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Unpredictability, or randomness, of the outcomes of measurements made on an entangled state
can be certified provided that the statistics violate a Bell inequality. In the standard Bell scenario,
each party performs a single measurement on his share of the system before receiving a fresh one
from the source. In this scenario, recent work proved an upper bound of 2log2(d) on the amount
of random bits certifiable from a pair of qudits. In our work, it is shown that this fundamental
limitation can be overcome using sequences of (non projective) measurements on the same system.
More precisely, we prove that one can certify any amount of random bits from a pair of qubits in a
pure state as resource, even if arbitrarily weakly entangled. Moreover, this certification is achieved
by near-maximal violation of a particular Bell inequality for each measurement in the sequence.

Bell’s theorem [1] has shown that the predictions of
quantum mechanics demonstrate non-locality. That is,
they cannot be described by a theory in which there are
objective properties of a system prior to measurement
that satisfy special relativity (sometimes referred to as
“local realism”). If one requires special relativity to be
satisfied at the operational level then it can be shown
that the outcomes of measurements demonstrating non-
locality must be unpredictable [1–3]. This unpredictabil-
ity, or randomness, is not the result of ignorance about
the system preparation but is intrinsic to the theory.

Although this connection between quantum non-
locality (via Bell’s theorem) and the existence of intrinsic
randomness is well know [1, 3, 4] it was only analysed in a
quantitative way recently [5, 6]. It was shown how to use
non locality (probability distributions that violate a Bell
inequality) to certify the impredictability of the outcomes
of certain physical processes. This was termed device in-
dependent randomness certification, as the certification
only relies on the statistical properties of the outcomes
and not on how they where produced. The development
of device-independent randomness expansion [5, 7] and
of randomness amplification [8, 9] then followed. For ex-
ample, quantum theory is somehow an optimal theory
in that it exhibits both non-locality and maximal ran-
domness whereas other potential theories (more general
than quantum theory) may have more non-locality but
less randomness [10].

Entanglement is a necessary resource for quantum non-
locality, that in turn is required for randomness certi-
fication. It is thus crucial to understand qualitatively
and quantitatively how these three fundamental quan-
tities relate one to another. In our work, we focus on
asking how much certifiable randomness can be obtained
from a single entangled state as a resource. Progress has
been made in this direction for entangled states shared
between two parties, Alice (A) and Bob (B), in the stan-
dard scenario where each party makes a single measure-
ment on his share of the system and then discards it. An
argument adapted from Ref. [11] shows that either of the

two parties, Alice or Bob can certify at most 2log2(d) bits
of randomness [12], where d is the dimension of the local
Hilbert space the state lives in. This demonstrates a fun-
damental limitation for device-independent randomness
certification in this standard scenario. The goal of our
work is to show that this limitation on the amount of
certifiable random bits from one quantum state can be
lifted. To do this we will work with sequences of mea-
surements on the same system.

In this sequential scenario, one (or both) of the par-
ties makes a measurement but this measurement does not
completely destroy the entanglement of the system and a
new measurement can be made on the post-measurement
state instead of discarding it. In this way, we will show
that by increasing the number of consecutive measure-
ments made on the state it is possible to certify the pro-
duction of any amount of random bits.

To gain intuition, consider the following set-up where
the functioning of a device can be entirely trusted. The
device consists of a quantum state prepared in the Pauli-
Z, or σz eigenstate |0〉 followed by a measurement in the

Pauli-X, or σx basis {|+〉 = |0〉+|1〉√
2
, |−〉 = |0〉−|1〉√

2
}. The

outcome of this measurement is random and if the device
then makes another measurement on the state, this time
in the Pauli-Z basis this gives yet another random out-
come. In this fashion of alternating between the two or-
thogonal bases, one can potentially obtain an unbounded
number of random bits from one qubit. The limitation of
this procedure for producing random numbers is that one
cannot distinguish this device from a classical one with
pre-programmed outcomes - a local model for the out-
comes - if one doesn’t trust the functioning of the device
completely.

Clearly we cannot certify any randomness from a sin-
gle system (in a device-independent manner) as in the
above example, since one needs non locality and entan-
glement for this purpose. But is it possible to build a
scheme, that exploits non-locality and makes use of this
idea of measuring the state repeatedly, to overcome the
bound on the amount of certifiable randomness that one
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can obtain from a single entangled quantum system? To
do so, one of the challenges is to come up with non-
destructive measurements that still produce non-locality
but retain some entanglement in the post-measurement
state. In this way, the state can still be used as a resource
for subsequent measurements. Bell tests with sequences
of measurements have received less attention than the
standard ones with single measurement in the literature
despite the novel features in this scenario [17, 18]. In our
work we show that they prove useful in the task of ran-
domness certification, which also provides another exam-
ple [add ref] where general measurements (POVMs) can
overcome limitations of projective ones.

