New jou I‘Ilal Of PhYSiCS Deutsche Physikalische Gesellschaft @ DPG 10P Institute of Physics

The open access journal at the forefront of physics

PAPER « OPEN ACCESS Related content
. . ] - A channel-based framework for steerin
A formalism for steering with local quantum oiocaiy and bovong

Matty J Hoban and Ana Belén Sainz
meas u rem e nts - Quantum steering: a review with focus on
semidefinite programming
. . . . D Cavalcanti and P Skrzypczyk
To cite this article: A B Sainz et al 2018 New J. Phys. 20 083040

- Measures and applications of guantum
correlations

Gerardo Adesso, Thomas R Bromley and
Marco Cianciaruso

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 158.223.166.68 on 13/11/2018 at 16:58


https://doi.org/10.1088/1367-2630/aad8df
http://iopscience.iop.org/article/10.1088/1367-2630/aabea8
http://iopscience.iop.org/article/10.1088/1367-2630/aabea8
http://iopscience.iop.org/article/10.1088/1361-6633/80/2/024001
http://iopscience.iop.org/article/10.1088/1361-6633/80/2/024001
http://iopscience.iop.org/article/10.1088/1751-8113/49/47/473001
http://iopscience.iop.org/article/10.1088/1751-8113/49/47/473001
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/956044826/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
8 November 2017

REVISED
27 April 2018

ACCEPTED FOR PUBLICATION
8 August 2018

PUBLISHED
28 August 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New J. Phys. 20 (2018) 083040 https://doi.org/10.1088/1367-2630/aad8df

New jou rnal of Ph sics Deutsche Physikalische Gesellschaft @ DPG Published in partnership
y with: Deutsche Physikalische
The open access journal at the forefront of physics I0P Institute of Physics Gf:s”S.Chaﬂ and the Institute
of Physics

PAPER
A formalism for steering with local quantum measurements

A B Sainz' ®,L Aolita>’, M Piani*®, M ] Hoban™’ ® and P Skrzypczyk®

' Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada

2 Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ, Brazil

> ICTP South American Institute for Fundamental Research, Instituto de Fisica Te6rica, UNESP-Universidade Estadual Paulista, R. Dr.
Bento T. Ferraz 271, Bl. 11, 01140-070 Sao Paulo, SP, Brazil

* SUPA and Department of Physics, University of Strathclyde, Glasgow G4 ONG, United Kingdom

> Clarendon Laboratory, Department of Physics, University of Oxford, United Kingdom

¢ H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom

7 Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

E-mail: sainz.ab@gmail.com

Keywords: quantum non-locality, EPR steering, quantum maps, entanglement witnesses

Abstract

We develop a unified approach to classical, quantum and post-quantum steering. The framework is based
on uncharacterised (black-box) parties performing quantum measurements on their share of a (possibly
unphysical) quantum state, and its starting point is the characterisation of general no-signalling assemblages
via non-positive local hidden-state models, which will be defined in this work. By developing a connection
to entanglement witnesses, this formalism allows for new definitions of families of assemblages, in particular
via (i) non-decomposable positive maps and (ii) unextendible product bases. The former proves to be useful
for constructing post-quantum assemblages with the built-in feature of yielding only quantum correlations
in Bell experiments, while the latter always gives certifiably post-quantum assemblages. Finally, our
framework is equipped with an inherent quantifier of post-quantum steering, which we call the negativity of
post-quantum steering. We postulate that post-quantum steering should not increase under one-way
quantum operations from the steered parties to the steering parties, and we show that, in this sense, the
negativity of post-quantum steering is a convex post-quantum-steering monotone.

The concept of steering was first introduced by Schrodinger in 1935 [1] in response to the Einstein et al paradox [2]. It
refers to the phenomenon where one party, Alice, by performing measurements on one part of a shared system,
seemingly remotely ‘steers’ the state of the system held by a distant party, Bob, in a way which has no explanation in
terms of local causal influences. Steering has only recently been formally defined in a quantum information-theoretic
setting [3], as a way of certifying the entanglement of quantum systems without the need to trust one of the parties, or
when one of the parties is using uncharacterised devices. In this setting, the uncharacterised party convinces the other
party that they shared entanglement by demonstrating steering. Furthermore, if all parties are uncharacterised (or
untrusted) then one recovers the device-independent setting of a standard Bell test. Steering thus may be seen as one
in a family of non-classical phenomena, closely related to entanglement and Bell non-locality [4]. Indeed, Bell non-
locality implies steering, and steering implies entanglement, however all three concepts are inequivalent [3, 5].

It is well-known that, in spite of demonstrating non-locality, local measurements on entangled quantum
systems cannot be used to communicate superluminally. That is, correlations that are generated by varying the
choice of local measurements on space-like separated quantum subsystem—which we define to be quantum
correlations—satisfy the principle of no-signalling. We will call no-signalling colleations all correlations that do
not permit signalling. One can conceive of no-signalling correlations that cannot be realised by local
measurements on quantum states, hence called post-quantum correlations; this possibility was first pointed out
in a seminal work by Popescu and Rohrlich [6]. A pertinent question at the heart of quantum foundations since
then has regarded the reason why we do not seem to observe these post-quantum correlations in nature [7]. This
line of questioning has resulted in the proposal of physical and information-theoretic axioms that aim to single
out the set of quantum correlations among the no-signalling correlations [8—14].

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Since Bell non-locality implies steering, it is natural that there should also exist post-quantum steering, i.e.
steering that does notlead to superluminal signalling yet cannot be realised through local measurements on a
quantum system. In the standard steering scenario—only two parties, one of whom is uncharacterised and the
other who holds a quantum system—there is no such thing as post-quantum steering: the only ways in which a
single Alice can steer a quantum Bob without leading to signalling have a quantum explanation [15]. However,
when considering multipartite generalisations of steering [ 16] (see also [17]), it is possible to have post-quantum
steering [ 18]. Such situations involve three or more parties, with at least two uncharacterised parties.
Remarkably, it is possible to have post-quantum steering without the presence of post-quantum non-locality,
demonstrating that these two concepts are in fact intrinsically distinct [18].

The question of how to best understand post-quantum steering, including its possibilities and its limitations
—which could ultimately lead to an information-theoretic reason why post-quantum steering does not appear
in nature—is still open. One main reason for this is the lack of a framework within which to study quantum as
well as post-quantum steering in a unified manner. This makes the implications of post-quantum steering
difficult to address. We cannot take a black-box approach—that is, based solely on the use of conditional
probability distributions, as in the case of Bell non-locality—since there is the assumption that one or more
parties have a quantum system and their devices are well-characterised. Nevertheless, in the steering framework
there is a natural analogue to conditional probability distributions: the assemblage. The latter is the collection of
states of the characterised parties for each possible measurement outcome of measurements made by the
uncharacterised systems. Another obstacle on the path towards understanding the power of post-quantum
steering in information tasks is the lack of examples of (large families of) post-quantum steering assemblages.

In this work we develop a framework for steering based on that of [19] (see also [20]) for Bell non-locality. In
this formalism, the parties share a (potentially non-quantum) system in the (potentially unphysical) state p,
where some parties steer the others by performing quantum measurements on their share of the system. By
unphysical state we mean that p is not necessarily positive semi-definite, but it is Hermitian and has unit trace.
We show that different families of assemblages arise naturally within the framework depending on the properties
of the operator p, and in this way we can identify assemblages with a local hidden state (LHS) model, as well as
quantum and general no-signalling assemblages.

