Climate change, financial stability and monetary policy

Yannis Dafermos, Maria Nikolaidi and Giorgos Galanis

September 2017

Post Keynesian Economics Study Group

Working Paper 1712

This paper may be downloaded free of charge from www.postkeynesian.net

© Yannis Dafermos, Maria Nikolaidi and Giorgos Galanis

Users may download and/or print one copy to facilitate their private study or for non-commercial research and may forward the link to others for similar purposes. Users may not engage in further distribution of this material or use it for any profit-making activities or any other form of commercial gain.

Climate change, financial stability and monetary policy

Abstract: Using a stock-flow-fund ecological macroeconomic model, we analyse (i) the effects of climate change on financial stability and (ii) the financial and global warming implications of a green QE programme. Emphasis is placed on the impact of climate change damages on the price of financial assets and the financial position of firms and banks. The model is estimated and calibrated using global data and simulations are conducted for the period 2015-2115. Four key results arise. First, by destroying the capital of firms and reducing their profitability, climate change is likely to gradually deteriorate the liquidity of firms, leading to a higher rate of default that could harm both the financial and the non-financial corporate sector. Second, climate change damages can lead to a portfolio reallocation that can cause a gradual decline in the price of corporate bonds. Third, financial instability might adversely affect credit expansion and the investment in green capital, with adverse feedback effects on climate change. Fourth, the implementation of a green QE programme can reduce climate-induced financial instability and restrict global warming. The effectiveness of this programme depends positively on the responsiveness of green investment to changes in bond yields.

Keywords: ecological macroeconomics, stock-flow consistent modelling, climate change, financial stability, green quantitative easing

JEL classifications: E12, E44, E52, Q54

Yannis Dafermos, Department of Accounting, Economics and Finance, University of the West of England, Bristol, UK

Maria Nikolaidi, Department of International Business and Economics, University of Greenwich, London, Old Royal Naval College, Park Row, London, SE10 9LS, UK, e-mail: M.Nikolaidi@greenwich.ac.uk

Giorgos Galanis, Institute of Management Studies, Goldsmiths, University of London, UK

Acknowledgements: An earlier version of the paper was presented at the 20th Conference of the Research Network Macroeconomics and Macroeconomic Policies (FMM), Berlin, October 2016, the European Association for Evolutionary Political Economy Conference, Manchester, November 2016, the Bank of England workshop 'Central Banking, Climate Change and Environmental Sustainability', London, November 2016, the 12th Conference of the European Society for Ecological Economics, Budapest, June 2017 and the EcoMod2017 Conference, Ljubljana, July 2017. We thank the participants to these events for helpful comments. This research is part of a project conducted by the New Economics Foundation. The financial support from the Network for Social Change is gratefully acknowledged. Yannis Dafermos also acknowledges the financial support from the Vice Chancellor's Early Career Research scheme of the University of the West of England. The usual disclaimers apply. This paper has also been published in Greenwich Papers in Political Economy, University of Greenwich, #GPERC54.

Climate change, financial stability and monetary policy

1. Introduction

Climate change is likely to have severe effects on the stability of the financial system (see, for instance, Aglietta and Espagne, 2016; Batten et al., 2016; Scott et al., 2017). Two broad climate-related financial risks have been identified: (a) the *transition risks* that have to do with the re-pricing of carbon-intensive assets as a result of the transition to a low-carbon economy; (b) the *physical risks* that are linked to the economic damages of climate-related events. So far, most studies have concentrated on the implications of transition risks (see e.g. Carbon Tracker Initiative, 2011; Johnson, 2012; Plantinga and Scholtens, 2016; Battiston et al., 2017). Less attention has been paid to the detailed analysis of the physical risks. The investigation of these risks is particularly important because it would help us understand how the financial system could be impaired if the transition to a low-carbon economy is very slow in the next decades (and, consequently, severe global warming is not ultimately avoided).

In this paper, we develop an ecological macroeconomic model that sheds light on the physical effects of climate change on financial stability. This is called the DEFINE (Dynamic Ecosystem-FINance-Economy) model and is an extension of the stock-flow-fund model of Dafermos et al. (2017). The latter relies on a novel synthesis of the stock-flow consistent approach of Godley and Lavoie (2007) with the flow-fund model of Georgescu-Roegen (1971, ch. 9; 1979; 1984). The model is calibrated and estimated using global data and simulations are presented which illustrate the effects of climate change on the financial system. We pay attention to the following key channels. First, the increase in temperature and the economic catastrophes caused by climate change could reduce the profitability of firms and could deteriorate their financial position. Accordingly, debt defaults could arise which would lead to systemic bank losses. Second, lower firm profitability combined with global warming-related damages can affect the confidence of investors, inducing a rise in liquidity preference and a fire sale of the financial assets issued by the corporate sector.

¹ See the model's website: <u>www.define-model.org</u>.

Dietz et al. (2016) have recently investigated quantitatively the physical impact of climate change on the financial system. They use a standard Integrated Assessment model (IAM) and the climate value at risk (VAR) framework. Assuming that climate change can reduce the dividend payments of firms and, hence, the price of financial assets, they provide various estimates about the climateinduced loss in the value of financial assets. Our study moves beyond their analysis in three different ways. First, by relying on the stock-flow consistent approach, we portray explicitly the balance sheets and the financial flows in the financial sector. This allows us to model the climateinduced fragility that can be caused in the financial structures of firms and banks, a feature which is absent in Dietz et al. (2016). Second, we utilise a multiple financial asset portfolio choice framework which permits an explicit analysis of the climate-induced effects on the demand of financial assets in a world of fundamental uncertainty. This allows us to capture the implications of a fire sale of certain financial assets. These implications are not explicitly considered in the model of Dietz et al. (2016) where climate damages do not have diversified effects on different financial assets. Third, the financial system in our model has a non-neutral impact on economic activity: credit availability and the price of financial assets affect economic growth and employment. Accordingly, the interactions between economic performance and financial (in)stability are explicitly taken into account. This is crucial since the feedback economic effects of bank losses and asset price deflation can exacerbate climate-induced financial instability (see Batten et al., 2016). On the contrary, Dietz et al. (2016) utilise a neoclassical growth framework where long-run growth is independent of the financial structure of firms and banks. This leaves little room for the analysis of the macroeconomic implications of climate-induced financial problems.

Our simulation results illustrate that in a business as usual scenario climate change is likely to have important adverse effects on the default of firms, the leverage of banks and the price of financial assets. Remarkably, this climate-induced financial instability causes problems in the financing of green investment disrupting the transition to a low-carbon and more ecologically efficient economy.

An additional contribution of this paper is that it examines how monetary policy could reduce the risks imposed on the financial system by climate change. Drawing on the recent discussions about the potential use of monetary policy in tackling climate change (see e.g. Murphy and Hines, 2010;

Werner, 2012; Rozenberg et al., 2013; Anderson, 2015; Barkawi and Monnin, 2015; Campiglio, 2016; Matikainen et al., 2017; UN Environment Inquiry, 2017; Monasterolo and Raberto, 2018), we examine the extent to which a global green quantitative easing (QE) programme could ameliorate the financial distress caused by climate change. This programme involves the purchase of green corporate bonds. The simulations presented about the effects of a green QE programme are of growing relevance since in a world of climate change central banks might not be able to safeguard financial stability without using new unconventional tools in a prudential manner.

The paper's outline is as follows. Section 2 presents the structure of the model and the key equations that capture the links between climate change, financial stability and monetary policy. Section 3 describes the calibration, estimation and validation of the model. Section 4 analyses our simulations about the effects of climate change on the financial system. Section 5 focuses on the impact of a green QE programme. Section 6 concludes.