The main result in this work is to show that the bound
of 2log2(d) random bits in the standard scenario can
be overcome. In fact, we can potentially certify an un-
bounded amount of randomness, even using two qubits.
More precisely, we describe a scheme where any num-
ber m of random bits to be certified using a sequence
of n > m consecutive measurements on the same state.
Moreover, this unbounded randomness is certified by a
near-maximal violation of a particular Bell inequality for
each measurement in the sequence.

The sequential measurements scenario.– Before pre-
senting our results, let us introduce the scenario we work
in. We carry over many of the features from the standard
scenario except now we allow party Bob to make multi-
ple dichotomic measurements in a sequence on his share
of the state. One can visualise this as in Fig.1 where
Bob is split up into several Bobs, each one correspond-
ing to a measurement made on the state and is labelled
by Bi, i ∈ {1, 2, .., n}, where n is the total number of
measurements made in the sequence. Each Bi makes one
measurement and the post-measurement state is sent to
Bi+1 [24]. We organize the Bobs such that Bi is doing his
measurement before Bj for i < j. Thus in principle Bj
can receive the information about the inputs and outputs
of previous measurements Bi for all i < j.

To put the above scenario in the setting of non-local
guessing games (e.g. Refs. [10, 12–14]), let us consider
an additional adversary Eve (E) that is in possession of
a quantum system potentially correlated to the one of
A and B. The global state is denoted ρABE . We assume
that at each round of the experiment E is the one prepar-
ing the state ρABE and distributes ρAB = TrE(ρABE) to
A and B. This state will be used to make the measure-
ments in the sequence and the aim of E is to try to guess
B’s outcomes by using measurements on her share of the
state ρABE . A and B, having no knowledge about the
state or the real measurements made on it, see their re-
spective devices as black boxes that receive some classical
input x ∈ {0, 1} and y1, y2, .., yn ≡ ~y, yi ∈ {0, 1}, respec-
tively and that generate a classical output a ∈ {±1} and

b1, b2, .., bn ≡ ~b, bi ∈ {±1}, respectively (see Fig.1). They
generate statistics from multiple runs of the experiment
to obtain the observed probability distribution Pobs with
elements pobs(a,~b|x, ~y). This distribution Pobs lives in-
side the set of quantum correlations Q obtained from
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FIG. 1: The standard scenario, where parties A and B make
a single quantum measurement on their share of the state
and discard it versus the sequential scenario where the second
party B makes multiple measurements on his share.

measurements on quantum states in a sequence as we
described. This set is convex and thus can be described
in terms of its extreme points which will be denoted Pext

such that Pobs =
∑
ext
qextPext and

∑
ext
qext = 1 and every

qext ≥ 0.
From studying the outcomes statistics only we can

bound E’s predictive power by allowing her to have
complete knowledge of how Pobs is decomposed into ex-
treme points, i.e. she knows the probability distribution
qext over extreme points Pext. This predictive power is
quantified via the device-independent guessing probabil-
ity (DIGP) [add ref for this] where we fix the particular
input string y01 , y

0
2 , .., y

0
n ≡ ~y0 for which E has to guess

the outputs ~b. The DIGP, denoted by G(~y0, Pobs), is
then calculated as the optimal solution to the following
optimization problem [10, 14]:

G(~y0, Pobs) = max
{~b,qext,Pext}

∑
ext

qextpext(~b|~y0)

subject to:

pext(~b|~y0) =
∑
a

pext(a,~b|x, ~y0), ∀x (1)

Pobs =
∑
ext

qextPext, Pext ∈ Q. (2)

One can recover the formalism of the standard sce-
nario by simply considering that ~b = b and ~y(0) =
y(0). To quantify the amount of bits of randomness
that is certified, we use the min entropy H(~y0, Pobs) =
− log2G(~y0, Pobs) which returns m bits of randomness if
G(~y0, Pobs) = 2−m. The amount of bits of randomness
quantified this way is the figure of merit in this workand
our goal is to obtain as many bits as possible from a sin-
gle system. [Shall we add some intuition about what this
DIGP means ? Something like it corresponds to giving
E all the power on the realisation (know the state, know
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the meas, ie know the Pext), but to reproduce the cor-
relations. A and B base the randomness proof on the
statistics, whatever the actual realisation was. Just to
gain intuition, very mathematical here, or is it clear you
think ?]

Finally, let us note that the problem in (2) can be
further relaxed to an optimization where instead of
insisting on Pobs =

∑
ext
qextPext (2), we only impose

the constraint that the observed statistics Pobs give a
particular Bell inequality violation [5]. Again add some
kind of intuition about the new ”constraint”? What
does it mean for E The optimal solution to this new
problem will be an upper bound to the optimal solution
of (2). Crucially, this relaxation still gives good bounds
as we will show in the following discussion.

The ingredients.– Alice and Bob share the pure
two-qubit state

|ψ(θ)〉 = cos(θ)|00〉+ sin(θ)|11〉 (3)

that for all θ ∈]0, π2 [ is entangled. Any pure (entangled)
two qubit state can be written in this form up to some
local change of basis.

