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ABSTRACT

We introduce a new model for extracting end points of
music structure segments, such as intro, verse, chorus,
break and so forth, from recorded music. Our meth-
ods are applied to the problem of grouping audio fea-
tures into continuous structural segments with start and
end times corresponding as closely as possible to a ground
truth of independent human structure judgements. Our
work extends previous work on automatic summarization
and structure extraction by providing a model for seg-
ment end-points posed in a Bayesian framework. Meth-
ods to infer parameters to the model using Expectation
Maximization and Maximum Likelihood methods are dis-
cussed. The model identifies all the segments in a song,
not just the chorus or longest segment. We discuss the
theory and implementation of the model and evaluate the
model in an automatic structure segmentation experiment
against a ground truth of human judgements. Our results
shows a segment boundary intersection rate break-even
point of approximately 80%.

Keywords: structure, segmentation, audio, music,
Bayes

1 INTRODUCTION

Methods for automatically segmenting music recordings
into structural segments, such as verse and chorus, have
immediate applications in music summarization, song
identification, feature segmentation, feature compression
and content-based music query systems. In order to eval-
uate an automatically-generated segmentation, however,
we must develop an understanding of both the act of seg-
mentation and the use to which a segmentation will be put.

Studies into automatic music structure extraction as-
sume at least one self-similar region within a work. The
definition of self-similarity varies significantly between
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reported methods, but the concept of a homogeneous re-
gion (in some feature space) defined by start and end times
is germane to all of the methods that we summarize below.

One factor affecting automatic structure extraction is
that the choices of audio features and similarity measure
over the space defined by those features crucially deter-
mine the attributes of self-similarity, and therefore, the
definition of a segment; audio features are generally cho-
sen for specific applications based on their selectivity of
well-understood musical attributes such as timbre and har-
mony, for example. A second factor is the desired dis-
tribution of segment lengths. There may be many valid
segmentations of a piece of music, distinguished by their
different time scales, and possibly also their time point of
origin.

Low-level audio feature representations are short du-
ration samples of continuous processes. The integration of
samples to form variable-length homogeneous segments
is a primary goal of structure extraction. However, the
time scale of the segmentation, or the number of segments
found, will be sensitive to the scale of the integration over
these low-level features. A common problem of many pre-
viously proposed systems is a high degree of fragmenta-
tion in the discovered segments.

In this paper we discuss previous approaches to audio
segmentation, and present a probabilistic model for struc-
ture segmentation that attempts to address the problem of
segment fragmentation. The model admits accurate es-
timation of the end-points of all structure segments, not
just the ‘key’ segment or chorus. We evaluate our model
against a ground truth of all structure segments within a set
of fourteen popular song recordings, and discuss planned
extensions to our system.

1.1 Segmentation by Timbre

One way of making structure out of music is to segment
based on “the way it sounds” (Aucouturier et al., 2005);
that is: to consider the mixture of instrument timbres,
chords and pitches that are all encoded in the power spec-
trum, but in a decorrelated representation such as Mel Fre-
quency Cepstral Coefficients (MFCCs). Features of this
form correspond to strong selectivity of wide-band mod-
ulation in the source power spectrum. This representation
is widely used in speech recognition systems because of
the ability to represent formants by a linear combination



of cosine basis functions over the log power spectrum.
Foote (1999) proposed the dissimilarity matrix or S-

matrix, containing a measure of dissimilarity for all pairs
of feature vectors, for music structure analysis using
MFCC features. With a feature sample rate of 100Hz
this meant that a 3-minute song produced an dissimilar-
ity matrix with dimensions 18000×18000. All of the pro-
posed operations in sequence based methods utilize this
extremely large, dense data object, related to the recur-
rence plot discussed in Eckmann et al. (1987); for in-
stance, Foote proposed that the chorus should be labelled
as the longest self-similar segment, using cosine distance
measures and MFCC features.

Logan and Chu (2000) proposed a method for sum-
marization, also using MFCCs, employing both Hidden-
Markov Models (HMMs) and threshold-based cluster-
ing methods, grouping features into key song segments.
Peeters et al. (2002) propose a multi-pass clustering ap-
proach that uses both k-means and HMM-based clustering
using multi-scale MFCC features. However, these studies
provide no measure of performance for all segments in a
song.

1.2 Harmony

The timbral approach has the potential to be implicitly in-
variant to harmonic shifts, though this depends on the de-
gree of selectivity for purely timbral content. Recent stud-
ies, however, have posed the structure extraction problem
in terms of features based on harmonic similarity. Wake-
field (1999) proposed chromagram features that represent
the distribution of power spectrum energies among the
twelve equal-temperament pitch classes based on A440,
providing invariance to timbral changes in repeated seg-
ments.

