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Abstract— Models of intrinsic motivation present an impor-
tant means to produce sensible behaviour in the absence of
extrinsic rewards. Applications in video games are varied, and
range from intrinsically motivated general game-playing agents
to non-player characters such as companions and enemies. The
information-theoretic quantity of Empowerment is a particularly
promising candidate motivation to produce believable, generic
and robust behaviour. However, while it can be used in the ab-
sence of external reward functions that would need to be crafted
and learned, empowerment is computationally expensive. In
this paper, we propose a modified UCT tree search method to
mitigate empowerment’s computational complexity in discrete
and deterministic scenarios. We demonstrate how to modify
a Monte-Carlo Search Tree with UCT to realise empowerment
maximisation, and discuss three additional modifications that
facilitate better sampling. We evaluate the approach both
quantitatively, by analysing how close our approach gets to the
baseline of exhaustive empowerment computation with varying
amounts of computational resources, and qualitatively, by
analysing the resulting behaviour in a Minecraft-like scenario.

I. INTRODUCTION

The empowerment formalism [1], [2] offers interesting
game applications in terms of believable NPC behaviour [3],
general game-play [4] and player experience modelling [5].
But the high computational complexity of empowerment is
problematic for a wider application in games. In this paper
we show how a UCT tree search formalism [6], [7] can be
adapted to approximate empowerment maximisation in the
discrete domain. But first, we motivate the application of
empowerment to games in more detail.

A. Motivation

Empowerment is a measure of how much an agent can
affect the world it itself perceives. Empowerment maximisa-
tion is considered an intrinsic motivation (IM) [8], and has
been recently linked to competence and autonomy, two mo-
tivations which are frequently discussed in a games context
[9]. As intrinsic motivation, i.e. as an essential motivation
linked to agency itself, empowerment can generate behaviour
even in the absence of externally defined goals. Behaviour
then results from fulfilling a motivation that arises from the
agent-world interaction. An illustrative, non-empowerment
example for this is the work of Merrick and Maher [10],
[11], where an agent’s actions are selected based on learning
progress [12] and curiosity [13]. Curiosity, or the desire
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to experience something new, can create behaviour without
further reward. The broad concept of curiosity is also a good
illustration of an intrinsic motivation, as it is hard to imagine
agency without the least desire to experience novelty or learn
something new. Empowerment, in contrast, is about having
affordances, about self-efficacy and the ability to affect one’s
own world. Empowerment has also been linked to the idea
of an organism’s striving to preserve its precarious existence
[14]. Applied to a Minecraft-like simulation this drive to self-
preservation resulted in behaviour where the agent would
restructure the world to keep itself alive [15], producing
different behaviour patterns in reaction to changes in the
environment. The same work also demonstrated how the
embodiment of the agent was reflected in the structures built
in the world. This apparent self-directed behaviour, arising
from- and reacting to changes in the game world make the
application of empowerment in games interesting.

Previously, empowerment has been applied to play
Sokoban and PacMan [4]. In this work, Anthony et al.
speak about the generality of empowerment by asserting
that it provides a utility that: “1) derives only from the
structure of the problem itself and not from an external
reward; 2) identifies the desirability of states in a way that
matches intuition; and 3) carries over between scenarios
of apparently different character.” This would make em-
powerment a good proxy for general game-play, and thus
biasing the decision making of reward-optimising agents
with empowerment might lead to better performance. Similar
approaches have been used in the domain of robotics, where
a robotic follower [16] and underwater vehicles [17] had
their decision making biased or enhanced with empowerment
maximisation. But while the empowerment formalism is
generally applicable, i.e. can be computed based just on the
structure of a given forward model, the utility it provides
may not always agree with an externally defined reward.
One common example here are games where empowerment
has to be “traded away” to win a game - imagine a game
like Starcraft where you first obtain resources and units,
which increase your empowerment, but then you lose those
units and resources in a material exchange to defeat your
opponent. Note though, that there is still an incentive to
maximise empowerment, even as you are giving it up. It
is also possible to define games with a (possibly contrived)
win condition that conflicts with empowerment. In a lot of
cases, though, games are designed to be aligned with intrinsic
motivations, and progressing in a game usually goes along
with increasing player empowerment. As you progress you
usually get more abilities, better and more tools, have access
to more actions, can explore more of the world and generally



