced behavioral changes. Overall, our findings provide the first evi-

dence that computational mechanisms similar to those described for trait anxiety and decision-mak-

ing underlie the effect of temporary anxious states on motor learning. This might be the case

particularly in the context of learning from rewards, such as feedback about success or failure, which

is considered one of the fundamental processes through which motor learning is accomplished

(Wolpert et al., 2011).

Previous studies manipulating psychological stress and anxiety to assess motor learning showed

both a deleterious and a faciliatory effect (Hordacre et al., 2016; Vine et al., 2013; Bellomo et al.,

2018). Differences in experimental tasks, which often assess motor learning during or after high-

stress situations but not during anxiety induction in anticipation of a stressor, could account for the

previous mixed results. Here, we adhered to the neurobiological definition of anxiety as a psycholog-

ical and physiological response to an upcoming diffuse and unpredictable threat (Grupe and

Nitschke, 2013; Bishop, 2007). Accordingly, anxiety was induced using the threat of an upcoming

public speaking task (Feldman et al., 2004; Lang et al., 2015), and was associated with a drop in

the HRV and an increase in state anxiety scores during the targeted blocks. Although the average

state anxiety scores were not particularly high, they were significantly higher during the targeted

phases than during the initial resting state phase. Future studies should use more impactful stressors

to study the effect of the full spectrum of state (and trait) anxiety on motor learning (Bellomo et al.,

2018).

What is the relationship between the expression of motor variability and state anxiety? As hypoth-

esized, state anxiety during initial exploration reduced the use of variability across trials. This con-

verges with recent evidence demonstrating that anxiety leads to ritualistic behavior (repetition,

redundancy, and rigidity of movements) that allow the subject to regain a sense of control

(Lang et al., 2015). The outcome also aligns well with animal studies in which evidence shows a
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reduction in motor exploration when the stakes are high (high-reward situations, social context;

Kao et al., 2008; Dhawale et al., 2017; Woolley et al., 2014). These interpretations, however,

seem to stand in contrast with our findings in anx2 participants, which were affected by the anxiety

manipulation during learning but with no significant effect on the total degree of motor variability

expressed during this phase. Similar results were obtained in the second experiment, as anx3 and

control participants did not differ in the amount of across-trials variability expressed during learning.

Bayesian computational modelling clarified these findings by demonstrating that anx2 participants

had a tendency to increase the exploitation of their current motor program. And their trial-to-trial

changes in temporal variability were smaller than those in the control group, particularly following

large pwPE that increase the expectation on volatility. This outcome was also found in anx1 partici-

pants, as well as in anx3 participants in the second experiment. Thus, anxiety had the consistent

effect to constrain dynamic trial-to-trial changes in temporal variability, and these changes were neg-

atively influenced by pwPE on volatility. Notably, however, the strategy in anx2 participants of more

extensively exploiting the inferred rewarded solution than control participants was successful, and

therefore differs from the learning impairment exhibited by anx1 participants. In the second experi-

ment, removal of the initial exploration phase led to the impairment of reward-based learning in

anx3 participants. This group also demonstrated a tendency to explore less than control participants

on a trial to trial level as a function of increases in volatility pwPEs. Thus, the combined

evidence suggests that the normal use of initial variability in anx2 participants might have protected

them from the effects of the following anxiety manipulation. Initial use of variability in anx2 might

have promoted faster learning of the mapping between actions and their asociated outcome, con-

tributing to successful goal-directed exploitation. The results further favor the interpretation that ini-

tial unconstrained exploration is important for subsequent successful motor learning.

Some considerations should be taken into account. Task-related motor variability might be pivotal

for learning from reinforcement or reward signals (Sutton and Barto, 1998; Dhawale et al., 2017;

Wu et al., 2014), whereas in other contexts, such as during motor adaptation, the evidence is con-

flicting (He et al., 2016; Singh et al., 2016). An additional consideration is that greater levels of

motor variability could reflect both an intentional pursuit of an explorative regime and an uninten-

tional higher level of motor noise, in the latter case similar to that observed in previous work

(Wu et al., 2014; Pekny et al., 2015). A recent study established that motor learning is improved by

the use of intended exploration, not motor noise (Chen et al., 2017). Our paradigm cannot

dissociate intended and unintended exploration. This limitation will be addressed in future work by

using a separate initial phase with regular performance to assess motor noise as a measure of unin-

tended exploration.

Another consideration is that our use of an initial exploration phase that did not provide rein-

forcement or feedback signals was motivated by the work of Wu et al. (2014), which demonstrated

a correlation between initial variability (no feedback) and learning curve steepness in a subsequent

reward-based learning phase—a relationship previously observed in the zebra finch (Kao et al.,

2005; Olveczky et al., 2005; Ölveczky et al., 2011). This suggests that higher levels of motor vari-

ability do not solely amount to increased noise in the system. Instead, this variability represents a

broader action space that can be capitalized upon during subsequent reinforcement learning by

searching through previously explored actions (Herzfeld and Shadmehr, 2014). Accordingly, an impli-

cation of our results is that state anxiety could impair the potential benefits of an initial exploratory

phase for subsequent learning.

Last, we used a reward-based motor learning paradigm in which different performances could

provide the same feedback score. The rationale for using this task was to explore the effect of state

anxiety on volatility estimates, as recent work demonstrates that anxiety primarily affects learning in

volatile conditions (Browning et al., 2015; Huang et al., 2017). This scenario, however, implied that

a high expression of task-related motor variability during learning would be associated with a more

volatile perception of the task, which is indeed supported by our correlation results. This could be a

confounding factor when explaining the group effects. Importantly, however, further analyses

revealed that the total degree of motor variability during learning and the mean learned perfor-

mance did not differ between groups, suggesting that these are not confounding factors that could

explain the reward-based-learning group results. Instead, our findings underscore that computa-

tional mechanisms related to how pwPE on reward and volatility influence behavioral changes are
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the main factors driving the effects of concurrent or prior state anxiety on reward-based motor

learning.

At the neural level, an important finding was that anxiety during initial exploration increased the

power of beta oscillations and the rate of long beta bursts (long-tailed distribution). The increases in

power and the rate of long-lived bursts manifested after completion of the sequence, reflecting an

anxiety-related enhancement of the post-movement beta rebound (Kilavik et al., 2012;

Kilavik et al., 2013). This effect was observed in a region of contralateral sensorimotor and right

prefrontal channels, and could be explained by anxiety alone, despite a small effect of motor vari-

ability on the modulation of these neural changes across sensorimotor electrodes. Further, larger

sensorimotor beta power at the termination of the sequence performance was associated with a

more constrained use of task-related variability. Our analyses did not provide a detailed anatomical

localization of the effect, but the findings in sensorimotor regions that partially contribute to changes

in motor variability are consistent with the involvement of premotor and motor cortex in driving

motor variability and learning, as previously reported in animal studies (Churchland et al., 2006;

Mandelblat-Cerf et al., 2009; Santos et al., 2015). The results also converge with the representa-

tion in the premotor cortex of temporal and sequential aspects of rhythmic performance

(Crowe et al., 2014; Kornysheva and Diedrichsen, 2014).

During learning, an unexpected result was that, in anx2 participants, there was an increase in

beta power at the end of the sequence performance but not during feedback processing—and

despite the anxiety manipulation successfully affecting the HRV. This outcome, as well as the lack of

beta burst effects in this group, seems to be in agreement with the lack of learning impairments

when compared with control participants. An additional unexpected result during learning blocks

was the presence in anx1 participants of higher rates of long bursts and greater beta power at the

end of the trial and during feedback processing, across both sensorimotor and prefrontal electrodes.

These phasic changes in beta activity in anx1 participants extended from the previous phase, and

the outcome aligns with the finding of prefrontal involvement in the emergence and maintenance of

anxiety states (Davidson, 2002; Grupe and Nitschke, 2013; Bishop, 2007). Thus, our results

revealed that, in the context of motor learning, anxious states induce changes in sensorimotor and

prefrontal beta power and burst distribution. These changes are maintained after physiological

measures of anxiety return to baseline, and thus continue to affect relevant behavioral parameters.

Anxiety has been shown to modulate different oscillatory bands depending on the context, such as

gamma activity in visual areas and amygdala when processing fearful faces (Schneider et al., 2018),

alpha activity in response to processing emotional faces (Knyazev et al., 2008) or theta activity dur-

ing rumination (Andersen et al., 2009). Beta-band oscillations could be particularly relevant to flesh

out the effects of anxiety on performance during motor tasks.

Mechanistically, phasic trial-by-trial feedback-locked changes in the sensorimotor beta power and

burst distribution were related to the computational alterations in updating expectations on reward

found in anx1 participants, and thus explained their poorer performance during reward-based learn-

ing. Specifically, a higher rate of long beta bursts and increased power following feedback were

associated with a reduced update in the expectation of reward.

The computational quantity that determines the update of expectations in our Bayesian model is

the precision-weighted PEs. Here, pwPE relating to reward were inversely related to the rate of long

beta bursts and beta power, and were therefore attenuated in anx1 participants because of their

enhanced feedback-related beta activity. We found no significant contribution of pwPE

relating to volatility to explaining changes in beta activity, suggesting that additional frequency

ranges should be considered when linking hierarchical pwPEs to neural oscillations during learning.

In the context of the predictive coding hypothesis, PEs (or pwPEs) are hypothesized to be mediated

by gamma oscillations, whereas the neuronal signaling of predictions is mediated by lower frequen-

cies (e.g., alpha 8–12 Hz, Friston et al., 2015). Further studies point to beta oscillations as the corti-

cal oscillatory rhythm associated with encoding predictions, although the evidence to date is scarce

(Arnal and Giraud, 2012). More recently, beta oscillations have been associated with the change to

predictions rather than with predictions themselves (Sedley et al., 2016), which is consistent with

our findings as pwPEs were the quantities determining the change to predictions. In line with these

results, a post-performance increase in beta power during motor adaptation is considered to index

confidence in priors, and thus a reduced tendency to change the ongoing motor command

(Tan et al., 2016). More generally, beta oscillations along cortico-basal ganglia networks have been
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proposed to gate incoming information to modulate behavior (Leventhal et al., 2012) and to main-

tain the current motor state (Engel and Fries, 2010). Consequently, the phasic increase in beta

power and the rate of beta bursts following feedback presentation could represent neural states

that impair the encoding of pwPEs and the update of predictions about lower level quantities—

reward here—induced by anxiety states. Notably, the modulation of feedback-locked beta activity

was not explained by changes in pwPE relating to volatility. We speculate that the effect of reduced

reward estimates on the expectation of volatility in the HGF suggests that abnormal increases in

beta activity following feedback presentation indirectly influenced volatility estimates, while it had a

direct effect on reward expectation.

Our findings show that the assessment of neural activity in sensorimotor regions is crucial to

understanding the effects of anxiety on motor learning and to determining mechanisms, above and

beyond the role of prefrontal control of attention, in mediating the effects of anxiety on cognitive

and perceptual tasks (Bishop, 2007; Bishop, 2009; Eysenck and Calvo, 1992). Our data imply that

the combination of Bayesian learning models and analysis of oscillation properties can help

us to better understand the mechanisms through which anxiety modulates motor learning. Future

studies should investigate how the brain circuits that are involved in anxiety interact with motor

regions to affect motor learning. In addition, assessing burst properties across both beta and

gamma frequency ranges would further allow us to delineate and dissociate the neural mechanisms

responsible for anxiety biasing decision-making and motor learning.

Materials and methodsParticipants and sample-size estimation Sixty right-handed

healthy volunteers (37 females) aged 18 to 44 (mean 27 years, SEM, 1 year) participated in the main

study. In a second, control experiment, 26 right-handed healthy participants (16 females, mean age

25.8, SEM 1, range 19–40) took part in the study. Participants gave written informed consent prior

to the start of the experiment, which had been approved by the local Ethics Committee at Gold-

smiths University. Participants received a base rate of either course credits or money (15 GBP;

equally distributed across groups) and were able to earn an additional sum up to 20 GBP during the

task depending on their performance.

We used pilot data from a behavioral study using the same motor task to estimate the minimum

sample sizes for a statistical power of 0.95, with an a of 0.05, using the MATLAB (The MathWorks,

Inc., MA, USA) function sampsizepwr. In the pilot study, we had one control and one experimental

group of 20 participants each. In the experimental group, we manipulated the reward structure dur-

ing the first reward-based learning block (in this block, feedback scores did not count towards the

final average monetary reward). For each behavioral measure (motor variability and mean score), we

extracted the standard deviation (sd) of the joint distribution from both groups and the mean value

of each separate distribution (e.g., m1, control; m2, experimental), which provided the following

minimum sample sizes:

Between-group comparison of behavioral parameters (using a two-tailed t-test):

MinSamplSizeA = sampsizepwr(’t’,[m1 sd],m2,0.95) = 18–20 participants.

Accordingly, we recruited 20 participants for each group in the main experiment. Next, using the

behavioral data from the anxiety and control groups in the current main experiment, we estimated

the minimum sample size for the second, behavioral control experiment:

Between-group comparison of behavioral parameters (using a two-tailed t-test):

MinSamplSizeA = sampsizepwr(’t’,[m1 sd],m2,0.95) = 13 participants.

Therefore, for the second control experiment, we recruited 13 participants for each group.

Apparatus Participants were seated at a digital piano (Yamaha Digital Piano P-255, London, UK)

and in front of a PC monitor in a light-dimmed room. They sat comfortably in an arm-chair with their

forearms resting on the armrests of the chair. The screen displayed the instructions, feedback and

visual cues for the start and end of a trial (Figure 1A). Participants were asked to place four fingers

of their right hand (excluding the thumb) comfortably on four pre-defined keys on the keyboard.