In Ref. [13], a family of Bell inequalities was intro-
duced:

Iθ = β〈B0〉+ 〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A1B1〉 (4)

where β = 2 cos(2θ)√
1+sin2(2θ)

, 〈By〉 = p(b = +1|y) − p(b =

−1|y) and 〈AxBy〉 = p(a = b|xy)− p(a 6= b|xy) for x,y ∈
{0, 1}. The maximal quantum value of the inequality

Iθ = Imaxθ = 2
√

2
√

1 + β2

4 is obtained by measuring the

state (3) with:

A0 = cos(µ)σz + sin(µ)σx, B0 = σz,

A1 = cos(µ)σz − sin(µ)σx, B1 = σx,
(5)

where tan(µ) = sin(2θ).
This family of inequalities has the following two use-

ful properties : (i) it is maximally violated by the state
|ψ(θ)〉 with angle θ and (ii) when maximally violated,
this inequality certifies one bit of local randomness on
Bob’s side for his second measurement choice y0 = 1:
G(y0 = 1, Pmax

obs ) = 1
2 [13]. These observations are pos-

sible because the maximal violation is uniquely achieved
by the probability distribution Pmax

obs that arises from the
previously-described state and measurements (3) and (5).
Therefore, for the maximal violation, Pmax

obs = Pext in (2)
and the guessing probability for input choice y0 = 1 is 1

2 .
However, we may not in general get correlations that

maximally violate our Bell inequality but give a violation
that is only close to maximal. In the appendices [I can-
not make the reference to the appendices, for some rea-
son] we show how to make conclusions about the guessing
probability for non maximal violations. In particular, we
show that for any Bell inequality with a unique point of

maximal violation, the guessing probability is a contin-
uous function of the value of the inequality close to the
maximal violation. This implies in the particular case we
are studying that:

Iθ → Imaxθ ⇒ G(y0 = 1, Pobs)→
1

2
. (6)

In appendix [I cannot make the reference to the appen-
dices, for some reason], we also provide a numerical upper
bound on the guessing probability G(y0 = 1, Pobs) by a
concave function of the value of Iθ.

So far we have reviewed and rigorously expanded on
the results in Ref. [13] showing how much randomness
can be obtained from a pure entangled two-qubit state
for dichotomic measurements. As mentioned, we can ob-
tain more local randomness by considering measurements
with more outcomes but it is ultimately limited to two
bits [12, 13]. To go beyond this restrictive limit we work
in a more general Bell scenario that allows for sequences
of measurements (see Fig.1) made on the state.

If B1 performs a projective measurement on |ψ(θ)〉
(3) the post-measurement state now shared between Al-
ice and B2 is separable and thus useless for randomness
production. Consequently, one needs to consider non-
projective POVMs to retain some entanglement in the
system for the subsequent measurements. For this pur-
pose, let us introduce the following two-outcome quan-
tum measurements (written in the formalism of Kraus
operators):

M±1 = cos(ξ)|±〉〈±|+ sin(ξ)|∓〉〈∓| (7)

corresponding to the two outcomes {±1}. To gain intu-
ition, these measurements can be expressed as the fol-
lowing observable:

σ̂x(ξ) = cos(2ξ) · σx = M†+1M+1 −M†−1M−1

[I cannot add the equation number in this equation,
no idea why...] This observable can be understood as
a noisy version of the projective measurement of the
observable σx. One can check that the measurement
of σ̂x(ξ) varies from being projective (for ξ = 0) to
being non-interacting (for ξ = π

4 ). Also, one can verify
that measuring an entangled state (3) for ξ ∈]0, π4 ]
(non-projective measurement) the post-measurement
state still retains some entanglement, irrespectively of
the outcome. Therefore, by tuning the parameter ξ we
are able to vary the destruction of the entanglement
of the state at the gain of extracting information from
it (cf. Ref. [19]). Intuitively, the closer to being a
projective measurement, the lower the entanglement
in the post-measurement state, but the bigger the
violation of the initial Bell inequality. On the other
hand, one can leave a lot of entanglement in the state
by barely interacting with it but at the cost of a lower
Bell inequality violation.
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A scheme for unbounded randomness certification.–We
now combine the previous observations to demonstrate
our main result. First, let us recall that, as shown in
[13], one can obtain one bit of randomness from any pure
entangled two qubit state, irrespectively of the amount
of entanglement in it. Moreover, one can verify that ap-
proximately one random bit can be certified if the mea-
surements are close to the ones in (5) (in the sense that
σ̂x(ξ) → σx for B1 (5)) since Iθ is then close to Imaxθ

(6). Second, the measurement in Eq. (7) is only close-
to-projective for ξ close to zero and leaves entanglement
in the post-measurement state between Alice and Bob
which is thus still useful for randomness certification. By
repeated use of these two properties we can certify the
production an unbounded amount of random bits from a
single pair of entangled qubits. We now formally describe
this process in which Alice makes a single measurement
on her share of the state, whereas Bob makes a sequence
of n measurements on his.

