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ABSTRACT

We describe an algorithm for finding approximate sequence

similarity at all scales of interest, being explicit about our

modelling assumptions and the parameters of the algo-

rithm. We further present an algorithm for producing sec-

tion labels based on the sequence similarity, and compare

these labels on some expert-provided ground truth for a

particular set of recordings.

1 INTRODUCTION

Methods for detecting similar regions in music record-

ings have many applications, for example in music sum-

marization; song identification; audio compression; and

content-based music query systems. Approaches to sim-

ilarity detection and segmentation of musical audio have

been based on many audio features, such as timbre or ‘the

way it sounds’ [1, 2], chroma or harmonic features [3], or

partial transcription [4].

We present in this paper a top-down method for gener-

ating a tree of regions within a track related by similarity,

where that similarity is defined by the user’s choice of au-

dio feature and processing method, by an acceptable error

rate, and by the predicate for determining whether two se-

quences match; we further present a method for assigning

linear structure labels to regions given such a tree. We

discuss our motivation in section 1.1 and related work in

section 1.2, before presenting our algorithms in section 2.

Some preliminary experimental validation is presented in

section 3, and we conclude in section 4.

1.1 Motivation

The initial motivation for this work was provided by the

CHARM 1 project, with an inquiry about finding simi-

lar regions in audio tracks, with particular reference to

almost-literal repeats in recordings of Chopin Mazurkas.

In fact, with a known score, the approach to solving that

task would likely be very different from use of the algo-

rithms presented here: an approach based on aligning the
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score (or a MIDI version) to the recoded audio [5, 6], and

looking for discontinuities (which would indicate a repeat

or an omitted section).

However, in more general contexts, it is important to be

able to identify repeated sections with less a priori knowl-

edge than having a notated score with written-out repeated

sections: this paper considers primarily working directly

from recorded audio, though the techniques described are

applicable to finding structure in music in transcribed for-

mats (such as MIDI).

A secondary motivation behind the approach that we

took is to minimize the number of parameters in the algo-

rithm, and to have those parameters which remain have a

straightforward interpretation in terms of the original se-

quence being investigated for self-similarity.

We first aim to identify pairs of regions which match

each other (with a certain allowed error rate). We make

some assumptions about the structure of the matches that

we are interested in, the primary assumption being that

the matched regions are arranged in a hierarchical fashion:

that boundaries on large scales are not crossed by smaller-

scale matches. Note that we do not wish to claim that all

musical structures are arranged in a single hierarchy, but

that when working with one particular kind of structure

(induced over one particular audio feature) it is likely that

a hierarchical arrangement is a reasonable approximation.

Once we have identified the regions related by pairwise

similarity, we also wish to summarize this information in

some simple way; in order to compare the results from our

algorithm with ground truth from the CHARM project, we

derive structure labels from the pairwise similarity data.

Note that a simple application of sequence alignment

as commonly used in bioinformatics [7] is not appropri-

ate for this problem, as our hierarchical criterion leads us

to prefer long acceptable matches over short ‘better’ ones

(see figure 1).

1.2 Related Work

Many existing methods of determining areas of track self-

similarity are based on the S-matrix [8] containing a mea-

sure of dissimilarity for short-time feature vectors; a three-

minute song produces a matrix of 18000× 18000 entries.
This large object, related to recurrence plots [9], is then in-

vestigated for diagonal lines of low dissimilarity. Equiv-
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Figure 1. The upper two rows contain two substrings of

length ten being considered for matching, with the per-

character match summarized in the third row (0 for match-
ing, 1 for a mismatch at a given position). The lowest row
shows the alignment for a match score of 1 and a substi-
tution penalty of 2. A sequence alignment would prefer a
match of length 2 or 5, whereas given an error rate of 1
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we

wish to consider the first nine characters as our preferred

match.

alently, the time-lag matrix as used in [10, 11] and [12]

is a rotation of half of the S-matrix, and regions related

by similarity are indicated by horizontal lines. These au-

thors then post-process their matrices (in whatever orien-

tation) by operations inspired by image processing (e.g.

erosion and dilatation), to attempt to enhance the relevant

regions and eliminate noise; then lags corresponding to re-

peated segments are detected by averaging the dissimilar-

ity for a given lag and thresholding. Where these previous

works use short-time audio features and simple smooth-

ing techniques, others (such as [13]) generate a smoothed

S-matrix by applying dynamic time warping to regions

intermediate in size between individual audio frames and

likely segment sizes.

