
Running head: INTEGRATING NEUROPHYSIOLOGICAL FEEDBACK IN IR 1

Integrating Neurophysiological Relevance Feedback in Intent Modeling for Information

Retrieval

Giulio Jacucci†∗, Oswald Barral†, Pedram Daee+, Markus Wenzel§, Baris Serim†,

Tuukka Ruotsalo†, Patrik Pluchino‡, Jonathan Freeman◦, Luciano Gamberini ‡, Samuel

Kaski+, Benjamin Blankertz§

†Helsinki Institute for Information Technology HIIT, Department of Computer Science,

University of Helsinki, P.O. Box 68 (Gustaf Hällströmin katu 2b), FI-00014 tel:+358

2941 911 name.surname@helsinki.fi
+Helsinki Institute for Information Technology HIIT, Department of Computer Science,

Aalto University, P.O.Box 15400, FI-00076 Aalto, Finland, tel:+358 9 47001

firstname.lastname@aalto.fi
§Neurotechnology Group, Technische Universität Berlin, 10587 Berlin, Germany,

tel:+49 30 3140, benjamin.blankertz@tu-berlin.de, markus.wenzel@hhi.fraunhofer.de
◦Goldsmiths, University of London, New Cross, London, SE14 6NW, UK, tel: +44 20

7919 7884 fax: +44 20 7919 7873, J.Freeman@gold.ac.uk
‡Human Inspired Technology Research Centre, University of Padova Via Luzzatti, 4 -

35121 Padova Tel: +39 049 827 5796, name.surname@unipd.it
∗Corresponding Author: Giulio Jacucci, Department of Computer Science University of

Helsinki giulio.jacucci@helsinki.fi +358 2941 51153



INTEGRATING NEUROPHYSIOLOGICAL FEEDBACK IN IR 2

Abstract

The use of implicit relevance feedback from neurophysiology could deliver effortless

information retrieval. However, both computing neurophysiological responses and

retrieving documents are characterized by uncertainty due to noisy signals and

incomplete or inconsistent representations of the data. We present the first-of-its-kind,

fully integrated information retrieval system that makes use of online implicit relevance

feedback generated from brain activity as measured through electroencephalography

(EEG), and eye movements. The findings of the evaluation experiment (N = 16) show

that we are able to compute online neurophysiology-based relevance feedback with

performance significantly better than chance in complex data domains and realistic

search tasks. We contribute by demonstrating how to integrate in interactive intent

modeling this inherently noisy implicit relevance feedback combined with scarce explicit

feedback. While experimental measures of task performance did not allow us to

demonstrate how the classification outcomes translated into search task performance,

the experiment proved that our approach is able to generate relevance feedback from

brain signals and eye movements in a realistic scenario, thus providing promising

implications for future work in neuroadaptive information retrieval (IR).

Keywords: information retrieval, brain-computer interfaces, neuro-physiology,

interactive intent modeling, relevance feedback
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Integrating Neurophysiological Relevance Feedback in Intent Modeling for Information

Retrieval

Introduction

Gathering relevance feedback on information items without disrupting the user is a

central challenge in information retrieval (IR). Neurophysiological measures are

promising candidates for implicitly gathering relevance feedback, as they reflect the

inner state of the user and can be collected unobtrusively at high throughput (Cowley

et al., 2016; Eugster et al., 2016; Jacucci, Fairclough, & Solovey, 2015; Wenzel,

Bogojeski, & Blankertz, 2017). However, successful application of neurophysiological

measures in IR encounters a dual uncertainty problem: (i) noisiness and unknown

causes of responses in neurophysiological signals make it difficult to interpret them, a

problem exacerbated by the lack of stimulus control in realistic settings, and (ii) the IR

process involves inherent uncertainty originating from the ambiguity and inconsistency

of the representations of data to be retrieved. Unlike explicit relevance feedback that

has low uncertainty due a user’s overt control, implicit relevance feedback techniques

are intrinsically noisy. When observing a user’s click-through activity or brain responses

in order to infer relevance feedback, the uncertainty of the feedback accuracies becomes

higher, and incorporating this feedback within an interactive IR system requires novel

computational solutions. The integration of brain signals has been especially

challenging; even though they have shown promise, their utility beyond laboratory

experiments with very controlled stimuli remains largely unexplored. Previous work

displays a limited number of unambiguous stimuli on the screen and/or constrains user

interaction to decrease the amount of noise (Eugster et al., 2016, 2014). In contrast,

realistic search interfaces are characterized by dense information, potential ambiguity

regarding the relevance of search results, and user interaction.