Performance information was transmitted and saved as Musical Instrument Digital Interface (MIDI)

data, which provided time onsets of keystrokes relative to the previous one (inter-keystroke-inter-

val—IKI in ms), MIDI velocities (related to the loudness, in arbitrary units, a.u.), and MIDI note num-

bers that corresponded to the pitch. The experiment was run using Visual Basic, an additional

parallel port and MIDI libraries.

Materials and experimental design In all blocks, participants initiated the trial by pressing a

pre-defined key with their left index finger. After a jittered interval of 1–2 s, a green ellipse appeared
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in the center of the screen representing the GO signal for task execution (Figure 1A). Participants

had 7 s to perform the sequence, which was ample time to complete it before the green circle

turned red indicating the end of the execution time. If participants failed to perform the sequence in

the correct order or initiated the sequence before the GO signal, the screen turned yellow. In blocks

2 and 3 during learning, performance-based feedback in the form of a score between 0 and 100 was

displayed on the screen 2 s after the red ellipse, that is, 9 s from the beginning of the trial. The

scores provided participants with information regarding the target performance.

The performance measure that was rewarded during learning was the Euclidean norm of the vec-

tor corresponding to the pattern of temporal differences between adjacent IKIs for a trial-specific

performance. Here, we denote the vector norm by Dzk k, with Dz being the vector of differences,

Dz ¼ ðz2 � z1; z3 � z2; . . . ; zn � zn�1Þ, and zi representing the IKI at each keystroke (i ¼ 1; 2::; n). Note

that IKI values themselves represent the difference between the onset of consecutive keystrokes,

and therefore Dz indicates a vector of differences of differences. Specifically, the target value of the

performance measure was a vector norm of 1.9596 (e.g., one of the maximally rewarded performan-

ces leading to this vector norm of IKI-differences would consist of IKI values: [0.2, 1, 0.2, 1, 0,2, 1,

0.2] s; that is a combination of short and long intervals). The score was computed in each trial using

a measure of proximity between the target vector norm Dz
tk k and the norm of the performed pat-

tern of IKI differences Dz
pk k, using the following expression:

score¼ 100expð� Dz
tk k� Dz

pk kj jÞ (3)

In practice, different temporal patterns leading to the same vector norm Dz
pk k could achieve the

same score. Participants were unaware of the existence of various solutions. Higher exploration

across trials during learning could thus reveal that several IKI patterns were similarly rewarded. To

account for this possibility, the perceived rate of change of the hidden goal (environmental volatility)

during learning was estimated and incorporated into our mathematical description of the relation-

ship between performance and reward (see below).

Anxiety manipulation Anxiety was induced during block1 performance in group anx1, and

during block2 performance in the anx2 group by informing participants about the need to give a 2

min speech to a panel of experts about an unknown art object at the end of that block (Lang et al.,

2015). We specified that they would first see the object at the end of the block (it was a copy of

Wassily Kandinsky’ Reciprocal Accords [1942]) and would have 2 min to prepare for the presentation.

Participants were told that the panel of experts would take notes during their speech and would be

standing in front of the testing room (due to the EEG setup participants had to remain seated in

front of the piano). Following the 2 min preparation period, participants were informed that due to

the momentary absence of panel members, they instead had to present in front of the lab members.

Participants in the control group had the task of describing the artistic object to themselves, and not

in front of a panel of experts. They were informed about this secondary task before the beginning of

block1.

Assessment of state anxiety To assess state anxiety, we acquired two types of data: (1) the

short version of the Spielberger State-Trait Anxiety Inventory (STAI, state scale X1, 20 items; Spiel-

berger, 1970) and (2) a continuous electrocardiogram (ECG, see EEG, ECG and MIDI recording ses-

sion). The STAI X1 subscale was presented four times throughout the experiment. A baseline

assessment at the start of the experiment before the resting state recording was followed by an

assessment immediately before each experimental block to determine changes in anxiety levels. In

addition, a continuous ECG recording was obtained during the resting state and three experimental

blocks were used to assess changes in autonomic nervous system responses. The indexes of heart

rate variability (HRV, coefficient of variation of the inter-beat-interval) and mean heart rate (HR) were

evaluated, as their reduction has been linked to changes in anxiety state due to a stressor

(Feldman et al., 2004).

Computational model Here, we provide details on the computational Bayesian model that we

adopted to estimate participant-specific belief trajectories, determined by the mean (expectation)

and variance (uncertainty) of the posterior distribution. The model was implemented using the HGF

toolbox for MATLAB (http://www.translationalneuromodeling.org/tapas/). The model consists of a

perceptual and a response model, representing an agent (a Bayesian observer) who generates

behavioral responses on the basis of a sequence of sensory inputs that it receives. In many
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implementations of the HGF, the sensory input is replaced with a series of outcomes (e.g. feedback,

reward) associated with participants’ responses (de Berker et al., 2016; Diaconescu et al., 2017).

As general notation, we let lowercase italics denote scalars (x), which can be further characterized by

a trial superscript xk and a subscript i denoting the level in the hierarchy xki (i = 1, 2). We use lower-

case bold font for vectors with n components, x.

The HGF corresponds to the perceptual model, representing a hierarchical belief-updating pro-

cess, that is a process that infers hierarchically related environmental states that give rise to sensory

inputs (Stefanics et al., 2018; Mathys et al., 2014). In the version for continuous inputs (see

Mathys et al. (2014); function tapas hgf:m), we used the series of feedback scores as input:

uk ¼ score; normalized to range 0–1. From the series of inputs, the HGF then generates belief trajec-

tories about external states, such as the reward value of an action or a stimulus. Learning occurs in

two hierarchically coupled levels (x1, x2), one for ‘perceptual’ beliefs (x1: the reward associated with

the current performance), and the phasic volatility of those beliefs (x2). These two levels evolve as

coupled Gaussian random walks, with the lower level coupled to the higher level through its variance

(inverse precision). The Gaussian random walk at each level xi is determined by its posterior mean

(�i) and its variance (si). Further, the variance of the lower level, x1, depends on x2 through an expo-

nential function:

f ðx2Þ ¼ expðkx2 þ!1Þ (4)

where k was fixed to 1 and !1is a model parameter that was estimated for each participant by fitting

the HGF model to the experimental data (scores and responses) using Variational Bayes.

At the top level, the variance is typically fixed to a constant parameter, # ¼ expð!2Þ, where !2 is

also a free paratemer to be estimated in each individual. The specific coupling between levels indi-

cated above has the advantage of allowing simple variational inversion of the model and the deriva-

tion of one-step update equations under a mean-field approximation. This is achieved by iteratively

integrating out all previous states up to the current trial k (see appendices in Mathys et al. [2014]).

Importantly, the update equations for the posterior mean at level i and for trial k depend on the pre-

diction errors weighted by uncertainty si (or its inverse, precision pi ¼ 1=si) according to the follow-

ing expression:

D�k
i ¼ �k

i ��k�1

i /
p̂k
i�1

pk
i

dki�1
(5)

The first term in the above expression is the change in the expectation for state xi on trial k , �k
i ,

relative to the prediction on trial k� 1, �k�1

i . The prediction on trial k� 1 is denoted by the ‘hat’ or

diacritical mark ,̂ �k�1

i ¼ �̂k
i . The term prediction thus refers to the expectation of xi before seeing the

feedback score from the current trial: it corresponds with the mean of the posterior distribution of xi
up to trial k� 1. By contrast, the term expectation refers to the mean of the posterior

distribution of xi up to trial k. The difference term D�k
i is proportional to the prediction error of the

level below, dki�1
, representing the difference between the expectation �k

i�1
and the prediction �̂k

i�1

of the level below . The prediction error is weighted by the ratio between the prediction of the pre-

cision of the level below, p̂k
i�1

, and the precision of the current belief, pk
i . Thus the product of the

precision weights and the prediction error constitute the precision-weighed prediction error (pwPE),

which therefore regulates the update of expectations on trial k: D�k
i ¼ �ki . The pwPE expressions for

level 1 and 2 are defined below in Equation 14 and Equation 15. Equation 5 illustrates that higher

uncertainty in the current level (sk
i , lower p

k
i in the denominator) leads to faster update of beliefs;

moreover, smaller uncertainty (higher precision) of the prediction of the level below also increases

the update of beliefs. For the two-level HGF model for continuous inputs, the generic equation

Equation 5 takes the explicit forms shown below (Equation 6 and Equation 10; equations taken

directly from the TAPAS toolbox; see also Mathys et al. [2011]; Mathys et al. [2014]).

Updates of expectations for level 1:

�k
1
¼ �̂k

1
þ
p̂k
u

pk
1

dku; (6)
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with p̂k
u representing the prediction of the precision of the input (feedback scores; see Table 1) and

dku the prediction error about the input:

dku ¼ uk � �̂k
1
; (7)

Precision updates for level 1:

pk
1
¼ p̂k

1
þpk

u; (8)

where p̂k
1
is defined as (using �¼ 0;k¼ 1; tk):

p̂k
1
¼

1

1

pk�1

1

þ expð�k�1

2
þ!1Þ

� � ; (9)

Update of expectations for level 2:

�k
2
¼ �̂k

2
þ
1

2

1

pk
2

wk
1
dk
1
; (10)

with

wk
1
¼ expð�k�1

2
þ!1Þp̂

k
1

(11)

Precision updates for level 2:

pk
2
¼ p̂k

2
þ
1

2
wk

1
ðwk

1
þð2wk

1
� 1Þdk

1
Þ; (12)

and

p̂k
2
¼

1

1

pk�1

2

þ expð!2Þ
: (13)

From Equation 6 and Equation 10, it follows that the pwPEs for level 1 and 2, �1 and �2, respec-

tively, are:

�k
1
¼ �k

1
� �̂k

1
¼
p̂k
u

pk
1

dku; (14)

�k
2
¼ �k

2
� �̂k

2
¼
1

2

1

pk
2

wk
1
dk
1
: (15)

Next, we mapped the expectation on the inferred perceptual beliefs, reward �1 and volatility �2,

and the corresponding pwPEs to the performance output that the participant generates

during every trial using a separate response model. We adapted the family of response models used

by Marshall et al. (2016) to our task. In that work, the authors explained participant’s observed log

(RT) responses on a trial-by-trial basis as a linear function of various HGF quantities using a multiple

regression. We implemented similar models, but adapted them to our task (new scripts are available

in the Open Science Framework Data Repository: https://osf.io/sg3u7/). The models we tested used

two different performance parameters:

The coefficient of variation of inter-keystroke intervals, cvIKItrial, as a measure of the extent of

timing variability within the trial.

The logarithm of the mean performance tempo in a trial, logðmIKItrialÞ, with IKI in milliseconds.

We were interested in how HGF quantities on the previous trial explained changes in the perfor-

mance parameters in the subsequent trial and therefore used these dependent variables:

DcvIKIktrial ¼ cvIKIktrial � cvIKIk�1
trial

DlogðmIKItrialÞ
k ¼ logðmIKIktrialÞ� logðmIKIk�1

trialÞ
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For each of those two performance measures, the corresponding response model was a function

of a constant component of the performance measure (intercept) and HGF quantities on the previ-

ous trial, such as: the expectation on reward (�1), the expectation on volatility (�2), the precision-

weighted PE relating to reward (�1), or the precision-weighted PE relating to volatility (�2). In total,

we assessed the following two families of four alternative response models HGF11-14 and HGF21-

24.

Model HGF11:

DcvIKIktrial ¼ b0 þb1�
k�1

1
þb2�

k�1

1
þ z

Model HGF12:

DcvIKIktrial ¼ b0þb1�
k�1

1
þb2�

k�1

2
þ z (16)

Model HGF13:

DcvIKIktrial ¼ b0 þb1�
k�1

2
þb2�

k�1

2
þ z (17)

Model HGF14:

DcvIKIktrial ¼ b0 þb1�
k�1

1
þb2�

k�1

2
þ z

Model HGF21:

DlogðmIKItrialÞ
k ¼ b0 þb1�

k�1

1
þb2�

k�1

1
þ z (18)

Model HGF22:

DlogðmIKItrialÞ
k ¼ b0þb1�

k�1

1
þb2�

k�1

2
þ z (19)

Model HGF23:

Table 1. Means and variances of the priors on perceptual parameters and initial values.

Priors on the parameters and initial values of the HGF perceptual model for continuous inputs. The

continuous inputs here were the trial-by-trial scores that the participants received, normalized to the

0–1 range. Quantities estimated in the logarithmic space are denoted by log(). Prior mean and vari-

ance for �0

1
, as well as the prior mean for s0

1
, !1 and the precision of the input, p0

u, were defined by

the initial 20 input values. When providing prior values that depend on the first 20 input scores, we

indicate the median across the total population of 60 participants. For the remaining quantities, the

prior mean and variance were pre-defined according to the values indicated in the table.

Prior mean Prior variance

log(k) log(1) 0

!1 log-variance of 1:20 input scores: �3.04 16

!2 –4 16

log(p0

u) negative log-variance of 1:20 input scores: 3.04 4

�0

1
value of the first input score: 0.21 variance of 1:20 input scores: 0.05

log(s0

1
) log-variance of 1:20 input scores: �3.04 1

�0

2
1 0

log(s0

2
) log(0.01) 1

b0 individual mean of behavioral parameter 4

b1 0 4

b2 0 4
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DlogðmIKItrialÞ
k ¼ b0 þb1�

k�1

2
þb2�

k�1

2
þ z (20)

Model HGF24:

DlogðmIKItrialÞ
k ¼ b0 þb1�

k�1

1
þb2�

k�1

2
þ z (21)

The priors on the model parameters (!1;!2), the response model parameters (b0;b1;b2;z), the ini-

tial expected states (�0

1
;�0

2
) and the precision of the input (pu) are provided in Table 1. All priors are

Gaussian distributions in the space in which they are estimated and are therefore determined by

their mean and variance. The variance is relatively broad to let the priors be modified by the series

of inputs (feedback scores). Quantities that need to be positive (e.g., the variance or uncertainty of

belief trajectories) are estimated in the log-space, whereas general unbounded quantities are esti-

mated in their original space.

