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Abstract— In this work we describe how an existing neural 

model for learning Cell Assemblies (CAs) across multiple 

neuroanatomical brain areas has been integrated with a 

humanoid robot simulation to explore the learning of associations 

of visual and motor modalities. The results show that robust CAs 

are learned to enable pattern completion to select a correct motor 

response when only visual input is presented. We also show, with 

some parameter tuning and the pre-processing of more realistic 

patterns taken from images of real objects and robot poses the 

network can act as a controller for the robot in visuo-motor 

association tasks. This provides the basis for further 

neurorobotic experiments on grounded language learning. 

Keywords—Neurorobotics; Cell Assemblies; Visual-Motor 

Learning 

I. INTRODUCTION 

The wider context for the current work is the design of a 

biologically-inspired architecture for brain embodied language 

skills in robots. This is the goal of the interdisciplinary 

BABEL project, which aims at the synthesis of computational 

neuroscience modelling (informed by and informing actual 

fMRI experiments), of the SpiNNaker neuromorphic hardware 

[1] and the humanoid robot iCub [2] for language learning.
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In particular an embodied approach to language acquisition is 

chosen where visual input and motor interaction with the 

world constitute the grounding for language. Research in 

behavioural and cognitive neuroscience demonstrates that 

language, action and perception are closely linked in the brain 

[3-5]. There is now substantial neuroscientific evidence that 

the use of language activates brain areas closely joining 

together motor, perceptual and speech-language mechanisms 

(see review in [6]). This is consistent with the embodied view 

of cognition in psycholinguistics and cognitive science where 

cognitive functions, such as language, are closely integrated 

with sensorimotor knowledge [7], and with the situated 

learning approach to studying language in context. 

Consequently, there have been advances in both 

computational neuroscience in the design of 
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neuroanatomically grounded models of word acquisition [8-

10] and also in cognitive robotics by the use of such brain-

inspired models in the integration of action and language 

learning in robots [11,12]. In [11], Morse et al. trained the 

humanoid robot iCub to learn the names of objects, replicating 

the same phenomena observed in child language experiments. 

The robot’s neural control architecture learned to integrate 

visual, motor and linguistic representations through Hebbian-

linked Kohonen maps.  In [12], Caligiore et al. developed the 

TRoPICALS model to study how vision, action and language 

are integrated in the representation and activation of 

affordances. The TRoPICALS model architecture is based 

upon real brain areas with a path relating to object identity, 

name and current goal (PFC: prefrontal cortex, STC: superior 

temporal cortex, VOT: ventral occipito-temporal area) and a 

path relating to object shape, position and desired position of 

the arm and hand to form the correct grasp (PMC: premotor 

cortex, PC: parietal cortex,  SSC: somatosensory cortex; VC: 

visual cortex). However, these robotic models are limited to 

the use of relatively small numbers of neural elements to 

model cortical processing. 
As its core model for language learning, BABEL uses the 
existing work of [9] which is a multi-area neural network 
model whose architecture is neuroanatomically grounded in the 
left perisylvian language cortex and includes biologically 
inspired learning. In its original formulation, the model had six 
areas and was used to investigate the association of auditory 
and articulatory stimuli. This model is currently being extended 
to 12 areas to incorporate an extra ‘semantic’ set of 6 areas for 
visual and motor (action) input. The ultimate aim of BABEL is 
to produce a spiking neuron implementation of the 12 area 
architecture so that it can be deployed on SpiNNaker hardware 
and integrated with the iCub robot, delivering a better real time 
performance than a software neural network running on a host 
PC would be able to achieve.  This integrated platform will be 
used in experiments for object naming and word associations 
with action composition. As a first step in the roadmap for 
robotics experiments we investigated if it was possible to 
integrate the existing standalone neural model with the iCub  
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Fig. 1. The Neural Model Architecture 

simulator to learn associations between the visual 
representation of an object and an appropriate grasping 
action. The structure of this paper is as follows: firstly we 
briefly describe the existing neural model and modifications 
that were required to allow learning of visual and motor 
associations with the iCub simulator. Next we introduce the 
iCub simulator and its communications protocol, YARP (Yet 
Another Robotic Platform) as well as describe the integration 
between the robot and the neural model. Lastly we describe 
experiments performed with this setup and present the results 
to show how well the system enabled iCub to learn the 
association of a visual object and the required grasping 
motion. We conclude with an evaluation of this prototype 
and future work required to enhance it in the wider context of 
the BABEL project aims. 

