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Development and Validation of 
the Computerised Adaptive Beat 
Alignment Test (CA-BAT)
Peter M. C. Harrison   1 & Daniel Müllensiefen2,3

Beat perception is increasingly being recognised as a fundamental musical ability. A number of 
psychometric instruments have been developed to assess this ability, but these tests do not take 
advantage of modern psychometric techniques, and rarely receive systematic validation. The present 
research addresses this gap in the literature by developing and validating a new test, the Computerised 
Adaptive Beat Alignment Test (CA-BAT), a variant of the Beat Alignment Test (BAT) that leverages 
recent advances in psychometric theory, including item response theory, adaptive testing, and 
automatic item generation. The test is constructed and validated in four empirical studies. The results 
support the reliability and validity of the CA-BAT for laboratory testing, but suggest that the test is not 
well-suited to online testing, owing to its reliance on fine perceptual discrimination.

Music listening invokes many cognitive abilities, including for example auditory scene analysis1, pitch and rhythm 
perception2, beat perception3, syntactic processing4, and emotion induction5. Though most listeners reach a base-
line competence in these tasks, precise ability levels differ between individuals6,7. In music perception research, 
these individual differences help to identify and dissociate the psychological and neural bases of music percep-
tion7,8. In education, these individual differences help diagnose musical aptitude (a student’s capacity for future 
musical success) as well as forming an important aspect of trained musicianship9,10.

Various standardised tests of musical listening abilities have been developed over the last century, ranging 
from the early Measures of Musical Talents11 to recent measures such as the Musical Ear Training Assessment 
(META)10 and the children’s Rhythm Synchronization and Melody Discrimination tasks12. These meas-
ures are essential for achieving efficient and objective ability testing in research and education environments, 
and have supported much research into the origin, nature, and distribution of musical abilities in the human 
population6,13–16.

Testing techniques have improved significantly since the original Measures of Musical Talents. Advances 
in recording technology have substantially improved the quality of audio stimuli17, and the adoption of signal 
detection theory has addressed the response bias confounds of early tests6,17. Adaptive techniques have become 
the norm for low-level perceptual abilities such as pitch discrimination, allowing tests to adapt dynamically to 
participants’ abilities18. Some recent listening tests have also adopted modern psychometric techniques such as 
item response theory19 and automatic item generation20, extending the applicability of adaptive testing to more 
complex tasks such as melody discrimination21. Nonetheless, many listening ability tests still use out-dated psy-
chometric techniques such as classical test theory and non-adaptive testing, leaving much scope for the psycho-
metric modernisation of musical assessment21.

This paper describes a modern psychometric approach to beat perception, the process of inferring an under-
lying pulse or beat from an extract of music3. This perceived beat is linked to acoustic periodicities in the sound, 
but it is not trivially determined by these periodicities: instead beat perception seems to be a constructive process, 
guided by voluntary control, and influenced by enculturation3,22,23. The perceived beat forms the scaffold about 
which musical rhythms are perceived, making beat perception an indispensable part of music perception and 
appreciation. Beat perception also plays a crucial role in dancing and collaborative music-making24, with this 
interpersonal synchrony thought to play an important role in facilitating social bonding25. Beat perception is 
therefore recognised as a fundamental musical ability3,24, and has attracted a broad range of research from psy-
chological, neuroscientific, and clinical perspectives6,26,27.
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Research into beat perception has been supported by the development of several beat perception tests, includ-
ing the Beat Alignment Test (BAT)28, the Adaptive Beat Alignment Test (A-BAT)29, the Beat Perception Test from 
the Goldsmiths Musical Sophistication Index (Gold-MSI)6, the Harvard Beat Assessment Test (H-BAT)30, and the 
Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA)31. Successful applications 
of these tests include identifying auditory and motor areas involved in beat perception and rhythmic reproduc-
tion26, investigating how beat perception abilities relate to other musical abilities and behaviours6, and predicting 
which Parkinson’s patients will benefit from rhythmic auditory stimulation therapy27.

These instruments provide a useful variety of measures covering many behaviours related to beat perception, 
such as tapping to the beat in a piece of music, detecting misalignment between a metronome and a musical 
extract, and detecting differences in duration between successive sounds. This variety is important for developing 
a comprehensive picture of the different psychological mechanisms involved in beat perception. However, this 
proliferation of measures comes at the expense of lessened development time for each measure. One result is that 
current beat perception tests do not fully exploit modern psychometric techniques such as item response theory19 
and adaptive testing32. A second result is a relative paucity of systematic validation: for example, test-retest relia-
bility, an indispensable validation measure, is not reported for the BAT28, A-BAT29, or H-BAT30 (though see ref.33 
for a test-retest validation of the BAASTA).

This paper takes a complementary approach: we focus on one beat perception paradigm, and use it to 
construct a psychometrically sophisticated and well-validated test termed the Computerised Adaptive Beat 
Alignment Test (CA-BAT; Fig. 1). This test probes a listener’s beat perception ability using the beat alignment 
paradigm of ref.28, where the listener tries to detect misalignment between a metronome and a musical extract. 
The new test uses realistic music and employs state-of-the art psychometric techniques. Item response theory 
provides principled item selection and sophisticated reliability quantification19; item response modelling links 
stimulus features to item difficulty, reinforcing construct validity34; adaptive testing tailors the difficulty level to 
the participant, helping the test perform well across the ability spectrum32; automatic item generation provides an 
effectively unlimited bank of computationally generated items20. We intend for the CA-BAT to provide a useful 
beat perception measure for future research, as well as providing a model for the subsequent development of 
future listening tests.

Psychometric Background
This section introduces three modern psychometric techniques used in the CA-BAT: item response theory, com-
puterised adaptive testing, and automatic item generation.

Item response theory.  Item response theory (IRT) distinguishes itself from classical test theory in its 
item-level rather than test-level focus (see ref.19 for an overview). Most IRT models are special cases of the 
four-parameter logistic model, defined as

Figure 1.  Schematic figure for the CA-BAT summarising the test’s format, potential applications, availability, 
length, and underlying psychometric techniques. *Test materials are available online at https://doi.org/10.5281/
zenodo.1210808.
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with Xj denoting the scored response of the test-taker to item j (1 = correct, 0 = incorrect), θ being the ability 
parameter for the test-taker, and aj, bj, cj, and dj being the item parameters for item j, termed discrimination, diffi-
culty, guessing, and inattention respectively35.

Each item parameter captures a distinct item characteristic. High discrimination means that the item dis-
criminates well between test-takers of different abilities. High difficulty means that a high ability is required to 
answer the item correctly. A high guessing parameter means that the item is easy to guess correctly, whereas a low 
inattention parameter means that high-ability participants still sometimes deliver incorrect answers.

Under IRT, test-taker ability is measured on the same scale as item difficulty. This scale is usually scaled and 
centred so that the distribution of abilities in the test-taker population has mean 0 and standard deviation 1.

Item parameters must be estimated before participant ability can be scored. This is typically done as part of 
the test construction phase. This parameter calibration process can be one of the most expensive parts of IRT test 
construction, since many participants (hundreds to thousands) are often required to achieve reliable parameter 
estimates19.

IRT possesses several important advantages as compared to classical test theory. Primary among these is the 
ability to compare test-taker scores even when the test-takers answer different test items. This means that tests can 
easily be shortened or lengthened without compromising score comparability, and it is an important prerequisite 
for adaptive testing.

A second advantage is a more sophisticated treatment of reliability. In classical test theory, reliability is a 
function of a test and a test-taker population; it is difficult to generalise reliability estimates from one population 
to another, and difficult to generalise from one test configuration to another. In IRT, reliability is instead a func-
tion of the items administered and the test-taker’s ability level, and can be computed solely from a participant’s 
response pattern and the item parameter estimates. The ability to tailor reliability estimates to an individual par-
ticipant and their testing configuration makes for a much more sophisticated reliability estimator than in classical 
test theory.

IRT is rarely used in musical psychology research, but it seems that music psychology stands to benefit from its 
incorporation21. So far the only published beat perception test to use IRT is the Gold-MSI Beat Perception Test6.

Adaptive testing.  In adaptive testing, item selection adapts to the test-taker’s previous responses (see ref.32 
for an overview). Typically the aim is to maximise the amount of information that each successive item gives 
about the test-taker’s true ability level, meaning in practice that poorly performing candidates receive easier items, 
and better performing candidates receive harder items.

