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            A number of authors have suggested that the computation of another person’s 

visual perspective occurs automatically. In the current work we examined whether 

perspective-taking is indeed automatic or more likely to be due to mechanisms 

associated with conscious control. Participants viewed everyday scenes in which a 

single human model looked towards a target object. Importantly, the model’s view of 

the object was either visible or occluded by a physical barrier (e.g., briefcase). Results 

showed that when observers were given five seconds to freely view the scenes, eye 

movements were faster to fixate the object when the model could see it compared to 

when it was occluded. By contrast, when observers were required to rapidly 

discriminate a target superimposed upon the same object no such visibility effect 

occurred. We also employed the barrier procedure together with the most recent method 

(i.e., the ambiguous number paradigm) to have been employed in assessing the 

perspective-taking theory. Results showed that the model’s gaze facilitated responses 

even when this agent could not see the critical stimuli. We argue that although humans 

do take into account the perspective of other people this does not occur automatically. 
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Introduction 
 
             We often gaze towards locations that are looked at by others, and this form of 

social attention is an essential part of human interaction and cognition in general. At 

the centre of this orienting mechanism is the need to know what others are looking at, 

a process that involves the computation of another person’s mental state, i.e., Theory 

of Mind (ToM). Although early work did consider ToM mechanisms in this so-called 

gaze following, later social attention workers tended to conceive gaze-induced 

attentional behaviour as a bottom-up process, rather than involving higher mechanisms 

(Driver, et al., 1999; Friesen & Kingstone, 1998; Ricciardelli, Bricolo, Aglioti, & 

Chelazzi, 2002). More recently, a number of authors have explicitly suggested that gaze 

following is influenced by what the gazer can see and that ToM forms an essential 

component of gaze cueing (e.g., Teufel, Fletcher, & Davis, 2010). Some authors have 

even argued that the computation of what others see occurs spontaneously (Samson, 

Apperly, Braithwaite, Andrews, & Scott, 2010). 

             Mechanisms associated with gaze following are typically investigated using 

some variant of a paradigm in which participants are asked to respond to targets that 

either appear in locations looked at by another agent (i.e., ‘valid’ trials), or they appear 

elsewhere (i.e., ‘invalid’ trials; Driver, et al., 1999; Friesen & Kingstone, 1998). 

Response times (RTs) are generally shorter on valid compared with invalid trials, an 

effect that has been observed for both manual responses (Frischen, Bayliss, & Tipper, 

2007) as well as saccadic eye movements (Kuhn & Benson, 2007; Ricciardelli et al., 

2002). To examine whether ToM processes modulate gaze following, Teufel, Alexis, 

Clayton, and Davis (2010) used a modified version of this task in which the gazing 

agent wore mirrored goggles. Participants were informed that the goggles were either 

transparent or opaque, thereby manipulating whether the agent could see the targets or 
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not. Results revealed a larger gaze cueing effect when participants were informed that 

the agent could see, thus supporting the view that gaze following is modulated by 

mental state attribution (see also Teufel et al., 2009).  

          Although the above results have been taken as evidence that gaze cueing can be 

modulated by mental states, some authors have argued that humans spontaneously 

compute the perspective of others. This view has come from results obtained in the ‘dot 

perspective’ paradigm in which participants are presented with an image of a room that 

contains an avatar who looks either towards the left or the right hand wall (e.g., Samson 

et al., 2010; Santiesteban, Catmur, Hopkins, Bird, & Heyes, 2014). A number of dots 

are pinned to either the left, the right, or both walls, and participants are asked to make 

judgments about the number of dots that are either visible to them or visible to the 

avatar. The most interesting finding from this procedure is that when making own-

perspective judgements, participants make slower responses if the number of dots seen 

by the avatar does not match that seen by the participant; so-called altercentric 

intrusion. Samson et al. argued that this occurs because the avatar’s perspective is 

computed, leading to the interference, and that this process is ‘spontaneous’. In a later 

article, Surtees and Apperly (2012) stated that the process is ‘automatic’. Samson et al. 

(2010) also suggested that the processes involved in this effect are similar to those 

involved in generating gaze following in the gaze cueing effect (described above).  

          A central challenge to the mental state theory of these gaze-induced effects has 

come from a series of experiments by Cole and colleagues (Cole, Atkinson, Le, & 

Smith, 2016; Cole, Smith, & Atkinson, 2015; Cole, Atkinson, D’Souza, & Smith, 2017; 

see also Langton, 2018) who adopted a procedure often employed in animal and infant 

ToM research (e.g., Moll & Tomasello, 2004). A physical barrier placed in the line of 

sight between the gazing agent and the target renders the target non-visible to the gazer. 
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For instance, Hare, Call, and Tomasello, (2001) showed that a subordinate chimpanzee 

knows whether a dominant chimpanzee can see a food item based on whether the 

latter’s view of the food is obscured by a barrier or not. Since a gazer cannot see a target 

under a barrier condition, Cole et al. reasoned that any gaze cueing-like effect observed 

when a target is not visible to the gazer cannot be due to the gazer’s visual perspective 

driving the gaze cueing effect. In a series of experiments, including one in which a 

physically present person acted as the cue, the gazing agent induced strong cueing 

effects. Importantly, Cole et al. found that these effects were not influenced by whether 

the target was visible or not, thus challenging the notion that gaze effects are modulated 

by mental states. In a follow-up study, Cole et al. (2016) found the same pattern of 

results when the barrier method was employed in the dot perspective task. That is, 

automatic perspective-taking-like data were observed when the avatar could not see any 

dots due to the location of a barrier.  