II. LEARNING VISUAL-MOTOR ASSOCIATIONS 

A. The Neural Model 

The model architecture is shown in Fig. 1.B. In this section 

we present only a brief overview of salient features of the 

model– the mathematical formulation of the model, 

structural and  connectivity details, and learning 

mechanisms, have been previously described elsewhere [9, 

13-16] . We implemented a network consisting of six areas 

of artificial neurons (graded response cells) with reciprocal 

connections between and within areas. The model was 

constructed so as to mimic a range of properties of the brain, 

and especially the human cortex. We included the following 

features: 

1. Area structure: six areas, modelling pre-specified 

sensorimotor and multimodal brain regions (see Fig. 1.A); 

2. Between-area connectivity, constrained by specific 

neuroanatomical data and obeying general neuroanatomical 

principles in being sparse, random, and topographic; 

3. Within-area connectivity, also sparse and random, 

and such that local connections are more likely than distant 

ones; 

4. Local lateral inhibition and area-specific global 

regulation mechanisms; 

5. Synaptic weight changes mediated by Hebb-type 

learning (simulating long-term potentiation and depression, 

LTP, LTD);  

6. Neurophysiological dynamics of single cells 

including adaptation, spatial and temporal summation of 

inputs, nonlinear transformation of membrane potential into 

neuronal output (firing rate); 

7. Constant presence of uniform uncorrelated white 

noise in all parts of the network.  

In previous work [9,13-16] we have shown that networks 

that include this range of realistic neurobiological features 

tend to exhibit the formation of (input-specific) memory 

circuits, corresponding to what Hebb once postulated and 

labelled “Cell Assemblies” [17] or CAs. Below we identify 

the brain areas that the model simulated, and review the 

neuroanatomical evidence that we used as a basis to 

establish the presence, in the network, of direct links 

between pairs of such areas. The set of sensorimotor brain 

areas modelled include the left ventral visual “what”-system 

(blue-shaded areas in Fig. 1A) and the hand/arm motor 

system (red-shaded areas), involved in processing, 

respectively, visual object identity [18,19] and manual 

actions [20-23]. We take it that associative learning 

mechanisms at work in this system support the development 

of CAs binding together specific visual stimuli to hand/arm 

movements, as required, e.g., to pair up visual identity of 

objects with associated reaching and grasping actions [24-

27], or, more generally, to acquire conditional visuomotor 

associations arbitrarily mapping visual features of objects to 

specific actions [28-31]. The neural model implemented 

(Fig. 1.B) reflects structure and connectivity of the above 

cortical areas. In particular, in the frontal lobe the hand/arm 

motor area M1 (in Brodmann Area, BA 4), adjacent PM 

(BA 6) and more rostral PF (BA 8/9/46) areas are 

reciprocally connected [20-22, 32-34], with cortico-cortical 

links documented between PF and M1 [35,36]. In addition, 

the primary visual, V1 (BA 17), temporo-occipital, TO 

(occipital lobe, inferior parts of BA 18/19, and posterior 

parts of the inferior and middle temporal gyri, BA 37) and 

anterior-temporal, AT (temporal pole, BA 38, and middle 

parts of the middle and inferior temporal gyri, BA 20/21) 

areas (Fig. 1, blue-shaded areas) are reciprocally connected 

[37,38]. Direct (jumping) links from V1 to anterior temporal 

(AT) regions via the inferior longitudinal fascicle have also 

been documented [39, 40]. Neuroanatomical [41, 42], 

inactivation [43-45] and lesion [29,46,47] studies in the 

 



monkey indicate the presence of direct connections also 

between anterior-temporal and prefrontal cortices (AT and 

PF in Fig. 1.B). Evidence suggests the presence of direct 

links (via the external capsule) also between temporo-

occipital (TO) and prefrontal areas (PF) [48-50] and 

between anterior/middle temporal (AT) and premotor (PM) 

areas [32]. This between-area connectivity structure is 

accurately replicated in the model (see Fig. 1.B).
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 In 

addition, local, within-area connections realised in the 

model reflect connectivity features that are shared by 

sensory and motor systems of the mammalian brain [51,52]. 

B. Input Patterns 

We used three different types of input pattern depending 
upon the experiment. These are described in the subsections 
below. 