After briefly discussing related work on implicit relevance feedback in IR using

brain–computer interfaces (BCIs), the section An Approach for Single-Trial Relevance

Computation in IR investigates the challenge of decoding single-trial event-related

potentials (ERP) that involve semantic interpretation of complex stimuli with large
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variability. We follow with a detailed proposal of a neurophysiological approach for

relevance computation, providing validation proof for the method, while highlighting

potential challenges to be addressed when integrating relevance computation from brain

signals in an IR system.

In the subsequent section, Addressing Uncertainty in an Online Neuroadaptive System

through Interactive Intent Modeling we propose interactive intent modeling as a

particular retrieval and ranking approach that facilitates the elicitation of explicit and

implicit relevance feedback. Our approach in this respect is characterized by combining

modeling of neurophysiological response with modeling interactively intent in IR. We

develop computational techniques that, within an intent model, are able to combine

uncertain implicit responses and scarce explicit feedback with intelligent inferences from

underlying information modeling. The section presents the first-of-its-kind, fully

integrated IR system that makes use of implicit relevance feedback with online

computation from brain activity and eye tracking. In the section An Experiment in

Neuroadaptive Literature Search we report the evaluation of our approach through

findings from an experiment (N = 16) showing that we are able to predict

neurophysiology-based relevance feedback in complex data domains and realistic search

tasks and combine it with explicit relevance feedback in interactive intent modeling.

Our work provides the following contributions:

1. We demonstrate an approach able to predict implicit relevance feedback from

neurophysiological measurements in a realistic search scenario.

2. We present a novel interactive IR system that combines in interactive intent

modeling noisy brain-based implicit feedback with scarce explicit feedback for

better relevance predictions.

Related Work

Traditional relevance feedback techniques involve asking a user to provide explicit

judgments on the information content. These has proven to be problematic because, in

practice, users are reluctant to interrupt their search task in order to provide relevance
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feedback, even although they are aware that doing so would improve their search

performance (Kelly & Fu, 2006). An important bottleneck of information seeking

systems is that a considerable amount of user relevance feedback on retrieved items is

needed in order to properly explore the large information space (Daee, Pyykkö,

Glowacka, & Kaski, 2016). To overcome this challenge, previous approaches

investigated “implicit relevance feedback” as indexed from search behavior from mouse

and keyboard interaction data to understand a user’s interests and personalize and rank

search results (Kelly & Teevan, 2003). Other sources of implicit feedback include eye

tracking to infer a user’s interest through various metrics such as fixation count, dwell

time, pupil size, and scan paths (e.g., Gwizdka, 2014; Oliveira, Aula, & Russell, 2009;

Puolamäki, Salojärvi, Savia, Simola, & Kaski, 2005), analysis of user’s facial expressions

(e.g., Arapakis, Athanasakos, & Jose, 2010), physiological responses (e.g., Barral et al.,

2015, 2016), or a combination of these (e.g., Arapakis, Konstas, & Jose, 2009;

Moshfeghi & Jose, 2013). Lately, brain signals have been identified as promising sources

for implicit relevance feedback and information personalization (e.g., Eugster et al.,

2016, 2014; Golenia, Wenzel, & Blankertz, 2015; Kauppi et al., 2015).

IR is one of the fields that could profit from this direct access to the mental processes of

the brain (Golenia et al., 2015; Gwizdka & Mostafa, 2015, 2017). Research at the

intersection between brain-computer interfaces (BCIs) and IR is still in an early stage,

and appropriate neurophysiological methods have to be matched with the appropriate

paradigms for HCI in IR. Kauppi et al. (2015) studied magnetoencephalographic signals

alone and in conjunction with gaze signals in order to provide relevance feedback in an

image retrieval task by using a static image database. Similarly, Eugster et al. (2014)

decoded the EEG with the objective of providing relevance feedback in a text retrieval

task by using a static text dataset. Other studies (Golenia et al., 2015; Golenia, Wenzel,

Bogojeski, & Blankertz, 2017) demonstrated how the brain response to relevant versus

irrelevant information can be harnessed to improve image searches in ambiguous search

tasks. Moreover, Eugster et al. (2016) gave relevant feedback on words from the

Wikipedia database according to information extracted from EEG signals. The loop
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between brain and computer was closed by presenting new recommendations to the

users according to the EEG-based feedback, which resulted in a significant information

gain for about 70% of the participants of the study. This work constitutes presumably

the first proof-of-concept IR systems that have performed automatic information

filtering on the basis of brain activity alone.

Despite these advancement there is a lack of understanding on how to integrate

neurophysiology based relevance feedback in a realistic IR scenario along with the need

of standardized tasks and procedures in research (Mostafa & Gwizdka, 2016).