The problem of assigning structure labels to tracks is

addressed at least implicitly (and sometimes explicitly) in

some of these works. In some, the task at hand was to de-

tect specific kinds of segment (the chorus in [10, 11], for

example), and so only that subtask was addressed, though

some treatment of transitive closure of pairwise relations

is discussed. In [12], heuristic methods for converting

from pairwise-similar regions to structure labels are dis-

cussed, along with methods for dealing with overlaps; the

method of [14] for building an ‘explanation’ of pairwise

or clustered structure resembles the structure labels that

we generate, though the explanation is sensitive to the or-

der in which the pairwise clusters are processed. There

is a discussion of structure labelling and tree similarity

from a bottom-up viewpoint in [13]; the labelling suffers

from overlap conflicts which are resolved by an ordering

by repetition count in a potentially lossy way, in contrast

to the scheme described in section 2.2 below.

2 ALGORITHMS

We take as given a string S of symbols over a given alpha-

bet of length L, and a matchp predicate, which evaluates

whether two substrings of a given length (from the same

alphabet) match. The matching is such that a certain per-

character error rate 0 ≤ α ≤ 1 is acceptable, and that per-
character error rate is a constant for all substring lengths:

this formulation of matching allows a form of memoiza-
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Figure 2. An illustration of matchp’s behaviour. In this

example, for a prospective match of length l = 8, with
α = 1
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, we find after checking the sixth character that we

have exceeded the maximum allowed number of errors (2)
for matches of length 8, and so that we need not check this
pair of start points until l is smaller than 6 (and eventually
a match will be found for these start positions at l = 4.

tion, in that if the number of mismatches between the start

of the substrings and position p < l exceeds αl, the max-

imum permitted errors for a match of length l, then the

maximum number of permitted errors αl′ for matches of

length l′ for p ≤ l′ < l will also be exceeded by at most

position p (see figure 2 for an illustration of this).

We also assume a substr subroutine which extracts or

otherwise indicates a substring of a string given a start

point and a length.

Although we have phrased the algorithm in terms of a

string over a finite alphabet of symbols, it is straightfor-

ward to adapt it to a vector of continuous observations of

arbitrary dimensions in a finite metric space, with matchp

adapted to consider a normalized distance measure be-

tween observations instead of a boolean comparison be-

tween symbols.

2.1 Generating Pairwise Matches

The first piece of our overall algorithm is the nextPossi-

blePair function described in algorithm 1, which finds the

next possible pair of start indices s1, s2 (given the current

values) for a match of length l in a string of total length L.

Algorithm 1 nextPossiblePair(s1, s2, l, L)→ s′1, s
′

2

if s1 = L− 2l then

return ⊥
else if s2 = L− l then

return s1 + 1, s1 + 1 + l

else

return s1, s2 + 1
end if

Algorithm 2 is a brute-force method for finding the

longest matching matching regions in a string; it is too

slow for our purposes: for length l matches in a string of

length L, there are

L−2l
∑

i=0

(L− 2l + 1− i) =
1

2
(L− 2l + 1) (L− 2l + 2)



possible start pairs, each of which will do work Cl to per-

form the matchp operation. In the worst (no match) case,

we do this for all l0 ≤ l ≤ L
2
, giving overall work of

O(L4).

Algorithm 2 Longest pairwise match, brute force

for l downfrom
⌊

L
2

⌋

to l0 do

(s1, s2)← (0, l)
repeat

if matchp(substr(S,s1,l),substr(S,s2,l)) then

return s1,s2,l

end if

(s1, s2)← nextPossiblePair(s1, s2, l, L)
until (s1, s2) = ⊥
end for

Even if the constant terms in front of the highest-order

terms are small, this is prohibitively expensive for strings

corresponding to audio tracks at, say, one symbol per sec-

ond. We can, however, improve on this with relatively

little effort, making this search practical for the sizes of

strings that we are dealing with. We can build a cacheAij ,

indexed by start positions i, j, of positions p at which the

matchp predicate discovered that the per-character error

rate for a match of length l would be greater than the per-

mitted error rate. This then implies that the per-character

error rate for any smaller match l′ ≥ pmust also be larger,

so we do not need to call matchp again with those start in-

dices until the length of the putative match is less than p.