1) Neural Model Representation (NMR) 
 

In the standalone model of [9] input patterns are generated 
within the model code itself as 25x25 pixel pseudo-random 
patterns with minimal overlap to guarantee best training of 
CAs (henceforth referred to as Neural Model Representations 
or NMRs). We used this type of pattern in Experiment 1 for 
verification of the Cell Assembly learning (see section IV 
A). See Fig. 2 for an example of an NMR encoding for one 
pattern pair. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Example Neural Model pattern pair a) visual, b) motor   

2) ICub Simulator Representation (ISR) 
 

We also required encodings to represent images of objects 
and grasp poses within the simulator.  We used a repertoire 
of 6 objects with shapes loosely matching those of everyday 
real objects we plan to use in the final experiments with real 
iCub  (Ball, Can, Cup, Pen, Peg, Phone) and that require 
different grasping actions (‘power’ or ‘precision’).  Fig. 5 
shows an example of iCub looking at one of the objects 
generated in the simulated world. The visual encoding was 
generated from iCub’s view of an object by performing the 
following image-processing steps using OpenCV:  convert 
from RGB to greyscale, Canny edge detection, thresholding 
to produce a binary image and resizing to 25x25. Grasping 
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neuroanatomical terms. 

poses were generated by taking the joint angles from the 
iCub head, right arm and torso required to make a particular 
grasping action, totaling 18 Degrees Of Freedom (DOF). 
These were then encoded as a 25x25 pixel pattern by 
representing the DOF by rows 0-17 (leaving 7 rows unused 
but with the potential to add more DOF later) and the value 
of the joint angle as the x pixel using the formula in (1).  
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where: x is the calculated x pixel value for the DOF, angle 

is the joint angle for the DOF, min angle and max angle are 

the allowed joint ranges for the DOF, max x is the maximum 

x pixel used (as the joint ranges vary for each DOF we do 

not always use all 25 x pixels in order to make the 

calculation more convenient). The ‘floor’ operation rounds 

down to the nearest whole pixel value. These patterns are 

henceforth referred to as iCub Simulator Representations or 

ISRs. For the simulator experiments the ISR patterns were 

used as an intermediate step in identifying the training 

information to be sent to the neural model:  the actual neural 

model training was done with patterns in NMR form as 

described in Section II B 1). The reason for this was that the 

neural model had previously only been trained with the 

pseudo-random patterns and more realistic data presented 

problems in that a small overlap between patterns and a 

similar number of ‘on’ pixels per pattern could not be 

guaranteed.  In the iCub controller code a simple translation 

between representations is done so that recognition of the 

object seen and the correct grasp pose to execute are done 

using the ISR but the data sent to the neural model are in 

NMR form.  See Fig. 3 for an example of the ISR encoding 

for the ‘Ball’ object and its corresponding grasp pattern. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Simulator representation for the Ball object a) visual, b) motor  

3) Real data Representation 
 

Given the aforementioned issues with using real data, a 

separate strand of our work has been to investigate a 

parameter tuning of the model and/or data pre-processing 

that allows training with real world data so that we can use 

the real iCub and real visual input directly with the model 

rather than using intermediate steps as described in the 

previous section. We report our preliminary results for this 

in Experiment 3 (Section IV C). For this we created a visual 

encoding from six real images selected from the Amsterdam 

 

 



Library of Object Images (ALOI)
3
 (Ball, Can, Cup, Peg, 

Pen, Phone) [53]. OpenCV was used to perform basic image 

processing (convert from RGB to greyscale, Canny edge 

detection, thresholding to produce a binary image and 

resizing to 25x25).  To achieve successful training with the 

neural model also required that some noise be added to the 

resulting pixel patterns (some pixels added and some 

removed) to break up the outlines. See Fig. 4 for an example 

of the processing stages from image to final pattern for the 

Cup object. We used the same encoding for the motor part 

of the pattern as described in Section II B 2) without any 

further processing. 

 

 

 

 

 

Fig. 4. Image processing of a real image of a cup to training pattern 

III. THE ICUB SIMULATOR AND YARP 

The iCub simulator is an accurate physical simulation of the 

real iCub allowing prototyping of applications that can 

easily be transferred directly to the real robot with minimal 

changes. See Fig 5. As well as basic motor control and 

visual processing, for more complex tasks iCub is integrated 

with external libraries such as the OpenCV image 

processing framework. For communications, iCub uses 

YARP, a generic and flexible protocol which we have used 

to connect with the neural model (a standalone C program).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The simulated iCub and world 

Fig. 6 gives an overview of the integrated system. The 

communication is handled through a main iCub/YARP C++ 

program which retrieves visual and motor information from 

the simulator via YARP ports (oval shapes in Fig. 6.). This 

program also manages the iCub ‘world’ by adding and 

removing objects and issuing movement commands. The 

main program also creates and manages the YARP port that 

the external model connects to in order to receive training 
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data. At the model end this port is connected to as if it were 

a regular socket but with some special handshaking 

commands required to establish the protocol for exchanging 

information with a YARP port. 