An Approach for Single-Trial Relevance Computation in IR

Uncertainty in Single-Trial EEG Decoding

Due to the comparably high conductivity of the brain and scalp with respect to the one

of the skull, electrical signals arrive spatially smeared at the EEG sensors, leading to

low signal-to-noise ratio. Each sensor receives a mixture of signals from many sources in

the brain and, conversely, the signals of one particular brain source are recorded at

many different electrodes with a broad spatial profile. The predominant approach for

real-time decoding is to employ multivariate data analysis methods from the field of

machine learning (Lemm, Blankertz, Dickhaus, & Müller, 2011) and to train

subject-specific decoding models on calibration data. While this approach is

comparably effective, a high degree of uncertainty in single-trial analysis remains,

probably due to the very high number of potentially disturbing sources.

The perception and cognitive evaluation of visual stimuli, such as information presented

on a computer screen, is reflected by event-related potentials (ERPs). In the well-known

ERP-based Row-Column Speller (Farwell & Donchin, 1988), users concentrate on a

target symbol while the rows and columns of the matrix of all symbols are flashing

randomly. If the user fixates on the target symbol by gaze, the detection tasks boil

down to a mere detection of flashes. More recent ERP-based spellers, such as the

Center Speller (Treder, Schmidt, & Blankertz, 2011) circumvent the gaze-dependency of

the Row-Column Speller by posing a higher load on the user as it requires the
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recognition of a target shape or color. Advancing further into the realm of IR (3), the

evaluation of information involves semantic interpretation and more complex stimuli

with large variability. In this escalation, the brain responses follow an increasingly less

common temporal structure across trials. This leads to a larger variability in the

latencies, but also in the morphology of the ERPs and, as a consequence, to a larger

uncertainty in the decoding, see Figure 1.

Figure 1 . From target to relevance detection. The classical row-column speller (a)
which consists essentially in the detection of flashing. The center speller (b) relies on
the recognition of a target shape/color. In contrast, the task to search for relevant
terms (c) is incomparably more complex.

The challenge of extracting information from a single-trial EEG gets even larger when

free-viewing applications are considered. A suitable method for the investigation of

free-viewing tasks are eye-fixation-related potentials (EFRP), see (Baccino & Manunta,

2005). Nevertheless, the decoding of the cognitive processes is hampered. On one hand,

further unrelated brain activity connected to saccades and artifacts from eye movements

overlay the EEG and, on the other hand, the temporal relationship between

target-related ERP components and eye movements is variable since task-relevant

processing of visual objects may already start before the beginning of a saccade, for

example when the visual object is still at a peripheral location (Wenzel, Golenia, &

Blankertz, 2016).

Neurophysiology-Based Relevance Computation

We propose a method to predict the relevance of textual keywords from brain signals

and eye movements. The approach follows a supervised learning scheme, in which a

user-specific classifier is trained by using labeled data. Then, the trained classifier can
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be used to generate relevance measures online, which can potentially be used in a

feedback loop while the user interacts with the system. This machine learning approach

is parallel to most modern BCI systems (Nijholt et al., 2008).

Training the Classifier. The purpose of this first phase (referred as “the calibration

phase”) is to gather enough brain activity associated with the user’s relevance

judgments in order to train a classifier that will then be used to generate relevance

measures online. A series of keywords for which relevance labels are known are

presented to the user, and eye tracking is employed to identify when an eye fixation falls

on a keyword. For each fixation that falls on a keyword, a high-dimensional feature

vector is extracted from the EEG and eye movements (see below) and is labeled as

“relevant” or “irrelevant” according to the known label of the keyword. A classification

function is then trained to discriminate the feature vectors of the “relevant” and the

“irrelevant” classes. To this end, regularized linear discriminant analysis is used

(Friedman, 1989), whereby the shrinkage parameter is calculated with an analytic

method (Ledoit & Wolf, 2004; Schäfer & Strimmer, 2005).

Online Relevance Computation. Once the system has been calibrated for the

specific user by training a user-specific classifier, the user can interact with the system

while EEG signals and eye movements are monitored (referred to as “the online

phase”). For each keyword fixated upon, a high-dimensional feature vector is extracted

(see below), and the classifier infers its label online as belonging to the “relevant” or

“irrelevant” classes. This means that the relevance predictions are available to the

system in real time and can be used in an adaptive feedback loop.