           The findings of Cole et al. are however in contrast to other recent work that has 

also employed the barrier method. Using a variant of the dot perspective task, Baker, 

Levin, and Saylor (2016) reported that dot judgements were found to be influenced by 

whether the avatar could see the targets or not (see also Morgan, Freeth, & Smith, 

2018). Furthermore, the challenge to the theory that ToM influences gaze following 

does not concur with the common observation that we, as social beings, often find 

ourselves following another person’s gaze precisely because of an explicit mental state 

attribution. Many of us have often said to ourselves “I wonder what she is looking at” 

before trying to determine what the viewer is observing. This is a clear example of 

visual perspective modulating gaze following. The real issue may therefore be whether 

the process in which ToM modulates gaze following can occur automatically.  
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           The primary aim of the present work was to examine the question of whether 

humans do indeed compute the perspective of other individuals. In four experiments 

we adopted the visibility manipulation described above in which a gazing agent either 

sees the target stimuli or does not. Furthermore, our experiments were particularly 

concerned with the theory that not only does such perspective computation occur but 

that it does so automatically. As we briefly review in the General Discussion, the notion 

of automaticity has been somewhat problematic, with different authors suggesting a 

number of (related) definitions. In the present work, we employed the common, and 

perhaps uncontroversial, view that a necessary condition of automaticity is that the 

process should be fast and goal-independent (see Moors & Houwer, 2006, for a review). 

Thus, if perspective-taking is automatic, one should expect it to occur when participants 

are engaged in a secondary task (i.e., detecting a target), and when several seconds of 

scene viewing are not required for the effect to occur. We also aimed to test the 

perspective-taking theory using the most recent paradigm that has been employed in 

support of the theory, that is, the ‘ambiguous number’ paradigm.         

            We examined the perspective-taking theory via the use of eye movement 

measurement. Eye movements provide a relatively non-intrusive online measure of 

attention which allows attentional mechanisms to be studied under more naturalistic 

conditions than many other visual cognition paradigms (Findlay & Gilchrist, 2003). 

Several studies have shown that eye movements are influenced by social cues and 

illustrate how people generally look at objects that are looked at by others (Fletcher-

Watson, Leekam, Benson, Frank, & Findlay, 2008; Kuhn, Tatler, & Cole, 2009; 

Leekam, Hunnisett, & Moore, 1998; Zwickel & Vo, 2010). Furthermore, the overall 

time spent inspecting an object, in addition to the time taken to fixate the object, 

provides a valuable index of attentional allocation. Although overt gaze following has 
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been central to our understanding of ToM in infants (Butler, Caron, & Brooks, 2000; 

Caron, Kiel, Dayton, & Butler, 2002), eye movement measures have not been typically 

used to investigate the automatic perspective-taking claim (see Ferguson, Apperly, & 

Cane, 2017).  

             In the present Experiment 1, participants freely viewed everyday scenes that 

contained a model who either looked towards an object/area of interest or looked 

elsewhere. Orthogonally to the gaze direction, we manipulated whether the model’s 

view of the object was occluded (by a natural barrier) or in full view. We predicted that 

participants would be faster to fixate the object when the person depicted in the scene 

looked towards it, i.e., a basic gaze cueing effect. Crucially, we predicted that this social 

facilitation will be modulated by whether the target object is visible or not to the model. 

Although some studies challenge the notion that mental state attributions influence gaze 

following (see above), this prediction was based on the fact that freely viewing a scene 

allows observers to employ higher mechanisms concerned with ToM. It is precisely 

under these circumstances that mental state attributions should influence gaze 

following. That is, when participants have time to consider what the model is looking 

at, i.e., non-automatically. In Experiment 2, participants viewed the same scenes but, 

rather than freely viewing the images, they performed a standard target discrimination 

task in which the targets were positioned at the object/area of interest employed in 

Experiment 1. In this scenario, we reasoned that participants’ attentional set would be 

concerned with rapidly finding a prespecified target, thus vastly reducing the likelihood 

that they would consider what the model is viewing. We also used the barrier technique 

(Experiment 3) to examine the automatic perspective-taking claim and employed the 

centrally located gaze cue method. In the final experiment (Experiment 4), we used the 
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‘ambiguous number’ paradigm, together with the visibility manipulation, as a relatively 

new test of the perspective-taking theory.  

Experiment 1 

Method 

          Participants. Sixty (47 female) Brunel University students took part. Age ranged 

from 18 to 44 years (M = 20; SD = 5). All participants reported normal or corrected to 

normal vision.  