We used Random Effects Bayesian Model Selection (BMS) to assess the different models of learn-

ing at the group level (Stephan et al., 2009; code freely available from the MACS toolbox,

Soch and Allefeld, 2018). First, the log-model evidence (LME) values for models HGF11-14 were

combined to get the log-family evidence (LFE), and similarly for models HGF21-24. The LFE values

were subsequently compared using BMS to assess which family of models provided more evidence.

BMS generated (i) the estimated model-family frequencies, that is, how frequently each family of

models is optimal in the sample of participants; and (ii) the exceedance probabilities, reflecting the

posterior probability that one family is more frequent than the others (Soch et al., 2016). In the win-

ner family, additional BMS determined the final optimal model.

EEG, ECG and MIDI recording EEG and ECG signals were recorded using a 64-channel

(extended international 10–20 system) EEG system (ActiveTwo, BioSemi Inc.) placed in an electro-

magnetically shielded room. During the recording, the data were high-pass filtered at 0.16 Hz. The

vertical and horizontal eye-movements (EOG) were monitored by electrodes above and below the

right eye and from the outer canthi of both eyes, respectively. Additional external electrodes were

placed on both left and right earlobes as reference. The ECG was recorded using two external chan-

nels with a bipolar ECG lead II configuration. The sampling frequency was 512 Hz. Onsets of visual

stimuli, key presses and metronome beats were automatically documented with markers in the EEG

file. The performance was additionally recorded as MIDI files using the software Visual Basic and a

standard MIDI sequencer program on a Windows Computer.

EEG and ECG pre-processing We used MATLAB and the FieldTrip toolbox

(Oostenveld et al., 2011) for visualization, filtering and independent component analysis (ICA; run-

ica). The EEG data were highpass-filtered at 0.5 Hz (Hamming windowed sinc finite impulse response

[FIR] filter, 3380 points) and notch-filtered at 50 Hz (847 points). Artifact components in the EEG

data related to eye blinks, eye movements and the cardiac-field artifact were identified using ICA.

Following IC inspection, we used the EEGLAB toolbox (Delorme and Makeig, 2004) to interpolate

missing or noisy channels using spherical interpolation. Finally, we transformed the data into com-

mon average reference.

Analysis of the ECG data with FieldTrip focused on detection of the QRS-complex to extract the

R-peak latencies of each heartbeat and use them to evaluate the HRV and HR measures in each

experimental block.

Analysis of power spectral density We first assessed the standard power spectral density

(PSD, in mV2=Hz) of the continuous raw data in each performance block and separately for each

group. The PSD was computed with the standard fast Fourier Transform (Welch method, Hanning

window of 1 s with 50% overlap). The raw PSD estimation was normalized into decibels (dB) with the

average PSD from the initial rest recordings (3 min). Specifically, the normalized PSD during the per-

formance blocks was calculated as ten times the base-10 logarithm of the quotient between the per-

formance-block PSD and the resting state power.

In addition, we assessed the time course of the spectral power over time during performance. Tri-

als during sequence performance were extracted from �1 to 11 s locked to the GO signal. This

interval included the STOP signal (red ellipse), which was displayed at 7 s, and—exclusively in learn-

ing blocks—the score feedback, which was presented at 9 s. Thus, epochs were effectively also

locked to the STOP and Score signals. Artifact-free EEG epochs were decomposed into their time-

frequency representations using a 7-cycle Morlet wavelet in successive overlapping windows of 50
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ms within the total 12s-epoch. The frequency domain was sampled within the beta range from 13 to

30 Hz at 1 Hz intervals. For each trial, we thus obtained the complex wavelet transform, and com-

puted its squared norm to extract the wavelet energy (Ruiz et al., 2009). The time-varying spectral

power was then simply estimated by averaging the wavelet energy across trials. This measure of

spectral power was further averaged within the beta-band frequency bins and normalized by sub-

tracting the mean and dividing by the standard deviation of the power estimate in the pre-move-

ment baseline period ([�1, 0] s prior to the GO signal).

Extraction of beta-band oscillation bursts We estimated the distribution, onset and dura-

tion of oscillation bursts in the time series of beta-band amplitude envelope. We followed a proce-

dure adapted from previous work to identify oscillation bursts (Poil et al., 2008; Tinkhauser et al.,

2017). In brief, we used as threshold the 75% percentile of the amplitude envelope of beta oscilla-

tions. Amplitude values above this threshold were considered to be part of an oscillation burst if

they extended for at least one cycle (50 ms, as a compromise between the duration of one 13 Hz-

cycle [76 ms] and 30 Hz-cycle [33 ms]). Threshold-crossings that were separated by less than 50 ms

were considered to be part of the same oscillation burst. As an additional threshold, the median

amplitude was used in a control analysis, which revealed qualitatively similar results, as expected

from previous work (Poil et al., 2008). Importantly, because threshold crossings are affected by the

signal-to-noise ratio in the recording, which could vary between the different performance blocks,

we selected a common threshold from the initial rest recordings separately for each participant

(Tinkhauser et al., 2017). Distributions of the rate of oscillation bursts per duration were estimated

using equidistant binning on a logarithmic axis with 20 bins between 50 ms and 2000 ms.

General burst properties were assessed during exploration and learning blocks separately, first as

averaged values within the full block-related recording, and next as phasic changes over time during

trial performance. Trial-based analysis focused on the interval 0–11000 ms following the GO signal,

which included the time window following the STOP signal (at 7000 ms: exploration and learning

blocks) and the score feedback (at 9000 ms: learning blocks).

Statistical analysis Statistical analysis of behavioral and neural measures focused on the sepa-

rate comparison between each experimental group and the control group (contrasts: anx1 – con-

trols, anx2 –controls). Differences between experimental groups, anx1 – anx2, were evaluated

exclusively concerning the overall achieved monetary reward. We used non-parametric pair-wise per-

mutation tests to assess differences between conditions or between groups in the statistical analysis

of behavioral or computational measures. When multiple testing was performed, we implemented a

control of the false discovery rate (FDR) at level q = 0.05 using an adaptive linear step-up procedure

(Benjamini et al., 2006). This control provided an adapted threshold p-value (termed PFDR). Further,

to evaluate differences between sets of multi-channel EEG signals corresponding to two conditions

or groups, we used two approaches:
1. Tonic changes in average beta PSD or the scaling exponent of the burst distribution were

assessed using two-sided cluster-based permutation tests (Maris and Oostenveld, 2007) and
an alpha level of 0.025. Here, we used all 64 channels and let the statistical method extract the
significant clusters. Control of the family-wise error (FWE) rate was implemented in these tests
to account for the problem of multiple comparison (Maris and Oostenveld, 2007).

2. Phasic or event-related changes in beta power or burst rate across time were assessed using
pair-wise permutation tests at each time point and exclusively in a subset of channels across
sensorimotor and anterior (prefrontal) electrode regions (Figure 10—figure supplement 1).
The relevant subset was chosen to ameliorate the number of multiple comparisons arising
from time and space—channels). When using these tests, we implemented a control of the
FDR at level q = 0.05 to correct for multiple comparisons.

Non-parametric effect size estimators were used in association with our pair-wise nonparametric

statistics, following Grissom and Kim (2012). In the case of between-subject comparisons, the stan-

dard probability of superiority, D, was used. D is defined as the proportion of greater values in sam-

ple B relative to A, when values in samples A and B are not paired: D ¼ PðA>BÞ ranges from 0 to 1.

The total number of comparisons is the product of the size of sample A and sample B

(Ntot ¼ sizeA � sizeB), and therefore, D ¼ NðA>BÞ=Ntot. In the case of ties, D is corrected by subtract-

ing in the denominator the number of ties from the total number of comparisons (Ntot � Nties). For

within-subject comparisons, we used the probability of superiority for dependent samples, Ddep,

which is the proportion of all within-subject (paired) comparisons in which the values for condition B

are larger than for condition A. Confidence intervals (CI) for D and Ddep were estimated with
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bootstrap methods (Ruscio and Mullen, 2012). Last, associations between parameters were quanti-

fied using non-parametric rank correlations (Spearman �), which are robust against outliers. How-

ever, we used linear correlations in the case of multiple linear regressions for the HGF response

model, following Marshall et al. (2016).
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Decision letter In the interests of transparency, eLife publishes the most substantive revision

requests and the accompanying author responses.

Acceptance summary:

In this article, the authors manipulate state anxiety and examine the relationship between anxiety

and motor learning. Using electrophysiology and modeling approaches, they show that anxiety con-

strains flexible behavioral updating.

Decision letter after peer review:

Thank you for submitting your article "Alterations in the amplitude and burst rate of beta oscilla-

tions impair reward-dependent motor learning in anxiety" for consideration by eLife. Your article has

been reviewed by three peer reviewers, including Nicole C Swann as the Reviewing Editor and

Reviewer #3, and the evaluation has been overseen by a Reviewing Editor and Laura Colgin as the

Senior Editor. The following individuals involved in review of your submission have agreed to reveal

their identity: Preeya Khanna (Reviewer #1).

The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted

this decision to help you prepare a revised submission.

Summary:

This article addresses the relationship between anxiety and motor learning. Specifically, the

authors show that anxiety during a baseline exploration phase caused subsequent impairments in

motor learning. They go on to use a Bayesian modeling approach to show that this impairment was

due to biased estimates of volatility and performance goal estimates. Finally, they couple their

behavioral analyses to electrophysiology recordings with a particular focus on sensorimotor (and to a

lesser extend prefrontal) beta. They show that post-movement beta rebound is elevated in the anxi-

ety condition. The authors also utilized a novel "beta bursting approach", which in some ways reca-

pitulated the beta power findings, but using a contemporary and exciting method which likely more

accurately captures brain activity. Using this approach they show power difference may be driven by

increases in burst duration in the anxiety condition – which parallels recent findings in Parkinson’s

disease populations.

Overall, the reviewers were impressed with many aspects of this manuscript. We appreciated the

multi-modal approach (incorporating heart rate measures, clinical rating scales, modeling, and elec-

trophysiology). We also found the behavioral results related to anxiety and motor learning particu-

larly interesting given that they contribute to the existing literature on reward-based learning and

volatility, but extends these findings to the motor domain. We also appreciated that the author’s

actually manipulated state anxiety (rather than relying on individual differences) since this approach

allows stronger inferences to be made about causality. Finally, the reviewers noted that the exten-

sion of sensorimotor beta outside the motor domain is a novel contribution.
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While we were overall enthusiastic, the reviewers did note difficulty in reading the paper.

Although the writing was generally clear, the rationale and flow of the presentation of results, partic-

ularly for the modeling and EEG findings, were often difficult to understand. For instance, we felt

that overall the presentation of the EEG results did not follow a logical flow, and it was sometimes

difficult to understand why certain analytic methods were chosen. We also noted that the link

between the different modalities could be made more clearly and that additional controls could be

added to rule out a motoric contribution to the beta effects. Finally, additional information is needed

for the model results. We elaborate on each of these points further below.

Essential revisions:

1) We suggest the authors carefully consider the nomenclature of the conditions and how each

relates to motor learning.

For instance, referring to the "exploration" phase as "baseline" caused some confusion since

"baseline" typically implies some "pre-manipulation" phase of task.

Related to above, further consideration of how the conditions map onto motor learning would be

helpful. In this study, subjects were already instructed to explore task-related dimensions during the

baseline period, but were not given feedback during this period. It is unclear how this maps to typi-

cal motor "exploration" in the reinforcement learning sense since there is no reinforcement during

this period. Additionally, it isn’t just a passive baseline measurement since subjects are actively doing

something. Further interpretation of how this exploration/baseline phase maps onto other motor

learning paradigms, either in the Introduction or Discussion section, would be helpful.

2) Similarly, the use of the terms "learning" and "training" for the second phase of the experi-

ment caused us some confusion. A consistent terminology would have made the manuscript easier

to follow.

3) Overall, a strength of the study is the use of many different modalities; however, at present,

findings from these modalities are often not linked together. It would be helpful to tie the disparate

methods together if some analyses were done to link the different measures. For instance, additional

plots like those in Figure 3C-D could be included which correlate different measures to one another

across participants. (For example, (a) correlating the model predictions (i.e. belief of environment

volatility) and higher variability in cvIKI on a subject-to-subject basis to help link the more abstract

model parameters to behavioral findings and (b) correlating post-feedback beta power with both

volatility estimates and cvIKI variability.)

4) In general, the figures could benefit from more labeling and clarification. Some specific exam-

ples are mentioned below, but in general, it was not always clear which electrodes data were from,

what time periods were shown, which groups, etc.

5) Please include model fits with the results (i.e. how well do they estimate subjects’ behavior on

a trial-by-trial basis and are there any systemic differences in the model fits across groups?).

6) Please provide a summary figure showing what data is included in the model and perhaps a

schematic that illustrates what the model variables are and example trajectories that the model

generates.

7) It would be helpful to provide examples to give some intuition about what types of behavior

would drive a change in "volatility". For example, can more information be provided to help the

reader understand if the results (presented in Figure 10 for instance) enable predictions about sub-

jects’ behavior? If beta is high on one trial during the feedback period, does that mean that the

model makes a small change in the volatility estimate? How does this influence what the participants

are likely to do on the next trial?