Each Bi chooses between measurements of σz and
σ̂x(ξi) for inputs yi = 0 and yi = 1 respectively, with
outcomes bi ∈ {±1}. The parameter ξi is fixed before the
beginning of the experiment. The initial entangled state
shared between Alice and Bob, before B1’s measurement,
is |ψ(1)(θ1)〉 ((3) with θ = θ1). If the first non-projective
measurement of the operator σ̂x(ξ1) is made by B1 on
the initial state |ψ(1)(θ1)〉, the post-measurement state is
of the form

|ψ(2)
b1

(θ1, ξ1)〉 = U b1A (θ1, ξ1)⊗ V b1B (θ1, ξ1)(c|00〉+ s|11〉) ,
(8)

where c = cos(θb1(θ1, ξ1)) and s = sin(θb1(θ1, ξ1)) and
the two unitaries, U b1A (θ1, ξ1) and V b1B (θ1, ξ1), and angle
θb1(θ1, ξi) ∈]0; π4 ] depend on the first outcome b1 and the
angles θ1 and ξ1.

After his measurement, B1 applies the unitary (V b1B )†,
conditioned on his outcome b1, on the post-measurement
state going to B2. This allows B2 to use the same two
measurements σ̂(ξ2) and σz independently of the out-
come b1 since the unitary (V b1B ) is cancelled in (8). This
last procedure will be applied by each Bi after his mea-
surement, before sending the post-measurement state to
the next Bi+1. If the system passed through only the
non-projective measurements, the state received by Bi
can be one of 2i−1 potential states, depending on all of
the previous Bj ’s (j < i) outcomes (one for each com-

bination ~bi−1 ≡ (b1, b2, .., bi−1) of outcomes obtained by
the previous Bj , these can be computed before the be-
ginning of the experiment). One of these states can be
written as:

|ψ(i)
~bi−1
〉 = U

~bi−1

A ⊗ 11B

(
cos(θ~bi−1

)|00〉+ sin(θ~bi−1
)|11〉

)
,

(9)

where the angles θ~bi−1
and the matrix U

~bi−1

A both de-

pend on the outcomes ~bi−1, on the initial angle θ1 and
the angles ξj of the previous Bj ’s with j < i. In the nota-
tion, we will always omit the dependence on the angles θ1
and ξ1, ξ2, .., ξj since these are fixed before the beginning

of the experiment. For each of these different potential
states with angle θ~bi−1

, Alice adds two measurements to

her input choices, where for k ∈ {0, 1}, these are mea-

surements of the observables A
~bi−1

k which are defined as

U
~bi−1

A

(
cos(µ~bi−1

)σz + (−1)k sin(µ~bi−1
)σx

)
(U

~bi−1

A )†,

(10)
where tan(µ~bi−1

) = sin(2θ~bi−1
), depending on the specific

state |ψ(i)
~bi−1
〉 (9).

We are now ready to describe how the scheme certifies
randomness. The measurement operator σ̂x(ξi) can be
made arbitrarily close to σx by choosing ξi sufficiently
small. This brings the outcome statistics for measure-

ments σ̂x(ξi), σz on Bob’s side and A
~bi−1

0 ,A
~bi−1

1 on Alice’s
side on the state in Eq. (9), arbitrarily close to the statis-
tics for the measurements in Eq. (5) and a state of the
form in Eq. (3), for θ = θ~bi−1

. Therefore, the inequality

Iθ~bi−1
for Alice and Bi as defined in (4) can be made arbi-

trarily close to its maximal violation. This in turn guar-
antees that the guessing probability, G(y0i = 1, Pobs) can
be made arbitrarily close to 1/2. Note that this guessing
probability does not only describe the instances when Al-

ice chooses the measurements A
~bi−1

j . Since Eve does not
know Alice’s measurement choices in advance she cannot
use a strategy that gives higher predictive power for the
instances when Alice chooses other measurements. Fi-
nally, by making G(y0i = 1, Pobs) sufficiently close to 1/2
for each i (by choosing each ξi sufficiently close to 0) the
DIGP G(y01 , y

0
2 , .., y

0
n, Pobs) can be made arbitrarily close

to 2−n (see appendix for a proof[again, I cannot make
the reference to the appendices, for some reason]).

At the end, Bob can produce m random bits by a suit-
ably chosen sequence σ̂x(ξi) , i ∈ {1, 2, .., n}, of n > m
measurements. The certification only requires that each
Bi occasionally chooses the projective measurement σz
so that the whole statistics can be obtained. Note that
Bob can choose σz with probability γi and σ̂x(ξi) with
probability 1− γi for γi as close to zero as he wants.

To summarise the idea of the scheme, the post-
measurement state after Bi−1, given a sequence of
non-projective measurements, is of the form of (9).
With some probability Alice chooses measurements

A
~bi−1

k which give outcome statistics that allow ran-
domness certification of the ith bit using the Iθ~bi−1

inequality. Therefore, we can certify randomness for
each measurement Bi in the sequence at the expense
of increasing the number of measurements that Alice
chooses from. Finally, also remark that the value of each
inequality Iθ~bi−1

between each Bi and A can be made as

close as wanted to the maximal value Imax
θ~bi−1

.