         Stimuli and apparatus. Twelve different scenes were photographed. Each 

contained one model who either looked towards an object/area of interest (e.g., a cup 

of coffee) or away from it. Each scene also contained an object that was located such 

that it could act as a barrier between the model and object (see Figure 1). Thus, there  

 
 
Figure 1:  One of the image sets in which the model either looked towards the object of 
interest (i.e., drinks can) or away from it.  The object was either visible to the model or 
not depending on the position of a barrier.  
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was a total of 48 images generated, i.e., 12 scenes, each with a valid and invalid gaze 

cue, and each with the object of interest being visible or occluded. Eye movements were 

recorded with a head-mounted, video-based eye tracker (EyeLink 1000; SR Research 

Ltd., Osgoode, Ontario, Canada), using a sampling rate of 1000Hz. They were recorded 

monocularly and analyzed using Eyelink Data Viewer (SR-Research). The images were 

presented on a 21-in CRT monitor (1024 x 768; 85HZ) using Experiment Builder 

presentation software (SR-Research), with a viewing distance of approximately 57 cm. 

          Humans are known to be sensitive to precise directions of gaze (Symons, Lee, 

Cedrone, & Nishimura, 2004). We therefore tested whether any absence of a cueing 

effect in the barrier condition of Experiment 1 would be because the model in those 

scenes was not able to look directly in line with the target object (because the occluder 

blocked its view). In our test, 18 participants (not used in Experiment 1) were presented 

with the 12 images showing the agent looking towards the target object with the 

occluding barrier. They were asked “if the x [e.g., pizza box] was not there, what would 

that person be looking at”? Overall, participants correctly identified the target object on 

92.1% of trials. We then undertook a further variant of this test in which the occluding 

barrier was blacked out in all 12 scenes and 18 (new) participants were asked “What is 

that person looking at?” Correct identification rate was 94%. These two assessments of 

our stimuli thus demonstrate that there is little ambiguity concerning where the model 

was looking when the target objects were occluded by the barriers.  

            Design and procedure. We employed a 2 x 2 design with gaze (towards or away 

from object/area of interest) and visibility (visible, occluded) as within-participant 

factors. A Latin Square design was used (four lists) to ensure that each scene was only 

presented once. Each list contained 12 unique scenes, and an equal number of trials for 

each factor combination. The eye tracker was calibrated using a 9-point calibration and 
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validation procedure, after which participants were asked to freely view the scenes each 

for 5 seconds. That is, participants were simply asked to look at the pictures, without 

any further instructions. The images were presented in a random order. Each trial was 

preceded by a validation procedure consisting of a fixation point presented in the centre 

of the display.  

Results and discussion.  

         For each image we calculated two different eye movement measures: 1) Time to 

fixate the object (time elapsing between the onset of the display and the first fixation 

on the interest area), and 2) Proportion of time spent fixating it (i.e., ‘dwell time’).  

Time to Fixate  

         Figure 2 (left panel) shows mean RT for participants to fixate the object. 

Participants failed to fixate the target object on 28% of trials1 and 12 participants did 

not look at the object in at least one of the conditions, which meant that the sample for 

this analysis was 48, rather than 60 participants.  

       A 2 X 2 anova with gaze (towards, away) and visibility (visible, occluded) as 

within-participant factors revealed a significant main effect of gaze, F(1, 47) = 7.27, p 

= .01, η2 = .13, but no significant main effect of visibility, F(1, 47) = .01, p = .075, η2 

= .002. There was a significant gaze by visibility interaction, F(1, 47) = 5.2, p = .027, 

η2 = .10. Post-hoc analyses showed that when the object was visible to the model, 

participants were significantly faster to fixate it when the model gazed towards it, as 

opposed to when the model looked elsewhere, t(47) = 3.35, p = .002.  No such 

significant difference occurred when the object was not visible, t(47) = .37, p = .71.   

                                                        
1 Participants were significantly less likely to ever fixate the target object when the person looked 
away from it than when the person looked towards it, but this difference was only significant in 
the visible condition (Wilcoxon test , p = .005) and not in the non-visible condition (Wilcoxon 
test, p = .15. 
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Figure 2.  Time to fixate the object/area of interest (left panel) and time spent fixating 
object/area of interest (right panel) as a function of gaze direction and whether the 
object was visible or occluded. Standard error bars are also included. 
 

Proportion dwell time 

           Figure 2 (right panel) also shows the time spent looking at the object. A 2 X 2 

anova with gaze (towards, away) and visibility (visible, occluded) found a significant 

main effect of gaze, F(1, 59) = 23.3, p < .0001, η2 = .28, and a significant main effect 

of visibility, F(1, 59) = 9.58, p = .003, η2 = .14. There was also a significant gaze by 

visibility interaction, F(1, 59) = 4.53, p = .038, η2 = .071. Post-hoc analyses revealed 

that participants spent more time fixating the object when it was looked towards in both 

the visible condition, t(59) = 4.25, p = < .00005, and occluded condition, t(59) = 2.06, 

p = .044.  

One further analysis examined the time spent fixating the barrier. When it 

occluded the target, participants’ spent significantly more time fixating the barrier when 

the model looked towards the target (proportion M = .21, SD = .09) than when the 

model looked elsewhere (M = .16, SD = .078; t(59) = 3.20, p = .002). However, this 

difference was not significant when the barrier did not obstruct the model’s line of sight 

(looked at target, M = .12, SD = .061; looked elsewhere, M = .13, SD = .081; t(59) = 
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.51, p = .61). Indeed, a significant gaze by visibility interaction, (F(1, 59) = 7.66, p = 

.008, η2 = .12) illustrates that the model’s gaze only affected the amount of time 

participants spent fixating the barrier when it was directly in the line of sight.   