IV. EXPERIMENTS AND RESULTS 

A. Experiment 1 - Verification of Cell Assembly learning 

We firstly wanted to verify that the neural model could learn 

associations between a candidate set of 6 visual and motor 

inputs (in NMR form) well enough for use in a practical 

robotics scenario. Firstly, that the network could encode 6 

robust Cell Assemblies concurrently and secondly that the 

pattern completion ability was good enough so that when 

only the visual part of the pattern was presented, the 

network would produce an unambiguous motor response. To 

achieve robust learning of 6 CAs required some parameter 

retuning from the original study of [9] which was optimised 

for 12 patterns. We investigated various parameters (e.g. 

Noise, Global inhibition, Learning Rate) and found that the 

Noise parameter had the greatest effect on learning. We 

increased noise from 145 to 200 in our networks which gave 

a robust and consistent performance. We also found that 

fewer training presentations were required: minimum 150-

200 presentations of each pattern to see learning of CAs as 

opposed to a minimum of 500 in [9]. Training in the neural 

model proceeded as described in [9]. In summary: A pattern 

pair was selected randomly from the set of 6 (with a 

mechanism to ensure that roughly equal numbers of each 

have been presented by the end of the run). The visual part 

was applied to area 1 (V1 in Fig. 1.B) while the motor part 

was presented simultaneously to layer 6 (M1 in Fig 1.B). 

This input was presented for a fixed number of model 

timesteps followed by a fixed number of ‘noise’ 

presentations. Then the process was repeated for another 

pattern until the desired number of presentations of each 

pattern had been achieved. For Experiment 1 we performed 

7 independent runs to be sure that the performance was 

robust to different network initialisations, and trained each 

network with 150 presentations of each pattern pair (900 

presentations in total per run). For a first analysis we 

presented only the visual half of the input and observed the 

network response. See Fig. 7 for an example of the network 

activation when the visual component of a pattern was 

presented and the target motor component for comparison.  

In this figure the left hand side shows the visual input (first 

box) and activation in area 1 (V1) through to area 6 (M1). 

The right hand side of the figure shows the visual pattern 

and the target motor pattern.  By visual inspection, for all of 

the 6 patterns a cell assembly was present (a clear subset of 

neurons in each area were activated all the way through to 

area 6). For a quantitative analysis we calculated the 

percentage pixel match between the activated motor 

response and all possible target patterns – here we were 

trying to assess if the pattern completion was good enough 

to distinguish between the possible responses. Table I shows 

a matrix of all possible matches with values averaged over 

all runs (to nearest whole %). Although in many cases there  
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Fig. 6. Integration of the iCub Simulator and the Neural Model – oval shapes are YARP ports, larger rectangles are software components  

 

TABLE I.  EXPERIMENT 1 PIXEL MATCHES 

Pattern 1 2 3 4 5 6 

1 66 1 1 3 1 0 

2 3 71 1 3 0 1 

3 2 0 84 0 1 2 

4 0 1 1 54 0 0 

5 1 2 2 2 76 2 

6 0 2 0 3 3 71 

 

is some activation of pixels from multiple target patterns, in 

all cases the pattern match with the intended target is the 

highest (diagonal in Table I). Therefore we concluded that 

the network could learn Cell Assemblies for 6 patterns well 

enough for use with the iCub simulator. 

 

 

 

 

Fig. 7. Example of pattern completion from Experiment 1  

B. Experiment 2 - Learning with the iCub simulator 

This experiment consisted of two parts: firstly training 

online with the iCub simulator generating the inputs to the 

network in real time and secondly testing where only the 

visual input was applied to see if the network could generate 

the correct motor response to pass back to the simulator. 