have more rather than less influence on the game world.
Creating believable non-player characters (NPCs) in a

game is another possible application of empowerment in
games. Empowerment maximisation can, without defined
goals, produce behaviour related to self-preservation and
maximisation of options. This can be used to give NPCs an
appearance of self-determination. The general applicability
of the formalism also allows NPCs to adapt to changing
circumstances. This has been explored by Guckelsberger
et.al. [3] for the design of general companion characters.
In addition to having the companion NPC maximise their
own empowerment, two additional empowerment drives were
introduced. Maximising the empowerment of the player
motivates the companion to protect and help. It would, for
example, shoot enemies that try to kill the player. This
multi-perspective approach has also been explored in relation
to robots, where it could produce generic robot behaviour
guidelines [18]. Very recently, it has been extended to design
highly adaptive and robust adversary NPCs [19].

Finally, there is also the question as to which extent a
player’s empowerment in a game can be used as predictor
for their experience. A preliminary study [5] identified causal
efficacy as potential candidate experience that empowerment
is closely related to, with mediate effects on “challenge,
involvement, attention and engagement, learning and emo-
tions”. Having a measure that computes user experience
without an actual player would be beneficial in rapid proto-
typing and when creating or adapting games automatically.

Yet, one downside of empowerment maximisation is its
lack of scalability, due to the formalism’s high computational
complexity, especially when looking at longer time horizons.
Approximations have been developed both for the continuous
domain [20] and discrete but noisy models [4]. In this paper,
we use UCT to accelerate the computation of the most
empowered action in a discrete and deterministic model.

B. Overview

We first describe the actual empowerment formalism, and
then focus on empowerment in discrete and deterministic
models. We discuss the problems arising from sparse sam-
pling, and introduce a modified UCT tree search algorithm
to find the most empowered actions with less sampling. We
complement this with three modifications – novelty bias,
aggregated empowerment and full branching – to further
enhance the sampling. We evaluate the optimisation scheme
in a Minecraft-like world model which has also been used in
previous work [15]. We briefly introduce the model, followed
by a quantitative and a qualitative evaluation. We demon-
strate how the UCT approach and the different modifications
perform better with less samples than the current baseline of
sparse random sampling.

II. EMPOWERMENT

Empowerment [1], [15] is an information-theoretic formal-
ism that captures how much an agent can affect the world
it itself perceives. It is defined for all systems that can be
modelled as an action-perception loop, as seen in Fig. 1.
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Figure 1. The perception-action-loop visualised as a
Bayesian network. S is the sensor, A is the actuator, and
R represents the rest of the system. The index t indicates
the time at which the variable is considered. This model is
a minimal model for a simple memoryless agent. The red
arrows indicate the direction of the potential causal flow
relevant for 3-step empowerment.

Where the random variables S, A and R model the sen-
sors, actions and remaining state of the world, respectively.
Empowerment for a given state r ∈ R is formally defined
as the channel capacity from an agent’s actions at time t
to its sensors at a later point in time. This channel goes
through the environment R. A common generalisation is n-
step empowerment, where all actions from at to at+n−1 are
considered as input to the channel, and the output is the
sensor of the agent at t+ n:

E(rt) = max
p(at...t+n−1)

I(St+n;At...t+n−1|rt). (1)

The quantity captures how much information an agent can
“inject” into its sensor St+n via the environment by interven-
ing earlier in At...t+n−1. It is equivalent to potential causal
information flow as defined in [21]. An agent is usually
highly empowered if it has a lot of different options that all
lead to different, predictable outcomes, unaffected by noise.
A highly empowered agent can reliably bring about many
different sensor states. A more detailed discussion of the
general concept and its information theoretic basis can be
found in [1], [15].

Empowerment maximisation is the idea that an agent
wants to be in a state that is highly empowered. Note, when
computing the empowerment for a given state the channel
capacity achieving distribution p(at...t+n−1) might contain
a lot of action sequences that lead to bad outcomes. But
the action policy, i.e the way the agent picks it actions,
is not determined by this distribution. Instead, a greedy
empowerment maximisation strategy computes the empow-
erment for all possible successor states to the current states,
and then chooses the action leading to the one with the
most empowerment. It is empowerment maximisation that
is considered an intrinsic motivation, and in this paper, we
focus on how to efficiently determine which actions will lead
us to the most empowered state.