Furthermore, we describe a new family of assemblages, which we call Gleason assemblages, in analogue to
Gleason correlations [19]. These are assemblages that arise when p is an entanglement witnesses. Motivated by the
fact that every positive (but not completely positive) map can generate an entanglement witness [21], we
consider a novel means of generating post-quantum assemblages: the application of positive (but not completely
positive) maps to the quantum systems held by the characterised parties-equivalently, to the assemblage. We
show that this construction automatically leads to quantum correlations upon measuring the characterised
systems, yet can lead to post-quantum assemblages when a special class of positive maps is considered (so-called
non-decomposable maps). In other words, we present a constructive way of generating post-quantum
assemblages that only produce quantum correlations. This provides the first general analytic construction of
post-quantum steering without post-quantum non-locality, with the only known examples to date being
obtained through numerical optimisation [18].

We also study assemblages that arise when the parties perform local measurements on entanglement
witnesses constructed from an unextendible product basis [22]. This is a simple construction that always yields
certifiable post-quantum assemblages (although with post-quantum correlations). In addition, we provide a
characterisation of general no-signalling assemblages as affine combinations of LHS assemblages. This result,
which generalises that of [23] for Bell scenarios, not only provides an operational interpretation for non-classical
assemblages but also serves as a useful tool for developing our work further. Finally, our framework also provides
an inherent post-quantum steering quantifier in terms of the minimal negativity of the operator p necessary to
reproduce a given assemblage. We prove that such a quantifier does not increase under processing of the
assemblage by means of one-way quantum operations from the steered party to the steering party, whereas
standard steering is postulated not to increase under one-way local operations and classical communication.

The outline of the paper is as follows. In section 1 we introduce the concept of steering and LHS models.
Then in the next two (sections 2 and 3) we introduce a generalisation of LHS models that can account for general
no-signalling assemblages. The tools developed in these sections allow us to introduce our general formalism for
steering in quantum theory and beyond in section 4, and then introduce the notion of Gleason assemblages. The
direct connection between entanglement witnesses and positive but not completely positive maps is then
exploited in section 5 to generate new examples of post-quantum steering without post-quantum non-locality.
In section 6 we generate post-quantum assemblages using entanglement witnesses constructed from
unextendible product bases. In section 7 we introduce a quantifier of post-quantum steering, proving its
monotonicity under one-way quantum operations. We conclude with some remarks and open problems.
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1. Steering

Let us start by describing the simplest steering scenario consisting of two separated parties, Alice and Bob. The
roles these parties play in the experiment are different: Alice (a.k.a. the ‘steering’ party) is thought of as having a
black-box, where she decides on an input x and obtains an outcome a. Nothing is assumed about the inner
workings of this device. On the other hand, the situation at Bob’s lab (who is known as the ‘steered’ party) is fully
described by means of quantum mechanics: he has access to a system whose marginal state is given by pj. Each
round in the experiment consists of Alice choosing an input x and obtaining an outcome a, with probability
p(alx), and Bob obtaining the conditional marginal state g, into which his system has been steered. Itis
convenient to work with the unnormalised steered states o, := p(alx) g,|, which contains information

both about the probabilities of the steering party, p(alx) = tr{o,,}, and the conditional marginal

states ), = Ja|x/p (alx).

The first relevant question in such a set-up is: given aset o4 x := {0y« }Ja,x of conditional states o), which we
shall refer to as an assemblage, prepared in Bob’s lab, could it have arisen by Alice and Bob performing
measurements on a classically correlated shared system?

In general, in a quantum scenario, the elements of the assemblage are given by

Oa|x = trA{(Ma|x b2y JI)P}: (1)

where pis a state shared by Alice and Bob, and M, is the ath element of a general measurement on Alice’s
subsystem—i.e., a positive-operator valued measure (POVM)—M, := {My|x}a x, With M, > 0
and Y, My, = L.

A separable (or classically correlated) bipartite state has the structure

RPN NN )
A

with {p, } a probability distribution, and each pf anormalised state for A (similarly for B).
If pin (1) can be chosen to be separable, that is, as in (2), the experiment is said to have a LHS model, and the
members of the assemblage can be written as

Og|x = ZP)\(alx) Oy (3)
A

where 0y, > 0 are sub-normalised quantum states such that p()) := tr{o,} satisfies 3", p(\) = 1,and p, (alx)
are well-defined conditional probability distributions for all \. With respect to the notation of (2), one would
have p, (alx) = tr {Ma|xp‘;} and 0y, = pf/px

Conversely, whenever the conditional states o, do not admit an LHS model—that is, they cannot arise
from local measurements on a separable state—it is said that steering has been demonstrated from Alice to Bob,
and in this case, a state p that is entangled is necessarily shared between Alice and Bob in order to satisfy (1).

In the literature, the steering (resp. steered) party is also sometimes said to be uncharacterised (resp.
characterised) or untrusted (resp. trusted), depending on the particular context in which the steering experiment
is performed (for instance, a cryptographic scenario). In this manuscript, we will use these names synonymously
without inheriting any of their implicit assumptions on the nature or circumstances of the set-up.

We are also interested in situations beyond the standard bipartite steering scenario, involving an arbitrary
but fixed number of parties, where some are characterised and some are not. Characterised parties then
describe their local systems by means of quantum mechanics, i.e. the marginal states of their systems is
specified by a density operator to which they have access. On the other hand, uncharacterised parties only
rely on the classical labels of the inputs and outputs of their devices, and their outcome statistics. As such, ina
scenario with n uncharacterised parties, the object of interest is the multipartite assemblage oy, 4, x...x, =
{Oar...anlxi...x0 .y ..oy the ensemble of unnormalised states o, _4,|x...x,» Which are conditionally prepared
for the characterised parties by the uncharacterised ones, when they input x ... x, on their devices and obtain
outcomes 4 ... a,(seefigure 1). Analogously to the bipartite setting, tr{o, 4, 1x..x,} = P(d1 ... dulxg ... x,).
In the following we will consider the case where there is only one characterised party, referred to as Bob. In
general, our results will also apply to the case of more than one characterised party, by considering these as just
one (larger) effective characterised party. We will explicitly discuss the details when the number of
characterised parties plays a relevant role.

Multipartite steering experiments lead to richer phenomena than the bipartite experiments [16, 17]. In the
former case it is possible to have steering that goes beyond what quantum mechanics allows for, while still
complying with the principle of no superluminal signalling [ 18], while in the latter case this is impossible [15].
One of the primary goals of this paper is to develop a formalism which can deal with both quantum and post-
quantum steering in a unified manner. To that end, in the next section we introduce a representation of general
multipartite assemblages in terms of affine combinations of LHSs. This is a generalisation of similar results in
Bell scenarios [23], and will be useful for us to introduce a general formalism for steering later.
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Oay...an|z1...20

aq ag an,

Figure 1. Steering scenario with n + 1 distant parties: n steering parties each having access to an uncharacterised measuring device
(box) and one steered party having a characterised quantum system with full quantum control. Each steering party performs a
measurement x; on their device, obtaining an outcome ay. The characterised party’s systems are steered into the conditional states
Oay...an|x1... %0 with probability p(a; ... alx ... x,) = tr{Ual...a”\xl...xn}-

2.Pseudo LHS models

In this section, we present a characterisation of general (i.e. no-signalling) assemblages as affine combinations of
LHSs. We will denote these by pseudo-LHS models.

Consider hence a general steering scenario where n uncharacterised parties, henceforth denoted as Alices,
steer a characterised one, denoted as Bob. Assume that each of the n Alices operates a device whose input can
assume m different values and returns one out of d outcomes, hence producing the assemblage o, .. 4,x,...x,
for Bob.