 The central findings from Experiment 1 is that participants were significantly 

faster to fixate the object/area of interest if the model gazed towards it. That is, a basic 

gaze cueing effect was observed. This however only occurred when the model could 

see the object, not when its view was occluded. These data thus suggest that mental 

state attribution can influence gaze following. As we set out in the Introduction, this 

effect is likely to be due to participants, under the condition of free viewing, having 

time to consider the mental state of the model, i.e., non-automatically. One does 

however have to consider the possibility that computation of the model’s perspective 

did occur automatically, in the first few milliseconds of scene presentation, but then 

participants consciously computed this perspective during the rest of the five seconds 

of free viewing. In Experiment 2 we explicitly examined whether the present 

perspective-taking effect is likely to be automatic. 

Experiments 2 

           Participants viewed the same scenes as were presented in Experiment 1. 

However, rather than freely viewing the images, they were instructed to search for a 

prespecified target (i.e., a horizontal or vertical line), typical of a standard visual search 

task. The targets were positioned either at a location that the model looked towards 

(superimposed on the objects identified in Experiment 1) or elsewhere. As with 

Experiment 1, the target could be seen by the model or was occluded. In order to 

examine the time course of any effect, we added a stimulus onset asynchrony (SOA) 

manipulation, in which the target either appeared simultaneously with the onset of the 

scene, or 300 ms later. Although Samson et al. (2010) reported a ‘perspective-taking’ 
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effect at 0 ms SOA (i.e., dots/targets and avatar appeared simultaneously) we included 

the additional SOA as a more liberal test of the automaticity claim. Any effect of the 

barrier at 300 ms SOA would at least provide evidence that the effect is relatively rapid. 

Given that participants are unlikely to have time to consciously consider the model’s 

mental state, we predicted that although gaze would modulate target discrimination this 

would not be influenced by whether the model could see the target or not. 

Method  

         Participants. Sixty (38 female) Essex University students took part. Age ranged 

from 18 to 46 years (M = 20; SD = 5). All participants reported normal or corrected to 

normal vision. 

         Stimuli and apparatus. We used the same scenes that were presented in 

Experiment 1, and superimposed a small green line (1.1° in length) that was either 

horizontal or vertical onto the target object. This line acted as the target that participants 

were required to respond to. Eye movements were monitored using an Eyelink 1000 

(SR-Research), and data analysis was conducted using Data Viewer.   

        Design and procedure. We employed a 2 x 2 x 2 design with gaze (towards target, 

away from target), visibility (visible, occluded), and SOA (0 ms, 300 ms) as within-

participant factors. The experiment began with 12 practice trials, in which all scenes 

were presented, followed by 192 experimental trials presented in a different random 

order for each of the participants. The eye tracker was calibrated using a 9-point 

calibration and validation procedure, and each trial started with a central fixation cross, 

which participants were asked to fixate before a trial was initiated. Participants were 

required to search for the target line and indicate as quickly as possible whether it was 

horizontal or vertical, by pressing the ‘z’ or ‘m’ key on a standard keyboard. Since the 

trial finished as soon as the target was detected, dwell time data are not meaningful and 
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thus were not further analysed. Manual reaction times and time to fixate the target were 

calculated as the difference between the onset of the target display and the time at which 

participants pressed the key (Manual), or they first fixated the target (time to fixate 

target).   

Results and discussion 

Manual RT.  

           RTs longer than 3000 ms were treated as outliers and excluded from the formal 

analysis (M = .13%). Figure 3 shows mean RTs for discriminating the target. An anova 

with gaze (away, towards target), visibility (visible, occluded) and SOA (0 ms, 300 ms) 

as within-participant factors found a significant main effect of gaze, F(1, 59) = 6.41, p 

= .014, η2 = .098, replicating a typical gaze cueing effect. There was a significant main 

effect of SOA, F(1, 59) = 601, p < .0001, η2 = .91, in that targets were detected more 

rapidly in the 300 ms SOA condition. There was no significant main effect of visibility, 

F(1, 59) = 1.37, p = .25, η2 = .023. Additionally, there was a significant SOA by 

visibility interaction, F(1, 59) = 5.46, p = .023, η2 = .085. Crucially there was no 

significant gaze by visibility interaction, F(1, 59) = 3.73, p = .058, η2 = .059, showing 

that the gaze cueing effect was independent of whether the target was visible or 

occluded. There was no significant SOA by gaze interaction, F(1, 59) = .036, p = .85, 

η2 = .001, and no significant SOA by visibility by gaze interaction, F(1, 59) = 3.39, p 

= .071, η2= .054. With respect to errors, there were no significant main effects nor 

interactions, all Fs < 1.40, all ps > .23. 
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Figure 3: Mean manual RTs for detecting the target (upper panel) and time to fixate the 
target (lower panel) as a function of gaze direction, target visibility, and SOA. Standard 
error bars are also included. 
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Time to fixate target 

         Figure 3 also shows mean RTs to fixate the target. An anova, using the same 

factors and levels described above, found a significant main effect of gaze, F(1, 59) = 

5.14, p = .027, η2 = .08, again highlighting a general cueing effect. There was a 

significant main effect of SOA, F(1, 59) = 2394, p < .0001, η2 = .98, but no significant 

main effect of visibility, F(1, 59) = .44, p = .51, η2 = .007. Crucially, there was no 

significant gaze by visibility interaction, F(1, 59) = .56, p = .46, η2 = .009, showing that 

the gaze cuing effect was not modulated by whether the targets was visible or occluded.  