8) Generally, the EEG analysis opens up a massive search space (all electrodes, several seconds of

data, block-wise analyses, trial-wise analyses, sample-wise analyses, power quantifications, burst-

quantifications, long bursts, short bursts, etc.), and the presentation of the findings often jump

around frequently between power quantification, burst-quantifications, block-wise, and trial-wise

analysis etc. It would be much easier to follow if a few measurements were focused on that were a

priori justified. These could be clearly laid out in the introduction with some explanation as to why

they were investigated and what each measure might tell the reader. Then, if additional analyses

were conducted, these should be explained as post hoc with appropriate justifications and statistical

corrections.

9) The EEG results could be better connected to the other findings: for instance, by correlating

beta results to model volatility estimates or cvIKI variability, as described above.
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10) The reviewers felt that an important contribution of this paper was the potential non-motor

findings related to sensorimotor beta. However, because there were also motoric differences

between conditions, it seems very important to verify whether the beta differences were driven by

motoric differences or anxiety-related manipulations. We appreciate the analyses in Figure 8—figure

supplement 1 to try to rule out the motoric contribution to the sensorimotor beta differences, but

note that this only controlled for certain kinds of movement variability. We would like to see controls

for other possible differences in movement between the conditions, for instance differences in move-

ment length, or movement length variability. Finally, is there a way to verify if the participants moved

at all after they performed the task?

11) We would like to see what the between group differences for beta power and beta bursts

look like during the rest period before the baseline? (For instance, if Figure 7 were generated for

rest data?)

[Editors’ note: further revisions were suggested prior to acceptance, as described below.]

Thank you for re-submitting your article "Alterations in the amplitude and burst rate of beta oscil-

lations impair reward-dependent motor learning in anxiety" for consideration by eLife. Your article

has been reviewed by three peer reviewers including Nicole C Swann as the Reviewing Editor and

Reviewer #3, and the evaluation has been overseen by a Reviewing Editor and Laura Colgin as the

Senior Editor. The following individuals involved in review of your submission have agreed to reveal

their identity: Preeya Khanna (Reviewer #1); Jan R Wessel (Reviewer #2).

The reviewers have discussed the reviews with one another and the Reviewing Editor has drafted

this decision to help you prepare a revised submission.

Summary:

In general, the authors did a good job addressing our comments. We were especially happy with

clarified EEG analysis and, in particular, the care the authors took to avoid potential motoric drivers

of beta differences. Given that the authors made significant changes to the manuscript in response

to our previous comments, we send the paper out for re-review, and identified a few remaining

items in need of clarification. The majority of these are related to the updated model, but we also

had a few questions about the EEG analysis, code sharing, and minor points (typos, etc.) We elabo-

rate on these below.

Essential revisions:

Related to the updated model: We have summarized some aspects of the modeling that we

believe would benefit from additional explanation (to make the manuscript more broadly accessible).

We apologize that we did not bring some of these up in the first submission, but these questions

arose either due to the use of the new model or because of clarifications in the revision that pro-

vided new insight to us about the model.

1) Explanation/interpretation of the Bayesian modeling – Definitions:

Thank you for Figure 5 – this added clarity to the modeling work but we still are having trouble

understanding the general structure of the model. It would be helpful to clearly define the following

quantities that are used in the text (in the Materials and methods section before any equations are

listed), and ideally also in a figure of example data.

"input" – does this mean the score for a specific trial k? We found this a little misleading since an

"input" would usually mean some sort of sensory or perceptual input (as in Mathys 2014), but in this

case it actually means feedback score (if we understood correctly). Also, please define uk before

Equation 3 and Equation 4, and ideally somewhere in Figure 5;

- Please clarify how the precision of the input is measured? (Used in Equation 3).

"predicted reward" – from the Mathys et al., 2014 paper we gathered that this is the mean of x1
obtained on the previous trial? Is this correct? If so, please clarify/emphasize. To increase broad

accessibility of the manuscript, it would be helpful to summarize in words somewhere what the

model is doing to make predictions. For example, in the paragraph after Equation 2, we weren’t

sure what the difference is between prediction of x1 and expectation of x1. Typically this terminology

would correspond to: prediction = E(x1 on trial k | information up to trial k-1), and expectation = E

(x1 on trial k | information up to trial k) but it wasn’t clear to us.

"variance vs. precision vs. uncertainty" – These are well defined words but it would also help

immensely to only use "variance" or "precision" or "uncertainty" in the explanation/equations. Men-

tally jumping back and forth gets confusing.
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- "belief vs. expectation" – Are these the same? What is the mathematical definition (is it Equa-

tions 3 and 7)?

- "pwPE" – please list the equation for this somewhere in the methods, ideally before use of the

epsilons in the response variable models.

2) Inputs/outputs of the model:

Inputs – we gather that the input to the model is the score that the participant receives. Then x1
gets updated according to Equation 3. So x1 is tracking the expected reward on this trial assuming

that the reward on the previous trial must be updated by a prediction error from the current trial? Is

this reasonable assumption for this task? What if the participants are exploring new strategies trial

to trial? Why would they assume that the reward on the next trial is the same as the current trial (i.e.

why is the predicted reward = uik-1)? Or is this the point (i.e. if trial to trial the subjects change their

strategy a lot that this will end up being reflected as a higher "volatility")? It would be helpful to out-

line how the model reflects different regimes of behavior (i.e. what does more exploratory behavior

look like vs. what is learning expected to look like).

Outputs – response models; please clarify why cvIKItrial and log(mIKI) are the chosen responses

since these are not variables that are directly responsible for the reward? We thought that the objec-

tive of this response modeling was to determine how a large prediction error on the previous trial

would influence action on the next trial? Perhaps an output metric could be [similarity between trial

k, trial k-1] = B0 + B1(uik-1) + B2(pwPEk-1)? So, depending on the reward and previous prediction

error, you get a prediction of how similar the next trials’ response is to the current trials’ response?

Right now, we don’t understand what is learned from seeing that cvIKItrial is higher with higher

reward expectation (this is almost by necessity right? because the rewarded pattern needs high

cvIKI) or higher prediction error.

3) Interpretation of the model:

Is the message from Figure 6A that the expected reward is lower for anx1 than anx2 and control?

Since the model is trying to predict scores from actual score data, isn’t this result expected given

Figure 4A. Can the authors please clarify this?

We noticed that log(m2) is lower for anx1 and anx2 than control. Should this correspond to a shal-

lower slope (or a plateau in score that is reached more quickly) in Figure 4A over learning for anx1?

If so, why don’t we see that for anx2? If this is true, and given that cvIKI is no different for anx1,

anx2, and control, wouldn’t that mean that the reward rate is plateauing faster for anx1 and anx2

while they are still producing actions that are equally variable to control? So, are participants some-

how producing actions that are variable yet getting the same reward – so they’re getting "stuck"

earlier on in the learning process? Can the authors provide some insight into what type of behavior

trends to expect given the finding of Figure 6B-C? Right now all the reader gets as far as interpreta-

tion goes is that the anx1 group underestimates "environmental volatility" and that the mean behav-

ior and cvIKI is the same across all groups.

Does underestimating volatility mean that subjects just keep repeating the same sequence over

and over? If so, can that be shown? Or does it mean that they keep trying new sequences but fail to

properly figure out what drives a higher reward? Since the model is fit on the behavior of the partici-

pants, it should be possible to explain more clearly what drives the different model fits.

Related EEG Analysis: We greatly appreciated the clarified EEG analysis. Re-reading this section,

we were able to understand what was done much better, but had two queries related to the

analysis.

1) We noted that the beta envelope in Figure 7A looks unusual. It looks almost like the absolute

value of the beta – filtered signal rather than the envelope, which is typically smoother and does not

follow peaks and troughs of the oscillation. Can the authors please clarify how this was calculated?

2) In subsection “Analysis of power spectral density”, the authors write: "The time-varying spec-

tral power was computed as the squared norm of the complex wavelet transform, after averaging

across trials within the beta range." This sounds like the authors may have calculated power after

averaging across trials? Is this correct (i.e. was the signal averaged before the wavelet transform,

such that trial to trial phase differences may cancel out power changes?), or do the authors mean

that they averaged across trials after extracting beta power for each trial? If the former the author

should emphasize that this is what they did, since it is unconventional.

3) To try to understand point 2 above, we checked if the authors had shared their code, and

found that, although data was shared, code was not, as far as we could tell. eLife does require code
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sharing as part of their policies (https://reviewer.elifesciences.org/author-guide/journal-policies) so

please include that.

Author response Essential revisions:

1) We suggest the authors carefully consider the nomenclature of the conditions and how each

relates to motor learning.

For instance, referring to the "exploration" phase as "baseline" caused some confusion since

"baseline" typically implies some "pre-manipulation" phase of task.

Related to above, further consideration of how the conditions map onto motor learning would be

helpful. In this study, subjects were already instructed to explore task-related dimensions during the

baseline period, but were not given feedback during this period. It is unclear how this maps to typi-

cal motor "exploration" in the reinforcement learning sense since there is no reinforcement during

this period. Additionally, it isn’t just a passive baseline measurement since subjects are actively doing

something.

Agreed; the first experimental phase (termed baseline before) has been relabeled as “initial

exploration” or, in some instances, “exploration” phase.

We prefer the term “initial exploration” as it should be understood as the first experimental

phase (block 1). This does not imply that participants did not to use some degree of exploration in

learning phase. The learning phase was indeed expected to require some degree of exploration dur-

ing the first trials, followed by exploitation of the inferred performance goal (see below, and Figure

4—figure supplement 1). This transition from exploration to exploitation during the learning blocks

directly relates to earlier investigations of reinforcement learning (see below).

In the revised manuscript, we have clarified why we used the initial motor exploration phase:

“The rationale for including a motor exploration phase in which participants did not receive trial-

based feedback or reinforcement was based on the findings that initial motor variability (in the

absence of reinforcement) can influence the rate at which participants learn in a subsequent motor

task (Wu et al., 2014).”

The findings of Wu et al., 2014 are significant in demonstrating that initial motor variability mea-

sured when participants perform ballistic arm movements in the absence of reinforcement or visual

feedback can predict the rate of reward-based learning in a subsequent phase.

Similarly, in our study the initial motor exploration phase aimed to assess an individual’s use of

motor variability in the absence of feedback and when there was no hidden goal to infer. Motor vari-

ability here would be driven by internal motivation (and/or motor noise) and would not be guided by

explicit external reward.

The fundamental question for us was to determine whether larger task-related variability during

block 1 would improve subsequent reward-based learning, even if during the learning blocks a suc-

cessful performance required participants to exploit the inferred goal. We have created Figure 4—

figure supplement 1, which illustrates the result of progressive reduction in temporal variability in

the learning blocks (increased exploitation) as participants approached and aimed to maintain the

solution. This drop in temporal variability is one of the hallmarks of learning (Wolpert et al., 2010).

Based on our results, we suggest that initial exploration may facilitate learning of the mapping

between the actions and their sensory consequences (even without external feedback)”, which had a

positive influence on subsequent learning “from performance-related feedback”.

Further interpretation of how this exploration/baseline phase maps onto other motor learning

paradigms, either in the Introduction or Discussion section, would be helpful.

Thanks. By assessing motor variability during an initial exploration period before a reward-based

learning period, Wu et al., (2014) positively correlated initial variability with learning curve steepness

during training – a relationship previously observed in the zebra finch (Kao et al. 2005, Olveczky

et al., 2005, 2011). This suggests that higher levels of motor variability do not solely amount to

increased noise in the system. Instead, this variability represents a broader action space that can be

capitalised upon during subsequent reinforcement learning by searching through previously

explored actions (Herzfeld and Shadmehr, 2014). However, two recent studies using visuomotor

adaptation paradigms could not find a similar correlation between motor variability and the rate of

motor adaptation (He et al., 2016, Singh et al., 2016). Aiming to align this discrepancy in results,

Dhawale et al., (2017) identified that in contrast to Wu et al., (2014), the aforementioned studies

gave task-relevant feedback during baseline, which in turn updates the internal model of the action,

accentuating execution noise over planning noise. They hypothesise that variability driven by
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planning noise underlies learning-related motor exploration (Dhawale et al., 2017). In this study, we

aimed to investigate the effect of state anxiety on initial variability prior to a reward-based learning

period.

We had summarised those arguments in the previous Discussion. Now, we have also added:

Discussion section: “Another consideration is that our use of an initial exploration phase that did

not provide reinforcement or feedback signals was motivated by the work of Wu and colleagues

(2014), which demonstrated a correlation between initial variability (no feedback) and learning curve

steepness in a subsequent reward-based learning phase– a relationship previously observed in the

zebra finch (Kao et al., 2005; Olveczky et al., 2005, 2011). This suggests that higher levels of motor

variability do not solely amount to increased noise in the system. Instead, this variability represents a

broader action space that can be capitalised upon during subsequent reinforcement learning by

searching through previously explored actions (Herzfeld and Shadmehr, 2014). Accordingly, an impli-

cation of our results is that state anxiety could impair the potential benefits of an initial exploratory

phase for subsequent learning.”

2) Similarly, the use of the terms "learning" and "training" for the second phase of the experi-

ment caused us some confusion. A consistent terminology would have made the manuscript easier

to follow.

Agreed, we have settled for “learning”. The term “training” was used in analogy to Wu et al.,

(2014) – learning is more appropriate.

3) Overall, a strength of the study is the use of many different modalities; however, at present,

findings from these modalities are often not linked together. It would be helpful to tie the disparate

methods together if some analyses were done to link the different measures. For instance, additional

plots like those in Figure 3C-D could be included which correlate different measures to one another

across participants. (For example, (a) correlating the model predictions (i.e. belief of environment

volatility) and higher variability in cvIKI on a subject-to-subject basis to help link the more abstract

model parameters to behavioral findings and (b) correlating post-feedback beta power with both

volatility estimates and cvIKI variability.)