While empowerment can be defined for both a noisy and
even a continuous channel, in this paper we focus on discrete
and deterministic models. In the deterministic case, where
each possible action sequence at, ..., at+n−1 leads to one
specific state st+n, the channel capacity is the logarithm
of the number all reachable states. So, to calculate the



empowerment we have to determine the resulting sensor state
for each possible n-step action sequence, and then count
how many different states there are in total. This simplifies
the computation significantly, and allows to compute n-step
empowerment for larger time horizons n. We will refer to
these reachable sensor states as “reachable states”, dropping
the word sensor for brevity. Despite this simplification, if we
look at a model where each action step has, for example, a
branching factor of 5, we still have to evaluate 5n action
sequences and the corresponding final states. This number
quickly grows infeasibly. In previous work [15] this was
addressed with sub-sampling, where a random subset of all
possible action sequences was evaluated to compute 15-step
empowerment, with a branching factor of 12. In this work the
limitations of random sampling became evident. Sometimes,
the empowerment-maximising agent would be in a situation
where it could get to a part of the world where it would be
able to reach a lot of different sensor states, but to get there it
would have to perform very specific actions in the beginning
of the action sequence - think of a bridge as an evocative
example. Due to the random nature of the sampling, this
bridge might only be crossed with a few of the sequences,
and the evaluation would miss the considerable gain that
going over the bridge yields for the agent’s empowerment.
In this work, we aim to use UCT tree search to both (i) bias
the exploration towards those initial sequences, and to (ii)
identify the best possible action more efficiently.

III. EMPOWERMENT WITH UCT TREE SEARCH

In this section we outline how to use tree search with
UCT (upper confidence bound applied to tree search, [6])
to accelerate the decision making based on deterministic
empowerment. To find the best action, we need to determine
which of the successor states of the current world state
has the most different sensor states reachable with action
sequences of length n. Note that while we compute the
empowerment for sensor states derived from the world, the
computations to determine the empowerment are done with a
complete model of all world state transitions. In other words,
our computation is not limited by the agent’s perspective and
has access to the full world model.

Our approach is inspired by Monte Carlo tree search
(MCTS) with UCT [7], but there are substantial adaptations
in the expansion, simulation and backpropagation steps. The
basic idea of MCTS UCT, or any informed search for that
matter, is to guide the use of resources, such as forward
model calls, to the parts of the search space which yield the
most information for picking the best action.

So, when we sample action sequences to determine reach-
able sensor states, we assume that sequences starting with
actions that have led to new results are more likely to yield
new results again. We then use the UCT formula [6] to bias
our exploration towards those actions that have previously led
to new states. Further analysis is still needed to determine
if the mathematical properties of the bandit problem, which
UCT is derived from, hold for empowerment computation.
Here we look at simulated results only.

In the next section, we describe the algorithm in detail, and
motivate three modifications. Both are further illustrated with
pseudocode in Alg. 1. Keep in mind, the goals is to determine
which successor state of the current world state has the most
reachable sensor states, i.e. is the most empowered.

A. UCT tree search

In our algorithm nodes are associated with world states.
We start by creating a root node that is associated with the
world in its current state. This node has a depth of zero.

1) Expansion: The algorithm starts at the root, and checks
if there are unexpanded, i.e. unvisited children. As long as
there are unvisited children we select randomly one of the
actions that would lead to an unexpanded child. We create the
child node with a depth value one higher than its parent node.
We then repeat the expansion step, i.e. expanding another
unvisited child, until we reach a node that has a depth equal
to the empowerment horizon n plus one. This is because
the first step just creates the successor nodes that we are
evaluation for their empowerment, and the successive n steps
realise the n-step empowerment approximation. Note that we
immediately expand the tree down to n-steps, and that there
is no roll-out phase.

2) Backpropagation: Once we reach a node at the hori-
zon, we obtain the agent’s sensor state and store it in the
set of reachable states in the node. We then also add this
reachable state to the node’s parent node. The parent checks
if it already has this state in its reachability set, and if not,
adds it. It then also adds it to its own parent, recursively.
After the backpropagation finishes, the tree should be in a
state where each node has a reachability set that contains all
sensor states that can be reached from it with the already
expanded action sequences. After this step the algorithm
starts over at the root of the tree, if there is time left.