Whenever the Alices and Bob share a classically correlated system, the assemblages that may arise by the
Alices performing local measurements on their share of the system are said to have an LHS model, as mentioned
in the previous section. The formal definition of such a model in the multipartite scenario is the following.

Definition 1 LHS model. An assemblage o, . 4,|x,... x, has an LHS model if it can be decomposed as

Oyl = 9 PV (@ilx) .. p (@nlx) 0 4)
A

where pA(j) (ajlxj) = 01isaconditional probability distribution for every A and every uncharacterised party j, and
oy (the LHSs) are unnormalised quantum states that satisfy

o =0 Y\ (5)

tl‘{z 0')\} =1. (6)
A

The purpose of this work is to develop a general framework for steering that goes beyond LHS and quantum
assemblages. A possible strategy for this is to generalise the definition of an LHS model to include quantum
assemblages and potentially some post-quantum ones, in a similar spirit as previously done in non-locality
[23, 24]. Thus, we propose the following generalisation, which we denote as pseudo-LHS models.

Definition 2 Pseudo-LHS model. An assemblage 04, 4,|x,...x, has a pseudo-LHS model if it can be decomposed
as

Oay...anlx...x, — ZP;I) (allxl) e P,\n) (anlxn) O\ (7)
A

where p)(\j) (ajlxj) > 0isaconditional probability distribution for every A and every uncharacterised party j, and

the LHSs satisfy
tr{z o)\} =1 &)
)

Note that in definition 2, if we demand in addition that o, > 0 V A, we recover definition 1 ofa LHS model.
Hence, we are relaxing the model by allowing LHSs that are not positive semidefinite. In particular, this implies
that we allow the hidden variables \ to have negative probabilities, since p(\) = tr{cy}".

Note however that, when generalising LHS models we encounter a freedom that was not present in Bell
scenarios. Indeed, from equation (4) one could either relax the LHS assumption by considering assemblages that
are (i) convex combinations of non-positive semidefinite states, or (ii) affine combinations of positive

A natural question is what would happen if the local hidden states are allowed to not be positive semidefinite but constrained to p(\) > 0.
The set of assemblages that admit such a model is strictly contained within the pseudo-LHS set, since they only allow for local correlations for
the output statistics of the uncharacterised parties.
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(a) One characterised party (b) Many characterised parties

Figure 2. Semi-classical approach to a no-signalling assemblage. (a) One characterised party: an unphysical source produces the
hidden variables (), ) with pseudo probability q(\, 1) and sends them to the n + 1 parties. The uncharacterised parties produce
the outcomes via the response functions p, (a|x;), whereas the characterised ones produce the states p, , locally. The no-signalling
assemblage is then explained by equation (11) as an affine combination of such local preparations. (b) t characterised parties: a source
produces the hidden variables (A, p, ) with pseudo probability g(A, p, ) and sends them to the n + t parties. The uncharacterised
parties produce the outcomes via the response functions p, (a]x;) whereas the characterised ones produce locally the states p&i))u)u. The
non-signalling assemblage is then explained by equation (12) as an affine combination of such local preparations. In both (a) and (b),
all the non-classicality of the assemblage is contained in the negativity of the pseudo-probability distribution g.

semidefinite states. Definition 2 corresponds to (i). In Bell scenarios, in contrast, the corresponding formalism
admits only the analogue to (ii), in terms of affine combinations of local correlations. This freedom, however,
does not introduce any ambiguity in the formalism since they turn out to be equivalent, as we show next.

Lemma3. Let 04, 4,x...x, be an assemblage in a steering scenario where n uncharacterised parties steer a
characterised one. The assemblage has a pseudo-LHS model iff it can be written as an affine combination of quantum
states.

Proof. First, consider an assemblage that has a decomposition as an affine combination of quantum states:

Oay...a,lx...x, — Z 61()\) Pil) (allxl) e P,En) (anlxn) Py (9)
A

where p, are, for each A, normalised hidden quantum states on Bob’s system and g () is a pseudo probability
distribution on A, i.e. g(A\) € Rforall \and ), g(A\) = 1. Bydefining 0y := g()) p, it follows that the
assemblage has a pseudo-LHS model.

For the converse, start from an assemblage with a pseudo-LHS model:

Oa,...ap|%... %, — ZP)\(I) (allxl) P)En) (anlxn) O\ (10)
A

Each o, can be expressed as
D=0+ Ps— 0P VA

where the operators p, | and p, _ are normalised quantum states and ¢, | and ¢, — non-negative reals such that
p(A) =64+ — ¢ _forall \.
By introducing an auxiliary binary hidden variable y = {4, —}, equation (10) may be rewritten as

Oayoocafiree, = 2 P (@lx) oo p\P (@nlxn) g, 1) py o (11)
A
where q(A, 1) == pcy ;. The fact that this is a pseudo probability distribution on Aand y follows from the fact
that 35, AN 1) =3, tr{oy} = 1. Hence, the assemblage may be written as an affine combination of
normalised quantum states. O

This allows us to understand the problem in a semi-classical way (see figure 2). An unphysical source
produces the hidden variables (A, p) with pseudo probability g (), w) [25] and sends them to the n 4 1 parties.
The uncharacterised parties produce the outcomes via the response functions pij) (ajlx;) whereas the
characterised one produceslocally the states p, . The assemblage is then explained by equation (11) as justan
affine combination of such semi-classical preparations. Note that all the non-classicality of the assemblage is
contained in the negativity of the pseudo-probability distribution q. In the case where the steering scenario
consists of more than one characterised party (say, t), we can take a step further and express each of the quantum

states p, , as affine combinations of product states p, , , = P(AIL, RO p(;)ﬂ , with pseudo-probabilities

5
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q(A, 1, ) [26]. Hence, the assemblage may in this case be expressed as

1
Oy = 2 DAV (@) o p\” (@nlxn) g s )y, e (12)
PWINZ
This generalises the possibility to express as affine combinations both conditional probability distributions for
non-locality scenarios [23] and shared quantum states [26]. A similar semi-classical interpretation of the steering
experiment with many characterised parties is presented in figure 2(b).

3. No-signalling assemblages

The formalism that we present in this work provides a unified framework for the study of no-signalling
assemblages in general steering scenarios. In this section we will review the basics of no-signalling assemblages
and relate them to the pseudo-LHS models from the previous section.

A general assemblage that complies with the no-signalling principle is defined as follows:

Definition 4 No-signalling assemblage. An assemblage o4, . 4, x,... x, is no-signalling if it satisfies

Z Oay...a,lx...x, — PR VX ... X (13)
a...a,

where py, is the (normalised) reduced state of the characterised party’s system, and for every subset

S ={i; ... i,} of runcharacterised parties, with 1 < r < n,

Z Oay...anl%...%, — O'a,-l...a,,lx,-l...x,v, v Xip vee Xje (14)
a4 ES

Condition (14) says that when disregarding the outcomes obtained by some uncharacterised parties, the state of
the characterised party’s subsystem should not depend on the choice of measurement of the disregarded parties.
Moreover, when all the uncharacterised parties are traced out, condition (13) says that the state of the
characterised one should be a normalised quantum state equal to his subsystem’s reduced state. Note that we do
not need to impose any no-signalling conditions from the characterised party to the uncharacterised party, since
the quantum formalism (which governs the behaviour of the characterised parties) is non-signalling, and does
not allow for any signalling in this direction. We are now in a position to present one of our main results.

Theorem 5. Let 04, 4, |x,...x, be an assemblage in a steering scenario where n uncharacterised parties steer a
characterised one. The assemblage is no-signalling iff it has a pseudo-LHS model.