Algorithm 3 Longest pairwise match, cacheing

Aij ←
⌊

L
2

⌋

+ 1 for all 0 ≤ i, j < L

for l downfrom
⌊

L
2

⌋

to l0 do

(s1, s2)← (0, l)
repeat

if l < As1s2
then

(m, p)← matchp(substr(S,s1,l),substr(S,s2,l))

end if

ifm then

return s1,s2,l

else

As1s2
← p

end if

(s1, s2)← nextPossiblePair(s1, s2, l, L)
until (s1, s2) = ⊥
end for

We thus amortise the work of matchp, Cl, over l−p ∼
(1− α)l comparisons (where α is the allowed error rate),

thus reducing the overall complexity of the algorithm to

O(L3) at a cost of O(L2) space; note that the smaller α
is, the lower the constant of proportionality in front of the

L3.

At no extra cost in work, we can turn this into an algo-

rithm for finding all relevant matches at all length scales

of interest is a matter of tracking two more pieces of infor-

mation: the matches themselves, and the inferred bound-

aries: when a match is found, the new boundaries alter the

generation of all subsequent possible s1, s2 pairs.

Algorithm 4 nextPair(s1, s2, l, L,B)→ s′1, s
′
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local predicate admissiblePair(s1, s2, l, B):

∄i : [(s1 < i < s1 + l) ∨ (s2 < i < s2 + l)] ∧ (i ∈ B)

s1, s2 ← nextPossiblePair(s1, s2, l, L)
if (s1, s2) = ⊥ then
return ⊥

else if admissiblePair(s1, s2, l, B) then
return s1, s2

else

return nextPair(s1, s2, l, L, B)

end if

In algorithm 4, the admissiblePair local predicate de-

termines whether the proposed pair of regions (designated

by start indices s1,s2 and length l) overlaps any already-

detected boundaries (in B). One simple way of imple-

menting this simply is to represent the string S as a linked

list of regions between boundaries, performing list splic-

ing in constant time when new boundaries are identified.

Algorithm 5 additionally ensures that once two regions

have been identified as being pairwise related, then no

pairs of subregions from those regions will be considered.

This will not prevent us from finding relevant substruc-

ture, however, as any such will necessarily have at least

one pair of regions not so excluded.

Algorithm 5 All pairwise matches

Aij ←
⌊

L
2

⌋

+ 1 for all 0 ≤ i, j < L

B ← {};M ← {}
for l downfrom

⌊

L
2

⌋

to l0 do

(s1, s2)← (0, l)
repeat

if l < As1s2
then

(m, p)← matchp(substr(S,s1,l),substr(S,s2,l))

end if

ifm then

Aij ← 0 for s1 ≤ i < s1 + l, s2 ≤ j < s2 + l

B ← B ∪ {s1, s1 + l, s2, s2 + l}
M ←M ∪ {(s1, s2, l)}
else

As1s2
← p

end if

(s1, s2)← nextPair(s1, s2, l, L,B)
until (s1, s2) = ⊥

end for

returnM

2.2 Assigning Labels

The algorithm in section 2.1 generates a set of pairwise-

matched regions. This contains all the information that

is needed; however, structure labels are a good way of

summarizing this information (see e.g. [13]).



Figure 3. Illustration of transitive closure: the top half of

the diagram represents detected pairwise matches, while

the line at the bottom is the division into regions. Note

the leftmost small region, which is induced by the pair-

wise similarity of a region which to another which itself

contains a match.