 

The training procedure: 

 

1. Set iCub in ‘ready’ pose (See Fig. 5) 

2. Select a random number between 1-6 

3. Create the corresponding object in the world 

4. iCub looks at object  

5. Image of object is processed to work out 

what iCub saw (ISR) 

6. iCub grasps object using appropriate pose 

(ISR) 

7. Appropriate NMR data sent to neural model 

8. Network is trained 

9. Set iCub back to ready pose 

10. Repeat 2-9 as required 

The testing procedure: 

1. Set iCub in ‘ready’ pose (as for training 

sequence) 

2. Select a random number between 1-6 

3. Create the corresponding object in the world 

4. iCub looks at object  

5. Image of object is processed to work out 

what iCub saw (ISR) 

6. NMR data for visual input is sent to neural 

model (motor is blank) 

7. Neural model produces a motor response 

8. Completed pattern pair sent back to iCub 

9. iCub translates NMR to ISR representation 

10. iCub grasps object  

11. Set iCub back to ready pose 

12. Repeat 2-11 as required 

Fig 8. Shows example screenshots of the training and testing 

scenarios. We trained a network for 900 presentations (150 

for each of the 6 objects) and then in testing mode presented 

50 randomly selected objects. We collected data on the 

actual object presented, whether it was recognised correctly 

as one of the candidate objects and whether the motor 

response back from the neural model was correct. We found 

that the object was recognised correctly in 100% of the 

cases and the motor response was correct for 94 % of the 

cases.   

C. Experiment 3 – Training with Real Data 

As mentioned previously, the real dataset inevitably had 

more overlap between patterns and (for the visual inputs) 

different numbers of ‘on’ pixels per pattern. We found that 

 

 

 

 



the best regime to learn the CAs stably was with further 

increased noise (220) and increased global inhibition (100 

instead of the original value of 85). We also found that more 

training presentations were required (approximately 400 

per.pattern; 2400 per run). Similarly to Experiment 1 we 

performed 7 independent runs and trained each network 

with 400 presentations of each pattern pair. Again patterns 

were selected randomly, but balanced to ensure roughly 

equal presentations of each pattern.  On presentation of only 

the visual input to a trained network, we calculated the 

percentage pixel match between the activated motor 

response and all possible target patterns. Table II shows a 

matrix of all possible matches with values averaged over all 

runs (to nearest whole %). In most cases the diagonal values 

are the highest with the exception of the match of the Pen 

object which is also activating the Peg object quite strongly. 

Although they are generally good enough to distinguish 

between the different CAs, the pixel match percentages are 

lower than those for Experiment 1 reflecting the difficulties 

with using more realistic data. 

 

 

 

 

 

 

 

 

 

Fig. 8. Screenshots from a) the training and b) the testing scenarios  

V. DISCUSSION AND CONCLUSIONS 

We demonstrated how it was possible to ‘plug and play’ an 

existing neural model with a robotic simulator. However, 

there was a trade-off between the convenience of re-using 

an existing model and the compromises needed to get it 

working with ‘real’ data. Although minimal changes were 

needed to the neural model code (mainly in the 

communications and I/O) there were limitations in the kind 

of patterns that could be successfully learned as the model 

was not originally designed for use in this type of scenario. 

We have made progress in showing that, with suitable 

processing and parameter tuning it would be possible for the 

model to learn more realistic data but more work needs to be 

done in fully integrating this with real iCub: in particular, a 

method for online presentation and processing of the images 

of real objects. We also found (at least with the current 

setup) that motor patterns are never 100% completed (best 

individual case was 94 %). In the current simulator setup the 

motor response from the network is translated back via its 

ISR form thereby ensuring that iCub always receives a valid 

motor command, but for future implementations it would be 

desirable to use the output directly from the network without 

recourse to intermediate processing. 

 

TABLE II.  EXPERIMENT 3 PIXEL MATCHES 

Pattern Ball Can Cup Peg Pen Phone 

Ball 38 6 0 0 2 8 

Can 6 33 2 2 3 4 

Cup 2 4 38 18 11 4 

Peg 1 1 24 63 38 7 

Pen 1 1 28 51 51 8 

Phone 5 0 0 0 0 34 

 

The issue of appropriate pre-processing and encoding of 

visual, motor and auditory data is relevant to the next steps 

for BABEL as it is likely that any spiking version of the 

model will also be sensitive to overlaps and varying 

information content in the input patterns. The principle of 

including noise and employing a global inhibition 

mechanism may also work well for this type of network. 

An important next step for our prototype is to extend to the 

upcoming 12-layer architecture incorporating auditory and 

motor articulatory input so that experiments with object 

naming can be done. 

As well as the presented results, our takeaway message is 

that there are advantages to be had in this type of plug and 

play integration of neural models and robots (simulated or 

otherwise) rather than creating whole systems from scratch. 

In technical terms integration need not be difficult but the 

biggest issue is the compromises required depending upon 

assumptions made in the respective components.  Even if 

such systems are not likely to provide robust permanent 

solutions they are ideal as intermediate steps to explore 

candidate neural models. 
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