Several approaches exist for adaptive testing. The simplest approaches, such as the staircase method36 and the 
maximum-likelihood procedure37, are quick to calibrate but have limited flexibility, being best suited to simple 
psychophysical tests. IRT, in contrast, provides a flexible framework that is suited to a broad variety of testing 
scenarios.

Adaptive testing under IRT usually takes the following format:

	 1.	 Make an initial estimate for the participant’s ability. One approach is to use the population mean; another 
approach is to choose a purposefully low ability estimate so as to give test-takers an easy start to the test.

	 2.	 Repeat the following:

	 (a)	� Use the IRT model to choose one item from a repository of items termed an item bank. Items are pre-
ferred that deliver maximal information about the participant’s true ability level, subject to practical 
constraints (e.g. avoiding items already administered in the session).

	 (b)	 Administer the item.
	 (c)	 Re-estimate the participant’s ability using the IRT model.
	 (d)	� Terminate the test if and only if the stopping condition is satisfied (e.g. a certain number of items have 

been administered, or ability can be estimated with a certain precision).

Adaptive testing is a powerful tool for improving test efficiency, especially for tests intended to cater to a wide 
range of ability levels. Traditionally, if a fixed-item test is to perform well over a wide range of ability levels, it must 
contain many items spread over the corresponding difficulty range. As a result, any given test-taker must take 
many items that are poorly suited to their own ability level, reducing testing efficiency as a result. Adaptive testing 
addresses this problem by tailoring each test to the test-taker, ensuring that only maximally informative items are 
administered at each point. As a result, adaptive tests can be 50–80% shorter than corresponding non-adaptive 
tests while achieving matched reliability19,38.

Several existing musical listening tests use adaptive techniques, including the Adaptive Music Perception 
Test39, the Adaptive Melodic Discrimination Test21, the Adaptive Beat Alignment Test (A-BAT)29, and some 
sub-tests of the BAASTA31 and H-BAT30. However, IRT-based adaptive test implementations are rare, and none 
currently exist for beat perception. One reason for the slow adoption of IRT-based adaptive testing in musical 
as well as non-musical domains may be the expense traditionally involved in constructing such tests. IRT-based 
adaptive tests require large calibrated item banks, and traditionally this calibration requires each item to be 
administered to hundreds or thousands of participants, which can become very expensive.
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Automatic item generation.  Automatic item generation can overcome this cost barrier to IRT-based 
adaptive testing by making test calibration much more efficient (see ref.20 for an overview). Instead of construct-
ing and calibrating each item separately, an algorithmic procedure is defined for constructing items and estimat-
ing their psychometric parameters a priori. This makes test construction much more efficient, and allows item 
banks of effectively unlimited size, reducing the potential for exposure effects.

Automatic item generation depends on explanatory models of task performance linking psychometric 
parameters (in particular item difficulty) to observable properties of each item (structural item features). These 
explanatory models reflect the perceptual and cognitive processes that underlie task performance. Automatic 
item generation is therefore fundamentally a psychological endeavour: prior psychological knowledge can be 
leveraged to produce better generation paradigms, and the construction and validation of generation paradigms 
can conversely yield psychological knowledge that improves the test’s construct validity.

Music psychology stands to benefit from automatic item generation, but the technology is only recently being 
incorporated into musical tests21. Applying automatic item generation to beat perception testing has the exciting 
potential to improve both the efficiency and construct validity of beat perception testing.

Test Design
Generic item form.  Paradigm.  The CA-BAT uses a paradigm inspired by the perception component of 
the BAT28 and similar to that used in the Gold-MSI Beat Perception Test6 and the BAASTA31. The paradigm 
comprises a series of two-alternative forced-choice (2-AFC) trials. Each trial presents the participant with two 
versions of a musical track, both overlaid with a metronome-like beep track. In one version, the target, the beep 
track is exactly in time with the musical beat locations. In the other version, the lure, the beep track is displaced 
from the musical beat locations by a constant proportion of a beat. The participant’s task is to identify which 
extract is the target. This paradigm will be referred to as the BAT paradigm.

Previous tests mostly use a 1-AFC paradigm where participants categorise single extracts as ‘on-the-beat’ or 
‘off-the-beat’. The 2-AFC paradigm is adopted here for two reasons. The first is that performance in 1-AFC para-
digms depends heavily on two person parameters (discrimination and bias), and therefore is not modelled well 
by standard IRT approaches which only incorporate one person parameter (ability). Second, the 2-AFC response 
paradigm contributes to the robustness of test items in cases where the estimated canonical beat locations jitter 
somewhat around the true beat locations. The 1-AFC task is problematic in these scenarios because no single 
extract will ever be truly ‘on-the-beat’. The 2-AFC task performs better here, because ‘off-the-beat’ versions will 
have both jitter and systematic displacement, making them objectively more ‘off-the-beat’ than the ‘on-the-beat’ 
versions that they are being compared to.

Stimuli.  Musical tracks were sourced from the ‘Audio Network’ production music library and chosen to repre-
sent a variety of musical genres and metres. Beat locations were estimated by recording experienced drummers 
tapping along to a selection of 45 musical tracks. Each drummer recorded at least three confident takes for each 
track. After correcting for equipment latency, canonical beat locations were established by averaging within each 
drummer the two recordings with the smallest difference in mean inter-tap interval and then averaging across 
drummers. Eight excerpts were rejected for low consistency within drummers (phase difference greater than 0.6 
radians, i.e. 9.5% of a beat, within at least one drummer) or between drummers (phase difference greater than 0.7 
radians, i.e. 11.1% of a beat, within any pair of drummers). A further five excerpts were rejected because the beat 
locations sounded inaccurate to the researchers. The resulting set numbered 32 musical tracks.

For the present study, each track was shortened to approximately five seconds in length, allowing some leeway 
to ensure that the extract was musically coherent, and overlaid with beep tracks. Each beep comprised a 20 ms 
sine tone with frequency 1000 Hz and a 10 ms fade-out. Initial piloting suggested that the perceptual salience (i.e. 
ease of hearing) of the beep track depended partly on the musical track it was mixed with, perhaps because of 
masking effects. Relative levels of beep tracks and musical tracks were therefore manually adjusted by one of the 
authors so as to equate beep-track perceptual salience across all musical tracks. These modifications were of the 
order 0–4 dB. The resulting mixes were then peak-amplitude normalised. In targets, the onset of each beep was 
aligned to the beat locations estimated from the drummers. In lures, each beep onset was temporally displaced a 
certain proportion (P) of the beat, either forwards or backwards, with < ≤ .P0 0 5. Each 2-AFC trial comprised 
one target and one lure, with the target either first or second, separated by two seconds of silence. Each resulting 
stimulus was approximately 12 s in length.

Item-processing model.  An explicit model of the perceptual and cognitive processes that underlie item 
processing is important both for construct validity and for effective automatic item generation34,40. Previous BAT 
studies do not present such a model, so one is suggested here.

Item processing begins with perceptual encoding, whereby the audio signal is translated from vibrations in air 
molecules into an internal representation of that audio signal. Through the process of auditory scene analysis1, 
this signal is split into two components, one belonging to the beep track and one belonging to the background 
musical track. The participant infers a metrical beat from the musical track by combining low-level auditory 
information (e.g. coinciding tone onsets from different instruments) with higher-level musical knowledge (e.g. 
knowledge that specific instruments tend to mark the musical beat), and represents the beep track relative to 
the resulting metrical grid. The participant then evaluates the extent to which beep onsets are aligned with the 
induced metrical grid. Applying this process to each stimulus version in the 2-AFC task produces two alignment 
estimates, one for each stimulus version. The final item response is arrived at by comparing these alignment 
estimates, with the participant selecting the stimulus version that achieves the best alignment. This process relies 
on working memory, especially for the first alignment estimate which needs to be retained until the second align-
ment estimate is complete.
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The BAT paradigm is considered primarily to assess beat perception ability28. Worse beat perception means 
less reliable inferred beat locations, less reliable differences between target and lure, less reliable discrimination, 
and hence reduced test performance. However, abilities related to other stages of BAT processing could also affect 
performance. We try and minimise such effects: stimuli are played at comfortable volume to facilitate perceptual 
encoding, beep tracks are given salient pitch and loudness to facilitate auditory scene analysis, and delays between 
stimulus versions are kept short to facilitate working memory. Nonetheless, these subsidiary abilities could still 
affect performance, especially in the case of clinical impairment. It would be worth testing this possibility in 
future work.