3) Selection: As the tree fills up, the algorithm will
encounter nodes where all children have at least been visited
once, and it then has to decide which node to expand again.
At this point we sort the children c with the modified UCT
formula and pick the child c with the highest value:

uct(c) =
c.states.size()

c.visits
+ 0.01 ·

√
log (root.visits)

c.visits
(2)

The function states.size() gives us the size of the reach-
ability set, and visits() tells us how often the root node and
the child node have been visited. The size of the reachability
set divided by the visits to the child gives us a value between
0.0 and 1.0, the ratio of how many new states each visit
to this particular child found. The best value here is 1.0,
meaning every visit leads to one new sensor state. The term
in the square root guides selection towards under-explored
states; it grows larger as more action sequences are sampled
that do not go through c. The factor of 0.01 was chosen to
have a good balance where the distribution of visits among
children was neither approximately uniform (as it would be
for a larger value), nor heavily skewed towards the first best
solution (as it would be for a smaller value).



Algorithm 1 Overview of the agent’s decision making algorithm. Methods that take place in other objects, such as applying
actions to the world or selecting a random number are omitted for brevity. HORIZON is n+1 for n-step empowerment, as
we can determine the initial successor states in the same tree. The colours indicate code changes for the modification. For
basic UCT empowerment read just the code in black. For aggregated empowerment, add the red line at 18. For novelty bias
add the two blue code snippets in 29 and 36. For the full branching modification add the code in green, and set DEPTH to
a non-zero value.

1: procedure BEST ACTION(World w)
2: Node root← new Node
3: while time left do
4: depth← 0
5: Node t← root
6: World test←copy(w)
7: while depth < HORIZON - DEPTH do
8: t.visits++
9: depth++

10: if t has unexpanded children then
11: Action a← RANDOM ACTION(t, test)
12: test.applyAction(a)
13: Node child← new Node
14: child.parent ← t
15: child.action ← a
16: t.children.add(child)
17: state← test.s() . Agent sensor state
18: ADD STATE(state, child)
19: t← child
20: else . use UCT selection
21: t← BEST CHILD(t, root)
22: test.applyAction(t.action)
23: BRANCH(t, test, DEPTH, root)
24: return root.children[max(states)].action
25:
26: procedure ADD STATE(state, Node n)
27: if state 6∈ n.states then
28: n.states.add(state)
29: if state 6∈ parent.states then n.unique++
30: if ∃ n.parent then ADD STATE(state, n.parent)

31:
32: procedure BEST CHILD(Node t, Node root)
33: best← null
34: fitness← 0
35: for c ∈ t.children do

36: f= |c.states|+c.unique
c.visits

+ 0.01 ·
√

log root.visits
c.visits

37: if f > fitness then fitness← f ; best← c
38: return best
39:
40: procedure BRANCH(Node t, World w, d, Node root)
41: if d = 0 then
42: state← test.s() . Agent sensor state
43: ADD STATE(state, t, root)
44: else
45: Action[] a← w.getPossibleActions()
46: for action ∈ a do
47: World test ← copy(w)
48: test.applyAction(action)
49: Node child← new Node
50: child.parent ← t
51: child.action ← action
52: t.children.add(child)
53: BRANCH(child, test, d - 1, root)
54:
55: procedure RANDOM ACTION(Node t, World w)
56: Action[] a← w.getPossibleActions()
57: for actions ∈ t.children do a.remove(action)
58: return random(a)

4) Action Selection: At some point the algorithm runs out
of time (or some other computational limiter) and it needs to
decide what action to take. It looks at the root and picks the
action leading to the child with the biggest reachability set.
This action should lead to a state with the highest n-step
empowerment, meaning that from this state, the agent can
reach the maximum number of different sensor states within
n steps. Note that the algorithm does not select the state with
the highest ratio of new states vs. visits, which was used for
the UCT based selection.