Proof. Given an assemblage with a psuedo LHS model, equation (7) guarantees that it satisfies the no-signalling
constraints, hence the first implication follows.

For the converse, let us assume that o, 4,|x,...x, is no-signalling. For party j € {1, ..., n}, definealocal
hidden variable Ajs taking values in the set
A] = {[aj) xj]}aj,xj U {5}) (15)

i.e. the set of ordered pairs [a), x;] in union with a single-element set composed of an arbitrary dummy symbol,
denoted by £. Thereare m d pairs [aj, x;],s0|Aj| = md + 1.

Then, take the local hidden variable A of equation (7) as the tuple A := (), ..., A,), and in turn define the
weights in decomposition (7) as

6/\).’[“7.’,‘].] if a; <d
D (g.lx:) — ' .
ij] (@jlxj) =31 — > Onlaxg if aj=d. (16)
a<d

These are well-defined conditional probability distributions of every A; and party j, since Yo P A(J ) (ajlx) = 1.
)

Given the global hidden variable A, define S to be the set ofindices {j: A; = &£}. With this, define the
hidden pseudo-states as

Oy = (1 - m)n7|SA| o-as/\|xs)‘1 (17)

where the ag, and xg, involve the parties that belong to the set S, i.e. those whose hidden variable does not take
the dummy value €. For instance, when |Sy| = n,

Olapx)s..olamxs) = Oay...aylx...xp
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andwhen [Sy| = n — 1with ;y = £

¢ (a5, ..o [awx,] = (1 —m) Oay...ap|%...x,

Note that o, |x,, is well-defined since the original assemblage is no-signalling, and o, |x,, arises from it by
AN AN
tracing out the parties that are notin S.
Now we need to prove that these oy, are suitably normalised and that, together with the p /{J) (ajlxj) from
7

equation (16), they reproduce the assemblage. For the former:

tr{z O’)\} =1tr Z Z a- m)n7|S| Oag|xs

A SC{1,...,n} agxg

=ty > (1 —m)ySmlSlp,

SC{1,..,n}
— Z (1 — m)”7|5|m|5|
SC{1,..,n}
n
— (n)(l _ m)nfrmr
r=o\T

=1.

For the latter, it is sufficient to show that the model reproduces the assemblage and its marginals for every
subset of the parties, for every choice of measurement per party, when the outcomes satisfy a; < d V i. This
statement follows from a similar argument to that of [23], and we make it explicit in the following. Let
R C {1,...,n} beasubset of K parties. For simplicity in the exposition, we take R = {1,...,K}, and the proof for
other subsets follows similarly. First note that the assemblage that the pseudo-LHS model reproduces is

~ 1
Oa,...ap|%...%, — § P)(\] )(allxl) p/\:) (anlxn) x>
A

and has marginals

a—al...alel...xK = ZPA(II) (allxl) P)(\f) (aleK) Ox.
A

Plugging in the explicit expressions for gy and p /{J) (ajlx;) when a; < d we obtain
7

~ 1 K
Gy —alsv = 2 Py (@ilx) . p ) (axlxic) o
A
= E 6)\1,[01,X1] 6)\K>|aK=xK| O
A

= Z 5)\1,[ﬂ1,3€1] A 6/\K,[a1<»xk] Ox
Aj
j#R

n—K

_ _ n—K—k

— Z (1 m) z z Ualu.aKa,l...u‘klxl...xKxil...x‘k
k=0 SC{K+1,...,n} aij=ld-1

|S|=k xig=lim
ijES

n—K
= Z (1 - m)niKik Z Z Oa,...ax|x... xx
k=0

SC{K+1,..., n} x,-j:I:m

ISI=k ijes
n—K
= Z (1 - m)n—K—k Z mk Og,...ag|x...x¢
=0 SC{KTT,...,n}
ISI=k

n—K
n— K
= Z ( k )(1 - m)n—K—k mk Oa,...ax|x... x¢
k=0

= Og,...ax|x...x¢"

Hence, the assemblage &y, . 4 |x...x, that the pseudo-LHS model reproduces has the same state and marginals
than o, 4 1x...x, for every subset of the parties and any choice of measurements when a; < d V i. Hence
Tay.aplxxn = Oay...aplxs...xy ¥ @1 - Gps Xi ... Xy, and the claim is proven. O

4. A formalism for non-signalling steering

In this section, we develop a formalism for non-signalling steering, similar to the one presented in [19] (see also
[20]) for non-signalling correlations in Bell scenarios.

7
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Mg,

L1 B PAB
P alz P alz pﬁw
(a) Graphical (cir- (b) How the scenario in (a) is
cuit) representation of represented in our formalism.

a steering assemblage.

Figure 3. Graphical (circuit) depiction of a non-signalling assemblage and of its representation in the formalism of theorem 6. Time
goes from left to right. For the sake of simplicity and clarity we focus on the case of just one steering party. Classical systems are
denoted by double-lines and quantum systems by just a single line. Classical variables are represented by double-line boxes; quantum
processes (which may also have a classical input register and a classical output register, besides quantum ones) are represented by
single-line boxes. (a) A depiction of a non-signalling assemblage: Alice’s classical data for choice of ensemble, x, and index of element
of the ensemble, g, are connected by a stochastic classical process with conditional probabilities p(a|x); Bob’s quantum system is

correspondingly prepared in the conditional state pfl)(' We recall that the conditional probabilities may be included in the definition

B

of an unnormalized conditional state o, = p(alx) pf‘x , which appears in theorem 6. (b) How a non-signalling assemblage is

represented in our formalism: p,  is the unit trace Hermitian operator in theorem 6, and { M, ;?x} 11salocal POVM on system A for
each x; the double line just carries the classical choice of measurement and the outcome of such a measurement. The quantum system

Bis correspondingly prepared in the conditional state pflx =ty (Md’]‘x ® 1) pup}/ plalx), with p(alx) = tiupg {(M;T)C ® 1) Pyg)-

Theorem 6. Let 04,4, |x,...x, be an assemblage in a steering scenario wheren uncharacterised parties steer a
characterised one (labelled B). The assemblage is no-signalling iff there exist POVM elements M2 for each

ajlx;
uncharacterised party j (i.e. positive operators satisfying Za] M ngjl)x,' = 1) and a unit trace Hermitian operator p such
that:
Oy = i a{ (M@ ... @MU @ D) pl, (18)

where the partial trace involves the n uncharacterised subsystems (see figure 3(b)).

Proof. If an assemblage can be written as in equation (18), it is straightforward to see that it is no-signalling. The
‘only-if’ part of the proofrelies on the constructions of theorem 5 and lemma 3, as we explicitly show in what
follows.

First, write the no-signalling assemblage as an affine combination of quantum states, as in lemma 3 by
further using the hidden variable model from theorem 5:

Oa...anl%...%, — Z q()\> ﬂ)P)(\ll) (allxl) P)(\:l) (anlxn) P)\,W (19)
A

with p/{_j) (ajlx;) asin equation (16).
J
Then, assign to each uncharacterised partyjan (md + 1)-dimensional Hilbert space spanned by the

orthonormalbasis {|\;): A; € A;}, where A; defined in equation (15) is the set of values that the hidden variable
for party j can take. Define

p=a 1) M) (M @@ () (Al © py o (20)
Al
and
Mg = ;p;? @) 1) (- @1
j

Since the {|\;) } bases are orthonormal, it follows by direct calculation that one correctly obtains a pseudo-
LHS model for the desired assemblage. O

Here, the Hermitian operator p plays the role of the operator O in [19]. Figure 3 presents a graphical
depiction of the formalism, restricted to only one steering party for the sake of clarity. Note that for a given
assemblage, the choice of p is not unique. The construction presented in theorem 6 produces a specific p which
works in all situations.