One desirable property of harmonic features is the
possibility of implementing explicit transpositional invari-
ance. Goto (2003) describes a system called RefraiD that
locates repeated structure segments independent of trans-
position. The RefraiD system is able to track a chorus, for
example, even if it modulates up a sequence of semitone
key changes. In this study, the problem of chorus extrac-
tion was divided into four stages: acoustic features and
similarity measure; repetition judgement criterion; esti-
mating both ends of repeated sections; and detecting mod-
ulated repetition. This was the first work to explore ex-
tracting structure segments that were not only chorus but
that corresponded to verse and intro as well. The results
for chorus detection were reported as accurate for 80 of
100 songs. However, the quality of the segmentation for
non-chorus segments was not evaluated in that study.

Dannenberg and Hu (2002) also describe a system that
used agglomerative clustering with chroma-based features
for music structure analysis of a small set of Jazz and Clas-
sical pieces. They do not report an evaluation of the meth-
ods over a corpus.

1.3 Rhythm and Pitch

Symbolic approaches to structure analysis attempt to iden-
tify the repeated thematic material in string-based mu-
sic representations. Whilst these methods show much

promise in identifying structure from score information,
they are not well adapted for use in audio structure anal-
ysis, largely due to the addition of significant uncertainty
in audio representations.

There has recently been some work on combined au-
dio and symbolic representations, attempting to unify the
different views of similarity. Maddage et al. (2004) de-
scribe a system in which a partial transcription is used to
make decisions about structure, integrating beat tracking,
rhythm extraction, chord detection and melodic similar-
ity in a heuristic framework for detecting all segments in
a song. They also propose using octave-scale rather than
Mel-frequency scale cepstral coefficients as pitch-oriented
representation. The authors report 100% accuracy for de-
tecting instrumental sections in songs, and report results
for detection and labelling of verse, chorus, bridge, in-
tro and outro sections. Similarly, Lu et al. (2004) de-
scribe an HMM-based approach to segmentation that used
a 1

12
th-octave constant-Q filterbank for pitch selectivity in

addition to MFCC features. They report improved perfor-
mance in segmentation for the constant-Q transform when
used with MFCC over use of MFCC alone. Both of these
methods used an S-matrix approach with an exhaustive
search to find the best fit segment boundaries to a given
objective function.

2 SEGMENTATION METHODS

2.1 Overview

To perform a segmentation, by which we mean assigning
a label to sections of a piece, we start by preprocessing the
audio into a Markov state sequence modelling the short-
time dynamics (section 2.2. These state labels are then
clustered into segments by various methods described in
sections 2.3 and 2.4.

2.2 Audio preprocessing

The tool-chain we work with takes as its input mono au-
dio in WAVE format (IBM, 1991) and performs various
‘preprocessing’ stages1 to convert this into a suitable form
for the segmenter. The first stage is to perform a short-
time (windowed) Fourier Transform to obtain a represen-
tation of the frequency spectrum at given times from the
beginning of the track. The resulting linear-frequency
power spectrum is collected into logarithmically-spaced
bins, and expressed in decibels, in a manner similar to the
first stage in the construction of a log-frequency cepstrum,
such as those often used in speech analysis (Rabiner and
Juang, 1993).

Rather than performing a Fourier transform to obtain
the first few cepstral coefficients, we use a data-driven al-
gorithm to find the best way to reduce the dimensionality
of the data: a principal components analysis (PCA) iden-
tifies the main directions of variation in the log-frequency
log-spectra and hence the best (in a least-squares sense)

1These preprocessing stages correspond closely to descrip-
tors AudioSpectrumEnvelopeD, AudioSpectrum-
ProjectionD, SoundModelDS and SoundModel-
StatePathD, defined in the MPEG-7 standard (Casey, 2001;
ISO, 2002).



low-dimensional approximation to the data. The spectra
are projected into this N -dimensional principal subspace,
and used to train an M -state Hidden Markov Model.
The Viterbi algorithm yields the most probable state path
given the data and the trained HMM, and from this state
sequence, sequence of short-term state occupancy his-
tograms (i.e. with M bins, one for each state) are con-
structed.

2.3 Pairwise clustering

Results from the above audio processing steps inhabit
an M -dimensional space which is not self-evidently Eu-
clidean; clustering methods based on Euclidean feature
values are not trivially applicable. One way to proceed
is to define empirical dissimilarity measures between ob-
served windowed state histograms with reasonable prop-
erties: histograms with the same distribution should be
maximally similar, while those with no overlap should be
maximally dissimilar.

One such is the cosine dissimilarity measure, ex-
pressed for l2-normalized histograms x and x

′ as
dc(x,x′) = cos−1 (x · x′); this dissimilarity measure nat-
urally interprets the feature vector components as of equal
importance with no data-driven preferred orientation.