Rationale: Compared with randomly sampling action
sequences for each successor state, this algorithm should
perform better at finding the state with the highest empow-
erment, as it spends less time on investigating the worst
alternatives. The UCT function in selection should bias com-
putational resources towards the most promising candidates.
While the utility of a node for action selection is the size
of the reachability set, we chose to divide this value by the
number of visits for the selection phase. We thus keep the
value between 0.0 and 1.0 and the nodes remain comparable.
If this was not the case, nodes that had been explored more

would be preferred as the number of found reachable states
heavily depends on the number of visits.

Before we evaluate this approach, referred to as UCT from
now on, we introduce three modifications to the algorithm.

B. UCT with Novelty Bias

For this modification we check every time a child node
adds a reachable state to its parents reachability set, if this
state is new to the set. If this is the case, no other child
of that parent has an expanded action sequence leading to
that sensor state yet. In case of a novel addition, the child
increases its novelty counter by one (line 29 in Alg. 1).

The novelty counter is added to the size of the reachability
set in the UCT function. This means that the performance
of the nodes is now not only defined by how many different
states it found, but also by how many of those states were
novel contribution to the reachability set of its parent node;
an idea somewhat similar to novelty pruning[22].

Rationale: This modification is aimed at biasing explo-
ration towards sub-sequences that add novel states. Consider
an agent in front of a doorway. One action leads through it,



while the others keep the agent moving around in the room.
The sequences that stay in the room end up overlapping, and
while they might each lead to a sizeable amount of states,
they all lead to the same states. In contrast, sequences that go
through the door can add new reachable states to the parent
nodes, and should therefore be preferred.

C. Aggregated Empowerment

For aggregated empowerment, which we will refer to as
UCTa, we not only consider the sensor states reached at tree
depth n, but we also consider all reachable states along the
way. This is achieved by simply adding the sensor state of
the current world state to every newly expanded node and
propagating it upward (line 18 in Alg.1).

Rationale: Aggregated empowerment corresponds to a
somewhat different quantity, and the implications of this
measure go beyond the scope of this paper. Using this value
to approximate regular empowerment however still has the
advantages that it allows to differentiate between individual
action sequences. Normally, each sequence reaches exactly
one state. But with aggregated empowerment, sequences that
go through different sensor sequences along the way are
considered better. This difference can indicate that the agent
is still operational and able to affect the world.

More conceptually, it also allows to differentiate between
different sequences, even if they ultimately end in the same
state, e.g. death. In this case, the agents prefers to live a less
boring life. In a way, this introduces a form of count-based
novelty into the empowerment calculation.

D. UCT with Full Branching

For n-step empowerment with k-step full branching, the
algorithm only expands the tree to a depth of n − k, i.e.
it stops k steps before it reaches the time horizon. It then
fully expands the tree from that node for the remaining k
steps with depth-first search, and eventually propagates all
found sensor states upwards. All full branching examples
in this paper use 1-step full branching. This modification is
implemented by the extension of the BRANCH function in
Alg.1, highlighted in green.

Rationale: Full branching also aims to differentiate be-
tween sequences. It basically computes 1-step deterministic
empowerment for the semi-leaf node. This local empower-
ment ideally gives us an idea of how empowered close-by
states are, and thus should guide our exploration towards- or
away from action sequences starting with the same actions.

IV. EVALUATION

A. Simulation Model

To evaluate the different UCT algorithms we implemented
a three-dimensional block world, similar to [15]. The world
is a three dimensional grid, and each grid cell is empty or
contains exactly one block such as earth, the agent and lava.
The agent can try to move in the four cardinal directions
(north, east, west, south). The move will be successful, if
a) the target location is empty, or if b) the target location
is filled, but the one above is empty. In the second case,

the agent will ‘climb’ to the location above the target block.
In all other cases the move fails (is blocked) and the agent
remains in its current position. The agent can also act in all
six directions (above, below, north, south, east, west). This
action is context-sensitive on the agent’s inventory, which
can hold exactly one block. If the inventory is empty, the
agent will try to take the block from the target location
into its inventory, if there is any. If the inventory contains a
block, the agent will try to place it. This will succeed if the
target location is empty. If an action fails, the world remains
unchanged. There are two additional actions, waiting and
destroying the current block in the inventory. Overall, this
gives the agent 12 actions in each time step.