Feature Extraction. High-dimensional feature vectors are extracted from EEG

channels recorded at 1000Hz according to the following steps: First, the multi-channel

EEG signal is re-referenced to the linked mastoids and low-pass filtered (with a second

order Chebyshev filter; 42 Hz pass-band, 49 Hz stop-band). The continuous signal is

then segmented by extracting the interval from 100 ms to 800 ms after the onset of

every eye fixation. Slow fluctuations in the signal are removed by baseline correction

(i.e. by subtracting the mean of the signal within the first 50ms after the fixation onset
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from each epoch). The signal is downsampled from the original 1000 Hz to 20 Hz in

order to decrease the dimensionality of the feature vectors to be obtained (14 values per

channel). A low dimensionality in comparison to the number of available samples has

been shown to reduce the risk of overfitting to the training data, which in turn is

beneficial for the classification performance (Blankertz, Lemm, Treder, Haufe, & Müller,

2011). The multi-channel signal is vectorized by concatenating the values measured at

the EEG channels at the 14 time points. The fixation duration is concatenated as an

additional feature to the EEG feature vector. Other eye-tracking-related features (e.g.,

gaze velocity) are not considered as they are not provided in real time by the

application programming interface of the device. Further, eye-movement-related signal

components are not removed from the EEG since the classifier is expected to deal with

task-unrelated eye-movements.

Method Validation. In order to validate the approach in terms of computing

relevance measures from semantic words, we carried out a prior experiment (N=15).

The main question addressed was whether relevance inference from the

electroencephalogram (EEG) can be applied in settings where the interpretation of the

semantics goes beyond the simple recognition of a previously known letter, picture, or

shape that is repeatedly flashed. In the experiment, participants looked for words that

belonged to semantic categories, and it was predicted in real-time which words, and thus

which semantic category, was the one the user was interested in. Results showed that

models using EEG features alone, and in combination with the eye fixation duration

feature were able to generate single trial predictions on the keywords significantly above

chance levels. Further, these predictions were aggregated in real time to provide reliable

estimates of which were the semantic category of interest, showing slight improvements

when adding fixation duration to the EEG-based feature vectors. Complete details on

the prior experiment have been published separately in Wenzel et al. (2017).

The prior experiment provided several insights. First, it validated the use of EEG and

eye gaze signals to infer subjective relevance of words that required interpretation with

respect to their semantics in a free search task (as opposed to commonly used
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“counting” tasks). Further, predictions were generated on words that were presented

simultaneously, relating neural activity to keywords using eye tracking. The prior

experiment also evidenced the relatively low single-trial classification performances,

which were successfully dealt with in real time by averaging over semantic categories.

However, when interacting with a real IR system, the user interest and intentions may

be more complex than as simulated in the prior experiment, and other mechanisms

should be envisaged to integrate contextual information that may help to correct the

noisy single-trial prediction accuracies.

Addressing Uncertainty in an Online Neuroadaptive System through

Interactive Intent Modeling

A promising solution to cope with the uncertainty in the user’s intent is interactive

intent modeling (Ruotsalo, Jacucci, Myllymäki, & Kaski, 2015), where the potential

search intentions of the user are represented and visualized as keywords, their relevance

are estimated using feedback signals from the user, and information corresponding to

the model is retrieved. In terms of neuroadaptive systems, intent modeling can mitigate

both the uncertainty related to the noise present in neurophysiological signals and the

mismatch between the user’s articulation of information needs and the encodings of the

information to be retrieved.

Adapting the intent model from suboptimal and noisy user feedback

The intent model directly couples the potentially suboptimal user feedback originating

from implicit and explicit user signals. The implicit feedback is connected to explicit

feedback by considering source-specific probabilistic assumptions on their uncertainties.

This provides the flexibility to learn the true uncertainty of each feedback given all

preceding feedback.

Estimating the intent model. The relevance of keywords in the model is described

with a linear Gaussian model, with which the accuracy of the feedback may differ for

the different source types (implicit or explicit). The relevance of keyword i is modeled as
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yi ∼ N(xiφ, σ2/wi), (1)

where xi is the feature vector representing that keyword, φ is the unknown weight

vector which is shared between all keywords and maps the feature vectors to relevance

values representing user intent, σ2 is the variance of feedback noise, and wi models the

accuracy of the relevance feedback. We assume prior distributions on the parameters to

be

φ ∼ N(0, λI),

σ2 ∼ InverseGamma(ασ2 , βσ2),

wi ∼ Gamma(αw, βw),

where λ, ασ2 , and βσ2 are fixed hyperparameters. A key aspect of our approach is that

we distinguish between implicit and explicit feedback by using different

hyperparameters for prior of the accuracy values, i.e., (αexpw , βexpw ) for explicit feedback

and (αimpw , βimpw ) for implicit feedback.

