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Abstract—We present a neuroevolution based-approach for
training neural networks based on genetic algorithms, as ap-
plied to the problem of detecting false alarms in Intensive Care
Units (ICU) based on physiological data. Typically, optimisation
in neural networks is performed via backpropagation (BP) with
stochastic gradient-based learning. Nevertheless, recent works
(c.f., [1]) have shown promising results in terms of utilising
gradient-free, population-based genetic algorithms, suggesting
that in certain cases gradient-based optimisation is not the best
approach to follow. In this paper, we empirically show that
utilising evolutionary and swarm intelligence algorithms can
improve the performance of deep neural networks in problems
such as the detection of false alarms in ICU. In more detail,
we present results that improve the state-of-the-art accuracy
on the corresponding Physionet challenge, while reducing the
number of suppressed true alarms by deploying and adapting
Dispersive Flies Optimisation (DFO).

I. INTRODUCTION

The accurate detection of false alarms in the Intensive
Care Unit (ICU) can be significantly beneficial for both
patients and the healthcare system. False alarms in the
ICU are likely to have a negative impact on the quality of
care required for improving patients’ health, due to noise
disturbance, disruption of care, and lack of sleep impacting
patient stress levels.

The focus of this paper lies with detecting abnormalities
in the heart function, called arrhythmias, that can be
encountered in both healthy and unhealthy subjects. The
ICU is equipped with monitoring devices that are capable of
detecting dangerous arrhythmias, namely asystole, extreme
bradycardia, extreme tachycardia, ventricular tachycardia
and ventricular flutter/fibrillation.

Depending on the AAMI guidelines, appropriate measures
should be taken within 10 seconds of the commencement
of the event as these arrhythmias might cause death [2].
Triggering the alarm when an arrhythmia occurs may im-
prove the chance of saving lives. Mis-configuring, defec-
tive wiring, staff manipulation, and patient manipulation
or movement may increase the false alarm ratio to 86%.
Clinically, 6% to 40% of the ICU alarms proved to have
lower priority and do not require immediate measures [3].
False alarms stimulate the patient’s mental discomfort [4]
and the clinical staff’s desensitisation thereby causing a

slower response to the triggered alarms [5]. True alarms that
have high priority and need an urgent response are only 2 -
9% of all ICU alarms [6]. Therefore, false alarm detection
and elimination is an essential area of research.

Deep Neural Networks (DNNs) trained via gradient-based
algorithms such as backpropagation are the most common
approach used in literature, where NN trained via BP have
recently found great success in several applications related
to areas such as computer vision and signal processing
[7] - despite guarantees of achieving only a local optima
when applied to non-convex loss functions. Furthermore,
several recent works suggest that first-order methods such
as gradient descent are often not the best way to go [1],
and that population-based genetic algorithms can provide
competitive results. In this paper, we evaluate the applica-
tion of Dispersive Flies Optimisation (DFO) in finding the
optimal weights of a given neural network (NN), instead of
using BP. We evaluated the proposed gradient-free method
on a subset of the Physionet Challenge 2015 dataset [8].
The goal of this challenge is to reduce the occurrences of
false alarms with accurate detection of the above-mentioned
life-threatening arrhythmias. This goal is achieved by using
multi-modal data such as respiration (RESP), arterial blood
pressure (ABP) or Photoplethysmograph (PPG).

II. RELATED WORK

The Physionet Challenge 2015 [8] raises an opportu-
nity for participants to offer different approaches towards
improving the classification accuracy of true/false alarms.
In this challenge, scoring was based on maximizing True
Positives (TP) and True Negatives (TN), while minimising
False Negatives (FN) and False Positives (FP). The scoring
approach utilises an “err-on-the-safe side” approach, where
the suppression of a true alarm (false negative) is penalized
much higher than events such as raising a false alarm. This
is described in the following equation,

Score =
TP + TN

TP + TN + FP + 5FN
. (1)

In this challenge, 38 teams submitted their solutions. The
participants used elementary algebra, descriptive statistics,



TABLE I
SUBSET OF PHYSIONET DATASET (572 OUT OF 750 RECORDINGS) THAT

CONTAIN THE ECG LEADS II AND V AND PLETH SIGNAL. WE USED
THIS SUBSET TO ENSURE THAT WE TRAIN THE NN MODELS ON

IDENTICAL LEADS AND PULSATILE WAVEFORM.