By definition, p in equation (18) can be chosen to be positive semidefinite if and only if the assemblage is
quantum. On the other hand, it also follows that an assemblage has an LHS model if and only if 5 can be chosen
tobeafully (n 4+ 1)-separable quantum state across the multipartition A4]|...|A,|B.

Once the nature of the assemblages is identified with the properties of the operator 7, one can study the
families of assemblages for different families of 7 that have particular properties. Of particular interest is the set
of Gleason assemblages, which contains the set of quantum assemblages:

8
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Definition 7 Gleason assemblage. An assemblage o, . 4,|x,...x, is 2 Gleason assemblage if and only if there exist
POVM elements M?_for each uncharacterised party j (i.e. positive operators satisfying XM () — f)anda

ajlx; ajlx;
unit trace entanglement witness W such that:

®...0M" 1) W}, (22)

ay|x,

1
Oay...a,lx...x, — trl,...n{(M( )

ai|x

where the partial trace involves the n uncharacterised subsystems (see figure 4(a)), and Wis an entanglement
witness with respect to the (n + 1)-partition A; | A, | ... | A, | B.

This definition is in analogy with the Gleason correlations defined in [19]. The key property of Gleason
assemblages is that even if the measurements of the uncharacterised parties were to be changed to other arbitrary
measurements, the resulting assemblage would remain well-defined. This is a stronger requirement than that
imposed in general by theorem 6, where the operator p need only produce valid assemblages for the specific
measurements M rE,]I)xJ The fact that 7 can be taken to be an entanglement witness for the (n + 1)-partition
Al Ay | ... | A, | Bisbecause this constitutes the necessary and sufficient property for it to produce well-
defined assemblages for all local measurements [27, 28].

Since we demand that W defines valid assemblages for alllocal measurements (not just some particular
subset of measurement), the set of Gleason assemblages is in general smaller than the no-signalling set. Also,
since W may be non-positive, the set of Gleason assemblages is in general larger than the quantum set.

One can see that for bipartite steering scenarios, the set of Gleason assemblages coincides with both the
quantum and the no-signalling set. Following [19], this can be seen by considering that any unit trace bipartite
entanglement witness W, can be expressed as the action on the steering side of a trace-preserving positive map
& onabipartite normalised quantum state, Wy = (€4 ® 1p)[p,5]. Hence,

Og|lx = trA{(Malx ® 1) Wap}
= trA{(gT[Malx] & JlB)pAB}

with &7, the dual of £, a positive unital map, so that {(£ "[Max]} o is alsoa POVM for all x. However, for steering
scenarios with more than one uncharacterised party this is no longer the case, as we see next.

Example 8. Consider the four three-qubit states:
[000), |lete), lelet), [etel), (23)

where {|e), |e*)}isan arbitrary basis different from {|0), |1)}. Denote by ITypp the projector onto the subspace
spanned by all four states in equation (23). Construct now the tripartite entanglement witness

1
W= 11 — €l), 24
1 86( ves — €1) (24)
where € = min|o3,) (3y|Ilyps|3y), with |av), | 3), and | y) arbitrary single qubit states and
|aBy) = |a) ® |B) & |v). Define now the assemblage:

Ouaslas = tp{ (M), © MG, © DW], (25)

al%
where M} = |0) (0], M} = [1) (1], M{{) = |e) (el, and M} = |e*) (e*], fori = 1, 2.
This assemblage is post-quantum, since by Bob performing measurements in the same basis as the Alices,
one obtains post-quantum correlations p(ay, a4y, blx1, %, ), as proven in [19]. Hence, already for the simplest
multipartite case, the set of Gleason assemblages is larger than the quantum one.

Remark 9. Consider an arbitrary Gleason assemblage in a steering scenario where two uncharacterised parties
steer a characterised one. This has the form

Onalns, = t2A(M, @ M) @ DW}.

al%
If we now trace out the steered party we have that

play, amlx, %) = r{ M @ ME ywid},

aylx alx

where W2 is an entanglement witness for Alice’s two subsystems. Such p(a;, a]x;, %) belong to the so called
set of Gleason correlations [19], which for bipartite Bell scenarios coincides with quantum correlations. Hence,
p(ay, a|x;, %) are quantum correlations.

Therefore, we see that Gleason assemblages, even if post-quantum, only generate quantum correlations
between the two uncharacterised parties. Note however that when considering the full tripartite Bell scenario
thatincludes Bob (i.e. not tracing him out) the correlations may be post-quantum. Hence, the post-
quantumness of the assemblage may nevertheless be certified in a Bell experiment.
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A natural question is whether post-quantum steering is a new phenomenon in its own right, or if it is just
another consequence of post-quantum non-locality. In [ 18], the authors show the former to be the case. They
gave an example of a post-quantum assemblage in a tripartite steering scenario with two uncharacterised parties,
which cannot give rise to post-quantum non-locality in a tripartite Bell scenario, where the characterised party
performs any set of measurements on their system.

In the next section, we use the relation between Gleason assemblages and entanglement witnesses to provide
a general construction for post-quantum steering that never gives rise to post-quantum non-local correlations.
This is the first general construction of this type, and sheds the first light on the structure underlying post-
quantum steering without post-quantum non-locality.

5. Post-quantum steering from positive maps

Here we present a method for generating post-quantum assemblages without post-quantum Bell non-locality.
The insight we use is the fact that positive, but not completely positive, maps are in correspondence with
entanglement witnesses. We will see that starting from this perspective, we can identify a subset of Gleason
assemblages which cannot give rise to post-quantum Bell non-locality. Furthermore, by checking simple
examples of positive maps, we find that we indeed produce post-quantum steering, and hence that there is a link
between positive maps and post-quantum steering.

We may obtain a Hermitian operator p to be used in equation (18) by acting partially on a quantum state
with a positive trace-preserving (PTP) map that is not completely positive (CP). More in detail, consider a
quantum state p shared by n + 1 parties, and define the map:

E1=TV® - I AB[],

where AB)[.]isa PTP map. If A®)[.]is not CP, £[p] may be not positive semi-definite. Nevertheless, the
conditional states

Oayeaplsn, = (M) @ . MUY @ 1) E[p]} (26)
_[\(B)[U X xn] (27)

form a well-defined assemblage (i.e. with o, 4, 1%,...x, = 0). Here,
0%, = M ® ... @ MY, © 1) p} are the elements of the assemblage obtained by the
measurements of the Alices acting on p rather than on £[ p], and by construction they constitute a quantum
assemblage. In other words, assemblages o4, . 4,|x,...x, arising from this construction can always be thought of as
being generated from a quantum one 0'31 .a,1x...x, by theapplication of a PTP map A®[] on the characterised
party.

Now, note that

plar .. ay bl ... x,y) =t (M), ©...@ M) @ M) Elp]}

anl|x,
=t { &MY, @ ..o M), @ MiP]p)
=t {M), ®...0 M), @ NOMP]p} (28)

are correlations that have a quantum realisation, for any set of POVMs {Mlng}f } b,y for Bob. This is due to the fact
that the dualmap £7[-] == TV ® --- @ T @ AAB[.], with A/®)[.] the dual of AP)[-], factorises into a tensor
product of local maps each of which is unital, since A®)[-]is trace-preserving. Hence, it maps each tensor
product of local POVM elements M, élll ® - M, (’j ® Mb(fy) to a tensor product oflocal POVM elements

Mélll)xl ® - QM (ﬂ) @ A B) [M(B)]
Thus, assemblages that are constructed in this way can only produce quantum correlations by construction.