2. The model

The DEFINE 1.0 model (version: 09-2017) consists of two big blocks: (i) the 'ecosystem' block that encapsulates the carbon cycle, the interaction between temperature and carbon, the flows/stocks of energy and matter and the evolution of ecological efficiency indicators; (ii) the 'macroeconomy and financial system' block that includes the financial transactions, the balance sheet structure and the behaviour of households, firms, banks, central banks and the government sector.

Firms produce one type of material good which is used for durable consumption and investment purposes. The matter that is necessary in the production process is either extracted from the ground or comes from recycling the demolished/discarded socio-economic stock.² Energy is produced by using both renewable and non-renewable sources. Production results in CO₂ emissions and waste. A distinction is made between green and conventional capital. The higher the use of green capital the lower the energy and material intensity and the higher the recycling rate and the use of renewables.

² The socio-economic stock includes capital goods and durable consumption goods.

Firms invest in conventional and green capital by using retained profits, loans and bonds. Banks impose credit rationing on firm loans. This means that they play an active role in the determination of output and the accumulation of green capital. Households receive labour income, buy durable consumption goods and accumulate wealth in the form of deposits, corporate bonds and government securities. There are no household loans. Commercial banks accumulate capital and distribute part of their profits to households. Central banks determine the base interest rate, provide liquidity to the commercial banks and purchase government securities and corporate bonds. Governments collect taxes and conduct fiscal policy. Inflation has been assumed away and, for simplicity, the price of goods is equal to unity. We use US dollar (\$) as a reference currency.

The skeleton of the model is captured by four matrices:

(1) The physical flow matrix (Table 1) which portrays the inflows and the outflows of matter and energy that take place as a result of the production process. The First Law of Thermodynamics implies that energy and matter cannot be created or destroyed. This is reflected in the material and energy balance.

Table 1: Physical flow matrix

	Material balanœ	Energy balanœ
Inputs		
Extracted matter	+M	
Renewable energy		+ER
Non-renewable energy	+CEN	+EN
Oxygen	+02	
Outputs		
Industrial CO ₂ emissions	-EMIS $_{ m IN}$	
Waste	-W	
Dissipated energy		-ED
Change in socio-economic stock	-⊿SES	
Total	0	0

Note: The table refers to annual global flows. Matter is measured in Gt and energy is measured in EJ.

(2) The physical stock-flow matrix (Table 2) which presents the dynamic change in material and non-renewable energy reserves, the atmospheric CO₂ concentration, the socio-economic stock and the stock of hazardous waste. The first row of the matrix shows the stocks of the previous year. The last row presents the stocks at the end of the current year. Additions to stocks are denoted by a plus sign. Reductions of stocks are denoted by a minus sign.

Table 2: Physical stock-flow matrix

	Material reserves	Non-renewable energy reserves	Atmospheric CO ₂ concentration	Socio-economic stock	Hazardous waste
Opening stock	REV_{M-1}	REV_{E-1}	CO2 _{AT-1}	SES ₋₁	HWS_{-1}
Additions to stock					
Resources converted into reserves	$+CONV_{M}$	$+CONV_E$			
CO ₂ emissions			+EMIS		
Production of material goods				+MY	
Non-recycled hazardous waste					+hazW
Reductions of stock					
Extraction	-M	-EN			
Net transfer to oceans/bioshpere			$+(\phi_{11}-1)CO2_{AT-1}+\phi_{21}CO2_{UP-1}$		
Demolished/disposed material goods				-DEM	
Closing stock	REV_M	REV_E	$CO2_{AT}$	SES	HWS

Note: The table refers to annual global stocks and flows. Matter is measured in Gt and energy is measured in EJ.

- (3) The transactions flow matrix (Table 3) which shows the transactions that take place between the various sectors of the economy. Inflows are denoted by a plus sign and outflows are denoted by a minus sign.
- (4) The balance sheet matrix (Table 4) which includes the assets and the liabilities of the sectors. We use a plus sign for assets and a minus sign for liabilities.

Table 3: Transactions flow matrix

	Households	Firms		Commercial banks		Government sector	Central banks		Total
		Current	Capital	Current	Capital		Current	Capital	
Consumption	-С	+C							0
Government expenditures		+G				-G			0
Conventional investment		$+I_C$	$-I_C$						0
Green investment		$+I_G$	$-I_G$						0
Wages	+mN	-mN							0
Taxes	$-T_H$	$-T_F$				+ T			0
Firms' profits	+DP	-TP	+RP						0
Commercial banks' profits	$+BP_D$			-BP	$+BP_U$				0
Interest on deposits	$+int_DD_{-1}$			-int $_DD_{-1}$					0
Capital depreciation		-δK ₋₁	$+\delta K_{-1}$						0
Interest on conventional loans		-int _C L _{C-1}		$+int_C L_{C-1}$					0
Interest on green loans		-int $_{G}L_{G-1}$		$+int_GL_{G-1}$					0
Interest on conventional bonds	+coupon Cb CH-1	-coupon Cb C-1					+coupon Cb CCB-1		0
Interest on green bonds	+coupon Gb GH-1	-coupon _G b _{G-1}					+coupon Gb GCB-1		0
Interest on government searrities	$+int_SSEC_{H-1}$			$+int_{S}SEC_{B-1}$		-int SSEC-1	+int SEC CB-1		0
Interest on advances				-int AA-1			$+int_AA_{-1}$		0
Central bank's profits						+CBP	-CBP		0
Bailout of banks					+BAILOUT	-BAILOUT			0
Δdeposits	-AD				+ <i>∆</i> D				0
Δconventional loans			$+ \triangle L_C$		-4L _C				0
Δgreen loans			$+ \perp \!\!\! \perp \!\!\! \perp_G$		$-\Delta L_G$				0
Δ conventional bonds	-⊅ c⊿b cH		+pc⊿bc					⊅c⊿bccB	0
Δ green bonds	-p _G ⊿b _{GH}		+p _G ⊿b _G					-p _G ⊿b _{GCB}	0
Δ government searrities	-⊿SEC _H				-⊿SEC _B	+⊿SEC		-⊿SEC _{CB}	0
Δadvanœs					+ <i>∆</i> <i>A</i>			-∆A	0
Δhigh-powered money					-⊿HPM			+⊿HPM	0
Defaulted loans			+DL		-DL				0
Total	0	0	0	0	0	0	0	0	0

Note: The table refers to annual global flows in trillion US\$.

Table 4: Balance sheet matrix

	Households	Firms	Commercial	Government	Central	Total
			banks	sector	banks	
Conventional capital		$+K_C$				$+K_C$
Green capital		$+K_G$				$+K_G$
Durable consumption goods	+DC					+DC
Deposits	+D		-D			0
Conventional loans		$-L_C$	$+L_C$			0
Green loans		$-L_G$	$+L_G$			0
Conventional bonds	+p_Cb_CH	-pcbc			$+p_Cb_{CCB}$	0
Green bonds	$+p_Gb_{GH}$	$-p_Gb_G$			$+p_Gb_{GCB}$	0
Government securities	$+SEC_{H}$		$+SEC_B$	-SEC	$+SEC_{CB}$	0
High-powered money			+HPM		-HPM	0
Advanœs			-A		+A	0
Total (net worth)	$+V_H$	$+V_F$	+K _B	-SEC	$+V_{CB}$	$+K_C + K_G + DC$

Note: The table refers to annual global stocks in trillion US\$.

The model extends the model developed by Dafermos et al. (2017) by including a bond market, central banking, the government sector, household portfolio choice and an endogenous rate of default for firms. In what follows we present the equations of the model that are more relevant for the interactions between climate change, financial stability and monetary policy. The full list of equations is reported in Appendix A. Additional details about the foundations of the model and the justification of the equations can be found in Dafermos et al. (2017).

2.1. Emissions and climate change

The equations about emissions and climate change draw on Nordhaus (2016). Every year industrial CO_2 emissions ($EMIS_{IN}$) are generated due to the use of non-renewable energy sources (EN):

$$EMIS_{IN} = \omega EN \tag{1}$$

where ω is the CO₂ intensity, defined as the industrial emissions produced per unit of non-renewable energy use.