Relating item difficulty to item features.  Effective automatic item generation relies on the ability to 
control item difficulty. A useful approach to this problem is to categorise structural item features into radicals and 
incidentals41. Radicals are features that affect difficulty, whereas incidentals are features that do not affect item 
difficulty. Manipulating radicals allows different item difficulties to be achieved, whereas manipulating incidentals 
introduces surface variation into the item bank, a useful tool for reducing exposure effects.

The item-processing model suggests potential radicals and incidentals for automatic item generation. The 
precise effects of these radicals and incidentals are quantified by calibrating the item response model. If the item 
response model delivers results consistent with the item-processing model, this supports the latter’s validity and 
hence the test’s construct validity.

Beep-track accuracy.  The first hypothesised radical was beep-track accuracy (dr), the closeness with which the 
lure’s beep-track approximates the musical beat. Increasing the lure’s beep-track accuracy increases its similarity 
to the on-beat target, hence producing a harder discrimination task and increasing item difficulty. Because of the 
periodic nature of musical beat, the maximum beep-track displacement considered here is half a beat.

We originally intended to define beep-track accuracy as minus the amount of beep-track displacement, in 
units of beats. However, pilot experimentation suggested that the resulting radical did not satisfy the linear rela-
tionship with item difficulty required by the item response models used here. Instead, approximate linearity 
seemed to be achieved through the following heuristic transformation, adopted for the rest of the paper:

d cos P P P( ) : 0 0 5 (2)r
4 π= < ≤ .

where P is defined as beep-track offset, the amount of beep-track displacement in units of beats. This transfor-
mation reduces the effect of beep-track displacement on item difficulty for very low and very high displacement 
values. It would be worth investigating potential alternative transformations in future work.

Musical track.  The second hypothesised radical was the musical track. Musical tracks might differ in the clarity 
of their beat locations; for example, some musical styles highlight beat locations with regular and prominent 
drum-beats, whereas other styles leave beat locations to be more implicit. These differences will affect the diffi-
culty of the entrainment process. Musical tracks can also differ in terms of their underlying metre and tempo, and 
such differences are known to affect entrainment difficulty (e.g. ref.42).

An automatic item generation approach could try to disentangle the effects of different track features, such as 
tempo and metre, on item difficulty. This would be a difficult task, requiring a large number of musical tracks and 
a large amount of response data. Instead, it was decided to estimate the difficulty of each musical track separately, 
and treat the categorical variable musical track as a radical.

Displacement direction.  One item feature as yet unexplored in BAT variants was the beep-track’s displacement 
direction, that is, whether the beep-track is displaced ahead of or behind the musical beat. Because of the lack of 
evidence to the contrary, it was hypothesised that displacement direction should be an incidental.

Stimulus order.  There are two possible orders of stimulus presentation in the 2-AFC task: target-lure or 
lure-target. The order of stimuli within a 2-AFC task is rarely considered to be an important issue, and so it was 
hypothesised that stimulus order should be an incidental.

Other features.  A number of other item features were kept constant so as to keep the psychometric model simple 
and minimise unexplained variation in item difficulty. These features included stimulus length, beep-track pitch 
and timbre, the perceptual salience of the beep-track, and the time between each stimulus version in the 2-AFC 
trial.

Item response model.  The relationship between item features and item parameters is characterised by an 
explanatory item response model43. This model is derived by imposing several constraints on the general IRT 
model described in equation (1). Most important from an automatic item generation perspective is the decompo-
sition of the difficulty parameter (cj) into a linear predictor ( c xc x j

i i i
j( ) ( )≡ ∑Τ ). This linear predictor allows the 

difficulty of an item to be derived from its item features (xi).
Several additional constraints are imposed on the item parameters so as to improve the statistical efficiency of 

item parameter calibration.

	 1.	 The guessing parameter is constrained to the reciprocal of the number of response options, corresponding 
to the expected success rate if the participant were to answer randomly.

	 2.	 The inattention parameter is constrained to 1 on the understanding that inattention effects should be negli-
gible for the short testing sessions employed in the present research.
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Rasch modelling44.
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where Xj denotes the scored response of the test-taker to item j (1 = correct, 0 = incorrect), θ is the test-taker’s 
ability parameter, x j( ) is the vector of item features for item j (including an intercept, and any categorical features 
dummy-coded), c is a vector of regression coefficients, and a is the discrimination parameter.

Calibration of this item response model involves estimation of the discrimination parameter (a) and the fea-
ture effects (c). Two estimation methods are used in the present research: a linear regression approach and a 
generalised linear mixed model (GLMM) approach.

The linear regression approach is a two-stage process. In the first stage, a traditional IRT model (e.g. equation 
(1)) is fit to response data, and separate item difficulties are estimated for every item tested. In our case the IRT 
model is a version of equation (1) where the inattention parameter (dj) is constrained to 1 and the discrimi-
nation parameter (aj) is constrained to be shared by all items. This model is sometimes termed a constrained 
three-parameter logistic (3-PL) model45. A linear regression is then conducted to predict item difficulty from item 
features; the resulting regression coefficients can then be used as the parameters ci in equation (3). This approach 
has been used before by ref.46. An advantage of this approach is that it enables traditional IRT model diagnostics, 
which are useful tools for developing and validating IRT models. Disadvantages include the difficulty of model 
calibration when participants take different item sets, and the fact that variable imprecision in item parameter 
estimates is not propagated through the regression model.

The GLMM approach is based on the observation that the desired item response model (equation (3)) can be 
specified as a GLMM if the population distribution of test-taker ability (θ) is modelled as a Gaussian. The rela-
tionship between GLMMs and IRT is discussed in greater detail in ref.47. We will just make a couple of additional 
observations:

	 1.	 Item response models with non-zero guessing parameters or inattention parameters can be specified as 
GLMMs through appropriate modification of the link function, as long as the guessing, inattention, and 
discrimination parameters are constrained to be invariant between items.

	 2.	 When converting parameter estimates from the GLMM metric to the traditional IRT metric ( N(0, 1)θ ∼ ), 
the IRT discrimination parameter (a) is equal to the standard deviation of the GLMM test-taker random 
intercept, and the item effects (ci) are equal to the corresponding GLMM effects multiplied by −1/a.

The GLMM approach is much more flexible for calibration, in that participants can take arbitrary item sets. 
One limitation, however, is the unavailability of many traditional IRT model diagnostics.

We developed our item response model over the course of two studies, described below. The first study was 
exploratory, and used the linear regression approach to test the main radical, beep-track accuracy. The second 
study explored a wider range of radicals and incidentals using the GLMM approach. Data and example code for 
these item response models are available at https://doi.org/10.5281/zenodo.1211116.

Studies
Study 1: Exploratory study.  This study represented an initial investigation into the possibility of manipu-
lating BAT item difficulty. For simplicity, only one item feature was modelled explicitly: beep-track accuracy. The 
aim of the study was to investigate the suitability of the BAT paradigm for IRT modelling, and to see how well 
item difficulty could be predicted from beep-track accuracy.

Method.  Participants.  The participant group comprised 197 self-recruited individuals (87 female) between 
the ages of 18 and 75 (M = 26.2, SD = 9.3). The majority of participants were students. Participants were recruited 
by word-of-mouth and via social media, and participation was rewarded by entry into a prize draw for a £100 gift 
voucher as well as the promise to acquire one’s own ‘Beat Perception Score’.

Materials.  The test comprised 32 items in total, produced by randomly combining the original 32 musical tracks 
with 32 equally spaced levels of beep-track accuracy (dr), with . ≤ <d0 25 1r  (piloting suggested that items with 
dr < 0.25 were too easy to be worth testing). Sixteen randomly selected items had their beep track displaced 
ahead, the other 16 behind; likewise, 16 randomly selected items had the target come first, while the other 16 had 
the target come second. Otherwise, all items followed the generic item form described above.

Procedure.  The experiment took place online over a two-week period, with each participant agreeing to wear 
headphones and to take the test in a quiet room free from interruptions. The entire testing session was run within 
the online platform Concerto48, beginning with the BAT items and concluding with a short series of question-
naires; on average, sessions lasted approximately 10 minutes. Before the testing session, participants were played 
some example music and instructed to adjust the volume of their headphones to a comfortable level. BAT testing 
began with a training phase, including instructions, audio demonstrations, and two practice questions, before 
proceeding to the data collection phase. In the data collection phase, participants were administered the 32 test 
items in randomised order, without item-to-item feedback. After completing the BAT items, participants took the 
7-item Musical Training component of the Gold-MSI self-report questionnaire6, alongside a short questionnaire 

http://dx.doi.org/10.5281/zenodo.1211116
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concerning their age, gender, and occupational status. Upon completion participants were presented with their 
total BAT score.