In the following subsection, we discuss how the the properties of A®)[-] impart properties onto oy, . AKX,

5.1. Decomposable PTP maps

A crucial property of a map for our purposes is the notion of decomposability. A map AP [-]is said to be
decomposable whenever it admits a decomposition as AB)[-]= A,[-] + ToA,[-], where T'[-] denotes the
transposition map9 and Ay[-]and A;[-]are CP maps. If A®)istrace preserving—like in the case we are interested
in—then the two CP maps A; and A, form an instrument, thatis, A; + A,, besides being obviously completely
positive, is also trace preserving. If A®)[-]is decomposable, the assemblage it generates via equation (26) is always
quantum, no matter which initial quantum assemblage is used, as we are about to prove.

Transposition is defined with respect to some chosen local basis; such choice is irrelevant for our purposes as transposition maps in
different bases are unitarily related.

10
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First, note that the transposition map cannot generate a post-quantum assemblage. This follows from the
fact that

tn, (MY ®.. oMY @ I18)pTh)

ar|x ay|x,
=t M, ®... 0 M) @ I®)h.0pT}
=t M @ ... @ MU @ 1) pT)

= U’l,‘.‘,n{(Mu/(l) ®...Q M;:") ® JI(B)),O/},

1% [xn

where T and T denote partial transposition over Bob’s subsystem and global transposition over all systems,
respectively, {M, ;k((‘x)k =M ;fl)xfk} are POVMs, and p’ := p! isa quantum state. Hence, the assemblage obtained by
local measurements of the steering parties on a partially transposed (on the steered party) quantum state, admits
afully quantum realisation.

Now consider a generic decomposable PTP map A®[.]= Aj[-] + ToAy[-], and an arbitrary quantum

assemblage 0'%1..4An|x1...x,, = {024..ay,|x14..x,,}‘Then’
— ABTQ
Oay...a5x...x, = A( )[Ual...u,,lxl...x,,]
— Q Q
- Al[aal...a,llxl...x,l] + TOAZ[oal...an|xl...xn]
_ Q Q
- pa’ull.4.u,,|x1.4.x,, + (1 - p)o-ul?..a,,lxl...x,,’ (29)
where
p =tr Z Al[a M E x,,] ’
ay,...,a,
Q _ Al[U 1] X . x,,]
Ual...anlxl...x,, - » >
Q
Q, . T°A2[0a14..u,,|x14..x,,]

ay...a,lx...x,

lL—p

Since 0} 4 x...x, isaquantum assemblage and A®[-]is PTP, pis a valid probability, i.e., p € [0, 1]. This,
together with the fact that A[-]and A,[-]are CP (trace-non-increasing) maps and that transposition preserves
quantum assemblages, implies that both a‘%‘m Ax%..x, and U%zm A,1%...x, are quantum assemblages. By
convexity of the set of assemblages, it follows then that the assemblage o4, 4,|x,...x, in equation (29) isa
quantum assemblage too. A direct consequence of this is that no positive PTP maps from qubits to qubits'’ can

generate post-quantum assemblages by the above construction, since all such maps are decomposable [29, 30].

5.2. Non-decomposable PTP maps and examples of post-quantum steering
The observation of section 5.1 demonstrates that, if we want to find examples of post-quantum steering by
means of the application of positive maps to quantum states, then we must focus on non-decomposable maps.

The question that remains to be answered is whether there exist non-decomposable PTP maps that produce
assemblages which are post-quantum. In this section we will provide such an example.

Consider a steering scenario with two uncharacterised parties, who can choose among two dichotomic
measurements each. The characterised party will be taken to have a Hilbert space of dimension four.

We first define a quantum assemblage, assuming that the uncharacterised parties each hold qubits, i.e. the
shared system consists of two qubits and a ququart. The shared state is p = |¥) (|, where

W) i) — W)
= Ny ,

W) (30)

with

) = >
ay,a5,b,b’€{0,1},
a+a+b+b'=k

laga, b ') for k=1,2,3,

and where we have introduced the shorthand notation |a; a, b ') := |ay) 4, ® |a) 4, ® |b V')p.

10 . . . .
Or from qubits to qutrits, or qutrits to qubits, for that matter.

11
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The measurements the uncharacterised parties perform on their qubits are:

1+ (-1 X 1+ (—1)n 2
ML511|)0 = 2 M‘/511|)1 = 2

o 1 (’jg” X+2) - 1+ “}2)” (-X + 2)
Mﬂzlo = 5 Mazll = 5 > (31)

where X and Z are Pauli operators. Now define the PTP map AB[-] as
AP[p] = S(tr{p) 1= p = U p" U, (32)

where U = X ® Y isan antisymmetric unitary. The ability of the extended reduction criterion to detect states
that are positive under partial transposition certifies that AB[] is non-decomposable [31-33].
The claim now is that o4, 4,1x,%, *= {0a,a,)x3 Jay asx,5> With

= ABT1,R
Oay|xix = A [Ualazlxlxz]’

for UuQ]azlxlxz = th{(M, "glll)xl ® M, gl)xz ® 1)|T) (P}, is a post-quantum assemblage. This can be certified
numerically via a semidefinite programme (SDP). In particular, although the set of quantum assemblages has a
complicated structure, it is possible to construct approximations to this set, which have a much simpler
structure, and contain within them the set of quantum assemblages [18]. Whether or not an assemblage is inside
such an approximation can be checked efficiently using an SDP, and hence if an assemblage is found to be
outside the approximation, then it is also certified to be post-quantum. Using this method, we found that
O 4,4, %, x, does not belong to the set of quantum assemblages, and therefore demonstrates post-quantum
steering. All details of the calculation, and the codes necessary to reproduce the results, can be found online [34].
We emphasise that this is the first analytical example of a post-quantum assemblage that can only produce
quantum correlations in a Bell experiment where the characterised party makes measurements. Although we
will not discuss the details of this, we have verified in a similar fashion that also the well-known Choi map

[35, 36] can generate post-quantum assemblages.

6. Post-quantum steering from unextendible product bases

In this section we present a family of certifiable post-quantum assemblages for arbitrary multipartite steering
scenarios, which arises naturally from our formalism. We will consider the more general scenario, where instead
of asingle characterised party, we have t characterised parties, who are steered by n uncharacterised parties
performing m measurements of d outcomes.

We take alocal-orthogonality (LO) inequality [22] in the (n + ¢, m, d) Bell scenario. Following [22], one can
find an unextendible product basis (UPB) or a weak UPB (for scenarios with nondichotomic measurements) for
H = (CH®@+9 from the LO inequality. Such a weak UPB can be constructed as follows [22]. In each local Hilbert
space C*, we distinguish m different orthogonal bases, denoted by B; = { |¢§j)> }4-J, where j = 0,...,m — 1."
These bases are chosen such that if two basis vectors are orthogonal, then they are from the same basis: <¢l(.j )| qﬁf,’ ’)>
=0 = j = j’. Given an optimal LO inequality represented by a set of mutually orthogonal events S, the
corresponding UPB consists of the following elements: { |¢g’f‘)>® . ®|¢>§;TL’)> [(ar ... apidxy ... xpe0) € S}

This UPB then defines a normalised entanglement witness W = f (¢) (Ilypg — €1), where € =
miny s .oy, (Ol @ - @ (Yuy] Hups|t) @ ... @ [Y,44),and f(€) = (|S| — d"* €)' Indeed, since

€€ (0, %), tr{ p W} gives non-negative values when p s a fully separable state, and tr{ p,, W} < 0 for the

bound entangled state py,, = 1 — TIypp).The method of example 8 can then be applied to this weak

1
Pl
UPB to construct an assemblage. This is defined by the uncharacterised parties performing the measurements
MWD = |gf)(a’?)> <¢SJ‘J) Li=1...n0onW:

ajlx;
Tay--aplre oy = 0l (1G5 (B0 @ .. @ |65 (¢5)] @ 19) W),

The post-quantumness of the assemblage is certified by the correlations obtained when the characterised
parties measure M/ := |¢;’;J)> ((bg’;f) Lj=n+1..n+ t, thatis:

ajlx}- :

P Gyl - Xa) = {(B0) (6] @ . @ [ (g W),

Indeed, these correlations violate the original LO inequality
S p@ e Gyl e x) < L,

@@ @pii] X X ) ES

11 . .. .
For simplicity, we take these to be the same for all sites.