Every year land-use CO_2 emissions ($EMIS_L$) are also generated because of changes in the use of land (Eq. 2). These emissions are assumed to decline exogenously at a rate lr:

$$EMIS_{L} = EMIS_{L-1}(1 - lr) \tag{2}$$

Total CO₂ emissions (EMIS) are given by:

$$EMIS = EMIS_{IN} + EMIS_{L}$$
(3)

The carbon cycle, represented by Eqs. (4)-(6), shows that every year there is exchange of carbon between the atmosphere and the upper ocean/biosphere and between the upper ocean/biosphere and the lower ocean. In particular, we have:

$$CO2_{AT} = EMIS + \phi_{11}CO2_{AT-1} + \phi_{21}CO2_{UP-1}$$
(4)

$$CO2_{UP} = \phi_{12}CO2_{AT-1} + \phi_{22}CO2_{UP-1} + \phi_{32}CO2_{LO-1}$$
(5)

$$CO2_{LO} = \phi_{23}CO2_{UP-1} + \phi_{33}CO2_{LO-1} \tag{6}$$

where $CO2_{AT}$ is the atmospheric CO_2 concentration, $CO2_{UP}$ is the upper ocean/biosphere CO_2 concentration and $CO2_{LO}$ is the lower ocean CO_2 concentration.

The accumulation of atmospheric CO_2 and other greenhouse gases increases radiative forcing (F) as follows:

$$F = F_{2 \times CO2} \log_2 \frac{CO2_{AT}}{CO2_{AT - PRE}} + F_{EX} \tag{7}$$

where $F_{2\times CO2}$ is the increase in radiative forcing (since the pre-industrial period) due to doubling of CO₂ concentration from pre-industrial levels ($CO2_{AT-PRE}$). For simplicity, the radiative forcing due to non-CO₂ greenhouse gas emissions (F_{EX}) is determined exogenously:

$$F_{EX} = F_{EX-1} + fex \tag{8}$$

where fex is the annual increase in radiative forcing (since the pre-industrial period) due to non-CO₂ agents.

As shown in Eq. (9), the rise in radiative forcing places upward pressures on atmospheric temperature (T_{AT}):

$$T_{AT} = T_{AT-1} + t_1 \left(F - \frac{F_{2 \times CO2}}{S} T_{AT-1} - t_2 (T_{AT-1} - T_{LO-1}) \right)$$
(9)

where S is the equilibrium climate sensitivity, i.e. the increase in equilibrium temperature due to doubling of CO_2 concentration from pre-industrial levels.

The temperature of the lower oceans (T_{LO}) is given by:

$$T_{LO} = T_{LO-1} + t_3 (T_{AT-1} - T_{LO-1}) \tag{10}$$

2.2. Green capital, energy intensity and renewable energy

Green capital allows firms to produce the same output with less energy. This is captured by the following logistic function:

$$\varepsilon = \varepsilon^{max} - \frac{\varepsilon^{max} - \varepsilon^{min}}{1 + \pi_{5}e^{-\pi_{6}(K_{G}/K_{C})}}$$
(11)

where ε is energy intensity and ε^{max} and ε^{min} are, respectively, the maximum and the minimum potential values of energy intensity. As the ratio of green capital (K_G) to conventional capital (K_C) increases, energy intensity goes down. The use of the logistic function implies that the installation of green capital (relative to conventional capital) initially generates a slow improvement in energy intensity. However, as installation expands further, the improvement reaches a take-off point after which energy intensity improves much more rapidly due to the learning obtained from installation experience and the overall expansion of green capital infrastructure. Finally, as energy intensity approaches its potential minimum, improvement starts to slow.

A similar logistic function is used for the effects of green capital accumulation on the share of renewable energy in total energy produced (θ) :

$$\theta = \frac{1}{1 + \pi_{7}e^{-\pi_{8}}(K_{G}/K_{C})} \tag{12}$$

By definition, the maximum potential value of θ is 1. Note that in Dafermos et al. (2017) the formulation of the links between green capital and ecological efficiency indicators is quite different since it does not rely on logistic functions. The use of logistic functions in the present model allows for a more realistic representation that takes into account the processes of learning-by-doing and learning-by-installation which play a key role in the diffusion of new technologies.

2.3. Output determination and damages

Eq. (13) shows our Leontief-type production function:

$$Y^* = \min(Y_M^*, Y_F^*, Y_K^*, Y_N^*) \tag{13}$$

where Y^* is the potential output. The potential output is the minimum of (i) the matterdetermined potential output (Y_M^*) which depends on material reserves, (ii) the energy-determined potential output (Y_E^*) which is a function of non-renewable energy reserves, (iii) the capitaldetermined potential output (Y_K^*) that relies on capital stock and capital productivity, and (iv) the labour-determined potential output (Y_N^*) which depends on labour force and labour productivity.

The actual output (Y) is demand-determined. Aggregate demand is equal to consumption expenditures (C) plus investment expenditures (I) plus government expenditures (G):

$$Y = C + I + G \tag{14}$$

However, demand is not independent of supply. When Y approaches Y^* , demand tends to decline due to supply-side constraints (this is achieved via our investment function described below).

Output determination is affected by climate change as follows: global warming causes damages to capital stock and capital productivity, decreasing Y_K^* ; it also causes damages to labour force and labour productivity, reducing Y_N^* (see Dafermos et al., 2017 and the references therein). These damages (a) deteriorate the expectations of households and firms, reducing consumption and

investment, and, hence aggregate demand³ and (b) increase the scarcity of capital and labour placing downward pressures on aggregate demand via the supply constraints.

Eq. (15) is the damage function, which shows how atmospheric temperature and damages are linked:

$$D_T = 1 - \frac{1}{1 + \eta_1 T_{AT} + \eta_2 T_{AT}^2 + \eta_3 T_{AT}^{6.754}}$$
(15)

 D_T is the proportional damage which lies between 0 (no damage) and 1 (complete catastrophe). Eq. (15) has been proposed by Weitzman (2012). The variable D_T enters into both (i) the determination of capital and labour and their productivities and (ii) the consumption and investment demand. In our baseline scenario we assume that $D_T = 0.5$ when $T = 6^{\circ}C$.

2.4. The financing of investment

Firms' investment is formalised as a two-stage process. At a first stage, firms decide their overall desired investment in both green and conventional capital. At a second stage, they allocate their desired investment between the two types of capital. Eq. (16) captures the first stage:

$$I^{D} = \left(\alpha \left(u_{-1}^{+}, r_{-1}^{-}, g_{\varepsilon_{-1}}, ur_{-1}^{-}, ue_{-1}^{-}, um_{-1}^{-}\right) K_{-1} + \varepsilon_{I} K_{-1} + \delta K_{-1}\right) (1 - D_{T-1})$$

$$(16)$$

Desired investment (I^D), adjusted for the damage effect, is given by net investment plus the depreciated capital; δ is the depreciation rate of capital stock. Net investment is affected by a number of factors. First, following the Kaleckian approach (see e.g. Blecker, 2002), it depends positively on the rate of (retained) profits (r) and the rate of capacity utilisation (u). The impact of these factors is assumed to be non-linear in general line with the tradition that draws on Kaldor (1940). This means that when the profit rate and capacity utilisation are very low or very high their effects on investment become rather small. Second, investment is also a negative function of the growth rate of energy intensity (g_{ε}). This captures the rebound effect linked to the fact that firms invest more when energy intensity declines, since energy costs go down. This higher

³ For some empirical evidence about the impact of natural disasters on the saving behaviour of households, see Skidmore (2001).