Between actions the world simulates liquid flow and
gravity. Agents and lava are affected by gravity, i.e. they
fall until they rest above a filled block. Earth blocks are not
affected by gravity. Lava spreads to neighbouring tiles every
4 time steps, if they are empty. Lava is an environmental
hazard, and the agent dies if it is next to a lava block.
‘Death’ in this case means that the agent’s actions have
no effect any more on the world. The sensors considered
for the empowerment computation capture the agent’s x, y, z
position.

B. Method

Fig. 2: Typical randomly generated world used for the quan-
titative evaluation. Two red lava blocks are visible among
the grey earth blocks. The agent is colored blue.

For the quantitative evaluation we created 1000 different
random worlds of size 7x7x7. Each block has a 40% chance
to be an earth block, a 2% chance to be a lava block, and
remains empty otherwise. Fig. 2 shows an example world.
The agent (blue) is placed in a random position, replacing
the block in that position if necessary.

For each world we computed 4-step empowerment with an
exhaustive depth-first search to obtain a baseline comparison.
We recorded the number of reachable states, which determine
the empowerment, for each immediate successor state and
the action leading to that state from the root. This gives us
an empowerment value for each action. The UCT algorithm
can ultimately be applied to longer action sequences, but
we chose a horizon of 4 for the quantitative evaluation, as it
allows us to compare the approximations to an exact baseline.
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Fig. 3: Ratio of selecting the optimal action for different budgets of forward model calls. The evaluation is based on 1000
different random worlds, computing 4-step action sequences.
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Fig. 4: Average relative performance (in reachable states) for the picked actions compared to the optimal action, for different
budgets of forward model calls. The evaluation is based on 1000 different random worlds, computing 4-step action sequences.

We evaluated 9 different algorithms. The basic agent
realises just random sampling, as describe in [15]. We
evaluated the described UCT algorithm with each of the
three modifications (novelty bias, aggregated empowerment,
full branching for 1 step) turned on or off. Additionally, we
evaluated the UCTa algorithm based on aggregated empow-
erment for each modification.

For each of the 1000 different worlds, each of the 9
algorithms tried to find the most empowered action. Our
goal was to see how the algorithm’s performance would
degrade if they were given less computational resources. To
have a hardware-independent comparison, we limited each

algorithm to a certain number of forward model calls, which
are used every time a world is advanced by applying an
action. This decision was based on a preliminary analysis,
showing that forward model calls were (unsurprisingly) the
main contributor to computational load. We recorded the
number of forward model calls used by the depth-first
algorithm from the exhaustive baseline computation. This
number, 22621, was considered as 100% of needed calls.
We then evaluated all 9 algorithms on all 1000 worlds by
giving them only 1/2, 1/4, 1/8, etc, of the forward calls
required for the baseline.

The performance of returned actions was evaluated in two



ways. We checked, in comparison to the baseline computa-
tion, if the action selected by an action is optimal, i.e. if it
has as many reachable states as the best answer. The average
performance in this case is the ratio of how many of the
chosen actions where optimal. We also implemented a second
performance measure, where we compared the empowerment
of the given action to the empowerment of the best action.
If for example the best action would lead to a state with 20
reachable states, and the given answer would lead to a state
with 10 reachable states, the performance would be 0.5. The
performance is then averaged over the 1000 tested worlds.

C. Results

Figs. 3 and 4 show the results of the evaluation. As
expected, both performance measures get worse if the agents
get fewer forward calls to determine the best action. The
important result here is that the UCT algorithms, especially
those with modifications, outperform the basic agent from
[15] for less forward calls.

If we look at the graph in more detail, we see that for
the least number of samples, all agents perform at about 0.7
in Fig. 4 and at about 0.25 in Fig. 3. This is basically the
performance of a random agent that occasionally finds the
best action by chance, or picks an action that has decent
empowerment. Keep in mind that in some worlds several
actions are optimal, or close to optimal.