12
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since

> tr{|g5?) (¢501@ ... @lgf ) ()l WY = f(e) ISI — o),

Ayt
@...any el X X0 ) ES

which is larger than unity since € € (0, Lilr).

Even though the post-quantum assemblages that arise in this family produce post-quantum correlations, the
fact that they admit such an elegant analytical form makes them interesting, as this may be useful for potential
applications.

7. A post-quantum steering quantifier

A crucial issue in the theory of steering is its quantification—i.e. a notion of whether one assemblage
demonstrates more steering than another in some well-defined sense. A number of quantifiers have recently
been explored [18, 37—40], arising from differing operational tasks or geometrical constructions.

The formalism presented in section 4 naturally leads to a novel steering quantifier, similar in spirit to that
proposed in [41] for Bell correlations, which we refer to as the steering negativity. The steering negativity is
specially tailored to quantify the amount post-quantum steering an assemblage demonstrates (as opposed to the
amount of steering), as we see next.

By virtue of theorem 6, any assemblage can be reproduced by local quantum measurements on a Hermitian
operator p. This operator, which is not unique, can always be decomposed in terms of its negative and positive
parts,i.e. p = p, — p_,with p, > 0.Then, for an arbitrary no-signalling assemblage o4,.. 4,x,...x,» We define its
steering negativity as

V(OA.. A X...x,) = min tr{p }
(MP),p

s.t. /~) - p+ — P
py = 0,
Oa,...aylx...xy, — trl,...n{(Ma(ll&l ®...® Mxl)xn ® ]l) ﬁ}) (33)

where Mfcl) stands for a POVM with elements M ;fl)xi, and the minimisation runs over all such M;f), for
1 < i < n,aswellas over p. Note that since all quantum assemblages admit a decomposition as in equation (18)
with a positive semidefinite p, their steering negativity by definition, is zero. Hence, in contrast to other measures
of steering, this figure of merit is relevant for quantifying the post-quantumness of an assemblage.

Since the operator p is normalised, the negativity can equivalently be computed as

v(o, ) = min =
A AKX = (M), p 2

s.t. Oy, = th,_ o AME @ @ M® @ 1) p},

alx aplx,

where ||-||; denotes the trace norm. This alternative expression for v makes the connection with the well-known
negativity [42, 43] from entanglement theory explicit. In fact, if p is taken as the partial transpose of a given state
p, then W defines precisely the entanglement negativity of p.

In the following, we will show that the steering negativity is a convex quantifier of post-quantum steering.
We do so by putting forward the study post-quantum steering from a resource-theoretic perspective, whereby
Alice and Bob are allowed to perform operations which are deemed unable to increase the amount of post-
quantum steering they share (so called free operations), similar to what has been done for (quantum) steering
[39].In [39], the free resources were local operations and one-way classical communication (denoted one-way
LOCC), where the communication is only allowed from the steered party to the steering parties. It was
postulated that quantum steering exhibited by a quantum assemblage does not increase under these free
operations. We will generalise these free operations to study post-quantum steering.

In a steering scenario, if the assemblage is compatible with local measurements on a shared entangled state,
then there is no post-quantum steering, by definition. Furthermore, if all parties are in addition given access to
an auxiliary entangled state, then this should not lead to post-quantum steering. However, given the existence of
phenomena like ‘super-activation of non-locality’ [44]—where entangling measurements made on multiple
copies of alocal, entangled quantum state can result in non-locality—one has to address the possibility of an
‘activation of post-quantum steering’; that is, entangling measurements made by the steering party could
generate post-quantum steering. To avoid this we take inspiration from resource theories of non-locality
[45,46], where untrusted devices are treated as classical black boxes and inputs and outputs are ‘wired’ together.
In such a non-locality framework, given copies of black boxes that can be realised by local measurements on a
local quantum state, multiple copies of these boxes when wired together do not give non-locality; going even

13
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p(a’lx’)
, ﬁ gﬁz’ T === @ N;}|a ,
x / p(a\x) T a
..... B /
Pole M Pl
i AB—)B’A’J vl

(a) The most general operation that we consider where quantum communication
is allowed only from Bob (steered party) to Alice (steering party), and local
operations can be performed.

1AA’
a'|z’
B A’ Al

’ ’/ £m|m/ €T a Na’|a |- ’
T . ]\[A — a

................................... : / ala

pAB | E / ............................................................ p /
AB—)B’A’ / @/la’
PAAB

(b) A depiction of how the most general operation in (a) applies to our formalism.

Figure 4. The processing of a steering assemblage by one-way quantum communication, in the same graphical, circuit-like
representation as in figure 3. Time goes from left to right. For the sake of clarity we focus on the case of just one steering party. The
elements of the original assemblage (see figure 3) are represented in red. Dotted blue boxes identify the effective elements of the final
result of the processing. (a) The most general quantum processing of an assemblage as represented in figure 3(a), by means of one-way
quantum communication from Bob to Alice, giving rise to a new assemblage characterised by a stochastic classical process p’(x’|a’)
and conditional states pf/,‘x,: Bob applies a generic quantum channel on his quantum system B, with output systems B’, to be kept by
Bob, and A’, to be sent to Alice. System A’ is generically quantum, but it may be trivial (no communication) or include (or even be
limited to) classical information. Alice then uses A’ to transform her original classical process p(alx) into a new classical process
p'(@’|x"). This is done by deciding an input x based on the classical outcome of an instrument { £ ﬁ’x,} » with the choice x” of the
instrument corresponding to the input of the new stochastic classical process p’(a’|x"). We recall that an instrument has both a
quantum output and a classical output. The output a of the original classical process is then used to decide which final measurement
(POVM) {I\K}l/ 2} o to apply to the quantum ouput of the instrument &, finally producing a classical outcome a’. Notice that we sum
over the indices a and x of the internal classical lines. (b) How the processing in (a) is represented within our formalism of theorem 6
based on an operator p,; anda POVM {M{ﬁ‘x }. Notice the similarity with the representation in figure 3(b) of the circuit representation
of anon-signalling assemblage of figure 3(a).

further, if the boxes are non-local but admit a quantum realisation, then the same wiring process will not
demonstrate post-quantum non-locality. That is, since the ‘uncharacterised’ parties just classically process the
inputs and outputs, there is no opportunity for the activation of post-quantum non-locality.

With this ‘box-processing’ in mind, in figure 4 we introduce the most general one-way quantum
communication operation for processing assemblages. These operations are broadly described as one-way
LOCC with entanglement, but with the extra constraint that an untrusted party only interacts classically with the
assemblage. We notice that, thanks to quantum teleportation [47], unrestricted shared entanglement assisted by
one-way LOCC is equivalent to local operations aided by one-way quantum communication.