Another distance measure is a symmetrization of the
Kullback-Leibler divergence, based on the interpretation
of the histograms as samples from a probability distri-
bution. With l1-normalized histograms x, x

′, we have
dkl(x,x′) =

∑M

i=1

[

xi log
(

xiq
−1

i

)

+ x′
i log

(

x′
iq

−1

i

)]

where qi = 1

2
(xi + x′

i). This can be interpreted as the
sum of the KL divergences from either histogram to their
mutual average.

These pairwise distances are then used in assigning
frames to clusters; we make iterative probabilistic assign-
ments of frames to clusters to minimize a cost function.
We refer the reader to Hofmann and Buhmann (1997) for
details, mentioning only that in order to perform the opti-
misation we work with the mean-field approximation for
interactions between assignments, and use the Expecta-
tion Maximization algorithm (Dempster et al., 1977) to
anneal towards a minimum in the cost function.

2.4 Histogram clustering

Since the data we wish to cluster can be interpreted as
observation counts over some discrete feature space, we
may, following Puzicha et al. (1999), consider each clus-
ter to have a probability distribution over the feature space.
The observed histograms are then modelled as the re-
sult of drawing a sample from one of these distributions.
This leads quite naturally to a probabilistic latent variable
model with a well defined likelihood function which we
can optimize with respect to its parameters.

The discrete distributions associated with the K un-
derlying clusters are parameterised by an M × K matrix
A, such that Ajk is the probability of observing the jth
HMM state in while in the regime modelled by the kth
cluster. If C ∈ (1..K)L is the sequence of cluster assig-
ments for a given sequence of histograms X ∈ N

M×L,

then the overall log-likelihood of the model reduces to

Hh =

L
∑

i=1

M
∑

j=1

K
∑

k=1

δ(k, Ci)Xji log
Xji

Ajk

(1)

This overall system can be compared with a form of k-
means clustering, though with a strongly non-Euclidean
distance measure between observations: the maximum a
posteriori estimate for P (y|c), which generalizes the cen-
troid condition of k-means clustering, works in the space
of feature distributions and not feature values.

This cost function is optimised using a form of deter-
ministic annealing as described by Puzicha et al. (1999),
which yield the maximum a posteriori estimate for the la-
tent variables C and the per-cluster histograms in A.

3 EXPERIMENTS

We performed segmentations using the above-described
methods on 14 popular music songs from Sony’s cata-
logue, which had been down-sampled to 11kHz mono be-
fore being distributed to the MPEG-7 working group. The
FFT frame length was set at 600ms (with a hop size of
200ms) giving an FFT window of 8192 samples. The dis-
crete Fourier transforms were then clustered into bins with
a resolution of 1

8
-octave, and the resulting data represented

in terms of its envelope and 20 principal components.
We further fixed the window size for state histograms

at 15 states, giving a temporal support of 3s to each his-
togram (though the histogram window is in fact applied to
all possible positions, preserving the 200ms resolution).
The segmentations were performed using HMMs with 10,
20, 40 and 80 states, and into a numbers between 2 and 10
of segment types.

A sample segmentation, along with some of the inter-
mediate results, is presented in figure 1.

4 EVALUATION

In order to evaluate the segmentations, they were com-
pared against a ground truth consisting of annotations
made by an expert listener, giving, for each ground truth
segment, a start time in seconds, an end time in seconds
and a label.

To make the comparison it is necessary to map the
boundaries between clusters back to the original contin-
uous timeline, on which the ground truth annotations are
based. Bearing in mind that sequence of short-term his-
tograms is defined on a discrete timeline which is itself
derived via two framing operations from the original dis-
crete time signal, this is not a trivial operation. Depending
on how the labelled moments are interpreted, the bound-
ary between two segments (essentially the ‘gap’ between
two discrete time moments) could be mapped back to one
of several points or intervals on the continuous timeline.
We shall, for the time being, choose the simplest option
and map the gap between two discrete time moments back
to to middle of the overlap between their respective con-
tinuous time intervals, which, at 15 HMM states per his-
togram, are approximately 3s long.
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40 state HMM histograms

pairwise(kl) : regions(0.1171,0.219,0.8319), info(0.4751,1.037,1.538)

histclust(mf) : regions(0.1505,0.2322,0.8087), info(0.532,0.9951,1.58)
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Figure 1: A segmentation of a sample from the test set, comparing the results of dyadic clustering (using the symmetrized
Kullback-Leibler distance) and the histogram clustering algorithm. The ‘ground truth’ annotations are displayed as dif-
ferent shades of grey for the different segment labels.