The remaining graph can be split into three parts. For the
first 5 sample points, i.e. the part with the least forward
calls, we see that the basic agent , as well as UCT

and UCT with novelty all perform at the random
level. At this point so few forward calls are made that each
child of the root is only expanded once, i.e. has one full
actions sequence going through it evaluated. This does not
allow yet for an informed choice, as all sequences in this
case lead to exactly one sensor state, making all choices
equivalent. The algorithms with aggregated empowerment
( , , , ) perform better here, as even a single
sequence becomes informative. Each sequence might be
visiting more or fewer different states, giving a better picture
of how much an agent that picked a specific first action
can affect the world afterwards. If, for example, the first
action would lead the agent to touch lava and die, or
fall in a hole, then all successive states of that sequence
would be identical. The four algorithms with full 1-step
branching ( , , , ) perform best in the segment,
as they create the most information for a single sequence. By
evaluating how many states could be reached from the second
to last step, the algorithms can differentiate between different
starting actions. These approaches cost slightly more, as
they use 11 additional forward calls in the end, but then
saves forward calls by not having to go down the same full
sequence several times.

In the middle segment of the graph we see an increase
in performance for all algorithms. Noteworthy here is that
for every configuration the variant with novelty outperforms
the respective variant without novelty bias. As we now have
enough samples so that children are fully expanded, the UCT

selection comes into play. The bias towards those states that
brought novel contributions seems to guide us towards better
states. Aggregated Empowerment seems to have little effect
on performance in this segment.

Towards the end, where the algorithms get nearly enough
calls to exhaustively sample the space we can see that
the marginal difference in performance gets slimmer as
the performances increase overall. The algorithms basically
split into two groups, those with full 1-step branching
( , , , ) clearly outperforming those without.
We should also note that the basic agent performing random
sampling gets more competitive once we get to nearly 100%
of the needed samples.

D. Bridge Example

Fig. 5: Bridge example world. The agent (blue) should cross
over the narrow bridge and avoid the lava (red).

The qualitative effect of the different algorithms becomes
more evident if we are looking at a concrete example. In
Fig. 5 we see an agent on a small platform surrounded
by lava. The agent should cross over the narrow bridge to
reach the much larger area. This would massively increase its
empowerment. Looking at 10-step empowerment, the agent
has a long enough time horizon to figure this out. But it
is infeasible to evaluate all 61,917,364,224 10-step action
sequences, so we do not have a ground truth to evaluate
against. This is the kind of scenario the algorithm in this
paper was developed for.

We evaluated this example with 10000 forward calls and
less, for all previously described algorithmic variations. We
ran the world seen in Fig. 5 100 times, and we checked
how often the agent started moving onto the bridge leading
to more empowerment. From our conceptual understanding
of discrete empowerment we know that this is the most
empowered option. The graph in Fig. 6 shows the results
of the evaluation. The basic and the UCT agent
struggle to find the optimal action, as fewer than 5% actually
move towards the bridge with the first action. The bridge
defines a bottleneck that first has to be crossed with an initial,
very specific 4-step sequence, and biasing the exploration of
the graph towards this one sequence does not happen in this
case. The addition of novelty bias seems to add relatively
little, but full branching and aggregated empowerment pick
the optimal action far more often. The algorithm that com-
bines all modifications performs best, finding the optimal



solution 52% of the time compared to 2% for the basic
agent from [15]. As a side note, this is also an example
of how directed behaviour arises in a world without the kind
of utility function typical to most games. The agent prefers
to be on the bigger platform, as it can move around more
and dig down to obtain blocks to climb up.
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Fig. 6: Evaluation of the bridge example in Fig. 5 for 10-step
sequences. The optimal choice is going towards the bridge.

V. CONCLUSION

The results indicate that all three modifications introduced
in this paper improve the performance of empowerment max-
imising agents that have a limited amount of computational
resources. While the approach is intended to be used for
longer, i.e. above 10-steps, action sequences, we evaluated
4-step sequences. Due to computational intractability, we
do not have a baseline comparison for longer sequences.
The bridge example is promising though, as it showed that
the modified algorithms can deal with bottlenecks in longer
sequences, something the basic algorithm from previous
work [15] struggled with considerably.

A. Future Work

This technical improvement opens up possible applications
of empowerment in the discrete and deterministic domain.
For example, this would make it more feasible to apply an
empowerment-biased agent to games such as those found
in general game-playing competitions [23], [24]. The other
possible extension of this work is to extend it to non-
deterministic but discrete models. While there are faster
approximations for this domain [4], it might prove useful
to apply the extensive catalogue of MCTS enhancements to
this problem.
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