The posterior of the model estimates both the user’s current search intent (φ) and the

accuracy of the user relevance feedback (wis). As mentioned, the accuracies of the user

feedback on keywords are unknown and drawn from a gamma distribution with two

parameters: alpha and beta. The model differentiates among explicit and implicit

feedback by using different sets of hyper-parameters for the gamma distribution. The

explicit feedback is considered very certain (a gamma distribution with mean 1 and very

small variance, i.e., αexpw = 100, βexpw = 100). On the other hand, the implicit feedback is

uncertain a priori (gamma distribution with mean 0.5 and large variance, i.e.,

αimpw = 1, βimpw = 2), and therefore, its accuracy is mostly inferred from observations.

For example, if the implicit feedback is in line with the previous history of feedback,

then it will be inferred as certain and will contribute to the user model. However, if it

contradicts the system’s current belief, learned from sequence of feedback, then its

accuracy may be inferred as a low value and it will not affect the user model (the
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posterior of φ) much. The model infers the true accuracies and corrects the noise in the

feedback. We use mean-field variational inference for the posterior inference (Attias,

1999; Kangasrääsiö, Chen, Glowacka, & Kaski, 2016).

Estimating document relevance

In addition to estimating the relevances for the keywords in the intent model, the

relevances of the documents are estimated and ranked. We employ the feature

transformation that projects the relevances estimated for the keywords to the

documents (Daee et al., 2016). The underlying principle is that the transformation

projects documents in the feature space of the keywords as the relevance of a document

is a weighted sum of the relevance of individual keywords that have appeared in it.

Based on this projection, the relevance of a document also follows Equation 1 with the

difference that the document feature vector is generated from the feature projection.

Exploring uncertainty. Estimating the intent model by directly exploiting the

feedback observed from the user yields to showing items similar to those already judged

relevant by the user in the previous iterations. Since the implicit feedback observed

from the user may be inaccurate, this exploitative choice might cause the intent model

to converge to a suboptimal representation of the user’s intention. Alternatively, the

system might exploratively select items that are relevant, but also uncertain. These

items are likely to be better for obtaining feedback in subsequent iterations as they are

novel and not too similar to the ones already judged by the user.

Multi-armed bandits have been shown to be able to model this exploration and

exploitation dilemma in information seeking (Ruotsalo et al., 2015). We use the

Thompson sampling algorithm (Agrawal & Goyal, 2013) as a solution to the

multi-armed bandit problem, to control the exploration and exploitation balance of the

recommended keywords and documents (Daee et al., 2016). The idea behind Thompson

sampling is that the uncertainty in the marginal posterior of φ can by itself control the

exploration and exploitation of the items. To implement the algorithm, it is enough to

draw a sample from the posterior and rank all the keywords and documents accordingly.
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In detail, the Thompson sampling algorithm performs the following steps in each

iteration:

1. Draw a sample from the marginal posterior of φ and denote it as φp.

2. Rank all the keywords based on the inner product xTi φp.

3. Rank all the documents based on the inner product xTj φp.

4. Recommend the highest ranked items and gather the feedback.

5. Update the posterior.

Here, xi and xj denote the feature vectors of keyword i and document j (after the

transformation) respectively. The highest ranked recommendations were expected to

consider the balance between exploration and exploitation (Agrawal & Goyal, 2013).

Visualizing the intent model for explicit and implicit interaction.

In order to enable implicit and explicit feedback from the user, the intent model needs

to be visualized for interaction. The implicit feedback is captured via capturing eye

fixations and EEG signal.

Interface views. The interface consists of two separate views: intent model view and

document view. The intent model view, shown in Figure 2, visualizes the top-k

keywords chosen based on their estimated weights resulting from the Thompson

sampling algorithm. The view employs a circular layout chosen to increase eye tracking

accuracy, which is higher at the center of the screen. The keyword are positioned

randomly but the layout is optimized to increase the distance between neighboring

keywords for more robust matching with eye fixations. The document view, shown in

Figure 3, has a conventional ranked list visualization.

Interaction. The search is initiated by entering a query, which results in the first set

of results retrieved by the system. To direct the search, users can open a view that

displays a set of keywords that are potentially relevant to the users’ search intent. The

users can examine these keywords and provide explicit relevance feedback on one of the
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Figure 2 . A screenshot of the user interface displaying the intent model view.

Figure 3 . A screenshot of the user interface displaying the document view.

keywords by clicking on it. While users examine the keywords, the physiological

classifier generates implicit relevance feedback on them. The system then updates the

intent model by taking into account both the explicit relevance feedback, and the

implicit feedback generated from the keywords the user fixated on. The system then



INTEGRATING NEUROPHYSIOLOGICAL FEEDBACK IN IR 15

returns the next iteration of results. This process is repeated until the user decides to

change the query or ends the search task. Figure 4 depicts the user-system interaction

as a control loop.

Figure 4 . Summary of the system as a control loop during the online phase.