There was no significant SOA by visibility interaction, F(1, 59) = 3.33, p = .073, η2 = 

.053, and no significant SOA by gaze interaction, F(1, 59) = 3.39, p = .071, η2 = .054. 

The three-way interaction was also not significant, F(1, 59) = .011, p = .92, η2 = 0.  

          Overall, these results show a basic gaze cueing effect; targets were discriminated 

more rapidly when looked towards by the model. However, unlike Experiment 1, this 

effect was not modulated according to whether the model could see the target or not. 

This does not therefore support the automatic perspective-taking theory. Furthermore, 

an increase in SOA also failed to induce an effect of the barriers.  

Experiment 3 

           Experiments 1 and 2 assessed the automatic perspective-taking theory using 

natural scenes and models that could appear in a variety of positions. Although 

automaticity is by most definitions efficient and rapid, it is possible that the attention 

system’s ‘race’ to find the (salient) target in Experiment 2 was completed before the 

system had a chance to process what the gazing agent, located peripherally, could see. 

In Experiment 3 therefore, we employed the more typical central gaze cue (together 

with the barrier technique and saccade measurement) in which the agent always appears 

at fixation and looks to either the left or right (see Figure 4). A target then appears that 
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is either congruent with the gaze direction or incongruent. Presenting the agent centrally 

on each trial, rather than peripherally, should therefore have assisted in the computation 

of what the agent was looking at. Finally, in a further attempt to assist in the 

computation of any perspective-taking effect, we lengthened the shortest SOA 

(between scene and target presentation) to 80 ms. Thus, we presented targets at either 

80 ms or 300 ms SOA. 

Method 

          Participants. Thirty two (22 female) Essex University students took part. Age 

ranged from 18 to 44 years (M = 20; SD = 5). All participants reported normal or 

corrected to normal vision.  

         Stimuli and apparatus. The gaze cue agent was a female photographed sitting at 

a table, flanked by two balloons (Figure 4), and holding a physical barrier that 

obstructed her sight of one of the balloons. During each trial the two balloons changed 

 

Figure 4. Example of an image presented in Experiment 3. 
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luminance. One of them became brighter and the other darker. The latter acted as the 

target. Target brightness and the fixation point were manipulated using Photoshop but 

all other aspects of the scene were present during photographing. Time to fixate the 

target was calculated as the time between the onset of the target display and the first 

fixation on the balloon.   

Design and procedure. We again employed a 2 x 2 x 2 design with gaze (towards target, 

away from target), visibility (visible, occluded), and SOA (80 ms, 300 ms) as within-

participant factors. The eye tracker was calibrated using a 9-point calibration and 

validation procedure, and each trial started with a central fixation point, which 

participants were asked to fixate. Each trial started with the agent looking straight ahead 

for 1500 ms after which she looked either towards the left or the right balloon. After 80 

or 300 ms of this gaze/head shift (i.e., the SOA manipulation), participants were 

required to fixate the darker balloon as quickly as possible. They were then required to 

refixate and told to initiate the next trial with a button press. They were explicitly 

instructed to ignore the agent, and were also told that the barrier obstructed the woman’s 

line of sight. Gaze and target location were independent of each other and presented 

randomly. The experiment was presented in two blocks (with presentation order counter 

balanced) and each block either had the barrier on the left or the right. Each block 

contained the same number of trials in which the actor’s gaze was directed towards the 

target balloon or not, and whether the target was visible or occluded. The experiment 

was preceded by six practice trials followed by 128 experimental trials. 
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Results and discussion.  

          Data analysis was carried out using DataViewer (SR-Research). Each balloon 

was defined as a region of interest and we calculated the time to fixate the target 

balloon. Since the trial finished as soon as the target was detected, dwell time data were 

not meaningful and thus not further analysed. Data from 10% of the trials were 

excluded either because participants did not successfully fixate the target, or the 

equipment did not effectively track saccades.  

Time to fixate target 

         Figure 5 shows mean RTs to fixate the target. An anova with gaze, visibility, and 

SOA as within-participant factors found a significant main effect of gaze, F(1, 31) = 

25.6, p < .001, η2 = .45, demonstrating the typical gaze cueing effect. There was also a 

significant main effect of SOA, F(1, 31) = 20.6, p < .001, η2 = .91, but no significant 

main effect of visibility, F(1, 31) = .98, p > .33, η2 = .03. There was no significant SOA 

by visibility interaction, F(1, 31) = .005, p > .94, η2= .00, and crucially no significant 

gaze by visibility interaction, F(1, 31) = .16, p > .69, η2 = .005, showing that the gaze 

cueing effect was independent of whether the target was visible or occluded. There was 

no significant SOA by gaze interaction, F(1, 31) = 1.8, p > .19, η2 = .05, and no 

significant SOA by visibility by gaze interaction, F(1, 31) = .3, p > .58, η2 = .01.  
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 Figure 5: RTs and standard errors from Experiment 3. 
 