Ethics.  All experimental protocols in this and subsequent studies were approved by the Ethics Committee of 
Goldsmiths, University of London, and all experiments were performed in accordance with the relevant guide-
lines and regulations. Informed consent was obtained from all participants prior to participation.

Results.  Prior to any IRT analysis being conducted, the data were inspected to investigate item-wise success 
rate (averaged over all participants) as a function of the accuracy of the manipulated beep track (Fig. 2a). These 
initial results suggested a negative association between success rate and beep-track accuracy, as hypothesised. 
However, several items displayed outlying success rates, with four items scoring below chance (50%), and one 
scoring above-chance but still substantially worse than its neighbours (Fig. 2a, grey items). These outliers seemed 
likely to be due to inaccurate beat location data or misleading features in the underlying tracks, and so these five 
musical tracks were removed from subsequent analyses and excluded from the future CA-BAT.

Having excluded the five outliers, an IRT model was fit to the remaining data. This model took the form of a 
3PL model with guessing parameter constrained to 1/2, fit with approximate marginal maximum likelihood using 
the ltm package49 in the statistical software environment R50.

The validity of the resulting IRT model was tested in several ways. Model fit was assessed using Yen’s51 Q1 
statistic with 10 ability groups, estimating the test statistic’s distribution under the null hypothesis with 500 Monte 
Carlo samples, and calculating significance levels using Bonferroni correction. No items exhibited statistically 
significant levels of poor fit (p 0 05> . ). Model fit and conditional independence were then assessed by computing 
model fit on the two- and three-way margins52. This procedure involves looking at all pairs and triplets of items 
and testing whether their combined success rate differs significantly from that predicted by the IRT model. 1404 
pairs of items and response patterns were examined in total, out of which only 7 pairs (0.50% of the total) were 
flagged for poor fit by Bartholomew’s52 criterion. Similarly, only 530 out of 23400 (2.26%) of triplets were flagged 
for the three-way margins. These results suggested that the items exhibited good fit and conditional independ-
ence. Lastly, the assumption of unidimensionality was tested using modified parallel analysis53. This procedure 
involved calculating the tetrachoric correlation matrix for the response data, deriving its second eigenvalue, and 
comparing the eigenvalue to its simulated distribution under the null hypothesis, using a Monte Carlo simulation 
with 500 samples. The analysis found no evidence for multidimensionality (p = 0.822).

Participant abilities were estimated from the IRT model using expected a posteriori estimation and compared 
with their Gold-MSI Musical Training scores. BAT scores and Musical Training scores exhibited a moderate pos-
itive correlation ( = . < .r p(195) 0 454, 0 001, 95% CI = [0.335, 0.558]).

Explanatory item response model parameters were then estimated on the basis of the IRT model using the 
linear regression approach. The discrimination parameter was taken directly from the IRT model, and had a value 
of 1.616 (SE = 0.158). Visual inspection of the relationship between beep-track accuracy and item difficulty sug-
gested that the trend was linear, but that difficulty reached a lower asymptote at a beep-track accuracy of about 
0.55. Beep-track accuracies lower than 0.55 were therefore excluded from the explanatory model. Coefficients for 
item effects (ci) were then estimated for the explanatory item response model (equation (3)) by conducting a lin-
ear regression to predict item difficulty from beep-track accuracy (Fig. 2b, Table 1). The resulting model had good 

Figure 2.  Item-wise statistics for Study 1. Item difficulty generally increases with beep-track accuracy, excepting 
several outliers and a floor effect for accuracies below 0.55. (a) Success rate (averaged over all participants) as a 
function of beep-track accuracy or beep-track offset. Chance success rate (50%) is marked by the dashed line. 
The five excluded tracks are marked grey. (b) Difficulty as a function of beep-track accuracy and beep-track 
offset, having removed the five excluded tracks. Items with beep-track accuracies less than 0.55 are marked 
grey. Error bars denote one standard error. The fitted regression line is plotted with the standard error of its 
predictions shaded in grey.
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fit (Adj. R2 = 0.80, F(1,14) = 61.11, p 0 001< . ). Beep-track accuracy significantly predicted item difficulty, with 
higher beep-track accuracies producing higher difficulty, as hypothesised (β = 10.025, t(14) = −7.817, 
p 0 001< . ).

Discussion.  The purpose of this study was to investigate the suitability of the BAT paradigm for IRT mod-
elling, and to see how well item difficulty could be predicted from beep-track accuracy. A variety of standard 
IRT tests showed that the BAT items satisfied the key assumptions of IRT, once a number of outliers had been 
removed. Moreover, the results showed that the difficulty of BAT items might be predicted fairly well by a linear 
function of beep-track accuracy, as long as a sufficiently constrained range of beep-track accuracies was used and 
a number of outlying musical tracks excluded. Nonetheless, 20% of the variance in item difficulty remained unex-
plained, suggesting the influence of additional item features beside beep-track accuracy. Moreover, given that 16 
items had been manually excluded (five for outlying success rates, the rest for too-low beep-track accuracies), the 
model could only be treated as exploratory.

This study also provided evidence for the construct validity of the CA-BAT paradigm. The moderate corre-
lation of ability scores with musical training supports the conception of beat perception as fundamental musical 
skill, and is consistent with previous studies of beat perception ability (e.g. ref.6). Moreover, the observed relation-
ship between item difficulty and beep-track accuracy is consistent with the hypothesised item-processing model 
for the CA-BAT, supporting the test’s construct representation and construct validity34.

Study 2: Calibrating the CA-BAT.  The purpose of this study was to develop an improved psychometric 
model for the CA-BAT. This involved making several changes to the previous design. First, a new item bank was 
generated that explored more combinations of item features than were present in Study 1. Second, the range of 
beep-track accuracies was constrained to the more appropriate range identified in Study 1. Third, item response 
model parameters were estimated with the GLMM approach instead of the linear regression approach. The latter 
approach requires many responses for each combination of features, which would have been impractical here.

Method.  Participants.  The participant group was drawn from two samples: one large group who took the 
test online (N = 223) and one small group of schoolchildren (N = 6; unfortunately participation numbers were 
lower than expected for this group). Ages and genders were not collected for the schoolchildren, but in the online 
group ages ranged from 18 to 68 (M = 32.8, SD = 12.8), with 52.8% self-reporting as female. Online participants 
were recruited in a similar manner to Study 1.

Materials.  The item bank contained 2,916 items in total, produced by factorially combining four variables:

	 a)	 27 musical tracks (five from the original 32 had been discarded in Study 1);
	 b)	 27 equally spaced levels of beep-track accuracy (dr), with . ≤ <d0 5 1r ;
	 c)	 displacement direction (two levels: ahead or behind);
	 d)	 stimulus order (two levels: target-lure or lure-target).

Otherwise, all items followed the generic item form described previously.

Procedure.  Data collection took place over a one-month period using the Concerto platform48. Online partici-
pants agreed to wear headphones and to take the test in a quiet room free from interruptions; the schoolchildren 
took the test in a quiet classroom with headphones. All participants were instructed to adjust the volume of their 
headphones to a comfortable level prior to the testing session. For the online participants, the overall session 
structure was identical to that of Study 1; in contrast, the schoolchildren took the test as part of a c. 45-minute 
battery of other tests and questionnaires, the results of which are not reported here. After completing the training 
phase, all participants answered 27 items, which were randomly selected from the item bank under the following 
constraints: a) each participant heard each musical track exactly once; b) each participant heard each level of 
beep-track accuracy exactly once.

Results.  Study 1 had identified a number of items with unexpectedly low success rates. The data from Study 
2 were screened for similar cases by aggregating success rates for each musical track (Fig. 3). On the whole 
track-wise success rates appeared approximately normally distributed about a mean of 76%, but two musical 
tracks scored approximately at or below chance (52% and 46% respectively). These two tracks were therefore 
removed from the analysis as well as from the future CA-BAT.

i xi
j( ) Bi SE(Bi) βi SE(βi) ci SE(ci) p

0 Intercept −8.388 0.983 NA NA −8.388 0.983 < 0.001

1 Beep-track accuracy 10.025 1.282 0.902 0.115 10.025 1.282 < 0.001

Table 1.  Item response model parameter estimates (Study 1). Notes. i is a generic index. x i
j( ) denotes the ith 

element of vector x(j) (equation (3)), and corresponds to the ith item feature. Bi denotes an unstandardised 
regression coefficient. SE(Bi) denotes the standard error associated with the estimation of Bi, and analogous 
definitions hold for SE(βi) and SE(ci). βi denotes a fully standardised regression coefficient. ci denotes the ith 
element of vector c (equation 3), and identifies the contribution that item feature xi

j( ) makes to item difficulty.
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The item response model in equation (3) was then fit to the remaining data using the GLMM approach. 
Estimation was carried out using the R50 packages lme447 and psyphy54.