Disease Name True Alarm False Alarm
Asystole 17 77

Bradycardia 35 37
Tachycardia 90 4

Ventricular Flutter/Fibrillation 6 40
Ventricular Tachycardia 54 212

signal processing, peak detection algorithms, QRS com-
plexes localisation, and the annotation of heartbeats using
all the available signals [9]–[18]. Binary Classification Trees
(BCTs) [19], [20], Discriminant Analysis Classifiers (DACs)
[19], Random Forest [21], Support Vector Machine (SVM)
[19], [22], and Fuzzy Logic [10] are used in different
submissions as well. The highest score (81.39) in the event
one is achieved [10] by applying Fuzzy Logic along with
Elementary Algebra and Descriptive Statistics. [19] applied
SVM, DACs, and BCTs and ranked fifth in this challenge
with a score of 75.55.

III. DATASET DESCRIPTION

The Physionet 2015 challenge [8] provides a training data
set containing 750 recordings that are available to the public,
as well as 500 hidden records for scoring. This dataset
consists of life-threatening arrhythmia alarm records that
have been collected from four hospitals in the United States
and Europe. The recordings are sourced from the devices
made by three major manufacturing companies of intensive
care monitor devices. Each record is five minutes or five
minutes and 30 seconds long at 250Hz and contains only
one alarm. A team of expert annotators labelled them ’true’
or ’false’. The commencement of the event is within the last
ten seconds of the recordings.

In this challenge, participants can submit their code which
would be evaluated according to two type of events: event
1 (real time) and event 2 (retrospective). All recordings
have a sample rate of 250Hz and contain two ECG leads
and one or more pulsative waveform (RESP, ABP or PPG).
The ECGs may contain noise, and pulsatile channels may
contain movement artefacts and sensor disconnections. In
this paper, we focus on event 1, trim the data to have a length
of five minutes and chose a subset of 572 records. These
contain the ECG leads II and V and PLETH signal. This
decision is made to ensure that we train the NN models on
identical leads and pulsatile waveform. In this subset, there
are 233 True alarms and 339 False alarms. In each n-fold,
the dataset is divided into training, testing and validation
using 70% (400), 20% (114), and 10% (58) respectively.
Table I describes the dataset.

IV. FEATURE SELECTION

Since in this work our focus is finding the optimal weights
of a given model rather than performing feature selection, we
utilise the same feature selection method as in [19]. Having
performed feature extraction, the authors utilise SVM, DACs

TABLE II
THE FEATURES USED TO TRAIN NN MODELS

Minimum optimal interval (1 - 3)
Maximum optimal interval (4 - 6)
Mean optimal interval (7 - 9)
Sum optimal interval (10 - 12)
Median absolute deviation of optimal interval (13-15)
STD optimal interval (16 - 18)
STD / mean optimal interval (19 - 21)
Mean peak height to area under curve ratio (22 - 24)
Median peak height to area under curve ratio (25 - 27)
High-frequency ECG (28)
High-frequency BP (29)
Low-frequency ECG (30)
Low-frequency BP (31)
Average rhythmicity (32)
Peak rhythmicity (33)

and BCTs for predictive analysis. Achieved results indicate
a score of 75.55 in the Physionet 2015 event 1. The 33
features which are listed in table II.

V. DISPERSIVE FLIES OPTIMISATION

DFO [23] is an algorithm inspired by the swarming
behaviour of flies hovering over food sources. The swarming
behaviour of the individuals in DFO consists of two tightly
connected mechanisms: formation of the swarms, and their
breaking or weakening1. In our study, we call the position
as NN weights. Algorithm 1 describes the adapted DFO for
NN. The NN weights’ vector is defined as follows:

#»wt
i =

[
wt

i1, w
t
i2, ..., w

t
iD

]
, i = 1, 2, ...,N (2)

where i represents the ith individual, t is the current time
step, and D is the dimensionality of the problem space. In
our study D is the number of weights in a given NN model.
N is the population size. For the continuous problems, wid ∈
R, and in discrete cases, wid ∈ Z (or a subset of Z). In our
study wid is a subset of R. In the first iteration, t = 0, the
ith vector’s dth component is initialised as w0

id = N (0, 1),
where N denotes the Gaussian distribution. Therefore, the

population is randomly initialised with a set of weights for
each in the search space.