Conclusion.– We have presented a scheme for cer-
tifying an unbounded amount of random bits from a
single pair of entangled qubits where one of the qubits
is subjected to a sequence of measurements. The mea-
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surements do not completely destroy the entanglement
but map the state to another pure entangled two-qubit
state (with reduced entanglement). We obtain this
certified randomness at the expense of exponentially
increasing the number of measurements that Alice needs

to make (
n∑
i=1

2i measurement choices for n measurements

in the sequence), thus providing an immediate obstruc-
tion to constructing a device-independent randomness
expansion protocol [5, 7]. Another obstruction is the
sensitivity to noise in the state and measurements that
may inhibit a fault-tolerant protocol.

Our main result made use of the fact that every
measurement in Bob’s sequence generated an almost-
maximally non-local output distribution (in the sense of
violating some Bell inequality almost maximally). A sim-
ilar study was made in Ref. [19], where a sequence of
non-local correlations was already obtained from a single
pair of qubits. Nevertheless, it was still open to know
whether it was possible to get a sequence of (arbitrarily
close to) maximally non-local correlations, and our re-
sults show that this is possible, a property that could be
of further use for many other device-independent quan-
tum information tasks.

Finally, on a more fundamental level, our results offer
new insights in the relation between entanglement, non-
locality and randomness. We showed that a single pair of
pure entangled qubits is a potentially unbounded source
of certifiable random bits (and of non-local correlations)
if we perform sequences of measurements on it.
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Appendices

The guessing probability

We start our appendices with the following discussion, which is a summary of the work done in deriving the device-
independent guessing probability (DIGP) [5, 10, 13, 14]. A probability distribution that is the outcome distribution
for some measurement on a quantum state is called a quantum distribution. For example, a distribution P with
elements p(ab|xy) is quantum if there exist at least one positive semi-definite hermitian unit trace matrix ρ and
at least one set of positive semi-definite hermitian matrices Xi, Yi satisfying

∑
iXi = 1 and

∑
i Yi = 1 such that

p(ab|xy) = Tr(Xa ⊗ Ybρ). We will often abuse notation and refer to a distribution by its elements p(ab|xy) when
there is no confusion in doing so.

The set Q of quantum distributions is closed and convex and a distribution in Q that cannot be decomposed as a
convex combination of other distributions is called extremal in Q. For a non-extremal distribution P (ab|xy) there is
in general more than one possible convex decomposition.

A non-extremal distribution p(ab|xy) with a convex decomposition p(ab|xy) =
∑
λ qλpλ(ab|xy) can be constructed

by sampling the different distributions pλ(ab|xy) with probability qλ. In this case knowledge about the convex
decomposition chosen changes the ability of an eavesdropper to correctly guess the outcomes a and/or b.

Without knowledge of the decomposition, or for extremal distributions, the probability of correctly guessing the
outcome of measurement y0 is maxb p(b|y0), the probability of the most likely outcome. With knowledge of the
decomposition p(ab|xy) =

∑
λ qλpλ(ab|xy), the probability is larger or equal to maxb p(b|y0)∑
λ

qλ max
b
pλ(b|y0) ≥ max

b

∑
λ

qλpλ(b|y0) = max
b
p(b|y0). (11)

For a given observed non-extremal distribution it is possible that it was produced by an agent Eve that has larger
predictive power than an agent which only observes the outcomes. The maximal probability for the agent Eve to
correctly guess an outcome b of measurement y0 given a distribution p(ab|xy) and a free choice of decomposition is
the DIGP G(y0, Pobs)

G(y0, Pobs) = max
qλ,pλ(ab|xy)

∑
λ

qλ max
b
pλ(b|y0). (12)

where λ is labelling the convex decompositions of pobs(ab|xy) in terms of extremal distributions pλ(ab|xy). For any
open interval of Q the function G(y0, Pobs) is a concave function [5]. Therefore this kind of maximization is called a
concave roof construction.

Continuity of the guessing probability in interior and extremal points of Q

We want to show that the following propositions are true:

Proposition 1. The function G(y0, Pobs) on the set of quantum distributions Q is continuous in the interior of Q.

Proposition 2. The function G(y0, Pobs) is continuous in any extremal point of Q.

Proposition 1 is trivial. The guessing probability G(y0, Pobs) is concave by definition and any concave function is
continuous on an open subset of its domain [22]. In particular this means that G(y0, Pobs) is continuous in the interior
of Q.

To address proposition 2 we consider the restriction G(y0, Pobs)
∂Q of G(y0, Pobs) to the boundary ∂Q of the quantum

set. First we note that the function G(y0, Pobs)
∂Q by definition is continuous on any open set of extremal points since

maxb p(b|y) is a continuous function. Next we observe that the boundary ∂Q can be decomposed into a collection of
open sets of extremal points and a collection {Si} of closed connected possibly overlapping sets where each set is the
closure of a maximal open connected subset. A maximal open connected subset M of the non-extremal points is an
open set such that any other open connected set of non-extremal points which contains M is M itself. Therefore,
each set Si is the convex hull of the set of extremal points in its closure.