         Overall, these data show the gazing agent shifted observers’ eyes in accordance 

with the direction in which she looked. Importantly however is the finding that this 

effect was not modulated according to whether the agent could see the target or not. As 

with the results of Experiment 2, this does not concur with the view that participants 

computed what the gazing agent could see.  

Experiment 4.  

        As we set out in the Introduction, the notion that humans compute the visual 

perspective of other individuals has come primarily from the findings observed with 

the dot perspective and classic gaze cuing paradigms. A further ‘perspective-taking’ 

paradigm has been reported in which participants are required to identify a single 

number presented in a display (e.g., Surtees, Samson, & Apperly, 2016; Zhao, 

Cusimano, & Malle, 2015). As with the dot perspective and gaze cueing methods, an 

agent is present who looks towards the number. Importantly, the number is ambiguous 

such that it is different dependent on where it is viewed from. For example, in Figure 6  
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Figure 6. The ambiguous number paradigm. When the number ‘69’ is located on the 
table it appears as ‘69’ irrespective of whether it is viewed from the reader’s position 
or from the far side of the table, i.e., the model’s. When by contrast the number ‘68’ is 
presented it is seen as ‘89’ from the model’s perspective. Additionally, the left panel 
shows an example of the ‘visible’ condition employed in the present Experiment 4 and 
the right panel shows the ‘non-visible’ condition in which the agent is not looking at 
the number.  
 

the number located on the table is the same from our position, as the viewer, and that 

of the agent sitting at the table. This is because ‘69’ appears the same when it is 

presented upside down. However, when the number ‘68’ is positioned on the table, it 

will appearas ‘89’ to the agent. Surtees, et al. (2016) found that RT to determine 

whether a number was ‘6’ or ‘9’ from the participant’s perspective was influenced by 

whether it appeared the same (‘consistent’) or different (‘inconsistent’) to an avatar. 

Specifically, RT was longer when the number was different to the avatar, e.g., ‘6’ to 

the participant and ‘9’ to the avatar. Although Surtees et al. did not argue that this 

particular effect was automatic, it does suggest that the avatar’s perspective was 

computed. A related procedure, also employing the ambiguous number method, was 

also reported by Zhao, et al. (2015). Rather than generating mean RTs from a large 

number of trials, Zhao et al. presented the kind of stimuli shown in Figure 6 and asked 

participants one question, “What number is on the table”. The authors found that 

approximately 40% of participants stated the number as seen from the avatar’s 
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perspective. As with Samson et al. (2010), Zhao et al. argued that participants had taken 

into consideration the avatar’s perspective.  

           In the present experiment, we employed the Surtees et al. variant of the 

ambiguous number paradigm (i.e., mean RT over a number of trials) together with a 

variant of the visibility manipulation in which the avatar was either viewing the number 

on the table or was looking elsewhere. As with the dot perspective and gaze cueing 

paradigms, if the results obtained in the ambiguous number procedure are due to the 

avatar’s perspective being assumed then no perspective-taking-like data should occur 

when the gazing agent is not looking at the number. 

Method:  

         Participants. 33 (22 female) Essex University students took part. Age ranged 

from 18 to 46 years (M = 20; SD = 5). All participants reported normal or corrected to 

normal vision. 

         Stimuli and apparatus. A female was photographed sitting at a table in which she 

either looked down at a number physically located on the table (Figure 6, left panel) or 

looked to her side, i.e., away from the table and number towards the right hand wall of 

the room (Figure 6, right panel). One of four numbers was presented (from the 

participant’s viewpoint); ‘68’, ‘69’, ‘88’, and ‘89’. Unlike in Experiments 1-3, eye 

movements were not recorded. 

        Design and procedure. We employed a 2 x 2 design with number consistency 

(consistent, non-consistent) and number visibility (visible, non-visible) as within-

participant factors. To reiterate these factors and levels, the consistent conditions were 

those in which the number would appear the same irrespective of whether viewed from 

one side of the table or the other (i.e., ‘88’ and ‘69’). This contrasted the inconsistent 

conditions in which the number would be different (i.e., ‘68’ and ‘89’). The visible 
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conditions were those in which the gazing agent looked directly at the number, and the 

non-visible conditions were those in which the agent looked away. Whereas the two 

visibility conditions were blocked, and presentation order counterbalanced, the 

consistency trials were presented randomly within block. Unlike our previous 

experiments, we blocked the visibility factor so that participants did not need to 

compute the agent’s visual perspective trial-by-trial. This, we reasoned, would assist 

any perspective-taking effect. 

          Although it was not a factor of interest, we also blocked the mapping between 

consistency and hand response to ensure that any consistency effect would not be due 

to speed of response by one hand or the other. Thus, on half the trials the consistent 

condition corresponded with a left response whilst on the other half the consistent 

condition corresponded with a right response. This necessarily meant that the 

inconsistent condition was also distributed evenly across right and left responses. These 

consideration meant that four blocks of trials were presented to each participant; 1)  

Visible; left hand response when ‘68’ appeared, right hand response when ‘69’ 

appeared, 2) Visible; left hand response when ‘88’ appeared, right hand response when 

‘89’ appeared, 3) Non-visible; left hand response when ‘68’ appeared, right hand 

response when ‘69’ appeared, 2) Non-visible; left hand response when ‘88’ appeared, 

right hand response when ‘89’ appeared. Each block presented 96 trials. Thus, there 

were 384 trials in total. 