In each iteration of the original DFO equation, the
components of the NN weights vectors are independently
updated, taking into account the component’s value, the
corresponding value of the best neighbouring individual
with the best Physionet score (consider ring topology),
and the value of the best individual in the whole swarm.
Therefore the updated equation is:

wt+1
id = wt

ind
+ u(wt

sd − wt
id) (3)

where wt
ind

is the weight (position) value of #»wt
i’s best

neighbouring individual in the dth dimension at time step
t, wt

sd is the value of the swarm’s best individual in the
dth dimension at time step t, and u = U(0, 1) is a random

1Several elements play a role in disturbing the swarms; e.g., the presence
of a threat causes the swarms to disperse, leaving their current position; they
may return to the position immediately after the danger is over. However,
during this period, if another position is discovered which better matches
their criteria, the new position is adopted [24].



number generated from the uniform distribution between
0 and 1. In our study, we investigated several extensions
to improve the performance of the DFO for deep network
optimisation. We update equation 3 by taking into account
the corresponding value of the best neighbouring individual
and the value of the best in the whole swarm. Therefore,
the adapted updated equation is as follows:

wt+1
id = wt

ind
+ u(wt

sd − wt
ind

) (4)

Three main components characterise the algorithm: A
dynamic rule for updating the population’s position (as-
sisted by a neighbouring social network that informs this
update) and communication of the results of the best-found
individual to others. A dynamic mechanism to regulate the
disturbance threshold, ∆, to control the behaviour of the
population (exploration or exploitation) in the search space.

As stated earlier, the swarms are disturbed for various
reasons; one of the impacts of these disturbances is the
displacement of the individuals, which may lead to discov-
ering a better Physionet score through finding better weights
for the NN. To consider this eventuality, an element of
stochasticity is introduced to the update process. Based on
this, the individual components of the population’s weights’
vectors are reset if a random number, u is less than ∆.
This approach guarantees a disturbance to the otherwise
permanent stagnation over a possible local maximum. In the
original DFO equation, the disturbance is done by updating
the parameter with a random number in the acceptable range
of minimum and maximum value. In our study, we changed
this parameter’s update to correlate with the current ∆ and
the best neighbour, that is wt+1

id which is sampled from a
Gaussian with the mean set to wind

and variance to ∆2.
Figure 3 demonstrates ∆’s behaviour in 1000 iterations.

Algorithm 1 summarises the adapted DFO algorithm.
In this algorithm, each member of the population is

assumed to have two neighbours (i.e. ring topology).

Algorithm 1 Adapted DFO for Training
Input: population size N , model structure L, network

weights # »wi, length of weights vector D, loss function f(.).
1: ∆ = 1
2: while not converged do
3: #»ws = arg max [f(L( #»wi))], i ∈ {1, . . . , N}
4: for i = 1→ N and i 6= s do
5: #»win = arg max [f(L( #»wi−1)), f(L( #»wi+1))]
6: for d = 1→ D do
7: if (U(0, 1) < ∆) then
8: wt+1

id ← N (wt
ind
,∆2))

9: else
10: wt+1

id ← wt
ind

+ u(wt
sd − wt

ind
)

11: end if
12: end for
13: Dynamically update ∆ (see Section VI-B)
14: end for
15: end while

Output: Best fly’s weight vector, # »ws.

TABLE III
DENSE MODEL STRUCTURE

Layer Name No of Neurons Weights Shape Total Weights Bias
Dense 1 (Input) 64 (1, 64) 64 64

Dense 2 64 (64, 64) 4096 64
Dense 3 32 (2112, 32) 67584 32

Dense 4 (Output) 2 (32, 2) 64 2

TABLE IV
CONVOLUTION-DENSE MODEL STRUCTURE

Layer Name No of Neurons Weights Shape Total Weights Bias
Convolution 1 (Input) 32 (2, 1, 32) 64 32

Dense 2 (Input) 64 (32, 64) 2048 64
Dense 3 64 (64, 64) 4096 64
Dense 4 32 (1024, 32) 32768 32