Any closed set Si has a boundary ∂Si with the rest of ∂Q which can be decomposed in the same way into open sets
of extremal points and closed connected sets Sij that are closures of maximal open connected sets of non-extremal
points. The boundary ∂Sij of Sij with the rest of ∂Si is in turn decomposable in the same way.

Continuing this successive decomposition of the boundary ∂Q we will eventually reach sets Sijk... that are one
dimensional simplexes, or alternatively sets with only extremal points in the boundary. On sets of these two types
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G(y0, Pobs) is a continuous function. To see this we introduce the following terminology, and use a theorem from Ref.
[23].

A function for which all discontinuities are such that the function takes the higher value at a closed set and the
lower value at an open set is called upper semi-continuous.

The function G(y0, Pobs)
S defined on a closed convex set S can be viewed as an extension of G(y0, Pobs)

∂S to the
interior of S. This extension is called the concave roof extension.

Theorem 1. Let C be a compact set and K = co(C) be the convex hull of C. If F : C → R is bounded, upper
semi-continuous, and concave on C, then the concave roof extension F̂ : K → R of F to K is upper semi-continuous
[23].

The guessing probability is bounded and concave by definition. If the boundary of S has only extremal points
it follows that G(y0, Pobs)

∂S is continuous in ∂S and by theorem 1 G(y0, Pobs)
S is upper semi-continuous on S.

Moreover, since G(y0, Pobs)
S is concave it cannot have an upper semi-continuous discontinuity between the boundary

and the interior. If S is a one-dimensional simplex we can, if necessary, restrict the domain of the guessing probability
to a one dimensional subspace and make the same argument.

Next we consider discontinuities between S and an open set of extremal points.

Lemma 1. Any discontinuity of G(y0, Pobs) between a closed set and an open set of extremal points is upper semi-
continuous.

Proof. If the boundary point of the closed set is extremal the G(y0, Pobs) is continuous since maxb p(b|y0) is continuous.
Next consider a non-extremal boundary point of the closed set. G(y0, Pobs) in the non-extremal point is always greater
or equal to maxb P (b|y0) by Eq. 11. Thus any discontinuity is upper semi-continuous.

If there is a discontinuity of G(y0, Pobs) on the boundary of S it is, by lemma 1 , upper semi-continuous and at a
set of non-extremal points.

By repeated application of Theorem 1 and lemma 1 we can conclude that G(y0, Pobs)
∂Q is upper semi-continuous

on ∂Q and that G(y0, Pobs) is upper semi-continuous on Q. Since G(y0, Pobs) is concave there cannot be an upper
semi-continuous discontinuity between the boundary ∂Q and the interior of Q. Thus the only discontinuities are
between non-extremal points in closed subsets of ∂Q and extremal points in open subsets of ∂Q.

Bounds on the guessing probability as a function of a Bell inequality:
Continuity at a unique point of maximal violation

The guessing probability as a function on the space of probability distributions is not everywhere continuous. An
example of this is that the family of Bell-inequalities described in of Ref. [13] certifies one bit of randomness for
measurements on a state with arbitrarily little entanglement. The probability distribution corresponding to such a
state and the measurements in Eq. 5 has G(y0, Pobs) = 1/2 and is at the same time arbitrarily close to a distribution
corresponding to measurements on a product state with G(y0, Pobs) = 1, i.e., a distribution which can be prepared
by a local deterministic procedure. There is thus a discontinuity where the guessing probability jumps from 1/2 to
1. The key to understanding this discontinuity is that the local deterministic distribution is not extremal while the
quantum distribution in the neighbouring point is extremal. As seen in Eq. 11, the guessing probability is given by
different functions depending on whether a distribution can be decomposed into other distributions or not, i.e., if it is
extremal or not. This means discontinuities can appear at the boundary between extremal points and non-extremal
points.

We will now show that discontinuities can only appear at such boundaries between extremal and non-extremal points
in the boundary ∂Q of the quantum set Q. To do this we use the property of the guessing probability described in
Eq. 11, together with some general properties of concave functions and in particular concave roof constructions.

We have described the guessing probability as a function on set of quantum distributions, but it is sometimes useful
to consider it as a function of the violation of some given Bell inequality I. A Bell expression is a linear function
on the space of distributions and the set of distributions for which it takes a given value t is a hyper-plane Ht. The
different values of the Bell expression thus defines a family of parallel hyperplanes.

On each hyperplane Ht we can consider the restriction G(y0, Pobs)t of G(y0, Pobs) to the intersection of Ht with
Q and take its maximum maxG(y0, Pobs)t on this intersection. This maximum is the highest probability for Eve to
guess the outcome of y0 for any distribution P ∈ Q such that I(P ) = t. The function maxG(y0, Pobs)t can have a
discontinuity at t = tc only if Htc intersects with a point in Q at which G(y0, Pobs) is discontinuous.