       As with Surtees et al. (2016), we undertook a ‘pre-test’ experiment (N = 12) to 

ensure that RT to discriminate the two ‘consistent’ numbers that we would employ in 

the experiment proper (i.e., ‘69’, ‘88’) did not differ from the RT to discriminate the 

two ‘inconsistent’ numbers (i.e., ‘68’, ‘89’). This pre-test was identical to the 

experiment proper with the sole exception that on each trial only the number was 
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presented and its immediate (beige) background. This was achieved by taking the 

images used in Experiment 4 and cutting away, via Microsoft Paint, all the surround. 

Results showed no significant difference in mean RT (consistent = 453 ms, SD = 55; 

inconsistent = 455 ms, SD = 54; t(11) = .38, p > .71). 

Results and discussion 

         Figure 7 shows mean RTs for all four conditions. An anova with consistency and 

visibility as within-participant factors found a significant main effect of consistency 

F(1, 32) = 17.4, p < .001, η2 = .35, but no significant main effect of visibility, F(1, 32) 

= .54, p > .46, η2 = .01. There was no significant interaction, F(1, 32) = 1.1, p > .29, η2 

= .03. Using the same factors and levels as described for the RT data, no significant 

effects of errors was observed, all Fs < 1.2 and all ps > .27. 

 

Figure 7. Mean RTs from Experiment 4. Standard error bars are also included. 
 

         These results replicate previous findings observed with the ambiguous number 

paradigm; RTs were longer when the number to be discriminated was different for the 

participant and avatar (i.e., inconsistent) relative to when they were the same (i.e., 



 25 

consistent). This finding on its own supports the notion that the avatar’s perspective 

was computed. However, we have observed the same data pattern when the avatar was 

not looking at the target. If the avatar’s perspective was indeed being taken no such 

effect should have occurred. This replicates previous findings showing that perspective-

taking-like data can occur even when the gazing agent is not viewing the critical stimuli 

(e.g., Cole et al., 2015). Overall, the results from the present experiment do not support 

the perspective-taking theory.  

General Discussion 
 
          The central aim of the present work was to evaluate the claim that a person’s 

visual perspective is computed and that this occurs automatically. Following Cole et al. 

(2015), we manipulated what a gazing agent could see with the use of a physical barrier 

that sometimes occurred between a gazing agent and an object/area of interest. If the 

agent’s visual perspective drives gaze-induced behaviour, it follows that no such gaze 

behaviour should occur when the agent cannot see the critical stimulus. Our results 

illustrate that when participants freely viewed images (Experiment 1), the model’s 

gaze/head orientation influenced where people look. In line with previous research 

(Fletcher-Watson et al., 2008; Freebody & Kuhn, 2016; Zwickel & Vo, 2010) 

participants were significantly faster and spent significantly more time fixating objects 

that were looked towards by the model. However, this effect was not observed when a 

barrier interrupted the model’s line of sight. This finding illustrates that under the 

conditions of free viewing, gaze following only occurred when the object located at the 

area of interest was visible to the actor. However, a different pattern of data occurred 

when participants were instructed to find a specific target, as opposed to freely view 

the scenes (Experiment 2). Although our participants were significantly faster to 

discriminate targets that were looked towards by the model (i.e., a gaze following 
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effect), this effect was not influenced by whether the model could see the target or not. 

We also found a facilitatory effect of a person’s gaze direction when the target was 

occluded using the classic central (gaze) cueing paradigm in which the gazing agent 

was presented at the same location on every trial (Experiment 3). Finally, using the 

most recent paradigm to have been used in support of the perspective-taking theory 

(i.e., the ambiguous number procedure), we observed perspective-taking-like data even 

when the agent was not looking at the critical stimulus (Experiment 4). 

          It is our contention that during free viewing, participants have ample time to 

consider what a gazing agent can see. Indeed, in the present Experiment 1, our 

participants did not immediately fixate the area of interest; much of this time was spent 

fixating the model’s face, allowing time to compute what the actor was looking at. 

When, by contrast, participants were instructed to perform a target discrimination task 

(i.e., Experiment 2), the target was rapidly fixated (< 500 ms), and often within one or 

two fixations, illustrating that the actor’s gaze direction was processed within a 

relatively short time period. Moreover, participants rarely fixated the actor’s face prior 

to fixating the target, suggesting that this gaze-induced attentional effect occurred even 

when gaze and head direction were processed peripherally (Hermens, Bindemann, & 

Burton, 2015). Thus, in the target discrimination scenario, rapid, or automatic-like, 

processing did not occur with respect to what the model could see. That is, the physical 

barriers did not modulate the gaze following effect.  

As we stated in the Introduction, adult humans often follow others’ gaze 

precisely because we would like to know what it is that another person is viewing. Thus, 

rather than suggesting that mental states do not modulate gaze following, we challenge 

the notion that this occurs automatically. Indeed, the present result can be seen as 

supporting much of what is known about gaze following and mental state attribution. 
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Reading other peoples’ mental states is clearly an essential part of many successful 

social interactions, and an abundance of evidence supports the view that much of our 

behaviour is influenced by these metal states, including behaviour in young children. 