Dense 5 (Output) 2 (32, 2) 64 2

In summary, the DFO is a simple numerical optimiser.
Despite the algorithm’s simplicity, it is shown that DFO
outperforms the standard versions of the well-known Particle
Swarm Optimisation (PSO), Genetic Algorithm (GA) as
well as Differential Evolution (DE) algorithms on an ex-
tended set of benchmarks over three performance measures
of error, efficiency and reliability [23]. It is shown that DFO
is more efficient in 84.62% and more reliable in 90% of
the 28 standard optimisation benchmarks used; furthermore,
when there exists a statistically significant difference, DFO
converges to better solutions in 71.05% of the problem set.
DFO has been applied to various domains including medical
imaging [25], quantifying complexity in patterns [26] as
well as parameter optimisation [27] and the philosophical
autopoiesis argument in computational creativity [28].

VI. EXPERIMENTS

A. Model Configuration

In this study, we conducted an experiment utilising two
neural network architectures: a stack of dense layers, and
a stack of convolutional and dense layers. The model
structures are described in Tables III & IV in detail. In
NN, forward propagation includes a set of matrix opera-
tions where parameters include weights that connect NN
layers to each other, and bias. We focus on finding optimal
weights of the network that provide the highest classifi-
cation accuracy for this task. Depending on the type of
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Fig. 1. Model 1: 5-fold cross validation mean accuracy over 1000 iterations.
Mean accuracy trend for random search, standard DFO, updated DFO, with
dynamic and constant disturbance threshold (∆).



TABLE V
ACCURACY AND PHYSIONET SCORE OVER 5-FOLD CROSS VALIDATION FOR FIRST [10] AND FIFTH RANK [19] IN PHYSIONET CHALLENGE 2015,

NN OPTIMISED WITH BP AND ADAPTED DFO ALGORITHM WITH CONSTANT AND DYNAMIC DISTURBANCE THRESHOLD (∆)

Author Method Mean Accuracy Physionet 2015 Score
By [19] SVM, BCTs, DACs 87.24% (+/- 2) 85.50% (+/- 3)
By [10] Fuzzy Logic 87.78% (+/- 4) 80.09% (+/- 8)
Our Study 1 Dense Network, BP 87.70% (+/- 3) 75.35% (+/- 7)
Our Study 2 Dense NN, Standard DFO, Dynamic ∆, using Eq. 3 90.02% (+/- 3) 79.23% (+/- 5)
Our Study 3 Dense NN, Adapted DFO, Dynamic ∆, using Eq. 4 91.91% (+/- 4) 86.77% (+/- 4)
Our Study 4 Dense NN, Random Search 84.16% (+/- 3) 68.03% (+/- 5)
Our Study 5 Dense NN, Standard DFO, ∆ = 0 (i.e. no disturbance) 73.89% (+/- 2) 51.53% (+/- 4)
Our Study 6 Convolution-Dense NN, BP 88.21% (+/- 3) 76.34% (+/- 6)
Our Study 7 Convolution-Dense NN, Standard DFO, Dynamic ∆, using Eq. 3 89.15% (+/- 4) 77.21% (+/- 5)
Our Study 8 Convolution-Dense NN, Adapted DFO, Dynamic ∆ using Eq. 4 91.88% (+/- 2) 86.81% (+/- 4)
Our Study 9 Convolution-Dense NN, Random Search 82.39% (+/- 5) 66.40% (+/- 7)
Our Study 10 Convolution-Dense NN, Standard DFO, ∆ = 0 (i.e. no disturbance) 73.90% (+/- 3) 52.53% (+/- 2)
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Fig. 2. Model 1: 5-fold cross validation mean Physionet score over 1000
iterations. Mean Physionet score trend for random search, standard DFO,
updated DFO, with dynamic and constant disturbance threshold (∆).
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Fig. 3. Model 1: 5-fold cross validation disturbance threshold (∆) trend.
Visualising ∆ trend with considering dynamic and constant disturbance
threshold (∆) over 1000 iterations.

neurons and input shape in a NN, the shape of the output
weights of that neuron varies. This study uses two models:
model 1 consists of four dense layers, and model 2 one
convolution and four dense layers. For instance, in model 1
of our study, the first layer is dense with 64 neurons.
In the first layer, input shape is (-1, 33, 1) and the output
weight is (1, 64) where 1 is the third axis of the layer’s
input shape, and 64 is the number of neurons in this layer:
[(−1, 33, 1)× (1, 64)] + (64) = (−1, 33, 64)

Model 2 includes a convolution as the first layer. This
model has a similar input shape (-1, 33,1). The first layer has
32 neurons, and the shape of connecting weights to the next

layer is (-1, 2, 1, 32) where 2 is the convolution window
size, 1 is the third axis of the input shape, and 32 is the
number of neurons in the convolution layer.