⁴ Our damage function captures the aggregate effects of climate change. For a damage function that considers explicitly the heterogeneity of climate shocks across agents, see Lamperti et al. (2017).

investment increases the use of energy, partially offsetting the positive effects of energy efficiency improvements. Third, following Skott and Zipperer (2012), we assume a non-linear impact of unemployment rate (ur) on investment: when unemployment approaches zero, there is a scarcity of labour that discourages entrepreneurs to invest. This means that, by reducing labour productivity and labour force (and, hence, unemployment), climate change can have a negative impact on investment. Fourth, the scarcity of energy and material resources can dampen investment, for example because of a rise in resource prices; ue and um capture the utilisation of energy and material resources respectively. This impact, however, is highly non-linear: energy and material scarcity affects investment only when the depletion of the resources has become very severe. Fifth, in order to capture exogenous random factors that might affect desired investment, we have assumed that I^D also depends on a random component, ε_I , that follows a stochastic AR(1) process. Overall, our investment function implies that demand declines (or stops increasing) when it approaches potential output. This allows us to take explicit into account the environmental supply-side effects on aggregate demand mentioned above.

Eqs. (17) and (18) refer to the second stage of firms' investment process:

$$I_G^D = \beta I^D \tag{17}$$

$$I_C^D = I^D - I_G^D \tag{18}$$

where β is the share of green investment (I_G^D) in overall desired investment (Eq. 17). Desired conventional investment (I_C^D) is determined as a residual (Eq. 18).

Eq. (19) shows that the share of green investment depends on three factors:

$$\beta = \beta_0 + \beta_1 - \beta_2 \left[sh_{L-1} \left(int_G - int_C \right) + \left(1 - sh_{L-1} \right) \left(yield_{G-1} - yield_{C-1} \right) \right] + \beta_3 D_{T-1}$$
(19)

where int_C is the interest rate on conventional loans, int_G is the interest rate on green loans, $yield_C$ is the yield on conventional bonds, $yield_G$ is the yield on green bonds and sh_L is the share of loans in the total liabilities of firms (loans plus bonds).

The first factor, captured by the term $\beta_0 + \beta_1$, reflects exogenous institutional or technological developments that affect the investment in green capital. The second factor, captured by the term

12

⁵ For a description of the rebound effects see Barker et al. (2009).

 $\beta_2[sh_{L-1}(int_G-int_C)+(1-sh_{L-1})(yield_{G-1}-yield_{C-1})]$, reflects the borrowing cost of investing in green capital relative to conventional capital. As the cost of borrowing of green capital (via bank lending or bonds) declines compared to conventional capital, firms tend to increase green investment. Finally, we posit that climate change damages lead to more green investment since these damages induce firms to increase mitigation and might lead governments to adopt stricter regulation against the investment in conventional capital.

As mentioned above, retained profits are not in general sufficient to cover the desired investment expenditures. This means that firms need external finance, which is obtained via bonds and bank loans. It is assumed that firms first issue bonds and then demand new loans from banks in order to cover the rest amount of their desired expenditures. Only a proportion of the demanded new loans is provided. In other words, the model assumes that there is a quantity rationing of credit. This is in line with recent empirical evidence that shows that the quantity rationing of credit is a more important driver of macroeconomic activity than the price rationing of credit (see Jakab and Kumhof, 2015).

For simplicity, the long-term bonds issued by firms are never redeemed. The proportion of firms' desired investment which is funded via bonds is given by:

$$b_C = b_{C-1} + \frac{x_1 I_C^D}{p_C} \tag{20}$$

$$b_G = b_{G-1} + \frac{x_2 I_G^D}{p_G} \tag{21}$$

where b_C is the number of conventional bonds, b_G is the number of green bonds, x_1 is the proportion of firms' conventional desired investment financed via bonds, x_2 is the proportion of firms' green desired investment funded via bonds, p_C is the price of conventional bonds and p_G is the price of green bonds.

The proportion of desired investment covered by green or conventional bonds is a negative function of the bond yield. Formally:

$$x_1 = x_{10} - x_{11} yield_{C-1} (22)$$

$$x_2 = x_{20} - x_{21} yield_{G-1} (23)$$

We postulate a price-clearing mechanism in the bond market:

$$p_C = \frac{B_C}{b_C} \tag{24}$$

$$p_G = \frac{B_G}{b_G} \tag{25}$$

where B_C and B_G denote the value of conventional and green bonds held by households and central banks. Prices tend to increase whenever households and central banks hold a higher amount of corporate bonds in their portfolio. A rise in the price of bonds produces a decline in the bond yield, which has two effects on firms' investment. First, since firms pay a lower interest rate on bonds, their profitability improves increasing their desired investment. Second, a lower bond yield (which can result from a rise in bond prices) induces firms to increase the proportion of desired investment covered via bonds. This is crucial because firms need to rely less on bank lending in order to finance their investment. The disadvantage of bank lending is that, due to credit rationing, banks provide only a proportion of the loans demanded by firms. Accordingly, the less firms rely on bank loans in order to finance their desired investment the higher their ability to undertake their desired investment.

Based on firms' budget constraint, the new loans are determined as follows:

$$NL_G^D = I_G^D - \beta RP + rep L_{G-1} - \delta K_{G-1} - p_G \Delta b_G \tag{26}$$

$$NL_{C}^{D} = I_{C}^{D} - (1 - \beta)RP + repL_{C-1} - \delta K_{C-1} - p_{C} \Delta b_{C}$$
(27)

where NL_G^D denotes the desired new green loans, NL_C^D denotes the desired new conventional loans, L_G is the outstanding amount of green loans, L_C is the outstanding amount of conventional loans and RP denotes the retained profits of firms.

Firms might default on their loans. When this happens, a part of their accumulated loans is not repaid, deteriorating the financial position of banks. The amount of defaulted loans (*DL*) is equal to:

$$DL = defL_{-1}$$
 (28)

where L denotes the total loans of firms.

The rate of default (*def*) is assumed to increase when firms become less liquid. The illiquidity of firms is captured by an illiquidity ratio, *illiq*, which expresses the cash outflows of firms relative to their cash inflows. Cash outflows include wages, interest, taxes, loan repayments and maintenance capital expenditures (which are equal to depreciation). Cash inflows comprise the revenues from sales and the funds obtained from bank loans and the issuance of bonds. The default rate is a non-linear positive function of *illiq*:

$$def = f\left(illiq_{-1}^{\dagger}\right) \tag{29}$$

Eq. (29) suggests that, as cash outflows increase compared to cash inflows, the ability of firms to repay their debt declines.

2.5. The portfolio choice of households

Households invest their expected financial wealth (V_{HF}) in four different assets: government securities (SEC_H) , conventional corporate bonds (B_{CH}) , green corporate bonds (B_{GH}) and deposits (D); int_S is the interest rate on government securities and int_D is the interest rate on deposits. In the portfolio choice, captured by Eqs. (30)-(33n), Godley's (1999) imperfect asset substitutability framework is adopted.⁶

$$\frac{SEC_{H}}{V_{HF-1}} = \lambda_{10} + \lambda'_{10} D_{T-1} + \lambda_{11} int_{S} + \lambda_{12} yield_{C-1} + \lambda_{13} yield_{G-1} + \lambda_{14} int_{D} + \lambda_{15} \frac{Y_{H-1}}{V_{HF-1}}$$

$$(30)$$

$$\frac{B_{CH}}{V_{HF-1}} = \lambda_{20} + \lambda'_{20} D_{T-1} + \lambda_{21} int_S + \lambda_{22} yield_{C-1} + \lambda_{23} yield_{G-1} + \lambda_{24} int_D + \lambda_{25} \frac{Y_{H-1}}{V_{HF-1}}$$
 (31)

$$\frac{B_{GH}}{V_{HF-1}} = \lambda_{30} + \lambda'_{30} D_{T-1} + \lambda_{31} int_S + \lambda_{32} yield_{C-1} + \lambda_{33} yield_{G-1} + \lambda_{34} int_D + \lambda_{35} \frac{Y_{H-1}}{V_{HF-1}}$$
 (32)

$$\frac{D}{V_{HF-1}} = \lambda_{40} + \lambda'_{40} D_{T-1} + \lambda_{41} int_S + \lambda_{42} yield_{C-1} + \lambda_{43} yield_{G-1} + \lambda_{44} int_D + \lambda_{45} \frac{Y_{H-1}}{V_{HF-1}}$$
(33n)

$$D = D_{-1} - C - \Delta SEC_H - p_C \Delta b_{CH} - p_G \Delta b_{GH}$$

$$\tag{33}$$

Households' asset allocation is driven by three factors. The first factor is the global warming damages. We posit that damages affect households' confidence and increase the precautionary