Agreed.

a) The new family of response models used allowed us to obtain the best model that links trial-

by-trial behavioural responses and HGF quantities. Details are provided below in our reply to Q7.

In brief, the winning response model explains the variability of temporal intervals within the trial

(cvIKItrial) as a linear function of the reward estimates, m1, and the precision-weighted PE about

reward, e1. This model outperformed other alternative response models that used m2, e2 and differ-

ent combinations of m1, m2, e1, e2, as well as a different response measure (logarithm of the mean

IKI).

Thus, an increase in the estimated reward m1 and an enhanced pwPE e1 that drives belief updat-

ing about reward would contribute to a larger degree of temporal variability (less isochronous per-

formance) on the current trial. This result is intuitively meaningful as the score was directly related to

the norm of the difference IKI values across successive keystrokes and the hidden goal actually

required a relatively large difference between successive IKI values, which would also be associated

with larger cvIKItrial values. Thus, the winning response model captured how the inferred environ-

mental states (m1 and e1) mapped to the observed responses (cvIKItrial) on a trial-by-trial basis.

Note that the trial-wise measure cvIKItrial is different from the standard measure of motor variabil-

ity across trials we used in the manuscript, cvIKI.

New Figure 6—figure supplement 1: Across all our participants, the measure of changes in

across-trial temporal variability (cvIKI: difference from learning block1 to block2) was positively asso-

ciated with the changes in volatility estimates (m2: difference between learning block2 and block1).

This was revealed in a non-parametric Spearman correlation (rho = 0.398, p = 0.002), supporting

that participants who performed more different timing patterns across trials in block2 relative to

block1 also increased their volatility estimate in block2 as compared to block1. Conversely, partici-

pants who showed a tendency to exploit the rewarded performance decreased their estimate of

volatility.

b) Correlations between post-feedback beta power and HGF estimates:

Because in the predictive coding framework the quantities that are thought to dominate the EEG

signal are the pwPEs (Friston and Kiebel, 2009), we had assessed the relation between belief

updates (regulated by pwPEs on level 1 and 2) and the post-feedback beta activity. The revised
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manuscript also follows this approach, but we have improved the analysis by assessing simulta-

neously the effect of e1 and e2 on the beta power activity running a multiple linear regression in all

participants. The results indicate that both e1 and e2 have a significant negative effect on the beta

activity (power and rate of long bursts) across participants. Furthermore, the analysis demonstrates

that using e2 as second predictor in the multiple regression analysis adds significant predictive

power to using simply e1 as a predictor.

We did not expect beta activity to facilitate the “encoding” of volatility estimates directly, but

only precision-weighted PEs about volatility. Accordingly, our results linking post-feedback beta

activity to pwPE about reward and volatility provide a mechanism through which beliefs about vola-

tility (and reward) are updated.

For the reviewers, we have also assessed the correlation between the mean post-feedback beta

activity (power) and the degree of motor variability across trials during the learning blocks, cvIKI,

and we found no significant association (Spearman r < 0.08, P = 0.56). This suggests that post-feed-

back beta activity is not associated on a trial-by-trial basis with the overall degree of motor variabil-

ity, but rather with the step of the updates in beliefs (e1, e2).

By contrast, during the initial exploration phase, there was a significant non-parametric correla-

tion between the averaged beta activity after the STOP signal and the degree of motor variability

across trials (Spearman r < -0.4397, P = 0.0001). This result links increased use of motor variability

during exploration with a reduction in beta power following trial performance. See new Figure 8—

figure supplement 6.

4) In general, the figures could benefit from more labeling and clarification. Some specific exam-

ples are mentioned below, but in general, it was not always clear which electrodes data were from,

what time periods were shown, which groups, etc.

Agreed. We have made the labeling of analyses and figures more explicit.

In the large figures with subplots, e.g. Figure 8, and former Figure 8—figure supplements 1-5 we

had used one topographic sketch to illustrate the electrodes of the effect across all measures,

although the sketch was used in only one of the subplots, in the one with more empty space to allow

for the inset. We have kept this system for the figure, but we now added a clarification in the figure

caption.

5) Please include model fits with the results (i.e. how well do they estimate subjects’ behavior on

a trial-by-trial basis and are there any systemic differences in the model fits across groups?).

Agreed. In the revised manuscript we provide as Figure 5—figure supplement 3 the grand-aver-

age of the trial-by-trial residuals in each group. The residuals represent the trial-by-trial difference

between the observed responses (y) and those predicted by the model (predResp): res = y –

predResp.

In the winning response model (see below for new response models tested), the relevant

response variable that was identified was cvIKItrial (cv of IKI values across keystroke positions in a

trial).

We also summarise here the results from Figure 5—figure supplement 3 by computing in each

group the mean residual values across trials:

cont: 0.0001 (0.0002)

anx1: 0.0001 (0.0001)

anx2: 0.0002 (0.0001)

In the second control experiment we obtained the following mean residual values per group:

cont: 0.0008 (10-6)

anx3: 0.0001 (0.0008)

There were thus no systematic differences in the model fits across groups and the low mean

residual values further indicate that the model captured the fluctuations in data well.

6) Please provide a summary figure showing what data is included in the model and perhaps a

schematic that illustrates what the model variables are and example trajectories that the model

generates.

Thanks for the suggestion. We have added a schematic in Figure 5 illustrating the model’s hierar-

chical structure and the belief trajectories.

In addition, we have provided the detailed update equations for belief and precision estimates in

the two-level HGF perceptual model (equations 3-10). This will improve the understanding of how

relevant model output variables evolve in time. Moreover, in the revised manuscript we have used
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more complete response models, using as reference the work by Marshall et al., (2016), that allow us

to address the next question raised by the reviewers (Q7, see below). How the response model

parameters influence the input to the two-level perceptual model is also reflected in the equations

and the schematic in Figure 5. Details on the new response models are provided in Q7.

In Figure 5, we indicate how model parameters w1 and w2 influence the estimates at each level.

Parameter w1 represents the strength of the coupling between the first and second level, whereasw2

modulates how precise participants consider their prediction on that level (larger p̂2or smaller w2).

Thus, w1 and w2 additionally characterise the individual learning style (Weber et al., 2019).

The new Figure 5—figure supplement 1 illustrates using simulated data how different values of

w1 or w2 affect the changes in belief trajectories across trials, for an identical series of input scores.

In Figure 5—figure supplement 1A we can observe how smaller values of w1 attenuate the general

level of volatility changes (less pronounced updates or reduction). By contrast, in panel Figure 5—

figure supplement 1C, we note that w2 regulates the scale of phasic changes on a trial-by-trial basis,

with larger w2 values inducing more sharp or phasic changes to prediction violations in the level

below (changes in PE at level 1).

In terms of the analysis of the computational quantities, we have now added a between-group

comparison in w1 and w2. The results highlight that “In addition to the above-mentioned group

effects on relevant belief and uncertainty trajectories, we found significant differences between anx1

and control participants in the perceptual parameter w1(mean and SEM values for w1: -4.9 [0.45] in

controls, -3.7 [0.57] in anx1, P = 0.031) but not in w2 : -2.8 [0.71] in controls, -2.4 [0.76] in anx1 (P >

0.05). The smaller values of w1 in anx1 correspond with an attenuation of the updates in volatility

(less pronounced updates or reduction). The perceptual model parameters in anx2 did not signifi-

cantly differ from those in control participants either (P> 0.05; mean and SEM values for w1 and w2

in anx2 were -5.4 [0.81] and -1.8 [0.74]).”

In the second, control experiment, the group-average values of w1 and w2 were: -4.1 (SEM 0.53)

and -3.3 (0.29) for controls; -4.4 (0.38) and -3.6 (0.32) in anx3. There were no significant differences

between groups in these values, P > 0.05.

7) It would be helpful to provide examples to give some intuition about what types of behavior

would drive a change in "volatility". For example, can more information be provided to help the

reader understand if the results (presented in Figure 10 for instance) enable predictions about sub-

jects’ behavior? If beta is high on one trial during the feedback period, does that mean that the

model makes a small change in the volatility estimate? How does this influence what the participants

are likely to do on the next trial?

Thanks for this question, which has motivated us to make a substantial improvement in the

response models we use in the HGF analysis. We provide a detailed explanation below, but the sum-

mary can be stated here:

Yes, a higher value of beta power or burst rate during feedback processing is associated with a

smaller update in the volatility estimate (smaller pwPE on level 2, e2) in that trial. But also, with a

smaller update in the belief about reward (e1).

Regarding e2 , if a participant had a biased estimate of volatility (underestimation or overestima-

tion), a drop in beta activity during feedback processing would promote a larger update in volatility

(through e2) to improve this biased belief. Similarly, a reduction in beta activity would also increase

updates in reward estimates (through e1), which in the winning response model is linked to the per-

formance measure, and thus increases cvIKItrial.

Following the anxiety manipulation in our study we find a combination of biased beliefs about vol-

atility and reward and increased feedback-locked beta activity, which would be associated with

reduced values of e2ande1. Accordingly, biased beliefs are not updated appropriately in state

anxiety.

In the revised manuscript, we provide a more complete description of the two-level HGF for the

perceptual and response models. The perceptual model describes how a participant maps environ-

mental causes to sensory inputs (the scores), whereas the response model maps those inferred envi-

ronmental causes to the performance output the participant generates every trial.

In the following, we provide detailed explanations on these aspects: (A) how phasic volatility is

estimated in the perceptual model, and (B) how changes in volatility may influence changes in behav-

iour. Ultimately, we address (C) how beta power and burst rate can drive the updates in volatility

estimates.

Sporn et al. eLife 2020;9:e50654. DOI: https://doi.org/10.7554/eLife.50654 45 of 59

Research article Neuroscience

https://doi.org/10.7554/eLife.50654


A) Concerning the perceptual model, we have included the update equations for beliefs and pre-

cision (inverse variance) estimates at each level. This helps clarify what contributes to changes in the

estimation of environmental volatility. An additional illustration is provided in the new HGF model

schematic (Figure 5).

Estimates about volatility in trial k are updated proportionally to the environmental uncertainty,

the precision of the prediction of the level below, p̂1, and the prediction error in the level below, d1;

volatility estimates are also inversely proportional to the precision of the current level, p2:

�k
2
¼ �̂k

2
þ
1

2

1

pk
2

wk
1
dk
1
;

With

wk
1
¼ expð�k�1

2
þ!1Þp̂

k
1

We have dropped parameter k and the time step t from these expressions (see Mathys et al.,

2011, 2014), as they take value = 1.

The expression exp(m2k-1+ w1) is often termed environmental uncertainty, and is defined as the

exponential of the volatility estimate on the previous trial (before seeing the feedback) and the cou-

pling parameter w1, also termed tonic volatility (Mathys et al., 2011, 2014).

The equations above illustrate the general property of the HGF perceptual model that belief

updates depend on the prediction error (PE) of the level below, weighted by a ratio of precisions.

Thus, a larger PE about reward, d1, will increase the step of the update in volatility – participants

render the environment to be more unstable. However, the PE contribution is weighted with the pre-

cision ratio: when an agent places more confidence on the estimates of the current level (larger pre-

cision 2), the update step for volatility will be reduced. On the other side, a larger precision of the

prediction at the level below (p̂1) will increase the update in volatility. If the prediction about reward

is more precise, then the PE about reward will be used to a larger degree (through the product

p̂1d1).

Therefore, in addition to constant contributions from the tonic volatility w1 to the update, the

main quantity that drives the updates in volatility is the ratio of precision between lower and current

level, thereby affecting how much the PE about reward contributes to the belief updating in

volatility.

B) The revised manuscript tested several new more complete response models using as reference

the work by Marshall et al. (2016). In that work, the authors described in a different paradigm how

the participant’s perceptual beliefs map onto their observed log(RT) responses on a trial-by-trial

basis, with the responses log(RT) being a linear function of PEs, volatility, precision-weighted PEs,

and other terms (multiple regression). For that purpose, they created the family of scripts tapas_logr-

t_linear_whatworld in the tapas software.

We have now implemented similar models, but adapted to our task (scripts tapas_IKI_linear_-

gaussian_obs uploaded to the Open Science Framework data repository). The response models we

tested aimed to explain a relevant trialwise performance parameter as a linear function of HGF quan-

tities (multiple regression). The alternative models used two different performance parameters:

– The coefficient of variation of inter-keystroke intervals, cvIKItrial, as a measure of the extent of

timing variability within the trial.

– The logarithm of the mean performance tempo in a trial, log(mIKI), with IKI in milliseconds.

Furthermore, for each performance measure, the response model was a function of a constant

component of the performance measure (intercept) and other quantities, such as: the reward esti-

mate (m1), the volatility estimate (m2), the precision-weighted PE about reward (e1), or the precision-

weighted PE about volatility (e2). See details in the revised manuscript. In total we assessed six differ-

ent response models. Using random effects Bayesian model selection (BMS), we obtained a winning

model that explained the performance measure cvIKItrial as a linear function of m1 and e1:

cvIKIktrial ¼ b0 þb1�
k
1
þb2�

k
1
þ z

The b coefficients were positive and significantly different than zero in each participant group (P

< PFDR, controlled for multiple comparisons arising from 3 group tests), as shown in the new Figure

5 —figure supplement 1.
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Thus, in addition to the estimated positive constant (intercept) value of cvIKItrial, quantities m1 and

e1 had a positive influence on cvIKItrial, such that higher reward estimates and higher pwPEs about

reward increased the temporal variability on that trial (less isochronous performance).

The noise parameter z did not significantly differ between groups (P > 0.05), and therefore we

found no differences in how the model was able to estimate predicted responses to fit observed

responses in each group.