Let us consider a Bell expression I and its maximal value tmax on Q. If the intersection of Htmax and Q is a single
extremal point it follows from Propositions 1 and 2 that there is a tc 6= tmax such that for the range tc ≤ t ≤ tmax for
which maxG(y0, Pobs)t is a continuous function of t.
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If the intersection of Htmax and Q contains more than one extremal point it also contains a set of non-extremal
points of ∂Q and G(y0, Pobs) could have a discontinuity between this set and an open set of extremal points. This
discontinuity could lead to a discontinuity of the function maxG(y0, Pobs)t at tmax.

Guessing probability for a sequence

Let us consider a sequence of measurements σ̂(ξi) chosen by Bob and denote (ξ1, ξ2, . . . , ξn) ≡ ~ξ. The convex
decomposition of the observed outcome distribution that gives Eve optimal probability to correctly guess the sequence
of outcomes ~bn of the measurements (y01 , y

0
2 , . . . , y

0
n) ≡ ~y0n is a function of ~ξ. The guessing probability G(~y0n, Pobs) is

thus given by

G(~y0n, Pobs) =
∑
λθ̄

qλ~ξ max
~bn

pλ~ξ(b1|y
0
1) . . . pλ~ξ(bn|~y

0
n
~bn−1). (13)

where the extremal distributions pλ~ξ(bn|yn . . . ) and weights qλ~ξ of the optimal convex decomposition are functions of

~ξ as indicated by the index λ~ξ. Let us assume that a term which appears in the convex combination is

qλ~ξpλ~ξ(b1|y
0
1) . . . pλ~ξ(bn|~y

0
n
~bn−1). (14)

Thus we assume that it corresponds to the most probable sequence of outcomes ~bn for a specific distribution indexed
by λ~ξ.

Given that Eve has chosen the optimal convex decomposition for guessing the outcomes of ~y0n we consider her
probability of correctly guessing the outcome of y0m for 1 ≤ m ≤ n given a particular sequence of previous outcomes
~bm−1. It is given by ∑

λ~ξ

kλ~ξ max
bm

pλ~ξ(bm|~y
0
m
~bm−1), (15)

where kλ~ξ is the probability that the distribution indexed by λ~ξ will be sampled given the sequence of previous

outcomes ~bm−1

kλ~ξ =
qλ~ξpλ~ξ(b1|y

0
1) . . . pλ~ξ(bm−1|~y

0
m−1

~bm−2)∑
λ~ξ
qλ~ξpλ~ξ(b1|y

0
1). . .pλ~ξ(bm−1|~y

0
m−1

~bm−2)
. (16)

The probability in Eq. 15 is larger or equal to 1/2 but is lower or equal to G(y0m, Pobs), the maximal probability
that Eve could guess the outcome of y0m correctly given that she had chosen an optimal strategy for this and not the
optimal strategy for guessing the outcomes of the sequence ~y0n. Thus if G(y0m, Pobs) is close to 1/2 so is the expression
in Eq. 15.

Arbitrarliy close to n random bits for n measurements

We want to prove that G(~y0n, Pobs) can be made arbitrarily close to 2−n by making G(y0m, Pobs) sufficiently close to
1/2 for each 1 ≤ m ≤ n.

The proof relies on the fact that if a convex combination of a collection of numbers xi equals a, i.e.,
∑
i kixi = a

where
∑
ki = 1, and if xi ≥ a for each i, it follows that for every i either ki = 0 or xi = a.

From this follows that when G(y0m, Pobs) is very close to 1/2 either maxbm pλ~ξ(bm|~y
0
m
~bm−1) in Eq. 15 is very close

to 1/2 or kλ~ξ is very close to zero for each λ~ξ. To see this more clearly we construct the following bound

kλ~ξ max
bm

pλ~ξ(bm|~y
0
m
~bm−1) ≤ G(y0m, Pobs)−

∑
λ′ 6=λ

kλ′
~ξ

max
bm

pλ′
~ξ
(bm|~y0m~bm−1)

≤ G(y0m, Pobs)− 1/2(1− kλ~ξ)

where we used maxbm pλ′~ξ
(bm|~y0m~bm−1) ≥ 1/2 for each λ′~ξ and

∑
λ′ 6=λ kλ′~ξ

= 1− kλ~ξ . It follows that

G(y0m, Pobs)− 1/2 ≥ kλ~ξ [max
bm

pλ~ξ(bm|~y
0
m
~bm−1)− 1/2],
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and given Eq. (16) this implies

G(y0m, Pobs)− 1/2 ≥ qλ~ξpλ~ξ(b1|y
0
1) . . . pλ~ξ(bm−1|~y

0
m−1

~bm−2)[max
bm

pλ~ξ(bm|~y
0
n
~bm−1)− 1/2].