⁶ The parameters in the portfolio choice equations satisfy the horizontal, vertical and symmetry constraints.

demand for more liquid and less risky assets (see also Batten et al., 2016). Since damages destroy capital and the profitability opportunities of firms, we assume that as D_T increases, households reduce their holding of corporate conventional bonds and increase the proportion of their wealth held in deposits and government securities which are considered safer.⁷ Second, asset allocation responds to alterations in the relative rates on return. The holding of each asset relies positively on its own rate of return and negatively on the other asset's rate of return. Third, a rise in the transactions demand for money (as a result of higher expected income) induces households to substitute deposits for other assets.⁸

2.6. Credit rationing and bank leverage

As mentioned above, banks impose credit rationing on the loans demanded by firms: they supply only a proportion of demanded loans. Following the empirical evidence presented in Lown and Morgan (2006), the degree of credit rationing both on conventional loans (CR_C) and green loans (CR_G) relies on the financial health of both firms and banks. In particular, credit rationing increases as the debt service ratio of firms (dsr) increases, as the bank leverage (lev_B) approaches its maximum acceptable value (lev_B^{max}) and as the capital adequacy ratio (CAR) approaches its minimum acceptable value (CAR^{min}):

$$CR_C = r \left(\frac{dsr_{-1}}{dsr_{-1}} \left(lev_{B-1} - lev_B^{max} \right) \left(CAR_{-1} - CAR^{min} \right) \right) + \varepsilon_{CR}$$

$$(34)$$

$$CR_{G} = l \left(dsr_{-1}, (lev_{B-1} - lev_{B}^{max}) (CAR_{-1} - CAR^{min}) \right) + \varepsilon_{CR}$$
(35)

As in the case of investment, we assume that credit rationing is also dependent on a random component, ε_{CR} , that follows a stochastic AR(1) process.

⁷ It could be argued that the demand for green corporate bonds is also affected negatively by the climate change damages that harm firms' financial position. However, climate change damages might at the same time induce households to hold more green bonds in order to contribute to the restriction of global warming. Hence, the overall impact of damages on the demand of green bonds is ambiguous. For this reason, we assume that $\lambda'_{30} = 0$ in our simulations.

⁸ Note that balance sheet restrictions require that Eq. (33n) must be replaced by Eq. (33) in the computer simulations.

9 The debt service ratio is defined as the ratio of debt payment commitments (interest plus principal repayments) to profits before interest. Its key difference with the illiquidity ratio is that the latter takes into account the new flow of

¹⁰ In our simulations, the maximum bank leverage and the minimum capital adequacy ratio are determined based on the Basel III regulatory framework.

The bank leverage ratio is defined as:

$$lev_B = (L_C + L_G + SEC_B + HPM)/K_B \tag{36}$$

where SEC_B is the government securities that banks hold, HPM is high-powered money and K_B is the capital of banks.

The capital adequacy ratio of banks is equal to:

$$CAR = K_B/[w_L(L_C + L_G) + w_S SEC_B]$$
(37)

where w_L and w_S are the risk weights on loans and securities respectively.

We assume that when the bank leverage ratio becomes higher than its maximum value and/or the capital adequacy ratio falls below its minimum value, the government steps in and bailouts the banking sector in order to avoid a financial collapse. The bailout takes the form of a capital transfer. This means that it has a negative impact on the fiscal balance and the government acquires no financial assets as a result of its intervention. The bailout funds are equal to the amount that is necessary for the banking sector to restore the capital needed in order to comply with the regulatory requirements.

2.7. Central banks and green QE

Central banks determine the base interest rate, provide liquidity to commercial banks (via advances) and buy government securities (acting as residual purchasers). Moreover, in the context of QE programmes, they buy bonds issued by the firm sector. Currently, central banks do not explicitly distinguish between the holdings of conventional and green bonds. However, in order to analyse the implications of a green QE programme, we assume that central banks announce separately the amount of conventional bond and green bond purchases. The value of conventional corporate bonds held be central banks (B_{CCB}) is:

$$B_{CCB} = s_C B_{C-1} \tag{38}$$

where s_C is the share of total outstanding conventional bonds that central banks desire to keep on their balance sheet. Currently, this share is very low since the corporate bond purchases of central banks represent a very small proportion of the total bond market.

The central banks' holdings of corporate green bonds (B_{GCB}) are given by:

$$B_{GCB} = s_G B_{G-1} \tag{39}$$

where s_G is the share of total outstanding green bonds that central banks desire to keep on their balance sheet. We assume that this share is currently equal to zero since central banks do not implement green QE programmes.

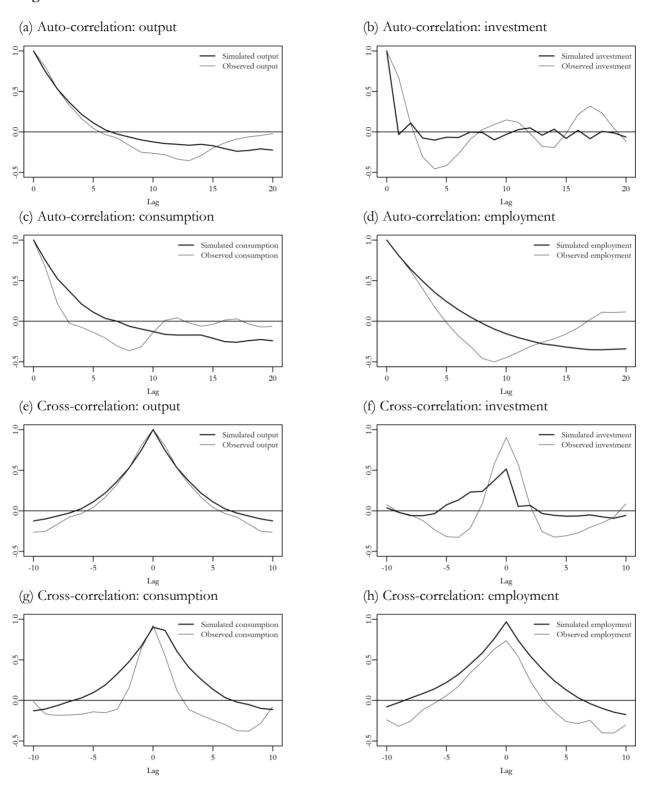
3. Calibration, estimation and validation of the model

We have calibrated and estimated the DEFINE 1.0 model employing global data. Parameter values (a) have been econometrically estimated using panel data, (b) have been directly calibrated using related data, previous studies or reasonable range of values, or (c) have been indirectly calibrated such that the model matches the initial values obtained from the data or generates the baseline scenario. The details are reported in Appendix B and Appendix C.

The model is simulated for the period 2015-2115. The aim of the simulations is to illuminate the long-run trends in the interactions between the financial system and climate change. Hence, no explicit attention is paid to short-run fluctuations and business cycles. Since the model includes some stochastic processes, we perform 200 Monte Carlo simulations and we report the across-run averages.