The item response model was constructed incrementally by adding radicals one at a time, allowing the assess-
ment of the individual contributions of each radical. Four model versions were planned, each adding a new poten-
tial radical in the order of their hypothesised importance (Table 2). Sequential comparisons with likelihood-ratio 
tests would then provide a statistical measure of the significance of each radical’s contribution.

In practice, model convergence issues necessitated some revision of the planned model specifications. Model 
A failed to converge, prompting the removal of the item-wise random intercept from all models. Model B also 
failed to converge, prompting the revision of musical track from a fixed effect to a random slope with beep-track 
accuracy, including an intercept-slope correlation parameter. Model C had no convergence problems, but Model 
D failed to converge.

The revised models were then compared with likelihood-ratio tests (Table 3). Model C significantly outper-
formed Model B, which significantly outperformed Model A, supporting the predictive importance of both musi-
cal track and displacement direction. Because Model D did not converge, the influence of stimulus order was 
instead examined with a chi-squared test at the response level that tested for an association between stimulus 
order and correctness of response. As hypothesised, stimulus order did not have a significant effect on success rate 
(χ2(1) = 0.373, p = 0.541). These results indicated that the best-performing model was Model C, and so Model C 
was adopted as the final item response model.
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Figure 3.  Distribution of track-wise success rates (Study 2). Chance success rate (50%) is marked by the dashed 
line. The two excluded songs are marked grey.

Model Fixed effects Random effects

A beep-track accuracy participant (intercept) 
item (intercept)

B same as A + musical track same as A

C same as B + displacement 
direction same as A

D same as C + stimulus order same as A

Table 2.  Planned model specifications (Study 2).

Model Fixed effects Random effects AIC BIC LR test

A beep-track accuracy participant (intercept) 5877.3 5897.2 NA

B same as A A + track (slope with accuracy) 5657.7 5697.7 χ2(3) = 225.51, < .p 0 001

C B + displacement direction same as B 5633.1 5679.6 χ = . < .p(1) 26 67, 0 0012

Table 3.  Fitted model specifications (Study 2). Note. Likelihood-ratio (LR) tests are each carried with respect 
to the model in the immediately preceding row, and characterise the extent to which the new model better 
accounts for the data than the previous model.
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Parameter estimates for the final model are given in Tables 4 and 5. The discrimination parameter (a) is set to 
the standard deviation of the participant intercept (Tables 5, 1.166), and GLMM fixed effects (Bi) are converted to 
the metric of the desired item response model (ci) by dividing by −a (Table 4). Consistent with Study 1, the results 
indicate that increased beep-track accuracy yields increased difficulty. In addition, the results indicate that item 
difficulty increases when the beep-track is displaced ahead of the beat rather than behind the beat.

The estimated random-effect coefficients are fairly large (Table 5), implying that the choice of musical track 
significantly affects item difficulty. However, the perfect negative correlation between the intercept and slope 
coefficients for musical track somewhat mitigates the relationship between musical track and item difficulty. This 
large negative correlation is necessitated by the fact that all musical tracks must asymptotically approach the same 
‘impossible’ difficulty level as beep-track accuracy increases to 1. This constraint reduces one degree of freedom 
from track-wise variation, and results in only one effective random parameter for each track.

Theoretically both fixed effects and random effects can be incorporated into the linear predictor (cΤx(j)). The 
potential advantage would be increased model expressivity, allowing the model to generate different difficulty pre-
dictions for different musical tracks. The potential disadvantage would be overfitting, a result of the dataset being 
too small for accurate parameter estimation. Pilot testing suggested that including the random effects reduced test 
reliability, and so it was decided to omit these effects. The resulting item response model estimates the difficulty of 
each item solely on the basis of its beep-track accuracy and the direction of the beep-track’s displacement:

= = − . + . × + − . ×c xdifficulty 5 393 (7 247 accuracy) ( 0 576 direction) (4)T

where ‘direction’ is coded with 1 for ‘behind the beat’ and 0 for ‘ahead of the beat’.

Discussion.  The purpose of this study was to improve the psychometric model for the CA-BAT. The results 
indicate that incorporating additional item features resulted in a better model, with both musical track and dis-
placement direction providing statistically significant improvements in model fit. The resulting model can now 
be used to generate item parameter estimates for the CA-BAT item bank.

Increased beep-track accuracy produced more difficult items, as hypothesised and consistent with the original 
item-processing model. Likewise, different musical tracks produced different item difficulties, as predicted from 
the item-processing model.

The observed effect of displacement direction–that item difficulty increases when displacement direction is 
ahead of the beat–was unexpected. The result implies that beeps sound more “in time” when they are ahead of 
the beat, rather than behind the beat. This makes an interesting parallel with the phenomenon of negative mean 
asynchrony found in sensorimotor synchronisation studies, where it is established that individuals (especially 
musically untrained ones) have a general tendency to tap slightly ahead of the beat (e.g. ref.55). However, the 
observed effect could also stem from systematic biases in the canonical beat locations.

These relationships between item features and item difficulty provide useful information concerning 
the construct validity of the CA-BAT. To the extent that these relationships are consistent with the proposed 
item-processing model, it can be claimed that the CA-BAT paradigm is well-understood, and has good construct 
representation34. The results presented here suggest fairly good construct representation for the CA-BAT, as both 
the effects of beep-track accuracy and musical track are consistent with the proposed item-processing model. 
However, the effect of displacement direction is not yet fully understood, and deserves further exploration.

i xi
j( ) Bi SE(Bi) βi SE(βi) ci SE(ci)

0 Intercept 6.287 0.585 NA NA −5.393 0.502

1 Beep-track accuracy −8.448 0.611 −1.217 0.088 7.247 0.524

2 Displacement direction 0.671 0.130 NA NA −0.576 0.112

Table 4.  Final model (Model C) fixed-effect parameters. Notes. i is a generic index. x i
j( ) denotes the ith element 

of vector x(j) (equation (3)), and corresponds to the ith item feature. Bi denotes the unstandardised regression 
coefficient for the corresponding fixed effect in the mixed-effects logistic regression model. SE(Bi) denotes the 
standard error associated with the estimation of Bi, and analogous definitions hold for SE(βi) and SE(ci). βi 
denotes a partially standardised logistic regression coefficient, where standardisation is achieved by multiplying 
the unstandardised coefficient by the standard deviation of the predictor variable. ci denotes the ith element of 
vector c (equation (3)), and identifies the contribution that item feature xi

j( ) makes to item difficulty. x j
2
( ) 

(displacement direction) is coded with 1 denoting ‘behind-the-beat’ and 0 denoting ‘before-the-beat’.

Parameter Estimate

Participant (intercept) 1.166

Track (intercept) 2.121

Track (slope with accuracy) 1.477

Track (intercept-slope correlation) −1.000

Table 5.  Final model (Model C) random effects. Note. No standardisation is applied to the random-effect 
parameters.
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This study showed that musical track significantly affects item difficulty, and so ideally musical track should 
be explicitly included in item difficulty predictions. Unfortunately it proved difficult to estimate the necessary 
fixed-effect parameters to achieve this. Future work could address this problem in several ways. One approach 
would be to compile a larger set of response data; perhaps more data would produce greater stability in the 
parameter estimates. A second approach would be to use penalised regression, which again should induce greater 
parameter stability. In the meanwhile, including musical track as a random effect improves overall model fit and 
therefore should improve the remaining parameter estimations.

Study 3: Laboratory validation of the CA-BAT.  Study 3 was intended to investigate the behaviour of 
the CA-BAT in a typical laboratory setting. One aim was to investigate the test’s reliability, that is, the extent to 
which it delivers consistent ability estimates. An emphasis was placed on investigating reliability as a function of 
test length, to see whether the test could perform well when shortened.

A second aim was to investigate the test’s nomothetic span, the way in which CA-BAT scores relate to different 
psychometric measures. Nomothetic span is an important aspect of construct validity34, the question of what 
latent trait(s) the test measures. The comparison measures used in this study all derive from the self-report com-
ponent of the Gold-MSI6. This tool assesses a multi-faceted conception of musical sophistication comprising five 
sub-components, Active Engagement, Emotions, Musical Training, Perceptual Abilities, and Singing Abilities, as well 
as one general component, termed General Sophistication. A similar comparison had been performed in a previ-
ous study for the Gold-MSI Beat Perception Test6, finding small positive correlations for each component (Active 
Engagement, r = 0.224; Emotions, r = 0.218; Musical Training, r = 0.356; Perceptual Abilities, r = 0.342, Singing 
Abilities, r = 0.305). The present study provided an opportunity to attempt to replicate these results.