An Experiment in Neuroadaptive Literature Search

This experiment help to evaluate the approach and system presented in the previous

two sections by investigating the following questions:

Is it possible to predict online relevance from neurophysiology in a realistic search task

and integrate it as implicit feedback in combination with explicit feedback in interactive

intent modeling ?

System Apparatus

The system that integrates neurophysiology-based implicit feedback with interactive

intent modeling is implemented as a web application using a frontend (the interface) -

backend (the engine) architecture, see Figure 5. The engine comprises of three main

components: the Controller, which coordinates the different components of the system;

the Physiological Classifier, which generates real-time implicit relevance feedback, and

the Interactive Intent Model, which handles the user model and the information items of

the system. The Physiological Classifier is implemented within the framework of the

BBCI-Toolbox 1. For each gaze-fixation, the classifier sends to the Controller a

relevance value. The Controller checks whether the fixation falls on a keyword visible

on the screen in order to associate the predicted relevance value to it. For collecting eye
1https:/github.com/bbci/bbci_public
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movements, the system uses the SensoMotoric Instruments RED500 eye tracker,

interfaced through the SMI iViewX SDK 2. For collecting brain signals, the system

supports the BrainProducts QuickAmp and BrainAmp amplifiers 3, both of which

recorded 32 EEG channels at a sampling rate of 1000 Hz. The Interactive Intent Model

uses the same document-retrieval model as in Ruotsalo et al. (2013) to select subset of

documents, and uses a dataset from the following data sources: the Web of Science

prepared by Thomson Reuters, Inc., the digital library of the Institute of Electrical and

Electronics Engineers (IEEE), the digital library of the Association of Computing

Machinery (ACM), and the digital library of Springer. The hyperparameters of the

intent model were tuned as ασ2 = 2, βσ2 = 0.1, and λ = 0.1 based on pilot experiments

(N = 27).

Figure 5 . Components of the system.

Participants

Sixteen participants (3 females) took part in the experiment. The participants ranged

from 22 to 39 years old (M = 28.3). Three participants were postdoctoral researchers,
2http://www.smivision.com/
3http://www.brainproducts.com/
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and the rest were students (8 post-graduate, 5 undergraduate) from the University of

Helsinki in Finland and the University of Padova in Italy. The participants reported

themselves as being physically and mentally healthy. The participants reported a good

level of English (M = 4.0, SD = 0.9, on a 1 to 5 scale) and high expertise in computer

science (M = 4.4, SD = 0.6, on a 1 to 5 scale). Their experience with browsing scientific

literature (M = 3.6, SD = 0.9, on a 1 to 5 scale) and their prior knowledge of machine

learning (M = 2.8, SD = 1.5, on a 1 to 5 scale) varied.

Procedure and Experimental Task

At the beginning of the session, the participants were welcomed and briefed as to the

procedure and purpose of the experiment before signing the informed consent form. The

participants were instructed about the duration of the experiment and reminded that

they could withdraw from the experiment at any point in time, without facing negative

consequences. While the physiological sensors were set up, the participants filled a

background information questionnaire. Following, a standard 9-point eye tracker

calibration procedure was carried out repeatedly until reaching an error smaller than

0.5 degrees of visual angle.

The Calibration Phase. The participants then engaged in the calibration phase for

around 1 hour, until the system had collected enough data points to train the

physiological classifier. The participants were allowed to have small breaks during the

calibration phase whenever they felt tired or their concentration was diminishing. To

collect training data for the physiological classifier, we generated a dataset that

matched the application domain by using a subset of the dataset used by the interactive

intent model system. The dataset consisted of a set of topics with associated keywords

and was created using expert judgments in an iterative process that aimed at

minimizing the overlaps between the topics, while maximizing the dissociation between

relevant and irrelevant keywords to a given topic. 4

Participants were prompted with a list of five topics, randomly selected from the

calibration dataset. Upon selecting a topic, a series of keywords were shown to the user,
4For review: Refer to Appendix A for more details on the generation of the calibration dataset.
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who was asked to select the keywords relevant to the topic. This procedure was

repeated iteratively for several topics, until the system had gathered enough data to

train the physiological classifier. 5

The Online Phase. Once enough data had been collected and the physiological

classifier had been trained, the participants engaged in the online phase. Participants

were provided the following instructions:

Imagine that you are going to write an essay about topic X. Please

bookmark the articles on the scroll list that you think are relevant to the

topic, so that you can use them later in the essay. You will later be asked to

write a short outline of the essay based on your bookmarked articles.

The participants had to perform two versions of the same task, using the topics “neural

networks” and “support vector machines.” One of the tasks was performed using the

full system. The other task was performed using a baseline system, which behaved in

the exact same way as the full system, but no implicit relevance feedback was fed to the

interactive intent model system. Instead, only the explicit feedback provided by the

user was used to refine the user model and present the next iteration of results. The

participants were unaware that they were using two different systems, and they were

naïve about the systems’ implementation.