In the baseline scenario (see Table 5) we assume that the economy grows on average at a rate slightly lower than 2.7% till 2050; in other words, we postulate an economic expansion a little bit lower than the one observed over the last two decades or so. Drawing on the United Nations (2015) population projections (medium fertility variant), the population is assumed to grow at a declining rate, becoming equal to around 9.77bn people in 2050. The improvement in the ecological efficiency indicators is quite modest: for example, the share of renewable energy is increased to about 18% till 2050 (from about 14% which is the current level), while energy intensity is assumed to become approximately 25% lower in 2050 compared to its 2015 level. The

improvement in ecological efficiency is associated with the accumulation of green capital. The cumulative green investment from 2015 to 2050 equals around US\$47tn. We also assume that in the baseline scenario the price index in the conventional bond market remains relatively stable till 2050, while the green bond price index improves in the next decade or so as a result of an increasing demand for green bonds.


Table 5: Baseline scenario

Variable	Value/trend
Economic growth till 2050	slightly lower than 2.7% (on average)
Unemployment rate till 2050	around 6% (on average)
Population in 2050	9.77bn
Labour force-to-population ratio in 2050	0.45
Share of renewable energy in total energy in 2050	around 18%
CO_2 intensity in 2050 as a ratio of CO_2 intensity in 2015	around 0.9
Material intensity in 2050 as a ratio of material intensity in 2015	around 0.9
Energy intensity in 2050 as a ratio of energy intensity in 2015	around 0.75
Recycling rate in 2050 as a ratio of recycling rate in 2015	around 1.4
Default rate till 2050	slightly higher than 4% (on average)
Cumulative green investment till 2050	around US\$47tn
Cumulative conventional investment till 2050	around US\$828tn
Price index of conventional bonds	quite stable till around 2050
Price index of green bonds	increases slightly in the next decade or so

We do not expect that the structure of the time series data in the next decades will necessarily be the same with the structure of past times series. However, it is a useful exercise to compare the auto- and cross-correlation structure of our simulated data with the observed one in order to check whether the model produces data with reasonable time-series properties. This is done in Fig. 1. Figs. 1a-1d show the auto-correlation structure of the cyclical component of the simulated and observed time series for output, consumption, investment and employment up to 20 lags. Figs. 1e-1h show the correlation between the cyclical component of output at time *t* and of output, investment, consumption and employment at time *t-lag*. The series are expressed in logs and the HP filter has been used to isolate the cyclical component. The simulated data refer to the baseline scenario and capture only the period 2015-2050 in order to avoid the significant disturbances to the data structures that are caused by climate change after 2050, when the 2°C threshold is passed.

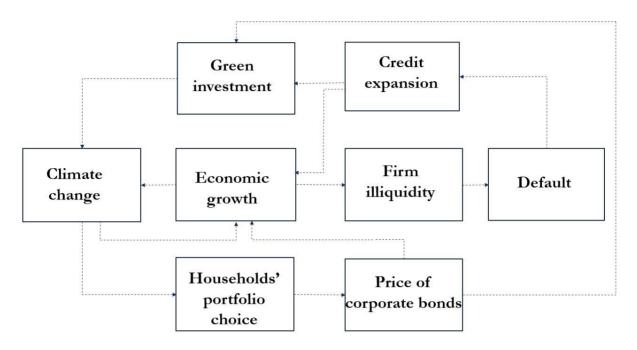
¹¹ For similar validation exercises see Assenza et al. (2015) and Caiani et al. (2016).

Fig. 1: Auto-correlations and cross-correlations of observed and simulated data

Note: The series are expressed in logs and the HP filter has been used to isolate the cyclical component. The data for the observed variables have been taken from World Bank. Real output is available for the period 1960-2016, real consumption and real investment are available for the period 1970-2015 and employment is available for the period 1991-2016.

The auto-correlation structure of our simulated data is similar to the auto-correlation structure of the observed data. This is especially the case for the structure of our simulated output which looks remarkably close to the empirically observed structure. Moreover, simulated investment, consumption and employment appear to be pro-cyclical, in tune with the empirical data, and their peak behaviour resembles the behaviour observed in the real data. These results suggest that our model generates data with empirically reasonable properties.

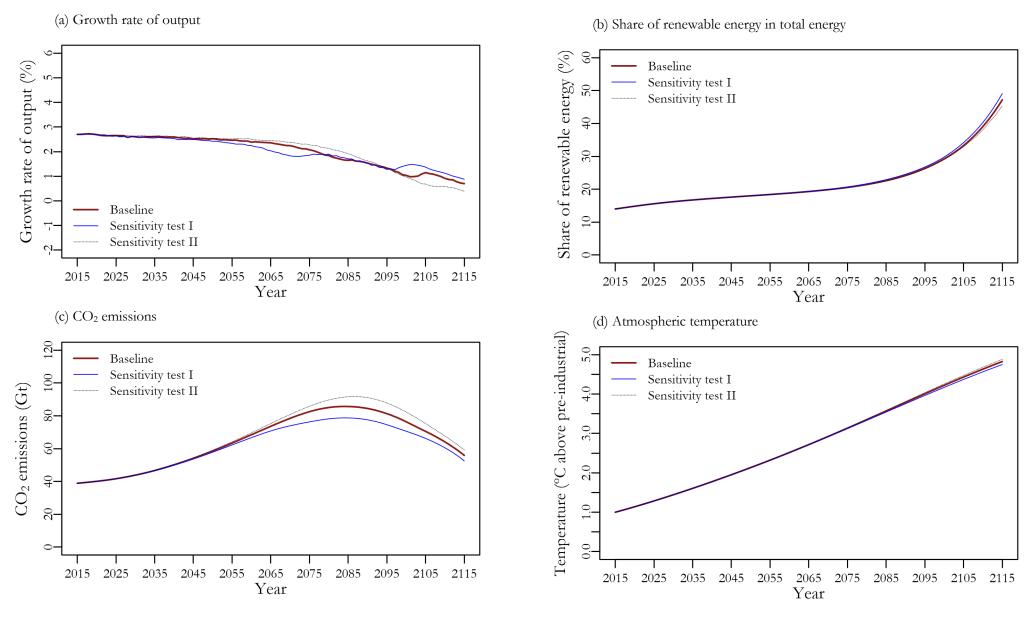
4. Climate change and financial stability

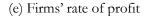

Fig. 2 summarises the main channels through which climate change and financial stability interact. Fig. 3 plots the simulation results. In the baseline scenario CO₂ emissions increase significantly over the next decades (Fig. 3c). This rise is mainly driven both by the exponential increase in output due to positive economic growth (Fig. 3a) and the very slow improvement in energy efficiency and the share of renewable energy in total energy (Fig 3b). Hence, CO₂ concentration in the atmposphere increases, leading to severe global warming: as Fig. 3d indicates, in 2100 temperature becomes about 4.2°C higher than the pre-industrial levels.¹²

The rise in atmospheric temperature leads to climate change damages. Accordingly, the growth rate of output starts declining (Fig. 3a). This slowdown of economic activity becomes more intense after the mid of the 21st century when temperature passes 2°C. Declining economic growth and the descruction of capital harms the profitability of firms (Fig. 3e) and deteriorates their liquidity, which in turn increases their rate of default (Fig. 3f) and thereby increases the bank leverage (Fig. 3g) and decreases the capital adequacy ratio. The overall result is an increase in credit rationing which feeds back into economic growth (Fig. 3a) and the profitability and liquidity of firms, giving rise to a vicious financial cycle. This also slows down the investment in green capital, disrupting the transition to a low-carbon and more ecologically efficient economy. Crucially, at some point in time the capital of banks becomes insufficient to cover the regulatory requirements. Thus, the government sector steps in and bailouts the banks with adverse effects on the public debt-to-output ratio (Fig. 3h).