Method.  Participants.  The participant group numbered 71 psychology undergraduates who participated for 
course credit. Ages ranged from 18 to 40 years (M = 22.73, SD = 4.61). Forty-five self-reported as female, 25 as 
male, and one declined to report a gender.

CA-BAT.  The item bank for the CA-BAT was constructed by extending the item bank of Study 2 to cover 100 
levels of beep-track accuracy (dr), with . ≤ <d0 5 1r . Point estimates were made for all item parameters accord-
ing to the results of Study 2. The resulting item bank numbered 10,000 items.

The CA-BAT was implemented within the Concerto platform48, an extension to the statistical software envi-
ronment R50 for computerised psychometric testing, and making use of the R package catR, which provides a set 
of algorithms for adaptive test administration35.

The first item administered was constrained to be the same for all participants (aside from stimulus order, 
which was allowed to vary); this item was chosen to correspond to an average ability level, with a difficulty of 
−0.01. After each response, the participant’s ability would be re-estimated using Bayes modal estimation with 
a Gaussian prior of mean 0 and standard deviation 1. The next item would then be randomly selected from the 
subset of items in the item bank being maximally close in difficulty to the current ability estimate (Urry’s crite-
rion35), with the constraint that the same musical track could not be heard twice. The test would terminate after 
25 items, at which point the ability estimate would be recomputed using weighted maximum-likelihood estima-
tion56, thereby removing the bias of the Bayesian prior.

Procedure.  The experiment comprised two waves termed Wave 1 (test session) and Wave 2 (re-test session). All 
individuals that participated in Wave 1 were invited to participate in Wave 2 between 7 and 14 days later. Nineteen 
individuals declined this opportunity, leaving 52 individuals to participate in both waves.

The Wave 1 session comprised the new CA-BAT, the Gold-MSI self-report inventory, and an unrelated tuning 
perception experiment. The entire session lasted approximately 25 minutes. The Wave 2 session only comprised 
the CA-BAT and lasted no more than 15 minutes.

Subsequent to online data collection, a simulation experiment was conducted to assess the consistency of the 
IRT model with real-world test performance. This simulation was conducted using the R package catR35, with 
a virtual participant group constructed by taking each ability estimate from Wave 1 of empirical data collection 
and creating 250 participants with that same ability. This virtual participant group took the test twice to allow the 
assessment of test-retest reliability.

Results.  Reliability.  IRT provides a mechanism for estimating the imprecision of its own ability estimates. 
Figure 4a presents this information, plotting the mean estimated standard error (SE) of ability estimates as a func-
tion of test length (shorter test lengths than 25 items were simulated by making a weighted maximum-likelihood 
ability estimate after the appropriate number of items). Mean SE started high but quickly decreased as test length 
increased, reaching 1.62 [1.54, 1.70] after 5 items, 0.88 [0.82, 0.95] after 15 items, and 0.67 [0.64, 0.70] after 25 
items (95% confidence intervals in square brackets).

Reliability was also estimated empirically by calculating test-retest correlations. Pearson correlations between 
CA-BAT scores from Waves 1 and 2 are plotted in Fig. 4b, for both observed and simulated participants. Observed 
test-retest reliability started low but increased gradually as test length increased, with r(50) = 0.09 [−0.19, 0.35] 
after 5 items, r(50) = 0.51 [0.27, 0.69] after 15 items, and r(50) = 0.67 [0.48, 0.80] after 25 items. Simulated 
test-retest reliabilities showed a similar pattern, staying well within the 95% confidence intervals of the observed 
reliabilities.
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Nomothetic span. Evidence for nomothetic span comes from Pearson correlations between scores on the 
CA-BAT and on the six Gold-MSI sub-scales (Fig. 4c). All reported correlations use CA-BAT scores from Wave 1. 
Consistent with ref.6, CA-BAT scores correlated positively with all Gold-MSI sub-scales, except in the case of 
Singing Abilities where the correlation was not statistically significant, even after 25 CA-BAT items (r(69) = 0.19, 
p = 0.11, 95% CI = [−0.04, 0.41]). Correlations with the other five sub-scales began below the margin of signifi-
cance (p 0 05> . ), but gradually rose as test length increased, with significant correlations for all five after about 8 
CA-BAT items. Soon after this point the correlations seem to have plateaued at around r = 0.4. As with ref.6, the 
highest correlation was with Musical Training (after 25 items r p(69) 0 41, 0 001, 95% CI [0 20, 0 59]= . < . = . . ).

The observed relationship between Musical Training and CA-BAT scores is plotted in Fig. 4d. Because partic-
ipant ability and item difficulty share a common metric and because difficulty is predicted from item features, it 
is possible to associate participant and item characteristics directly. In this respect, Fig. 4d shows that people with 
low musical training scores (<10) are best matched to a beep-track offset of about 15%, while participants with 
high musical training scores (>45) are best matched to a smaller offset of about 10%. Figure 4d also suggests that 
CA-BAT abilities are more variable for lower levels of musical training than for higher levels of musical training.
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Figure 4. Study 3 (laboratory testing) results. The test displays good reliability (mean SE and test-retest 
reliability) and nomothetic span (correlations with related measures). (a) Mean standard error (SE) of CA-BAT 
ability estimates plotted as a function of test length. The shaded ribbon marks the 95% confidence region. (b) 
Test-retest reliability (Pearson correlation) plotted as a function of test length. The shaded ribbons mark 95% 
confidence regions. (c) Correlations between CA-BAT ability estimates (Wave 1) and sub-scales of the Gold-
MSI self-report questionnaire, plotted as a function of test length. The dotted line marks the threshold for two-
tailed statistical significance at a level of p 0 05< . . (d) CA-BAT performance (Wave 1, after 25 items) as a 
function of Musical Training scores from the Gold-MSI self-report questionnaire. A least-squares regression 
line is plotted with the standard error of its predictions shaded in grey. Musical Training raw scores are mapped 
to population percentiles reported in the original Gold-MSI study6. CA-BAT performance is represented both 
as ability estimates and as corresponding beep-track offsets for ‘ahead-of-the-beat’ items.
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Discussion.  These results provide evidence that the 25-item CA-BAT performs well as a musical ability test: it 
displays acceptable levels of reliability, and the fact that CA-BAT scores positively correlate with other measures 
of musical sophistication is evidence for the test’s construct validity. Moreover, the consistency of observed and 
simulated reliability estimates supports the validity of the underlying psychometric model.

It is difficult to make a definite statement about the reliability of the test compared to previous BAT implemen-
tations, since most studies presenting BAT variants have not tested reliability. One exception is ref.6, which reports 
a test-retest reliability of 0.63 with 34 participants for the Gold-MSI Beat Perception Test. The 25-item CA-BAT 
performs slightly better (r = 0.67), but this comparison means little since the two studies used different sample 
groups and different reliability measures. Nonetheless, the evidence suggests that the 25-item CA-BAT achieves 
state-of-the-art performance. Further improvements to reliability might be achieved by increasing test length 
past 25 items. However, this would involve repeating musical tracks within participants, which might introduce 
unwanted familiarity effects.

Figure 4b provides useful information concerning the potential for shortening the CA-BAT. There is no clear 
plateau in reliability within the range of test lengths examined, meaning that there is no obvious length to which 
the test might be shortened. Instead, there seems to be a continuous trade-off between test length and reliability. 
The most practical test length is likely to vary between use cases; Fig. 4b provides a way for that decision to be 
made on a principled basis.

The low correlation between CA-BAT scores and singing abilities is theoretically plausible: singing is a perfor-
mance mode where note onsets are relatively poorly defined and precise temporal synchronisation is often unim-
portant. However, it should be noted that a significant correlation (r = 0.305) was found between Beat Perception 
and Singing Abilities scores in ref.6. Perhaps the lack of correlation observed in the present study is an artefact of 
the limited sample size.

Study 4: Online validation of the CA-BAT.  Increasing numbers of psychological studies use online par-
ticipant testing for its time efficiency, scalability, and low cost. The primary aim of Study 4 was to investigate the 
suitability of the CA-BAT for such testing scenarios. A secondary aim of the study was to investigate further the 
nomothetic span of the CA-BAT, comparing CA-BAT scores with scores from two other listening ability tests: a 
melodic discrimination test and a temporal order discrimination test.