Overall, the BMS results indicate that response models that defined the response parameters as

a function of volatility estimates and pwPE on level 2 trial-by-trial basis were less likely to explain the

data. However, because m2 drives the step of the Gaussian random walk for the estimation of the

true state x1, an underestimation in the beliefs about volatility (smaller m2 as found in anxiety groups)

would drive smaller updates about x1, ultimately leading to smaller cvIKItrial – as our winner response

model establishes. This can also be observed in Equation 6, where smaller values of the volatility

estimate on the previous trial, m2
k-1 increase the precision of the prediction about reward (p̂1), lead-

ing to smaller updates for m1 (Equation 3).

As reported in the Discussion section, “Volatility estimates impact directly the estimations of

beliefs at the lower level, with reduced m2 leading to a smaller step of the update in reward esti-

mates. Thus, this scenario would provide less opportunity to ameliorate the biases about beliefs in

the lower level to improve them.”

The new HGF results are shown in Figure 6, precisely illustrating that anx1 underestimated m2 rel-

ative to control participants – when using the improved winning response model – thus accounting

for the smaller cvIKItrial found in this group.

C) In a similar fashion to the way we constructed response models in the new HGF analysis, we

used a multiple linear regression analysis to evaluate the measure of feedback-locked beta power,

and separately, the rate of long bursts as a linear function of two quantities, e1 and e2. This analysis

is similar to the one we did in the previous version of the manuscript, but it is an improvement in

two respects: It assesses the simultaneous influence of e1 and e2 on the measures of beta activity,

and it uses trial-wise data in each participant to obtain the individual beta coefficients.

8) Generally, the EEG analysis opens up a massive search space (all electrodes, several seconds of

data, block-wise analyses, trial-wise analyses, sample-wise analyses, power quantifications, burst-

quantifications, long bursts, short bursts, etc.), and the presentation of the findings often jump

around frequently between power quantification, burst-quantifications, block-wise, and trial-wise

analysis etc. It would be much easier to follow if a few measurements were focused on that were a

priori justified. These could be clearly laid out in the introduction with some explanation as to why

they were investigated and what each measure might tell the reader. Then, if additional analyses

were conducted, these should be explained as post hoc with appropriate justifications and statistical

corrections.

Thanks for this suggestion. We completely agree with the reviewers and have considerably simpli-

fied the EEG statistical analyses. In addition, we have more explicitly stated in the revised introduc-

tion all our main hypotheses. The detailed aims and measures of the EEG analyses have been

included at the beginning of the Results section to provide a clear overview.

Introduction:

Now we explicitly mention that prefrontal electrode regions were one of the regions of interest,

together with “sensorimotor” electrode regions. In addition, we cite more work that identifies pre-

frontal regions as central to the neural circuitry of anxiety.

“Crucially, in addition to assessing sensorimotor brain regions, we focused our analysis on pre-

frontal areas on the basis of prior work in clinical and subclinical anxiety linking the prefronal cortex

(dmPFC, dlPFC) and the dACC to the maintenance of anxiety states, including worry and threat

appraisal (Grube and Nitsche, 2012; Robinson et al. 2019). Thus, beta oscillations across sensorimo-

tor and prefrontal brain regions were evaluated.”

“We accordingly assessed both power and burst distribution of beta oscillations to capture

dynamic changes in neural activity induced by anxiety and their link to behavioral effects.”

“EEG signals aimed to assess anxiety-related changes in the power and burst distribution in sen-

sorimotor and prefrontal beta oscillations in relation to changes in behavioral variability and reward-

based learning.”

Subsection “Electrophysiological Analysis”:
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“The analysis of the EEG signals focused on sensorimotor and anterior (prefrontal) beta oscilla-

tions and aimed to separately assess (i) tonic and (ii) phasic (or event-related) changes in spectral

power and burst rate. Tonic changes in average beta activity would be an indication of the anxiety

manipulation having a general effect on the modulation of underlying beta oscillatory properties.

Complementing this analysis, assessing phasic changes in the measures of beta activity during trial

performance and following feedback presentation would allow us to investigate the neural processes

driving reward-based motor learning and their alteration by anxiety. These analyses focused on a

subset of channels across contralateral sensorimotor cortices and anterior regions (See Materials and

methods section).”

Below, in the Results section of the exploration phase, when we introduce the methodology to

extract bursts, we now state that due to the complementary information provided by duration, rate,

and slope of the distribution of bursts, we exclusively focus on the analysis of the slope when assess-

ing tonic burst properties. The slope is already a summary statistic of the properties of the distribu-

tion (e.g. smaller slope [absolute value] indicates a long-tailed distriution with more frequent long

bursts).

This will hopefully make the Results section more concise, as general average burst properties

can be characterised by the slope of their distribution of durations:

Subsection “Electrophysiological Analysis”: “Crucially, because the burst duration, rate, and slope

provide complementary information, we focused our statistical analysis of the tonic beta burst prop-

erties on the slope or life-time exponent, t. A smaller slope corresponds to a burst distribution

biased towards more frequent long bursts.”

The separate analysis of bursts into long and brief bursts was inspired by the previous burst stud-

ies in parkinson’s patients showing the presence of longn bursts (> 500 ms) in the basal ganglia and

linking those to motor symptoms and poorer performance. However, this was indeed a post-hoc

analysis in our study, additionally motivated by the clear dissociation between long and brief bursts

shown in Figure 7, and determined by the difference in slope between anx1 and controls. This analy-

sis has now been correctly identified as post-hoc analysis:

Subsection “Electrophysiological Analysis”: “As a post-hoc analysis, the time course of the burst

rate was assessed separately in beta bursts of shorter (< 300 ms) and longer (> 500 ms)

duration,.. . .”

This split analysis is important in our results, as the longer burst properties seem to align better

with the power results. While brief bursts are more frequent in all participants (and physiologically

relevant), they seem to be here less related to task performance.

Subsection “Electrophysiological Analysis”: “The rate of long oscillation bursts displayed a similar

time course and topography to those of the power analysis, with an increased burst rate after move-

ment termination and after the STOP signal “

9) The EEG results could be better connected to the other findings: for instance, by correlating

beta results to model volatility estimates or cvIKI variability, as described above.

The measures of feedback-related beta oscillations have now been correlated across participants

with the index of across-trials cvIKI, reflecting motor variabilityility (Q3b above). Another specific cor-

relation we have computed is that between motor variability, across-trials cvIKI, and volatility (Q3a

above).

As explained in question Q7, we consider that the Hierarchical Bayesian model – now assessed in

combination with an improved family of response models – is able to explain how in individual par-

ticipants behaviour and beliefs about volatility or reward relate on a trial-by-trial basis.

In addition, now we use a multiple linear regression in individual subjects to explain trialwise

power measures as a function of pwPE about volatility and reward (the main measures that are

expected to modulate the EEG signal, Friston and Kiebel, 2009). This new analysis thus already is an

assessment of trialwise relations between power and relevant computational quantities.

We hope the reviewers agree in that these analyses are sufficient to clarify those relationships

(which in the case of the multiple regression analysis is already a type of correlation analysis).

What our analyses do not clarify is the dissociation between beta activity being related to pwPE

in level 1 and 2, respectively. It is likely that a combined analysis of beta and gamma oscillations in

this context could help identify different neural mechanisms (potentially with a different spatial distri-

bution) separately driving belief updating through e1 and e2. This an investigation that we are cur-

rently completing in the context of a different study.
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10) The reviewers felt that an important contribution of this paper was the potential non-motor

findings related to sensorimotor beta. However, because there were also motoric differences

between conditions, it seems very important to verify whether the beta differences were driven by

motoric differences or anxiety-related manipulations. We appreciate the analyses in Figure 8—figure

supplement 1 to try to rule out the motoric contribution to the sensorimotor beta differences, but

note that this only controlled for certain kinds of movement variability. We would like to see controls

for other possible differences in movement between the conditions, for instance differences in move-

ment length, or movement length variability.

This is a great suggestion. We have now made additional control analyses similar to the original

Figure 8—figure supplement 1 to assess the differences in beta power and burst rate between a

subset of control and anxious participants matched in these variables:

– Duration of the trial performance (movement length or total duration in ms) – Figure 8—figure

supplement 2

– Variability of movement length (cv of movement length) – Figure 8—figure supplement 3

– Mean use of keystroke velocity in the trial – Figure 8—figure supplement 4

The results indicate that when controlling for changes in each of these motor parameters, anxiety

alone could explain the findings of larger post-movement beta-band PSD and rate of longer bursts,

while also explaining the reduced rate of brief bursts during performance.

In the original manuscript, we had reported that “General performance parameters, such as the

average performance tempo or the mean keystroke velocity did not differ between groups, either

during initial baseline exploration or learning”. This outcome also accounts for why the new control

analyses support that motor parameters such as the mean performance duration or keystroke veloc-

ity are not confounding factors when explaining the beta activity effects in anxiety.

Finally, is there a way to verify if the participants moved at all after they performed the task?

The best way to address this question, in the absence of EMG recordings from e.g. neck or torso

muscles, is to look at broadband high-frequency activity (gamma range above 50 Hz), which has

been consistently associated in previous studies with muscle artifacts. For instance, in this review

paper by Muthukumaraswamy (2013), the author identified 50-160 Hz gamma activity with postural

activity of upper neck muscles, generated by participants using a joystick (Figure 2). Changes in beta

activity in this task were identified as true brain activity related to neural processing of the task

requirements.

The author also reported that EEG activity contaminated by muscle artifacts is typically maximal

at the edges of the electrode montage (e.g. temporal electrodes) but can be also observed at cen-

tral scalp positions.

In our experimental setting, we instruct participants to not move the torso or head during the

total duration of the trial, from the warning signal through to the sequence performance until the

end of the trial (2 seconds after the feedback presentation). And we always monitor EEG for muscle

artifacts while participants familiarise with the apparatus and the sequences at the beginning of the

experimental session.

We have performed a control analysis of higher gamma band activity, between 50-100Hz, and

display the results in Figure 9—figure supplement 2. This figure excludes the power values at 50Hz

and 100Hz related to power line noise (and harmonics).

We have evaluated these conditions in the learning blocks:

A) Gamma power within 0-1 s after feedback presentation, where participants should be at rest

after completing the trial performance.

B) Gamma power within 0-1 s locked to a key press, when participants are moving their fingers.

C) Gamma power within 0-1 s locked to the initiation of the trial, when participants are cued to

wait for the GO response, and can be expected to be mentally preparing but otherwise at rest.

We then performed the following statistical analyses to test for differences in gamma power:

– Condition A versus Condition C in bilateral temporal electrodes

– Condition A versus Condition C in bilateral and central sensorimotor electrode regions

– Condition B versus Condition C in bilateral temporal electrodes

– Condition B versus Condition C in bilateral and central sensorimotor electrode regions

In addition, focusing now only on the target period of the manuscript, the feedback-locked

changes (A), we assessed differences between experimental and control groups:

– Condition A: anx1 versus controls in bilateral temporal electrodes
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– Condition A: anx1 versus controls in bilateral and central sensorimotor electrode regions

– Condition A: anx2 versus controls in bilateral temporal electrodes

– Condition A: anx2 versus controls in bilateral and central sensorimotor electrode regions

Overall, we found no significant changes in high gamma activity in any of the assessed contrasts

(P-values for panels A-F range 0.2-0.6; two-sample permutation test between two conditions/groups

after averaging the power changes across the ROI electrodes and the frequency range 52-98Hz).

This result rules out that the beta-band effects reported in the manuscript are confounded by simul-

taneous systematic differences in muscle artifacts contaminating the EEG signal (or by differences in

non-task-related movement).

11) We would like to see what the between group differences for beta power and beta bursts

look like during the rest period before the baseline? (For instance, if Figure 7 were generated for

rest data?)

We have included this figure directly here as part of the reviewing process. The figure illustrates

how during the resting state recording prior to the experimental task there are no apparent (nor sig-

nificant) differences in the burst distribution between experimental and control groups (assessed in

all electrodes and separately in contralateral sensorimotor electrodes).

[Editors’ note: further revisions were sug-

gested prior to acceptance, as described below.]

Essential revisions:

Related to the updated model: We have summarized some aspects of the modeling that we

believe would benefit from additional explanation (to make the manuscript more broadly accessible).

We apologize that we did not bring some of these up in the first submission, but these questions

arose either due to the use of the new model or because of clarifications in the revision that pro-

vided new insight to us about the model.

1) Explanation/interpretation of the Bayesian modeling – Definitions:

Thank you for Figure 5 – this added clarity to the modeling work but we still are having trouble

understanding the general structure of the model. It would be helpful to clearly define the following

quantities that are used in the text (in the Materials and methods section before any equations are

listed), and ideally also in a figure of example data.

"input" – does this mean the score for a specific trial k? We found this a little misleading since an

"input" would usually mean some sort of sensory or perceptual input (as in Mathys 2014), but in this

case it actually means feedback score (if we understood correctly).

Agreed. The term “input” – as used in Mathys et al., (2014) – is now specified in the introduction

to the HGF model in the Results section and the Materials and methods section. In subsection

“Bayesian learning modeling reveals the effects of state anxiety on reward-based motor learning”,

we also give two examples of “sensory input” being replaced by a series of outcomes:

“In some implementations of the HGF, the series of sensory inputs are replaced by a sequence of

outcomes, such as reward value in a binary lottery (Mathys et al., 2014; Diaconescu et al., 2017) or

electric shock delivery in a one-armed bandit task (De Berker et al., 2016). In these cases, similarly to

the case of sensory input, an agent can learn the causes of the observed outcomes and thus the like-

lihood that a particular event will occur. In our study, the trial-by-trial input observed by the partici-

pants was the series of feedback scores (hereafter input refers to feedback scores).”