For evaluation purposes, the participants were prompted at the end of each iteration

with a dialog asking them to label the relevance of the keywords they had fixated on

(on a scale from 0 to 5). This allowed the “ground truth” to be collected on the

relevance of the presented keywords as perceived by the users. This was otherwise not

available, as the keywords were generated in real-time from the interactive intent model

system, and their relevance naturally depends on the users’ information needs, which

were not known a priori.

The participants performed each task in the online phase for around 20 minutes, for a

maximum of 10 iterations. The task and system type were counterbalanced. Upon
5For review: Refer to Appendix B for details on how the assessment of keywords’ relevance was carried

out by the participants during the calibration phase.
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completion of the task, participants were rewarded with two movie tickets. In total, the

experiment lasted approximately 2.5 hours.

Measures and Analyses

Calibration phase. In order to evaluate the feasibility and performance of the

system in predicting relevance from brain signals, we first evaluated the classification

performance in the calibration phase. The data used in the calibration phase were

controlled and had the advantage that the same dataset was used to train the different

user-specific classification models. Classification performance was computed in terms of

area under the ROC curve (AUROC) and was evaluated using a standard 10 × 10 fold

cross validation approach. AUROC is a widely used and sensible measure, even under

class imbalances, that links the true positive rate and the false positive rate while

avoiding possible misinterpretations such as the accuracy paradox (Zhu & Davidson,

2007).

To quantify the significance and the effect sizes of the implicit relevance feedback from

the brain signals, we compared the classification performances against performances

from prediction models learned from randomized labels. Standard permutation tests

were applied for significance testing (Good, 2000). In detail, for each of the 16

participants, we ran within-participant permutation tests with 1000 iterations. For each

iteration, we learned a classification model using randomized labels, and we then

computed the p-value as the percentage of random classification performances that were

equal to or greater than the true classification performance.

Online phase. The aim was to assess how well the classification performance

achieved in the calibration phase transferred to the online phase, during which the users

were engaged in a realistic information-seeking task, and the data presented to the user

from which implicit relevance feedback was classified were generated in real-time.

The participants whose classification performance in the calibration phase was not

significantly better than random were discarded from further analyses. Furthermore,
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participant P05 had to be rejected from the analysis because the server hosting the

interactive intent model system went down during the execution of the online phase.

For the remaining participants (N = 12), we studied how well the classification

performance transferred to the online phase. In order to do so, we computed the

classification performance in terms of AUROC for each of the fixated keywords in the

online phase in the tasks for which the participants used the full system. We used the

feedback provided by the participants on the keywords as the labels. We binarized the

user feedback, so that keywords that were rated between 0 and 2 were considered

irrelevant and keywords that were rated between 3 and 5 were considered relevant.

As explained in Section Addressing Uncertainty in an Online Neuroadaptive System

through Interactive Intent Modeling, in each iteration, the intent model learns the

relevance of all keywords from the available sequence of explicit and implicit feedback.

Accordingly, we also computed the classification performance in terms of the AUROC of

the relevance of keywords estimated by the intent model. This is the performance after

the user model has accounted for the noise in implicit relevance feedback values coming

from the physiological classifier.

Task Performance. After completion of the search task, participants were asked to

write down some of the concepts that they had learned about the topics, which lead to

a very heterogeneous collection of “mini-essays” not suited for comparison across

participants. Instead, in order to assess whether using physiology-based implicit

relevance measures had an influence on the task performance, we compared the quality

of the documents that participants bookmarked when using the full system (including

implicit relevance feedback) and when using the baseline system (that did not include

implicit relevance feedback). In total, 397 documents were bookmarked, from which 277

were unique on the population level. We selected a subset of “representative”

documents on the basis of bookmarked frequency. Documents were selected as

“representative” for one of the system types (i.e., conditions) if on the population level,

the document was bookmarked at least two more times than when using the other

system type. This lead to a subset of 21 documents, which were rated by 3 experts (on
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a 1-6 rating scale), on their relevance (i.e., is this document relevant to the search task),

obviousness (i.e., is this a well-known overview article in a given research area), and

novelty (i.e., is this article uncommon yet relevant to a given topic or specific subtopic

in a given research area) (Ruotsalo et al., 2013). Ratings were averaged across experts,

and Wilcoxon rank-sum tests were used to test for statistical differences between the

two conditions (full system vs. baseline system), for each of the three rating categories

(relevance, obviousness, and novelty).