Having found times for the detected segment bound-
aries, we adapted the segmentation evaluation measure of
Huang and Dom (1995). Considering the ground truth G
as a sequence of segments Si

G, and the measurement M

likewise segments S
j
M , we compute a directional Ham-

ming distance dGM by finding for each Si
M the segment

S
j
G with the maximum overlap, and then summing the dif-

ference,
dGM =

∑

Si
M

∑

Sk
G
6=S

j

G

|Si
M ∩ Sk

G| (2)

where | · | denotes the length of a segment. We normalise
dGM by the track length L to give a measure of the missed
boundaries m = dGM

L
. Similarly, we compute dMG, the

inverse directional Hamming distance, and a similar nor-
malised measure f = dMG

L
of the segment fragmenta-

tion. Note that these measures consider only the time
intervals occupied by each segment, not the relationship
between the ground truth labels are the automatically as-
signed clusters. Plots of f and m against the number of
clusters for our corpus are presented in figures 2 and 3.

An alternative information-theoretic measure was also
investigated in order to assess the how well the clusters
reflect the original segment labels. This involves ‘ren-
dering’ the ground-truth segmentation into a discrete time
sequence of numeric labels C0, using the same discrete
timebase as the sequence to be assessed, C1. The two se-

quences are then compared by computing the conditional
entropies H(C1|C0) and H(C0|C1) and the mutual in-
formation I(C0,C1) by considering the joint probability
distribution over labels.

The mutual information I(C0,C1) measures the in-
formation in the cluster assignments about the ground
truth segment label, and is maximal when each segment
type maps to one and only one cluster. In this case both
H(C1|C0) and H(C0|C1) will be zero. H(C0|C1) mea-
sures the amount of ground-truth information ‘missing’
from the cluster assignments, while H(C1|C0) measures
the amount of ‘spurious’ information in the cluster assign-
ments, e.g. when several clusters represent one segment
type. We plot the mutual information for our segmenta-
tion methods in figure 4.

5 CONCLUSIONS

Firstly, it is clear from the individual results (one of which
was presented in section 3) that the approach we have
taken in this paper, to a large extent independent of the
details of the particular segmentation algorithm, has met
with a degree of success. While no segmentation pro-
duced by our algorithm was perfect, some (represented
in the top right corner of figure 5, which is analogous to a
precision-recall graph for our evaluation metrics) are close
to the ideal of the expert’s segmentation.
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Figure 2: Rate of false detection f for all segmentation
methods aggregated over our corpus. The four curves
are for HMMs with 10,20,40 and 80 states; there is no
strongly statistically significant difference between them.
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Figure 3: Rate of true negative failure m for all segmenta-
tion methods aggregated over our corpus. As in figure 2,
the four curves display the data for HMMs with different
numbers of states.
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Figure 4: Mutual Information (in bits) between ground
truth and machine segmentation for our segmentation
methods.
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Figure 5: Values of 1− f , corresponding loosely to preci-
sion, plotted against values of 1 − m, analogous to recall,
over all songs and segmentation methods presented.



We should note that the expert’s segmentation should
not be taken as the Platonic truth: equally valid segmen-
tations, depending on the application, can be formed at
greatly different timescales; in addition, in real music
there is often a degree of ambiguity as to the exact point
of transition between one segment and the next: an ambi-
guity which was not reflected in the expert’s judgement,
as the human segmentation was declared as precise to the
frame level.

Having noted the caveat of the previous paragraph,
it is nevertheless clear that the rate of true negative fail-
ure decreases as the number of clusters increases, while
the false positive detection increases. This is simply ex-
plained by the fact that, beyond a certain point, increas-
ing the number of clusters will cause oversegmentation
and fragmentation: a segment which is semantically uni-
form will be divided between two closely-related states,
each given a different label, and the cluster assignment
will oscillate between the two. Requesting a greater num-
ber of clusters from the algorithm, then, has the effect of
decreasing the average length of a machine-labelled seg-
ment, which means that a machine-labelled boundary is
likely to be close to a boundary labelled by the expert,
but also that there are likely to be more machine labelled
boundaries far away from those of the expert.

We have found that excessive fragmentation of la-
belled sections can be avoided in part with a reasonable
choice of parameters. However, there is still scope for im-
provement, and two areas for investigation present them-
selves: firstly, fragmentation can be in large part solved
by cluster aggregation based on an information-theoretic
treatment with Occam’s razor. Secondly, and perhaps
more intruigingly, the careful choice of a prior on cluster
duration, tailored to the application, could permit relax-
ing the initial segmentation to a smoother, less fragmented
one.

In a bid to keep the parameter space tractable for this
investigation, we have not discussed variations in the au-
dio ‘preprocessing’ chain. In addition to the obvious pa-
rameters which could be varied, such as FFT hop size and
band resolution, the effects of considering a feature repre-
sentation such as a chromagram, in place of or in addition
to the cepstrum that we have used, warrant investigation.
We leave this for further work, anticipating that the per-
formance of the system will improve with the addition of
harmonically-selective features to the timbral cepstrum.
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