In the case of the binary lottery or a one-armed bandit task, participants select one of two images

and observe the corresponding outcome, which can be reward (0,1), or some other type of outcome,

such as pain shocks (binary 0-1; de Berker et al., 2016). Thus, although the perceptual HGF is

described in terms of “sensory” input being observed by an agent, in practice several studies use

the series of feedback values or outcomes associated with the responses as input. This is also what

we did in our implementation of the HGF: the input observed by participants, labeled uk in the equa-

tions, is the feedback score associated with the response in that trial. Here, the HGF models how an

agent infers the estate of the environment, which is the reward for trial k, m1
k (true state: x1

k), using

the observed outcomes (observed feedback score each trial, uk). We have included De Berker et al.,

2016, as a new reference in the manuscript.

The HGF was originally developed by C. Mathys as a perceptual model, to measure how an agent

generates beliefs about environmental states. Based on those inferred beliefs, the HGF can be sub-

sequently linked to participant’s responses using a response model. This is the procedure we
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followed in our study: the response model explains participants’ responses as a function of the

inferred beliefs or related computational quantities (e.g. PEs). See below please for the implementa-

tion of new – more interesting – response models suggested by the reviewers.

Also, please define uk before Equation 3 and Equation 4, and ideally somewhere in Figure 5;

We have included in Figure 5 the definition of input uk, which is the observed feedback score for

the trial (normalized to range 0-1). The definition is also presented at the beginning of the subsec-

tion “Computational Model”:

“In many implementations of the HGF, the sensory input is replaced with a series of outcomes

(e.g. feedback, reward) associated with participants’ responses (De Berker et al., 2016; Diaconescu

et al.,2017).”

“The HGF corresponds to the perceptual model, representing a hierarchical belief updating pro-

cess, i.e., a process that infers hierarchically related environmental states that give rise to sensory

inputs (Stefanics, 2011; Mathys et al., 2014). In the version for continuous inputs we implemented

(see Mathys et al. 2014; function tapas hgf.m), we used the series of feedback scores as input: uk: =

score; normalized to range 0-1. From the series of inputs, the HGF then generates belief trajectories

about external states, such as the reward value of an action or a stimulus.”

In Figure 5 we have additionally indicated which performance measure we used as response yk,

based on the winning model.

Please clarify how the precision of the input is measured? (used in Equation 3).

Here we followed Mathys et al., (2014) and the HGF toolbox that recommend to use as prior on

the precision of the input (p0

u : estimated in the logarithmic space) the negative log-variance of the

first 20 inputs (observed outcomes). More specifically:

logðp0

uÞ is the negative log-variance of the first 20 feedback scores.

This prior is now included in Table 1.

That is, for a participant with very stable initial 20 outcomes, the variance would be small (<1),

and the log-precision on the input would be large: the participant is initially less uncertain about the

input.

By contrast, a participant with larger variability in feedback scores across the first 20 trials would

have a small prior value on the precision of the feedback sores: the participant attributes more

uncertainty to the input.

When mentioning the precision of the input in the manuscript (subsection “Computational

Model”) we refer the readers to Table 1.

"predicted reward" – from the Mathys, 2014 paper we gathered that this is the mean of x1
obtained on the previous trial? Is this correct? If so, please clarify/emphasize. To increase broad

accessibility of the manuscript, it would be helpful to summarize in words somewhere what the

model is doing to make predictions. For example, in subsection “Computational Model” we weren’t

sure what the difference is between prediction of x1 and expectation of x1. Typically this terminology

would correspond to: prediction = E(x1 on trial k | information up to trial k-1), and expectation = E

(x1 on trial k | information up to trial k) but it wasn’t clear to us.

Agreed. Thanks for pointing this out. Yes, the reviewers assumed correctly:

The difference between the prediction of an estimate (denoted by the diacritical mark “hat” or

“̂”), m̂ikand its expectation mik, is that the prediction is the value of the estimate before seeing the

input in the current trial k, therefore m̂i{k}=mi{k-1}. We have made this more explicit in the equations

and in the text in subsection “Computational Model”:

The first term in the above expression is the change in the expectation or current belief mi{k} for

state xi, relative to the previous expectation in trial k-1, mi{k-1}. The expectation in trial k-1 is also

termed prediction, mi{k-1}=m̂i{k}, denoted by the “hat” or diacritical mark “̂”. The term prediction

refers to the expectation before seeing the feedback score on the current trial and therefore corre-

sponds with the posterior estimates up to trial k-1. By contrast, the term expectation will generally

refer to the posterior estimates up to trial k. In addition, we note that the term belief will normally

concern the current belief and therefore the posterior estimates up trial k. “

In addition, when referring to Variational Bayes and the derivation of update equations (Mathys

et al., 2014, appendices), we add in subsection “Computational Model”:

“coupling between levels indicated above has the advantage of allowing simple variational inver-

sion of the model and the derivation of one-step update equations under a mean-field
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approximation. This is achieved by iteratively integrating out all previous states up to the current trial

k (see appendices in Mathys et al., 2014).”

"variance vs. precision vs. uncertainty" – These are well defined words but it would also help

immensely to only use "variance" or "precision" or "uncertainty" in the explanation/equations. Men-

tally jumping back and forth gets confusing.

Agreed. In the Results section we have now more consistently used uncertainty, as this is the

quantity that is directly obtained in the HGF toolbox and may also be understood in a more intuitive

way by the readers. In the methods and materials section, however, we have maintained the term

precision in the equations, as they have a simplified form this way.

When introducing precision-weighted PEs, we have of course kept that term, as this is what al

authors use. But when analyzing the HGF belief trajectories and related uncertainty we have tried to

avoid using “precision”.

The connection between both terms is now additionally made in subsection “Computational

Model”:

uncertaintysioritsinverse,precisionpi=1si

"belief vs. expectation" – Are these the same? What is the mathematical definition (is it Equation

3 and Equation 7)?

See above.

“In addition, the term belief will generally refer to the current belief and therefore to the poste-

rior estimates up trial k.”

"pwPE" – please list the equation for this somewhere in the methods, ideally before use of the

epsilons in the response variable models.

We have clarified this in subsection “Computational Model”:

“Thus, the product of the precision weights and the prediction error constitute the precision-

weighed prediction error (pwPE), which therefore regulates the update of the belief on trial k”

D�k
i ¼ �ki

And have included Equation (14) and Equation (15) for �1 and �2 , respectively. These equations

are simply a regrouping of terms in Equation (6) and Equation (10) in subsection “Computational

Model”.

2) Inputs/outputs of the model:

Inputs – we gather that the input to the model is the score that the participant receives. Then x1
gets updated according to Equation 3. So x1 is tracking the expected reward on this trial assuming

that the reward on the previous trial must be updated by a prediction error from the current trial? Is

this reasonable assumption for this task? What if the participants are exploring new strategies trial

to trial? Why would they assume that the reward on the next trial is the same as the current trial (i.e.

why is the predicted reward = uik-1?) Or is this the point (i.e. if trial to trial the subjects change their

strategy a lot that this will end up being reflected as a higher "volatility"?) It would be helpful to out-

line how the model reflects different regimes of behavior (i.e. what does more exploratory behavior

look like vs. what is learning expected to look like).

Using the HGF and the new response models (see below, we have followed the reviewers sugges-

tion to link the change in responses cvIKItrial from trial k-1 to k to computational quantities on the

previous trial k-1), we can better address the relation between a behavioral change (i.e. a change in

strategy) and the belief estimates. We have also created Figure 5—figure supplement 1 for simu-

lated responses. This figure allows us to observe how different behavioral strategies impact belief

and uncertainty estimates. We considered agents whose performance is characterized by (a) small

and consistent task-related behavioral changes from trial to trial, (b) larger and slightly noisier (or

more exploratory) task-related behavioral changes from trial to trial, (c) very large and very noisy

(high exploration) task-related behavioral changes from trial to trial.

We explain below in our answer to point 3, the details of how these types of behavior influence

belief and uncertainty estimates but the summary is:

If “the participants are exploring” more “new strategies trial to trial” then they will observe more

different types of scores, and the distribution of feedback scores will be broader. This leads to a

broader distribution of the expectation of reward, m1, and therefore higher uncertainty about

reward. Simultaneously this is associated with increased volatility estimates and smaller uncertainty
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about volatility. The higher volatility estimates obtained in agents that exhibit a more exploratory

behavior do not necessarily reflect pronounced increases across time in volatility but rather a lack of

reduction in volatility. This effect results from smaller update steps in volatility estimates, due to

both high s1 in the denominator of the update equations for volatility and low s2 in the numerator,

see Equation (5).

So the main link is between a more exploratory behavior leading to more variable reward esti-

mates (which feedback into the update equations as prediction errors at the lower level and as an

enhanced uncertainty in volatility, s1). These effects ultimately maintain volatility estimates to a high

level, or may even increase them.

Please, see below question 3 as we provide a more detailed explanation of Figure 5—figure sup-

plement 1 and also of the new response model – which was suggested by the reviewers and it is

actually a much better model (in terms of log-model evidence and also in terms of allowing to under-

stand better the between-group differences).

Outputs – response models; please clarify why cvIKItrial and log(mIKI) are the chosen responses

since these are not variables that are directly responsible for the reward? We thought that the objec-

tive of this response modeling was to determine how a large prediction error on the previous trial

would influence action on the next trial? Perhaps an output metric could be [similarity between trial

k, trial k-1] = B0 + B1(uik-1) + B2(pwPEk-1)? So, depending on the reward and previous prediction

error, you get a prediction of how similar the next trials’ response is to the current trials’ response?

Right now, we don’t understand what is learned from seeing that cvIKItrial is higher with higher

reward expectation (this is almost by necessity right? because the rewarded pattern needs high

cvIKI) or higher prediction error.

Yes, we completely agree that this type of response model is more interesting. In the last manu-

script we followed Marshall et al., which explain responses log(RT) in trial k as a function of HGF

quantities in trial k. However, in our paradigm it is more interesting to link the HGF perceptual

beliefs and their precision-weighted prediction errors to the “change” in behavior. We have now

replaced as suggested the original response variables (cvIKItrial and log(mIKItrial) at trial k) with their

trial-wise difference: DcvIKItrial or Dlog(mIKItrial) reflecting the difference between current trial k and

previous trial k-1.

First, a clarification on why we had chosen as performance variables cvIKItrial and log(mIKItrial), see

subsection “Bayesian learning modeling reveals the effects of state anxiety on reward-based motor

learning”:

“Variable cvIKItrial was chosen as it is tightly linked to the variable associated with reward: higher

differences in IKI values between neighboring positions lead to a higher vector norm of IKI patterns

but also to a higher coefficient of variation of IKI values in that trial (and indeed cvIKItrial was posi-

tively correlated with the feedback score across participants, nonparametric Spearman r = 0.69, P <

10e � 5). Alternatively, we considered the scenario in which participants would speed or slow down

their performance without altering the relationship between successive intervals. Therefore, we used

a performance measure related to the mean tempo, mIKI. “

Now we use those performance variables as well however the new response models include the

difference between trial k and trial k-1 in those performance variables and link them to the belief

estimates and pwPE in the trial before, k-1. The code is provided at the Open Science Framework,

under the accession number sg3u7.

We have done family-level Bayesian model comparison (one family of models for DcvIKItrial and a

separate family of models for Dlog(mIKI)), followed by additional BMC within the winning family. The

response model that had more evidence is based on the pwPEs (model HGF14, Equation 2):

cvIKItrialk=b0+b1m1k+b2e1k+z

This model explains the change in cvIKItrial from trial k to k-1 as a function of pwPE on reward and

volatility on the preceding trial. Moreover, we obtained an interesting between-group difference in

the b2 coefficients of the response model, supporting that large pwPE on volatility promote larger

behavioral changes on the following trial in control participants, yet they inhibit or constrain behav-

ioral changes in anx1 and anx2 participants (see Figure 5 —figure supplement 3). In addition, in all

groups, beta1 is negative, indicating that smaller pwPE on reward on the last trial (reduced update

step in reward estimates) promotes an increase in the changes in the relevant performance variable,

thus an increase in exploration. By contrast, in increase in m1 updates through large pwPE on

reward, is followed by a reduction in cvIKItrial (more exploitation).
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Additional examples illustrating the implications of the winning response model are included as

Figure 5—figure supplement 4 and Figure 5—figure supplement 5.

The former response models that assessed whether cvIKItrial and log(mIKItrial) in trial k can

be explained by pwPE or belief estimates in the same current trial k have not been included in the

new manuscript. However, for the reviewer team we provide the results of the BMS applied to the

total of four families of models (two old families F1 and F2 for cvIKItrial and log(mIKItrial) in trial k, HGF

quantities in trial k; and two new families F3 and F4 for the change k-1 to k in cvIKItrial and log(mIKI-

trial), HGF quantities in trial k-1). BMS using the log-family evidence in each family provided more evi-

dence for the new families, F3 and F4, as indicated by an expected frequency of:

0.0160 0.0165 0.9335 0.0340

And an exceedance probability of

0 0 1 0

This demonstrates that the third family of models (related to DcvIKItrial) outperforms the other

families.

3) Interpretation of the model:

Is the message from Figure 6A that the expected reward is lower for anx1 than anx2 and control?

Since the model is trying to predict scores from actual score data, isn’t this result expected given

Figure 4A. Can the authors please clarify this?

Correct. The HGF as a generative model of the observed data (feedback scores) provides a map-

ping from hidden states of the world (i.e. true reward x1) to the observed feedback scores (m). Anx2

and control participants achieved higher scores (Figure 4) and therefore the HGF perceptual model

naturally provides trajectories of beliefs about reward with higher expectation values, m1, than in

anx1. We acknowledge that this result is a kind of “sanity check” and is not the emphasis of the

interpretation and discussion in the new manuscript. A mention of this expected result is included in

the new manuscript, subsection “Bayesian learning modeling reveals the effects of state anxiety on

reward-based motor learning”:

“Participants in the anx1 relative to the control group had a lower estimate of the tendency for

x1.. . . This indicates a lower expectation of reward on the current trial. Note that this outcome could

be anticipated from the behavioral results shown in Figure 4A.”