Melodic discrimination (the ability to discriminate between similar versions of a melody) is a core musical 
skill that is often assessed in musical aptitude and ability tests21,57. Moderate correlations between CA-BAT scores 
and melodic discrimination scores were predicted, consistent with ref.6.

Temporal order discrimination tests are low-level psychoacoustic tests that assess the participant’s ability to 
discriminate the temporal order of two auditory sounds played in quick succession. This paradigm is relevant to 
the CA-BAT in that it replicates a key part of the BAT paradigm (comparing the relative temporal position of two 
almost-synchronised auditory objects) while removing the cognitive task of auditory entrainment. Investigating 
CA-BAT correlations with temporal order discrimination scores therefore provides a way of investigating which 
of these cognitive processes drives individual differences in the CA-BAT. A high correlation in test scores would 
imply that differences in CA-BAT scores are driven by differences in order-comparison ability, whereas a low 
correlation would imply that CA-BAT scores are driven by entrainment ability.

Method.  Participants.  A sample group of 185 participants was recruited by the market research company 
‘Qualtrics’ so as to be broadly representative of the UK in terms of age (M = 43.1, SD = 13.9), gender (93 female, 
92 male), occupation, and geographic location. No participants reported hearing problems.

CA-BAT.  The CA-BAT took an identical form to Study 3.

Melodic discrimination test.  This study used the adaptive melodic discrimination test presented in ref.21. This 
adaptive test uses a three-alternative forced-choice (3-AFC) paradigm where the participant has to determine 
which of three melody versions differs from the others. A test length of 20 was used along with Bayes modal 
ability estimation.

Temporal order discrimination test.  The temporal order discrimination test was modelled after the Temporal 
Order for Tones test of ref.7. This test uses a 3-AFC procedure, where the task is to discriminate the order of two 
equal-duration ‘target’ tones, one that is 550 Hz in frequency and one that is 710 Hz in frequency. These tones are 
played without a gap between them, and are preceded and followed by 625 Hz ‘leader’ and ‘trailer’ tones, each 
100 ms in duration. The original test is non-adaptive, but the present study used an adaptive version based on 
an IRT formulation of the adaptive maximum-likelihood procedure37, estimating item difficulty as a function of 
the duration of the target tones, using Bayes modal ability estimation, and selecting successive items using Urry’s 
criterion35. The test was implemented using R50, catR35, and Concerto48. An identical implementation was used 
by ref.21.

Procedure.  Participation took place in two waves termed Wave 1 (test session) and Wave 2 (re-test session). All 
individuals that participated in Wave 1 were invited to participate in Wave 2 approximately one week later, with 
42 participation slots available on a first-come first-served basis.

Wave 1 began with the adaptive melodic discrimination test, continued with the CA-BAT, and concluded with 
a questionnaire comprising the Musical Training sub-scale of the Gold-MSI as well as some demographic ques-
tions (age, gender, occupation). This wave lasted approximately 30 minutes in total.

Wave 2 took the same format except that the questionnaire was replaced with the temporal order discrimina-
tion test. The wave lasted about 20 minutes in total.
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This online experiment was replicated by a simulation experiment in the same manner as Study 3. As before, 
a virtual participant group was constructed by up-sampling ability estimates from Wave 1 by a factor of 250. Two 
25-item test sessions were then simulated for these virtual participants.

Results.  Reliability.  Figure 5a plots the mean estimated standard error (SE) of ability estimates as a function 
of test length, as estimated by the IRT model. The profile is largely similar to that observed in Study 3 (Fig. 4a), but 
with SE values increased by about 20–25%. Mean SE started high but quickly decreased as test length increased, 
reaching 1.89 [1.79, 1.99] after 5 items, 1.08 [1.01, 1.15] after 15 items, and 0.87 [0.81, 0.93] after 25 items (95% 
confidence intervals in square brackets).

Test-retest reliability, as assessed by Pearson correlations between CA-BAT scores in the first and second 
waves, was considerably worse for Study 4 than for Study 3 (Fig. 5b). With the full test length of 25 items the 
correlation between both sets of CA-BAT scores is only marginally statistically significant (r(40) = 0.30, 95% 
CI = [0.00, 0.55], p = 0.052), and the correlations are generally worse for shorter test lengths. These observed reli-
ability coefficients are inconsistent with the simulated reliability coefficients, which predict performance broadly 
similar to Study 3.

Nomothetic span.  Nomothetic span was investigated by computing correlations between CA-BAT scores and 
scores on three other measures: the melodic discrimination test, the temporal order discrimination test, and the 
Musical Training sub-scale of the Gold-MSI. Since the CA-BAT was administered in both waves it was possible 

Figure 5.  Study 4 (online testing) results. Test reliability (mean SE and test-retest reliability) is surprisingly low. 
Nomothetic span (correlations with related measures) is unexpectedly sensitive to testing session. (a) Mean 
standard error (SE) of ability estimates as a function of test length. The shaded ribbon marks 95% confidence 
intervals. (b) Test-retest reliability (Pearson correlation) as a function of test length. The shaded ribbons 
mark 95% confidence regions. (c) Correlations between CA-BAT scores and other measures as a function 
of test length and split according to whether the measures were administered in the same or different waves. 
Significance values are two-tailed and not adjusted for multiple comparisons.
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to compute two correlations for each measure: one using CA-BAT scores from the same wave and one using 
CA-BAT scores from the other wave. The resulting correlations are plotted in Fig. 5c.

Contrary to Study 3, Fig. 5c exhibits no significant correlations between the Gold-MSI Musical Training 
sub-scale and the CA-BAT, irrespective of which wave the CA-BAT data come from. Correlations between 
CA-BAT scores and melodic discrimination scores reach broadly similar values at a test length of 25 (different 
waves, r(40) = 0.48, 95% CI = [0.20, 0.68], p = 0.001; same waves, r(183) = 0.45, 95% CI = [0.33, 0.56], p < 0.001). 
Correlations between CA-BAT scores and temporal order discrimination scores exhibit the largest dependency 
on testing session. When scores are compared across different testing sessions, the correlation only becomes sta-
tistically significant at a test length of 23 (r(40) = 0.31, 95% CI = [0.01, 0.56], p = 0.047, but when scores are com-
pared from the same testing session, the correlation becomes statistically significant after 8 items (r(40) = 0.38, 
95% CI = [0.09, 0.61], p = 0.013).

IRT parameter distributions.  Figure 6 compares ability distributions and item difficulty distributions for the two 
validation studies (Study 3 and Study 4, taking ability estimates from the first waves). It can be seen that, while the 
ability distribution in Study 3 matches the item difficulty distribution fairly well, the ability distribution in Study 4 
has a long tail of low abilities that are not matched by the item difficulty distribution. This means that the CA-BAT 
did not contain sufficiently easy items for these lowest-ability participants.

Discussion.  The purpose of this study was to investigate the performance of the CA-BAT when administered 
to online participants, as well as to investigate further the test’s nomothetic span. Similarly to Study 3, participants 
took the CA-BAT twice with approximately a week between testing sessions, as well as being administered two 
other listening tests: a melodic discrimination test and a temporal order discrimination test.

The results display a substantial decrease in test performance in the online setting. Though IRT-based reliabil-
ity metrics (standard error of ability estimates, simulated test-retest reliability) only predicted a minor decrease 
in reliability, the empirical test-retest reliability estimates are much lower than observed in the laboratory-based 
Study 3, with the correlation between ability estimates across the two test waves only marginally significant after 
25 items.

One contributor to this worsened performance may be lower participant abilities; in particular, several par-
ticipants received ability estimates so low that even the easiest items in the CA-BAT item bank were too difficult 
for them. The resulting mismatch between ability and item difficulty impairs test reliability. However, IRT-based 
reliability metrics automatically account for this effect, and so the discrepancy between IRT-based and empirical 
reliability metrics remains unexplained.

An alternative hypothesis is that the online participants did not take participation seriously enough, and 
therefore displayed erratic and unpredictable behaviour when taking the CA-BAT. This hypothesis seems unlikely, 
however, when looking at the correlations between CA-BAT scores and other measures. In particular, correla-
tions with melodic discrimination scores are statistically significant for both waves, and correlations with tem-
poral order discrimination scores are significant when the two tests were administered in the same wave. It is 
strange that CA-BAT scores in the second wave should be better predicted by melodic discrimination scores in 
the first wave than by CA-BAT scores in the first wave, and this is not explained by participants not taking the 
test seriously.