Now, much in the same fashion in which quantum steering is postulated not to increase under one-way
LOCC, we postulate that post-quantum steering does not increase under one-way quantum operations, with the
communication going from the steered party to the steering parties. Notice that, since classical communication
is a subset of quantum communication, a post-quantum steering quantifier that respects our request is
necessarily also a standard steering monotone. Moreover, given that one-way quantum communication allows
for the sharing of an arbitrary quantum state, and hence for the creation—even from scratch—of an arbitrary
quantum assemblage, a post-quantum steering quantifier necessarily assumes a constant value for all quantum
assemblages, and such a value can be set to zero. What we exactly mean by processing of an assemblage by one-
way quantum operations is shown in detail in figure 4, where for the sake of simplicity and clarity we depict
explicitly only one steering party.
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As with many quantum resource theories, it is also convenient and reasonable—although not strictly
necessary [48]—to ask that a post-quantum steering quantifier is convex.

We will see below that the steering negativity is a valid convex post-quantum steering quantifier, in the sense
that it respects the requests delineated above.

Theorem 10 (Convexity of v). The steering negativity is a convex steering quantifier. That is, it is non-increasing
under arbitrary convex mixings,

vigo+ (1 —qo)<qv(o)+ (1 — qw(o'), forall o and ¢/, and all 0 < g < 1. (34)

Proof.Let p = p, — p_and p’ = p, — p_’ be optimal Hermitian operators attaining the minima in
equation (33) for the assemblages o4 4,ix..x,and 0’4, a,x,.. x,» respectively, for two suitable sets of POVMs
(MO} =AM M Yo, and (M0} = (MIQ) MY Y, Thisimplies that

v(oa,...Ax...x,) =tr{p_} and V(UIAl...AnIXl...X,,) = tr{pl}. Now, consider the state
P ar .4z anp =410} Olyx @ .10} (Ol + @ p+ (1 = PI1) (1l @ ..[1)(1]4* @ p'
=(q10) (0l ® ...[0) {0, ® p, + (1 — PI1) (1 @ ...[1) (1* @ p)
—(q10)(0,* ® ..[0) (0], @ p_+ (1 — Q1) (1> @ ...[1) (1]* @ pl), (35)

where alocal ancillary qubit A", in state either |0) , = or |1) , *, has been given to each Alice, with 1 < i < n.This
state realises a decomposition of the form equationx(l 8) for q O A% x, + (1 — @) 0 a  a,x..x,Wherea
suitable set of POVMs can be taken to be {g [0) (0] ,* ® M5511|)x| + (1= ) (1@ M’(a}fxl,. -+ 10) (0], *®

M LS”) + 0 -9 AFOM 1y apxy...anx,- Lherefore, even though such a decomposition is not guaranteed

% a|x,
to be optimal, it is nevertheless the case that

v(q oa..ax..x, + (1 — @0 4 ax..x) <tr{q0) (04 ® ...10){(0l4,” ® p_
+ 1 =) (1 @ ... 1) (1a, @ p'}
—qtr{p} + (1 — Qtr{p/). (36)
Note that the last term equals the right hand of equation (34), which proves the theorem’s statement. O

Theorem 11 (Monotonicity of v). The steering negativity v is a post-quantum steering monotone under processing
by one-way quantum operations.

Proof. Let the pseudo-state p, , , pbeoptimal for the sake of computing the steering negativity of a given
steering assemblage. Figure 4(a) shows how processing such assemblage by one-way quantum operations from
the steered party to the steering parties leads to a new assemblage that may be thought as originating from a
shared (pseudo-)state

~/ ~
P aalaay. aalm = Npgoalag. apPaa,. 48]

where Ap_,4/4;...a/p is a completely-PTP map. While such an 5" may not be optimal for the sake of the steering
negativity of the new assemblage, since the trace norm does not increase under the partial action of a completely
positive and trace-preserving map, this is enough to prove that the steering negativity does not increase under
processing by one-way quantum operations. O

8. Discussion

The scope of the steering phenomenon has been widely studied with respect to its applications, for instance to
engineer one-sided device independent information theoretical protocols robust to loopholes [49-56].
However, questions about its implication for our fundamental understanding of Nature have been much less
addressed. In this work we developed a framework that allows us to understand steering in more general set-ups
and potentially in theories beyond quantum mechanics. Our formalism starts from the usual formulation of a
quantum steering experiment, where the uncharacterised parties perform measurements on their share of a
system. By relaxing the properties of the mathematical object p that represents the state of the system, one can
simulate steering experiments beyond what quantum mechanics allows, while still complying with physical
assumptions such as no-signalling. This framework provides a way to understand classical, quantum and post-
quantum steering in a unified manner, each of which can be recovered as special cases of the formalism. In
particular, our approach comes equipped with an inherent functional that quantifies the post-quantumness

of an assemblage, the negativity of post-quantum steering. We postulate that post-quantum steering should not
increase under one-way quantum operations from the steered parties to the steering parties, whereas standard
quantum steering is postulated not to increase under one-way LOCC [39]. We prove that the negativity of
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post-quantum steering respects such a postulate, and more precisely that it is a convex post-quantum-steering
monotone.

By exploring the connections between entanglement witnesses and positive but not completely positive
maps, our framework especially succeeds in representing post-quantum assemblages that may only generate
quantum correlations. Using this method, we were able to generate the first analytical examples of post-
quantum assemblages which cannot exhibit post-quantum Bell non-locality. An open question is whether every
non-decomposable positive map can produce post-quantum assemblages given a suitable initial quantum
steering experiment (i.e. local measurements on a quantum state). Along these lines lies the question of what
type of entanglement properties should the state p of the system shared by all the parties have such that, when the
steered one applies a non-decomposable positive map to their quantum system, the generated assemblage is
post-quantum. More broadly, our formalism also allows for the definition of Gleason assemblages, which
generalise quantum ones. We provided a family of entanglement witnesses and measurements, constructed
from unextendible product bases and local orthogonality inequalities, such that the Gleason assemblages they
generate are provably post-quantum.

Although post-quantum non-locality and post-quantum steering are fundamentally distinct concepts, there
are still many opportunities to explore their relationship. For example, if we take a post-quantum assemblage
that can never exhibit post-quantum non-locality, is it possible to take multiple copies of this assemblage and
apply some filtering process to reveal post-quantum non-locality? We dub this concept hidden post-quantum
non-locality, and it remains open whether this can occur and, furthermore, whether it might be the case that in
factall post-quantum assemblages exhibit it.

It would also be fascinating to try and find tasks for which post-quantum steering gives a clear advantage over
standard quantum steering. One candidate task is entanglement-assisted sub-channel discrimination with one-
way measurements [38], where it is known that it is steering, rather than simple entanglement [57], that gives an
advantage. Post-quantum steering might also help trivialise certain communication tasks (see [58]). We leave it
for future work whether post-quantum steering is more useful for any of these tasks, and whether the formalism
introduced here might facilitate the study of this question.

It is worth mentioning that recently another framework to formalise steering has been introduced [59].
There, the starting point is the connection between quantum channels and steering scenarios. Such a framework
is well suited to explore the so called almost quantum assemblages (a set that strictly contains the quantum ones),
as well as assemblages that can only generate local correlations in the Bell sense among the parties. Hence, the
analysis of [59] regards complementary aspects of steering with respect to what is done in this paper.

In conclusion, these analytical formulations of post-quantum assemblages provide a starting point from
where to explore the possible physical or information-theoretical consequences that the phenomenon could
have. We believe that such an approach may shed light on the problem of characterising quantum steering from
basic physical principles and of understanding the possibilities and limitations of the steering phenomenon in
Nature.
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