¹² This increase in temperature in our baseline scenario is broadly in line with the results of key integrated assessment models (see Nordhaus, 2016).

¹³ The impact of climate damages on bank leverage is in line with the empirical evidence reported in Klomp (2014) which shows that natural disasters deteriorate the financial robustness of banks.


Fig. 2: Channels through which climate change and financial stability interact in the model


Climate damages also affect the liquidity preference of households. The destruction of capital and the decline in the profitability of firms induces a reallocation of household financial wealth from corporate bonds towards deposits and government securities, which are deemed much safer. This is shown in Fig. 3i. The result is a decline in the price of corporate conventional bonds in the last decades of our simulation period (Fig. 3j). This is an example of a climate-induced asset price deflation. The price of green corporate bonds also falls in our baseline scenario, after the increase in the first years (Fig. 3k). However, the main reason behind this fall is not the decline in the demand for green bonds from households. This fall is primarily explained by the increase in the supply of green bonds since desired green investment continuously increases in our simulation period (Fig. 3l).

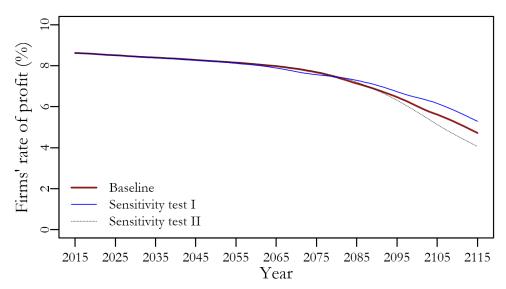
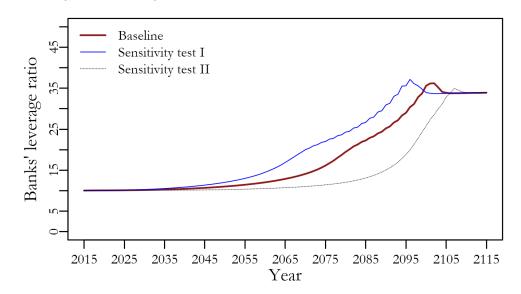
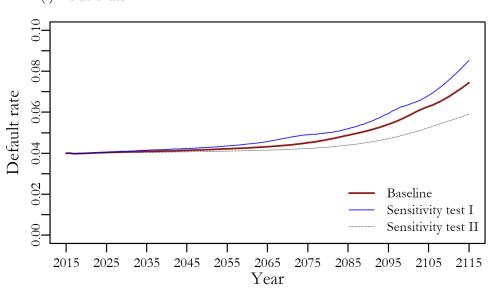
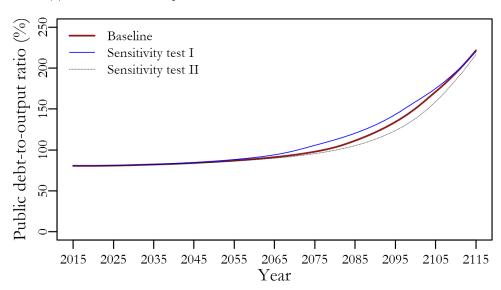

Bond price deflation has negative effects on economic growth because it reduces both the wealth-related consumption and the ability of firms to rely on the bond market in order to fund their desired investment. It also leads to less green investment which affects adversely the improvement in ecological efficiency.

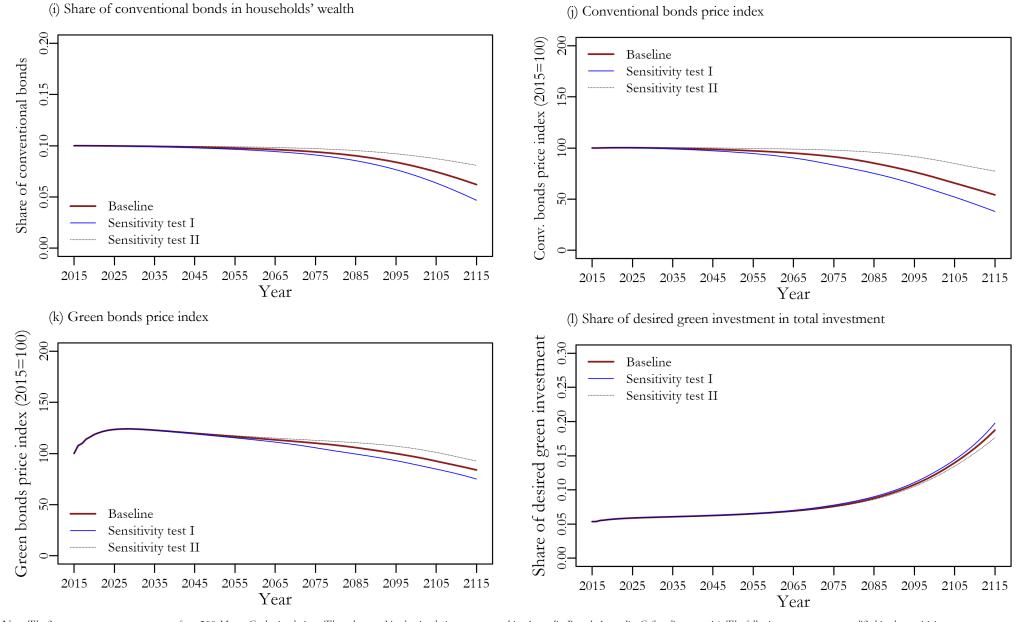
Fig. 3: Evolution of environmental, macroeconomic and financial variables, baseline scenario and sensitivity analysis



(continued from the previous page)




(g) Banks' leverage ratio


(f) Default rate

(h) Public debt-to-output ratio

(continued from the previous page)

Note: The figure reports across-run averages from 200 Monte Carlo simulations. The values used in the simulations are reported in Appendix B and Appendix C (baseline scenario). The following parameters are modified in the sensitivity tests: λ_{10} , λ_{20} , λ_{40} , $\lambda_{$

How does the baseline scenario change when key parameters are modified? Space limitations do not allow us to explore this question in detail. However, we conduct a sensitivity analysis that concentrates on the key parameters that are related to the responsiveness of the financial system to climate damages: (i) the sensitivity of the default rate to the illiquidity ratio; (ii) the sensitivity of credit rationing to the debt service ratio of firms, bank leverage and capital adequacy ratio; (iii) the parameters of the portfolio choice that capture the sensitivity of the liquidity preference of households to the global warming damages. In Sensitivity Test I the values of these parameters are 50% higher compared to the baseline scenario. In Sensitivity Test II they are 50% lower.

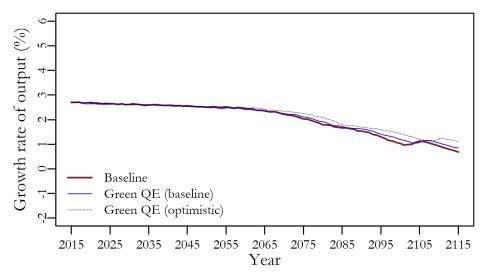
As expected, the default rate increases (decreases) more quickly when its sensitivity to the illiquidity ratio is higher (lower) compared to the baseline (Fig. 3f). The same holds for the bank leverage ratio (Fig. 3g). Also, the price of green corporate bonds declines more rapidly when the portfolio choice of households is more responsive to climate change damages (Fig 3k). Overall, the effects of climate change on financial stability are qualitatively similar but the parameter values affect the severity and the time horizon of the climate-induced financial instability.