0510152025

Item difficulty

Study 3 abilities

Study 4 abilities

−4 −2 0 2

Beep−track offset (%)

Ability / item difficulty

Figure 6.  Person ability distributions for Studies 3 and 4, with the distribution of difficulties in the CA-BAT 
item bank plotted for comparison. Item difficulties are mapped to corresponding beep-track offsets for ‘ahead-
of-the-beat’ items.



www.nature.com/scientificreports/

1 6SCientifiC REPOrTS |  (2018) 8:12395  | DOI:10.1038/s41598-018-30318-8

A more plausible explanation for these results is that listening conditions have a particularly strong effect 
on CA-BAT performance, and while listening conditions tended to remain constant for an online participant 
within testing sessions, they tended to change between testing sessions. For example, in one session a participant 
might have worn headphones and sat in a quiet room; in the other session, the participant might have ignored 
the instructions to use headphones and sat in a public place. The CA-BAT and the temporal order discrimination 
test seem particularly likely to be vulnerable to changes in listening conditions, because they both rely on easily 
disrupted attention to fine perceptual detail. In contrast, the melodic discrimination test is likely to be less vul-
nerable to changes in listening conditions, because task difficulty stems less from perceptual features and more 
from memory-related features21. This would explain why correlations between CA-BAT scores and melodic dis-
crimination scores were the most consistent of the correlations observed, and why CA-BAT and temporal order 
discrimination scores were highly correlated in the same wave but less correlated in different waves.

The implied lesson is that controlled experimental conditions are particularly important for the CA-BAT, and 
this constraint is easy to violate with an online study. Future work is required to see what measures could be used 
to improve the reliability of online CA-BAT administration. For example, it would be useful to guarantee that all 
participants use headphones, using techniques such as those suggested in ref.58.

General Discussion
This research set out to apply modern psychometric techniques–IRT, adaptive testing, and automatic item gen-
eration–to the construction of an adaptive test of beat perception ability, the CA-BAT. The purpose of deploying 
these techniques was to gain a better understanding of the psychometric properties of the test paradigm, and 
thereby to produce improvements in test validity, reliability, and efficiency.

The development of this test involved a calibration phase and a validation phase. The calibration phase pro-
vided an opportunity to explore how structural features of CA-BAT items predict item difficulty. The results 
indicated that item difficulty could largely be predicted by the degree of beep-track displacement, with larger 
displacements yielding lower difficulty. Further improvements in predictive performance were achieved by taking 
into account the direction of beep-track displacement (behind-the-beat displacements are easier to detect than 
ahead-of-the-beat displacements) and individual differences between musical tracks. The effects of beep-track 
accuracy and musical track are consistent with the proposed item-processing model for the CA-BAT, and there-
fore contribute to the test’s construct representation and construct validity. The unexpected effect of beep-track 
displacement direction, meanwhile, suggests that there are aspects of the CA-BAT paradigm that are not yet fully 
understood. Future work should seek to reproduce and explore this effect.

The validation phase explored the CA-BAT’s performance in both laboratory and online testing scenarios. 
The results indicated that the full-length test performs well in the laboratory setting, achieving state-of-the-art 
test-retest reliability. In this context CA-BAT performance proved to be a significant predictor of several aspects 
of self-reported musical sophistication. Reliability and validity was considerably worse in the online setting. The 
results suggested that the CA-BAT is particularly affected by test-taking conditions, over which experimenters 
have little control in online contexts. This suggests that the CA-BAT is currently only suitable for laboratory use, 
unless ways are found to enforce greater homogeneity in online test-taking conditions.

Adaptive testing can theoretically provide substantial improvements in test efficiency, allowing test lengths to 
be drastically shortened without compromising test efficiency19,32. Such drastic effects seem not to have occurred 
in this study; the efficiency of the CA-BAT seems broadly similar to previous BAT implementations (e.g. com-
paring test-retest reliability with that reported in ref.6). This is likely to be due to inaccuracies in item difficulty 
estimates, which in turn cause inaccuracies in ability estimates. Achieving accurate item difficulty estimates is 
particularly difficult under automatic item generation, as item parameters are not calibrated individually but 
instead are estimated from a statistical model. The present study provides a useful starting point for such a statis-
tical model, but clearly there is much room for improvement.

One way of improving the CA-BAT’s statistical model would be to explore different non-linear functions map-
ping from beep-track offset to item difficulty. The current mapping seems to work fairly well for the range of off-
sets employed in the present study, but provides unrealistic outcomes for very small offsets (as offset approaches 
zero, item difficulty should approach infinity, whereas the CA-BAT never predicts a difficulty greater than 2). A 
promising possibility would be to construct an improved mapping using non-linear item response modelling.

A second way of improving the CA-BAT’s statistical model would be to model musical track as a fixed effect, 
and thereby let musical track influence item difficulty estimates. Unfortunately in the present study we were una-
ble to achieve model convergence with this approach. However, there are various options open for future work, 
such as collecting more response data and applying penalised regression techniques.

The lack of explicit manipulation of musical excerpts has implications for the construct validity of the CA-BAT. 
As item difficulty increases and the beep track moves closer to the true beat locations, the test will demand greater 
and greater precision in the listener’s beat inferences, but eventually it will also place demands on the precision 
of beep-track perception. At this point the test will become less of a beat perception test and more of a psycho-
acoustic test, comparable to the order discrimination test described previously. This problem could be addressed 
by incorporating musical excerpts where the beat is more ambiguous, ensuring that precision of beat inference 
remains the limiting factor in task performance. This possibility deserves to be explored in future work.

The adaptive testing algorithms used in the current implementation of the CA-BAT do not take into account 
imprecision in item parameter estimates. This is particularly problematic in the context of automatic item gener-
ation, since automatically generated parameter estimates are typically less reliable than traditional IRT parameter 
estimates. This functionality deserves to be incorporated into standard adaptive testing software packages such 
as catR35.

CA-BAT performance involves several cognitive processes, including perceptual encoding, beat induction, 
and working memory. Similar to previous work using the BAT paradigm28, we suggest that individual differences 
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in CA-BAT ability primarily reflect individual differences in beat perception ability, at least in normal adult popu-
lations. However, it is important to verify this assumption in future work. It is also worth considering whether this 
assumption would hold for non-adult populations15 or populations with clinical disorders27. It seems likely that 
the influence of subsidiary abilities on CA-BAT performance would increase for populations with low levels of 
those abilities, as these abilities become limiting factors in task performance. In particular, the 2-AFC task intro-
duces a reliance on working memory that could be problematic for memory-impaired populations. Generalising 
the CA-BAT to such populations must be done carefully, because the influence of these subsidiary abilities (e.g. 
working memory) would impact both construct validity (from CA-BAT scores measuring more than just beat 
perception) and test reliability (from subsidiary abilities breaking assumptions of the item response model).

Despite these limitations, the current CA-BAT should prove to be a useful tool for future research. Unlike 
pre-existing beat perception tests, the CA-BAT comes with a detailed psychometric model that can be used to 
substantiate the test’s construct validity. In the context of laboratory testing the CA-BAT achieves good reliabil-
ity. Moreover, the modern psychometric techniques used in the CA-BAT allow for significant flexibility in test 
administration. Depending on time constraints and statistical power requirements, the researcher can refer to 
Fig. 4b and choose a balance between reliability and test length that best suits their current requirements. The 
IRT model can then generate precise estimates of measurement error which can then be explicitly accounted for 
in subsequent analyses.

The CA-BAT joins several other beat-processing measures in the literature, including the BAT28, A-BAT29, 
H-BAT30, and BAASTA31. These instruments have different advantages and disadvantages: some only test percep-
tion (CA-BAT, A-BAT), whereas some test perception and production (BAT, H-BAT, BAASTA); some are com-
prehensive but time-consuming (H-BAT, BAASTA), whereas others are faster but only measure limited aspects 
of beat processing (BAT, A-BAT, CA-BAT). Use of psychometric techniques varies between instruments, such as 
the use of IRT (CA-BAT) and adaptive testing (CA-BAT, A-BAT, H-BAT, BAASTA). Some instruments have also 
received more extensive validation than others. The CA-BAT contributes in providing a fast and well-validated 
test of an important aspect of beat perception, but it does not replace the H-BAT or BAASTA in assessing wider 
aspects of beat processing (e.g. duration discrimination, anisochrony detection, tapping). A promising route for 
future research is to extend our psychometric methods to other beat-processing tasks, such as those used in the 
H-BAT and BAASTA.
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