As a first step towards producing a summary, we will

divide up the sequence into regions whose points share the

same symmetries, those symmetries being the transitive

closure of the pairwise similarities (see figure 3). Then, to

generate structure labels, we will assign labels to regions

in decreasing order of size until each pairwise match from

the original detection contains at least one label (and until

all unlabelled regions are sufficiently small). This has an

effect similar to the heuristics given in the structure anal-

ysis section of [12] and the cluster splitting in [14].

Algorithm 6 Transitive closure from pairwise matchesM

Ti ← {} for all 0 ≤ i < L

for (s1, s2, l) inM ordered by ascending size do

Ts1:s1+l ← Ts1:s1+l ∪ Ts2:s2+l ∪ {(s1, s2, l)}
Ts2:s2+l ← Ts1:s1+l

end for

return T

Algorithm 6 illustrates computation of the transitive

closure of pairwise matches; because of our hierarchical

constraint of these pairwise matches, we can simply it-

erate over all matches in order of increasing size, as we

know that no part of a larger match can be contained in

a smaller match. The vector T is then segmented into re-

gions of related similarity, where a region is defined as

a contiguous set of entries where the set of transforma-

tions is the same and none of those transformations has a

boundary in that region. This segmentation by transforma-

tions contains the equivalent information to the pairwise

similarities, but is in a form that is easier to interpret.

We then label this segmentation by sorting by size of

segment (resolving ties by grouping related segments to-

gether), and assigning labels in decreasing segment size,

continuing until both every pairwise match detected has

had at least one label assigned to a subregion, and until

the region size is under some salient length l′0 (which can

but need not be the same as l0 in section 2.1.

3 EXPERIMENTAL DETAILS

Our test corpus consists of twenty-seven recordings of the

mazurka in A minor, Op. 7 Nr 2 by Chopin. Table 1 il-

lustrates the structure of the mazurka on various levels:

the notated score is in four sections, labelled A, B, C and
D. Sections A, B and D are sixteen bars long, and are
notated to be repeated; section C is eight bars long and is
only played once. Additionally, the repeats of B and D
have small differences in the final bar, and a da capo al

fine is specified, so sectionA is notated to be played again
(once) at the end.

We convert the audio recordings into a sequence of

symbolic labels by performing an initial segmentation by

timbral features into five segment classes according to the

method of [15], and generating a string with one segment

label per second. This segmentation can be an accurate

structural segmentation in itself for certain kinds of mu-

sic [16] but in the case of solo piano music, where tim-

bral changes do not indicate structural changes directly,

the effect of this prior segmentation is to perform tem-

poral smoothing of the audio features, allowing a lower

value of α and allowing us not to have to perform dynamic

time warping. It is important to note that this preprocess-

ing step is independent of the algorithms described herein,

which can be used on any sequential data with a normal-

ized distance measure.

Table 2 presents some experimental results, where we

used a threshold error rate of α = 1

12
and a minimum

length l0 = l′0 = 10 corresponding to a time of 10s. Our
algorithm working on the processed audio as described

above gives labellings corresponding with the (corrected)

ground truth in nine of the twenty-seven cases, where we

treat our ‘CCD’ sequence as equivalent to the ground truth

‘CDD’ for reasons discussed below.

The first thing to note is that there is more structure

to this Mazurka than is evident from the ‘ground truth’

labelling: the first row in table 1 describes the similarity

relationships on an eight-bar metrical grid. This substruc-

ture explains why we have accepted ‘CCD’ from our al-

gorithm as equivalent to ‘CDD’ in the ground truth, as it

corresponds to the deded section in the actual score: and

there is no way of distinguishing from just the audio that it

is notated in ‘CDD’ fashion. Further, we see some of this

eight-bar substructure being detected by the algorithm in

the recordings by Smith (1975) and Indjic (2001); indeed,

the algorithmic answers for those two recordings are a fair

reflection of the performance in question.

There are other classes of discrepancy between the al-

gorithmic labels and the ground truth: in three cases, the

algorithm has failed to label the ‘orphan’ segment in the

deded section (and in some others, there is another single

missing segment); in several cases, there is an unmatched

label at the end of the string, presumably corresponding

to silence. Because of the way our algorithm is struc-

tured, the single label for the inner sections of the François

recordings (without repeats) is as correct as it can be.