For instance, by 18 months, a child’s gaze following can be modulated according to 

whether a critical object can be seen or not by the viewer (Butler et al., 2000; Caron et 

al., 2002).  

         Perhaps the most pertinent question associated with the issue of whether another 

person’s viewpoint is computed automatically is what should we mean by automatic. 

In the current work, we employed the common notion that a necessary condition of 

automaticity is that the process should be fast and goal-independent. For instance, it 

should occur when participants have the goal of discriminating a simple target. The 

issue of automaticity became particularly important during the early days of the 

cognitive revolution in which research on selective attention was dominant. A number 

of theories made the distinction between preattentive and attentive processes, (e.g., 

Broadbent, 1958; Deutsch & Deutsch, 1963; Norman, 1968) with the former being 

viewed as occurring automatically (i.e., in ‘parallel’ and unlimited in capacity). Since 

then, a vast array of terms and concepts have been used to describe what is meant by 

automatic. In their extensive review of the issue, Moors and Houwer (2006) made the 

point that researchers have tended to associate automaticity with a (large) number of 

features including processes that are unintended, stimulus-driven, efficient, effortless, 

fast, unconscious, goal-independent, uncontrolled, autonomous, implicit, and difficult 

to alter or suppress. Of course, such features are not themselves always well-defined 

and are perhaps more indicative of the variety of language, than cognitive processes 

and mechanisms.  
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          Although assessing automatic perspective-taking against all of these features is 

beyond the scope of the present article, some of the features are more easily addressed 

with respect to perspective-taking than others. For instance, when participants are asked 

to consider their own perspective, as was the case in the original version of the dot 

perspective paradigm, the altercentric intrusion that results is clearly not intended. By 

contrast, since our visibility manipulation only modulated gaze following in the free 

viewing condition the present results suggest that the perspective-taking process is not 

rapid. It is tempting to think that since computation of what an avatar can see is not 

relevant to the dot perspective task, any perspective-taking effect in that paradigm must 

be goal-independent. Indeed, Samson et al. (2010) stated that the avatar’s perspective 

was computed spontaneously “even when it was not relevant to the task” (p1264). 

However, knowing when targets/stimuli are non-task relevant has itself been difficult 

to determine. Indeed, this is the central issue in the ‘attentional control settings’ debate 

(see for instance Theeuwes, 2004). In their seminal examination of how attention is 

distributed across a visual display, Folk, Remington, and Johnston (1992) argued that 

resource allocation is largely dependent upon an observer’s goal-directed attentional 

set, or their attentional control settings. This was supported by Folk et al.’s initial work, 

and a subsequent large number of studies (e.g., Cole, Kuhn, Heywood, & Kentridge, 

2009) showing that the propensity with which a characteristic of a stimulus is able to 

modulate attention is contingent on the stimulus sharing a feature that is relevant to an 

observer’s task. One of the most important principles to come from this work is that 

task relevance can operate in extremely subtle ways. For instance, a stimulus can be 

comprised of and defined by many properties (e.g., colour, form, texture, luminance, 

contrast) and Folk and Remington (1998) showed that the likelihood of a stimulus 

modulating attention was largely influenced by the degree to which the stimulus 
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included properties shared with target. In other words, a seemingly ‘task-irrelevant’ 

stimulus can turn out to be task-relevant.  

          Another subtle influence on whether a task is truly goal-independent concerns 

the effects that other tasks and conditions have on a phenomenon within the same 

experiment. Such ‘carry-over’ effects reveal that responses on one trial can influence 

responses on other trials (e.g., Olivers, Humphreys, & Braithwaite, 2006; Tipper, 

1985). Cole et al. (2016) pointed out that “spontaneous computation of others’ 

perspective should not require observers to occasionally assume this perspective” (p. 

166). In the basic dot perspective paradigm, participants are sometimes asked to 

consider the number of dots from the avatar’s perspective whilst on other trials they are 

asked to do this from their own perspective. Any carry-over from the former task to the 

latter would negate the notion that the avatar’s perspective is task irrelevant. Data from 

Samson et al.  (2010) suggest that such carry-over does occur. When the perspective 

(i.e., the participant’s or the avatar’s) was manipulated within the same block 

(Experiment 1), the consistency effect was considerably larger (48 ms, p < .01) 

compared to when participants only performed the task from their own perspective (23 

ms, p < .05; Experiment 3). One could of course argue that these data suggest that the 

carry-over effect only increases altercentric intrusion, rather than solely explaining the 

phenomenon. However, the fact that participants were instructed to consider 

perspective at all, if only their own, may have primed them to think about the avatar’s 

perspective. If this was the case, the altercentric intrusion effect should not be 

considered as being automatic. 

             In sum, our results show that when given ample time to explore the visual 

environment, gaze following is modulated by another person’s visual perspective. This 

altercentric intrusion did not occur when participants were required to rapidly 
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discriminate a target. That is, when participants were unlikely to be able to consider the 

person’s visual perspective. This does not support the notion that anothers’ visual 

perspective is automatically computed. 

 
Raw Data:  
All of the raw data are available from  
 
https://figshare.com/s/77ea13abd9a7419009d7 
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