Results

Calibration phase. Classification performance proved to be significantly better than

random for 13 out of 16 participants, representing around 80% of the participants. On

the population level, AUROC resulted in 0.61 ± 0.02 (mean ± standard error of the

mean). Figure 6 presents the individual classification performances in the calibration

phase.

Figure 6 . Individual classification performances in the calibration phase in terms of
area under the ROC curve (AUROC), and improvement over the random baseline at
the levels of p < 0.05 (*), and p < 0.001 (**). The horizontal lines represent the mean
(solid) and random (dashed).

Online phase. Online relevance predictions as directly obtained through the

physiological classifier presented averaged AUROC values on the population level of
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0.53 ± 0.03 (mean ± standard error of the mean). The performance was improved by

the user model, leading to averaged AUROC values of 0.60 ± 0.03. In fact, the intent

model increased prediction performance for 10 out of 12 participants, representing over

80% of the participants. Figure 7 shows the results of the classification performance for

the calibration phase and for the online phase, in terms of the implicit relevance

feedback, both as directly obtained through classification of brain signals, and as

inferred by the intent model.

Figure 7 . Individual classification performance in terms of area under the ROC curve
(AUROC). Left: offline prediction in the “calibration phase”. Middle:
neurophysiological prediction in the “online phase”. Right: intent model prediction in
the “online phase”. Smaller black dots and dashed lines indicate mean classification
performance. The dashed horizontal line represents random classification.



INTEGRATING NEUROPHYSIOLOGICAL FEEDBACK IN IR 23

Task Performance. Wilcoxon rank-sum tests did not show statistical difference

between the full system and baseline system, for any of the rating categories: In terms

of relevance, expert ratings provided to representative documents of the full system

(Mdn = 3.5) did not significantly differ from those of the baseline system (Mdn = 4.67),

W = 69, p = 0.22. In terms of obviousness, expert ratings provided to representative

documents of the full system (Mdn = 2.67) did not significantly differ from those of the

baseline system (Mdn = 3.33), W = 73.5, p = 0.12. In terms of novelty, expert ratings

provided to representative documents of the full system (Mdn = 3.83) did not

significantly differ from those of the baseline system (Mdn = 3.67), W = 55.5, p = 0.82.

Discussion and Conclusions

This study indicates that we are able to reliably train classification models for implicit

relevance prediction by using complex data domains and a computer science-related

database. The results show that the classification performance significantly

outperformed random predictions for over 80% of the participants, with some of the

participants reaching AUROC values over 0.7. One explanation for the random

classification outcomes among the remaining approximately 20% of participants could

be the fact that BCI control does not work for a non-negligible proportion of users

(approximately 15 - 30%) (Acqualagna, Botrel, Vidaurre, Kübler, & Blankertz, 2016;

Allison et al., 2010; Blankertz et al., 2010; Guger et al., 2009). These results are

comparable to the ones obtained in the prior experiment (see Section Validating the

Relevance Computation Method, and (Wenzel et al., 2017)), where a limited and

controlled dataset of keywords was used.

In addition, the results show that the classification performances achieved using the

controlled “calibration dataset” in the calibration phase transferred to the online phase,

during which the retrieved documents and keyword varied for each participant, and

their perception of relevance was related to their current information needs, rather than

to a predefined experimental task. While the classification performance decreased as
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expected, the overall distribution across participants remained above random

classification levels.

Furthermore, we demonstrate that the approach is able to combine the noisy

neurophysiology-based implicit relevance feedback with limited explicit feedback (one

per search iteration) , which improved the classification performance for over 80% of the

participants.

Figure 7 shows atypical values for participant P02. By looking at the data, we found

out that this participant provided highly unbalanced ground truth in the online phase

(i.e., 96% of the ground truth provided was from the relevant class), which explains the

drastic changes in the AUROC values. Thus, the magnitude of such changes in the

performance measures should be interpreted cautiously.

Our approach and study includes at least two limitations. The predicted relevance from

physiology, while promising, still leaves room for improvement, both in terms of

classification performance and uniformity across participants. Moreover the analysis on

the selection behavior of bookmarked documents did not yield conclusive results in

terms of task performance improvements yet. Future work should extend the presented

results by further studying how the reported classification performances could transfer

over to search task performance.

In conclusion the current work contributes showing that we can predict the relevance of

keywords from neurophysiology with promising accuracy in a realistic search task and

that this information can be integrated in a unified model in a IR system utilizing

interactive intent modeling. Recently Mostafa and Gwizdka (2016) called for

standardized practices in integrating BCI-based implicit feedback to IR for example

discussing the need for standardizing search tasks in experiments. The proposed

approach additionally contributes to discuss how to standardize the prediction of

neurophysiology based relevance feedback.
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