Finally, we note that in the light of recent revelations



a b a b c b c b d e d e d a b

A A B B C D D A

‖: A :‖ ‖: B :‖ C ‖: D :‖ d.c.

Table 1. The structure of Chopin’s mazurka in A minor, Op. 7 Nr 2. The top line corresponds to eight-bar units, allowing

for small differences in the musical material at the beginning and end of the eight bars. The middle line corresponds to the

ground truth labels provided by an expert for a performance corresponding to the notated score represented in the bottom

line.

Recording Algorithmic labels Ground Truth (a) (b) (c) (d)

Ashkenazy (1981) ABCCCDDA AABBCDDA ×
Biret (1990) ABCCDDEB AABBCDDA ×
Block (1995) AABBCDCE AABBCDDA ×
Brailowsky (1960) AABBCCDA AABBCDDA

Chiu (1999) ABCCDDBE AABBCDDA × ×
Clidat (1994) AABBCCA AABBCDDA ×
Cortot (1951) ABCCDEEFAG AABBCDDA × ×
Falvay (1989) ABCCDEEFG AABBCDDA ×
Fiorentino (1962) AABBCCDA AABBCDDA

Flière (1977) AABBCCDA AABBCDDA

François(1956) ABA ABCDA

François (1966) AABA ABCDA ×
Friedman (1930) ABBCCD AABBCDDA* ×
Hatto (1997) ABBCDDA AABBCDDA*

Indjic (2001) ABCBCBDDEB AABBCDDA* × ×
Kapell (1951) AABBCCDA AABBCDDA

Luisada (1990) AABBCCA AABBCDDA ×
Magaloff (1977) AABBCCDA AABBCDDA

Pobłolcka (1999) AABBCCDAB AABBCDDAB

Rubinstein (1939) AABCCDA AABCDDA

Rubinstein (1952) AABBCCDA AABBCDDA

Rubinstein (1966) ABCCDEEFA AABBCDDA ×
Shebanova (2002) AABBCCA AABBCDDA ×
Smith (1975) ABABCBCBDDEABF AABBCDDA × ×
Ts’ong (1993) ABCCDDEA AABBCDDA ×
Ts’ong (2005) AABCCAD AABBCDDA × ×
Uninsky (1959) ABCBCDDCE AABBCDDA* × ×

Table 2. The labels derived using the algorithms presented in section 2 for the set of 27 performances of Chopin’s Mazurka

Op. 7 Nr 2 in A minor. Note that four of the ground truth labels provided by an expert listener (starred) are incorrect,

and should read ABBCDDA. Various classes of discrepancy between ground truth and algorithmic labels are summarized

on the right of the table: (d) indicates labelling silence at the end of the track; (c) indicates missing one segment; (b) is

marked if the algorithm has labelled structure at a finer detail than the ground truth, and (a) is for other errors, most often

from failure to detect a pairwise match.



about the discography of Hatto [17], we can assess from

these results a certain amount about the sensitivity of the

algorithm to the audio processing chain used in this case,

as the input audio of the Hatto (1997) and Indjic (2001)

recordings is for all practical purposes identical, while the

audio processing has some random elements. The differ-

ence in algorithmic labels between those two recordings

thus indicates that our method as presented is sensitive to

features of the audio processing chain.

4 CONCLUSIONS

We have presented methods for detecting and labelling hi-

erarchical structure in sequential data, with a small set

of parameters which are straightforwardly interpretable;

the preliminary results from these methods on a stringent

test are encouraging. The method as presented assumes

a matchp predicate which works character-by-character;

however, real music often undergoes temporal alterations

between regions of similar material. In this investigation,

we dealt with that issue by having an elaborate processing

chain; however, there is nothing to stop a different matchp

predicate including some dynamic time warping: the chal-

lenge would be to preserve efficiency. A more straightfor-

ward refinement to the method presenting here would be

simply to prohibit pairwise matches from being detected

as starting or ending on a mismatched character, which

could be incoroporated into the initialization of Aij . Fi-

nally, we note again that the methods presented here are

not specific to audio processing, and are in use in analysis

of a large database of MIDI performance transcriptions.
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