Thus for sufficiently small G(y0m, Pobs)−1/2 either maxbm pλ~ξ(bm|~y
0
m
~bm−1)−1/2 can be made arbitrarily small, or the

probability qλ~ξpλ~ξ(b1|y
0
1) . . . pλ~ξ(bm−1|~y

0
m−1

~bm−2) that the distribution labelled by λ~ξ is sampled when y0m is measured
is made arbitrarily small.

The argument can be made for any Bm. For B1, this it follows that either pλ~ξ(b1|y
0
1) is made arbitrarily close to

1/2 or qλ~ξ is made arbitrarily close to 0. For B2, it follows that either pλ~ξ(b2|y
0
2y

0
1b1) is made arbitrarily close to 1/2

or qλ~ξpλ~ξ(b1|y
0
1) is made arbitrarily close to zero. Given the second option and that pλ~ξ(b1|y

0
1) is made arbitrarily

close to 1/2 it is implied that that qλ(~ξ) is made arbitrarily close to 0. If on the other hand pλ~ξ(b1|y
0
1) is not very close

to 1/2 it follows that qλ~ξ is made arbitrarily close to zero by the preceding argument.

By induction it is clear that either the term in Eq. 14 satisfies that pλ~ξ(b1|y
0
1) . . . pλ~ξ(bn|~y

0
n
~bn−1) can be made

arbitrarily close to 2−n or alternatively qλ~ξ is made arbitrarily small. Since the same is true for every λ~ξ in Eq. 13 it

follows that G(~y0n, Pobs) can be made arbitrarily close to 2−n.

Numerical bounds on the guessing probability

We start once again with the Iθ inequality (4):

Iθ = β〈B0〉+ 〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉 − 〈A1B1〉 (17)

with β = 2 cos(2θ)√
1+sin2(2θ)

. In [13] it was proved that the maximal quantum value Imax
θ for this inequality was given by:

Imax
θ =

√
2(4 + β2) = 2

√
2

(
1 +

cos2(2θ)

1 + sin2(2θ)

) 1
2

(18)

As the authors explained, in order to maximize the bound of the inequality, one can restrict the space of quantum
states to pure two qubit states [13], meaning that the maximal value achievable with quantum measurements
on quantum states can always be achieved with (two-outcomes projective) measurements on a pure, two-qubit
(entangled) state. Fixing the basis, we can work with the state (3):

|ψ(θ)〉 = cos(θ)|00〉+ sin(θ)|11〉

Given this form of the state and by parametrising the measurements of Alice and Bob, one can verify numerically
that:

I2θ + (2− β)2〈B1〉 ≤ 2(4 + β2) (19)

in the range β ∈ [0, 2[, i.e. θ ∈ [0, π2 [, the whole range of interest where the state is entangled. From (19), it is easy
to obtain an upper bound on the expectation value:

|〈B1〉| ≤
√

2(4 + β2)− I2θ
(2− β)

=

√
(Imax
θ )2 − I2θ
(2− β)

(20)

where one inserts the observed value of the inequality Iθ in this equation. In term of the guessing probability, this
gives:

P IθG (y = 1) ≤ 1

2
+

√
(Imax
θ )2 − I2θ

2(2− β)
= f(Iθ) (21)

For example, one can insert the maximal quantum value Imax
θ (18) in (20) or in (21) and get that 〈B1〉 = 0 or

P θG(y = 1) = 1
2 , which coincides with the certification of one perfect local random bit for input y0 = 1 on Bob’s

side for the maximal violation of Iθ. Our bound is thus tight at the maximal violation of the inequality. Since the
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probability distribution of maximal violation is unique, the point is necessarily an extreme point [13], so we can
directly use the observed guessing probability of the eavesdropper to bound its predictive power (as an extreme point
allows only for one decomposition).

If we now want to use our function to bound the guessing probability inside the set (not only at the point of
maximal violation), and following the arguments of [13], one can check that the function f(Iθ) bounding the P θG (21)
is a concave function of its variable Iθ:

∂2Iθ (f(Iθ)) = − 2(4 + β2)

(2(4 + β2)− I2θ )
3
2

< 0 (22)

where we used that both the numerator and denominator are positive from Iθ ≤ Imax
θ =

√
2(4 + β2) (18). The

bound can thus be extended to the points that do not necessarily violate maximally the inequality, and our bound
f(Iθ) can be used in our protocol for unbounded randomness certification from a single pair of qubits.

We will now give some graphs of this upper bound on P IθG (y = 1) from the region where the state (3) is
maximally entangled (θ = π

4 ), reproducing the CHSH scenario, to the one where it is only slightly entangled (θ → 0).
This should provide one with an intuition of how close quantitatively to the maximal violation of Imaxθ the observed

bound Iθ should be in order to get close to one perfect local bit of randomness (P IθG (y = 1) → 1
2 ) for a state with a

given angle θ.
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FIG. 2: The upper bound on the guessing probability in function of the violation of Iθ=π
4

= CHSH, maximally violated by the

maximally two qubit entangled state θ = π
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in (3).
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