Using the new winning response model and associated results, the manuscript now places more

emphasis on the obtained between-group differences in the response model parameters (b coeffi-

cients, Figure 5—figure supplement 3; see also Figure 10, Figure 10—figure supplement 1), as well

as on the parameters of the perceptual HGF model (w1 and w2, with w2 being different between

anx1 and control participants, and thus reflecting a different learning style or adaptation of volatility

estimates in anx1).

We noticed that log(m2) is lower for anx1 and anx2 than control. Should this correspond to a shal-

lower slope (or a plateau in score that is reached more quickly) in Figure 4A over learning for anx1?

If so, why don’t we see that for anx2? If this is true, and given that cvIKI is no different for anx1,

anx2, and control, wouldn’t that mean that the reward rate is plateauing faster for anx1 and anx2

while they are still producing actions that are equally variable to control? So, are participants some-

how producing actions that are variable yet getting the same reward – so they’re getting "stuck"

earlier on in the learning process? Can the authors provide some insight into what type of behavior

trends to expect given the finding of Figure 6B-C? Right now all the reader gets as far as interpreta-

tion goes is that the anx1 group underestimates "environmental volatility" and that the mean behav-

ior and cvIKI is the same across all groups.

To answer this question we have created Figure 5—figure supplement 1 for simulated responses

(see legend for details).

The simulated responses have been generated by changing the pattern of inter-keystroke inter-

vals on a trial by trial basis to a different degree, e.g. leading to a steeper (green lines) or shallower

(pink lines) slope of change in cvIKItrial (Figure 5—figure supplement 1B) and associated feedback

score (Figure 5—figure supplement 1A). The feedback scores are illustrated in Figure 5—figure sup-

plement 1A to align it to Figure 5—figure supplement 1C below displaying reward estimates, m1.

The figure demonstrates that a shallower slope in the feedback score function is associated with a

shallower slope in the trajectory of reward estimates, m1, and smaller estimation uncertainty on that

level, s1 (Figure 5—figure supplement 1E). More importantly, this scenario is also associated with

smaller log(m2) estimates (Figure 5—figure supplement 1D) and greater estimation uncertainty s2
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(Figure 5—figure supplement 1F). This case of shallower slope could represent anx1 participants

(Figure 6).

These results also confirm the relationship between higher estimation uncertainty on one level, si,

and larger updates in the beliefs on that level, mi, that characterize the HGF. See Equation (5).

In addition to simulating responses that lead to different slopes of the feedback score trajectory,

we have also simulated responses with different levels of noise or variation from trial to trial (while

keeping the slope constant as underlying trend: green and pink trajectories). We considered these

three scenarios:

i) Smooth trial-by-trial change in cvIKItrial and corresponding feedback scores (linear trends in pan-

els A and B)

ii) Slightly noisy or variable transition from trial to trial in cvIKItrial and corresponding feedback

scores – moderate noise level (slightly jerky trajectories, shown as darker green or pink lines)

This scenario represents an agent changing slightly more randomly their responses from trial to

trial.

iii) Highly noisy or variable transition from trial to trial in cvIKItrial and corresponding feedback

scores – high noise level (pronounced jerky trajectories, shown as the darkest green or pink lines).

This scenario represents an agent changing significantly more randomly their responses from trial

to trial.

Green lines, constant steep slope: Increasing level of noise in the behavioral responses associated

with higher variation in trial-by-trial changes leads to higher logð�2Þ and reduced uncertainty about

volatility, s2. In addition, the more variable changes in reward estimates have higher uncertainty, s1

Pink lines, constant shallow slope: Similar results for increasing level of noise as described for the

steep slope trajectories.

Thus, based on these simulation results, higher expectation on volatility in the HGF for continuous

inputs can result from:

1) A steeper slope in feedback scores and therefore a steeper slope in the trajectory of percep-

tual beliefs for reward, �1.

2) More variable trial-to-trial changes in the observed feedback scores (corresponding with a

more exploratory or noisier performance). This would also lead to more variable trial-to-trial changes

in the perceptual beliefs for reward, �1 .

These two cases come down to one single general case:

A broader range of values in the distribution of observed inputs (u) that lead to a broader distri-

bution of reward estimates, �1.

With regard to the HGF belief trajectories for volatility, m2, in our experimental and control

groups, we have noted in subsection “Bayesian learning modeling reveals the effects of state anxiety

on reward-based motor learning” that:

“As indicated above, volatility estimates are related to the rate of change in reward estimates,

and accordingly we predicted a higher expectation of volatility m2 in participants exhibiting more var-

iation to m1 values.”

This is interesting but also simply implies that in participants achieving more different feedback

score values (i.e. because they encounter all values from low to high scores), the volatility estimate

will be higher (control group). By contrast, participants getting stuck at low score values (anx1) will

have a reduced volatility estimate (due to a smaller rate of change of the estimate on the level

below). This is what our findings in Figure 5 confirm, in line with the results for simulated responses

in Figure 5—figure supplement 1. We anticipate this behavior of the HGF model in subsection

“Bayesian learning modeling reveals the effects of state anxiety on reward-based motor learning”:

“Additionally, the HGF estimation of volatility (as change in reward tendency) was expected to be

higher in participants modulating more their performance across trials and thereby observing a

broader range of feedback scores (see different examples for simulated performances in Figure 5 —

figure supplement 1).”

The case of anx2 is interesting as these participants had a similarly steep slope in feedback scores

and in the trajectory for m1 as the control group, however their log-volatility estimates m2 and their

uncertainty s2 resemble more the trajectories observed in anx1.

Accordingly, from the two cases contributing to higher volatility estimates indicated above, the

likely explanation for the results in anx2 is that these participants must have a narrower distribution
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of encountered scores than control participants, and/or a smaller trial to trial change in the perfor-

mance measure cvIKItrial.

We tested this prediction and found:

- The mean difference between trial k-1 and k in cvIKItrial (our performance measure DcvIKIktrial)

was significantly smaller in anx2 than control participants: mean 0.005 (SEM 0.0011) in controls,

0.0032 (0.0007) in anx2, PFDR < 0.05. In anx1 participants this parameter was also smaller than in

control participants: 0.0013 (0.0009), PFDR < 0.05.

- The variance of the observed feedback scores was significantly smaller in anx2 than in control

participants: mean 0.064 (SEM 0.004) in controls; 0.052 (SEM 0.003) in anx2, PFDR < 0.05. A non-

parametric Spearman correlation between these two parameters (rho = 0.4563, P = 0.0282) further

confirmed that higher volatility estimates were associated with a larger variance of the distribution

of feedback scores.

This is now presented as a post-hoc analysis in subsection “Bayesian learning modeling reveals

the effects of state anxiety on reward-based motor learning”:

“. . .Thus, anx2 participants achieved high scores, as did control participants, yet they observed a

reduced set of scores. In addition, their task-related behavioral changes from trial to trial were more

constrained but also goal-directed as they indicated a tendency to exploit their inferred optimal per-

formance, leading to consistently high scores. This different strategy of successful performance ulti-

mately accounted for the reduced estimation of environmental volatility in this group, unlike the

higher m2 values obtained in control participants.”

Anx2 participants therefore showed a tendency to exploit more their inferred best response and

thus observed fewer outcomes: they moved quickly from low to high feedback.

Interestingly, however, volatility estimates log(m2) and DcvIKIktrial were not correlated in the N =

60 population. We only found a correlation between log(m2) and the variance of the feedback scores

distribution, r = 0.30, p = 0.019. This also explains why there were no significant effects between

groups in the degree of across-trials variability (cvIKI, Figure 4). So it seems that, although behavioral

changes directly fed to the score modulation across trials, the most robust association was between

the variance of the distribution of scores and volatility estimates.

In the adapted manuscript, following other papers using the HGF (see e.g. Marshall et al., 2016,

Weber et al., 2019), the emphasis is placed now on the between-group differences in perceptual or

response model parameters. Additionally, we maintain our emphasis on the analysis of pwPEs and

how they relate to beta oscillatory activity and behavioral responses.

Does underestimating volatility mean that subjects just keep repeating the same sequence over

and over? If so, can that be shown? Or does it mean that they keep trying new sequences but fail to

properly figure out what drives a higher reward? Since the model is fit on the behavior of the partici-

pants, it should be possible to explain more clearly what drives the different model fits.

See above, please.

Related EEG Analysis: We greatly appreciated the clarified EEG analysis. Re-reading this section,

we were able to understand what was done much better, but had two queries related to the

analysis.

1) We noted that the beta envelope in Figure 7A looks unusual. It looks almost like the absolute

value of the beta – filtered signal rather than the envelope, which is typically smoother and does not

follow peaks and troughs of the oscillation. Can the authors please clarify how this was calculated?

Thanks for spotting this. Yes, the figure was not correct. We have amended it and also uploaded

to the OSF (https://osf.io/nv4m3/) the original code we used to compute the amplitude envelope

from the band-pass filtered and Hilbert-transformed data. As in our earlier work (e.g. Herrojo Ruiz

et al., 2014), the amplitude envelope A(t) of the instantaneous analytic signal was computed after

applying the Hilbert transform to the bandpass-filtered raw data (12–35 Hz; two-way least-squares

FIR filter applied with the eegfilt.m routine from the EEGLAB toolbox, Delorme and Makeig, 2004)

spanning the full continuous recording of the task performance. Next, from the total beta-band

amplitude envelope we extracted data segments corresponding with the epochs locked to the feed-

back presentation from -9 to 2 s.

We highlight here the main MATLAB steps:

% EEGdata: dimensions 64 channels x Nsampl, continuous data

% srate: sampling rate, 512Hz

f1=12; f2=35;% bounds for band-pass filter
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betatot = eegfilt(EEGdata,srate,f1,f2);

amplitudebetatot=transpose(abs(hilbert(betatot’)));

% after this step we extracted the epochs that were used to detect oscillation bursts

2) In subsection “Analysis of power spectral density”, the authors write: "The time-varying spec-

tral power was computed as the squared norm of the complex wavelet transform, after averaging

across trials within the beta range." This sounds like the authors may have calculated power after

averaging across trials? Is this correct (i.e. was the signal averaged before the wavelet transform,

such that trial to trial phase differences may cancel out power changes)? Or do the authors mean

that they averaged across trials after extracting beta power for each trial? If the former the author

should emphasize that this is what they did, since it is unconventional.

We have clarified this in the new version of the manuscript. In brief, the time-frequency transfor-

mation is first performed for each trial separately, followed by averaging. This is the standard prac-

tice to obtain the total oscillatory activity (induced + evoked). This thus converges with the

reviewers’ expectations.

The analysis was done using Morlet wavelets based on convolution in the time domain. After the

time-frequency transformation of each epoch, we obtained for each trial the wavelet energy, which

was computed as the squared norm of the complex wavelet transform of signal x (for each trial):

Exðt; f Þ ¼ jWxðt;h=2pf Þj
2

In this expression equation, h is the wavelet family function or number of cycles. The expression is

taken from our earlier work e.g. Herrojo Ruiz et al. (2009).

Next, we assessed the spectral content of the oscillatory activity using the trial-average of the

wavelet energy.

We have modified the text in the manuscript to clarify the analysis steps (and corrected a typo:

the windows were set every 50ms). Subsection “Analysis of power spectral density”:

“Artefact-free EEG epochs were decomposed into their time-frequency representations using a

7-cycle Morlet wavelet in successive overlapping windows of 5 0ms within the total 12s-epoch. The

frequency domain was sampled within the beta range from 13 to 30 Hz at 1 Hz intervals. For each

trial, we thus obtained the complex wavelet transform, and computed its squared norm to extract

the wavelet energy (Ruiz et al., 2009). The time-varying spectral power was then simply estimated by

averaging the wavelet energy across trials within the beta range. “

In our earlier work we had used our own code to obtain the wavelet transformation with Morlet

wavelets. Accordingly, we manually coded the trial-based time-frequency analysis followed by the

calculation of the squared norm and then trial-averaging.

For this study, however, we used the built-in functions in the fieldtrip toolbox, which also follow

this approach. The link to the uploaded code is provided in the next question. Here we only high-

light the details of the fieldtrip analysis configuration:

cfg = [];

cfg.output = ’pow’;

cfg.channel = ’all’;

cfg.precision = ’single’

cfg.method = ’tfr’;% implements wavelet time frequency transformation

% (using Morlet wavelets) based on convolution in the

% time domain.

cfg.foi =[13:1:30];

cfg.toi= -9:0.05:3;

cfg.width = 7;% default

cfg.trials = 1: length(EEG.trial);

cfg.keeptrials = ’yes’

TFRwav7 = ft_freqanalysis(cfg, EEG);

3) To try to understand point 2 above, we checked if the authors had shared their code, and

found that, although data was shared, code was not, as far as we could tell. eLife does require code

sharing as part of their policies (https://reviewer.elifesciences.org/author-guide/journal-policies) so

please include that.
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We have now included the code in the folder “Code for analysis of bursts and time-varying spec-

tral power” of the Open Science Framework website for this study:

https://osf.io/nv4m3/

The script get_timecourse_wavelet.m (and Wiki) illustrates how to compute the time-varying spec-

tral power in the beta-band (13-30Hz) after implementing the wavelet time frequency transformation

(using Morlet wavelets) based on convolution in the time domain. It calls fieldtrip function ft_freqa-

nalysis.m
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