B. DFO Configuration

In our study, DFO is used to find the optimal weights
in both NN models. The number of parameters (i.e.
weights and bias) in models 1 & 2 are 71970 and 39234
respectively (see Tables III and IV). Each member of the
population (fly) has a set of parameters representing the
weights (including biases) of the NN model. Once all the
parameters of each fly are initialised and loaded onto the
NN model, the fitness (score) of each fly is calculated
using 5-fold cross-validation, by using the mean Physionet
score. After each iteration, each fly’s best neighbour, and
the best fly in the swarm are identified. The best fly holds
the highest Physionet score amongst the population.

Before updating each weight, a value u is sampled from
a uniform distribution U(0, 1). If u is less than ∆, the
weight is updated with the fly’s best neighbour as focus
(µ), therefore, wt+1

id ← N (wt
ind
,∆2), otherwise, the fly’s

weight is updated with the focus on the best fly in the swarm
wt+1

id ← wt
ind

+ u(wt
sd − wt

ind
). We also implemented a

mechanism to control the value of ∆. In the first phase
or the parameter optimisation, ∆ is set to 1 to bias the
algorithm towards exploration; this process continues until
there is no improvement in k iterations. Following this, ∆ is
set to zero, allowing the flies to converge to the best location.
Once again, if no improvement is noticed in the Physionet
score, ∆ is increased by a random number between 0 and
δ2 (∆← ∆ + U(0, δ)). The algorithm is then set to run, if
there is an improvement followed by a k iteration state of
idleness, ∆ is set to 0 again to exploit the recent finding.
Alternatively if there is no improvement after the allowed
idle time-frame, ∆ is incremented further. In a situation
where ∆ > 1, ∆ is set to U(0, 1), and the process continues
as explained above until the termination points, which is
3, 000 iterations. Figure 1, 2 and 3 demonstrate trend of
improvement in accuracy, Physionet score and variations of
∆ over the first 1000 iterations.

2Note that throughout this in this paper, we use k = 50 and δ = 0.5.



VII. RESULTS

We compare the performance of the proposed DFO-
training scheme for NN with the winning and 5th-ranked
entries in the Physionet challenge 2015 ( Table V), as well
as the same NN architectures optimized with BP instead
of the proposed gradient-free DFO training scheme. Model
1 consists of four dense layers and Model 2 consists of a
convolution layer and four dense layers (see Table III &
IV ). As a benchmark, we use the accuracy and Physionet
scores of [10] and [19], that achieve the accuracy and
the Physionet scores of (87.24%, 85.50%) and (87.78%,
80.09%) respectively. We further investigate various
implementations of DFO, as well as random search. For
all experiments, we use 5-fold cross-validation. The DFO
modified version for Model 1 & 2 achieved the highest score
among the other results (see Table V). Resulting accuracy
and Physionet scores are (91.91%, 86.77%) and (91.88%,
86.81%) respectively, achieving better results than both back
propagation-trained NN, as well as challenge entries. The
behaviour of DFO, while having the constant ∆ value of 0
and random search, is also investigated. Their accuracy and
Physionet scores are (73.89%, 51.53%) and (84.16, 68.03)
respectively. The models optimised via neuroevolution with
DFO outperforming both (i) the networks trained by BP, as
well as (ii) the winning entry of the Physionet challenge.

VIII. CONCLUSION AND FUTURE WORK

We presented a method for training neural networks
based on neuroevolution by utilising the DFO algorithm
in a gradient-free population-based scheme. We evaluate
our method on the problem of detecting false alarms in
ICUs. Results show that the proposed method outperforms
(i) backpropagation-trained networks with the same or
similar architecture, as well as (ii) the winning entries of
the corresponding Physionet challenge.
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