5. Effects of a green QE programme

In this section we analyse how our results change when a green QE programme is implemented. We suppose that in 2020 central banks around the globe decide that they will purchase 25% of the outstanding green bonds and they commit themselves that they will keep the same share of the green bond market over the next decades. We also assume that the proportion of conventional corporate bonds held by central banks remains equal to its current level.¹⁴

Experimentation with various parameter values has shown that the parameter that plays a key role in determining the effectiveness of a green QE programme is the sensitivity of the share of desired green investment to the divergence between the green bond yield and the conventional bond yield (β_2) – see Eq. (19). The higher the value of β_2 the more firms' green investment responds to a monetary policy-induced decline in the yield of green bonds. Consequently, in our

¹⁴ We find that the effects of a green QE programme do not differ significantly if we assume that central banks stop holding conventional corporate bonds.


simulations we consider a green QE scenario whereby β_2 is equal to its baseline value and another green QE scenario in which a more optimistic value of β_2 is assumed.

The effects of the green QE programme are portrayed in Fig. 4. As Fig. 4k shows, green QE boosts the price of green corporate bonds. This has various positive implications for climate change and financial stability. Regarding climate change, the resulting reduction in the green bond yield leads to a lower cost of borrowing for firms and a lower reliance on bank lending. This increases overall investment, including green investment. More importantly, since the price of green bonds increases relative to the price of conventional bonds (Figs. 4j and 4k), the share of desired green investment in total investment goes up (Fig. 4l). As firms invest more in green capital, the use of renewable energy increases (Fig. 4b). This leads to lower CO₂ emissions and slower global warming from what would otherwise be the case.

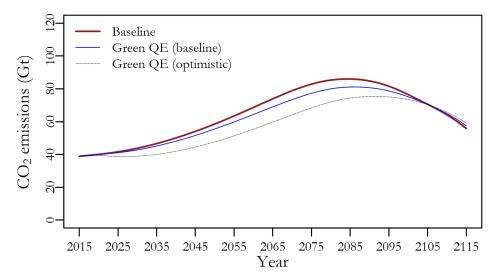
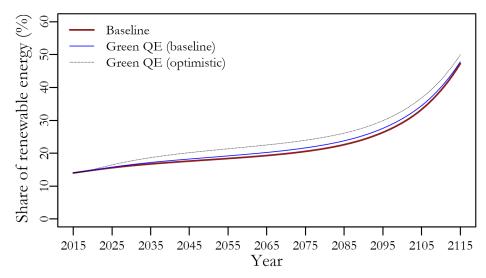
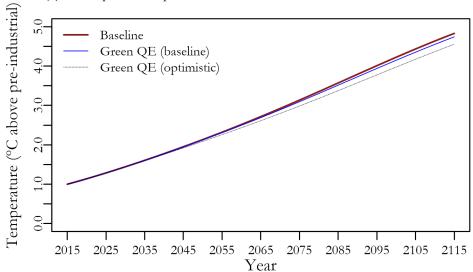
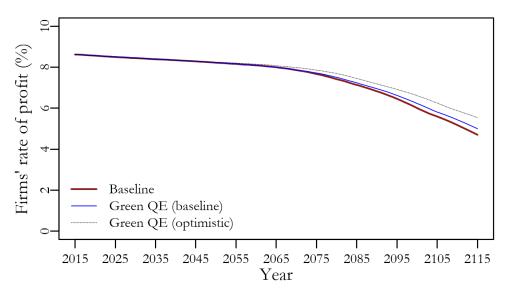

It should, however, be pointed out that in our simulations green QE cannot by itself prevent a substantial rise in atmospheric temperature: even with the optimistic value of β_2 , global warming is not significantly lower than 4°C at the end of the century. There are two key reasons for that. First, the interest rate is just one of the factors that affect green investment. Therefore, a decline in the green bond yield is not sufficient to bring about a substantial rise in green investment. Second, a higher β_2 is conducive to lower damages, allowing economic activity to expand more rapidly in the optimistic green QE scenario (Fig. 4a). This higher economic activity places upward pressures on CO₂ emissions (Fig. 4c).

Fig. 4: Effects of the implementation of a green QE programme


(a) Growth rate of output


(c) CO₂ emissions

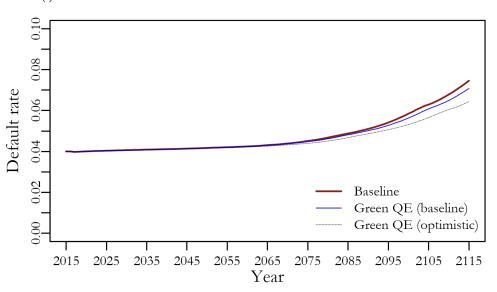
(b) Share of renewable energy in total energy

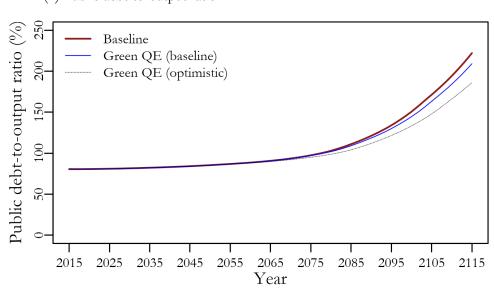


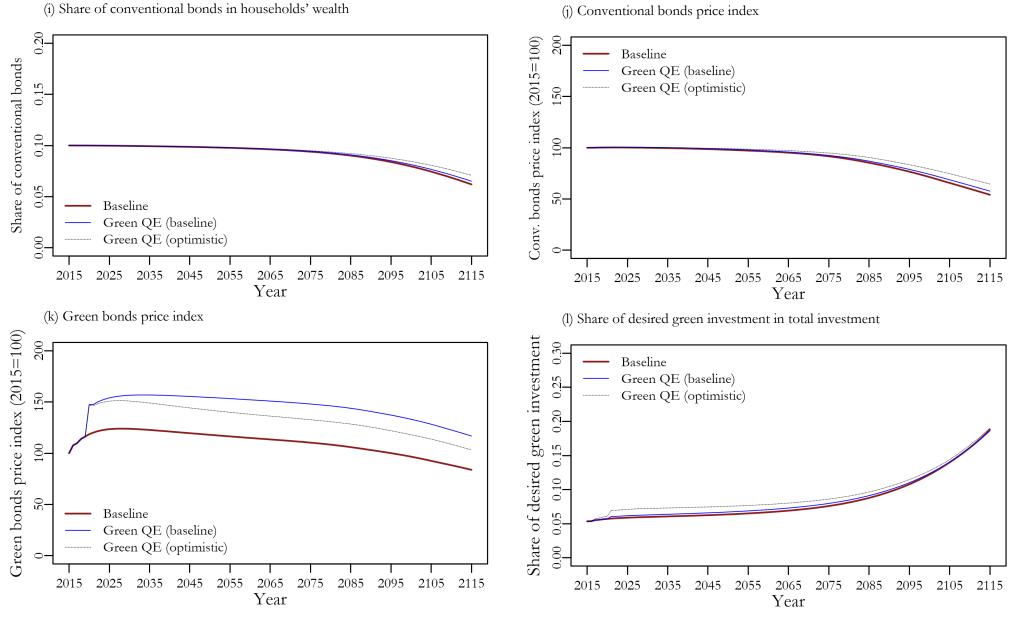
(d) Atmospheric temperature



(continued from the previous page)


(e) Firms' rate of profit


(g) Banks' leverage ratio


(f) Default rate

(h) Public debt-to-output ratio

(continued from the previous page)

Note: The figure reports across-run averages from 200 Monte Carlo simulations. The values used in the simulations are reported in Appendix B and Appendix C (baseline scenario). In Green QE (baseline) the sensitivity of the desired green investment to the divergence between the green bond yield and the conventional bond yield (β_2) is equal to 1. In Green QE (optimistic) we have that $\beta_2 = 5$. The implementation of Green QE starts in 2020. This is captured by an increase in s_6 from 0 to 0.25.

Regarding financial stability, green QE increases firm profitability and reduces the liquidity problems of firms. This makes the default rate and the bank leverage lower compared to the baseline (Figs. 4f and 4g); it also reduces the public debt-to-output ratio (Fig. 4h). These beneficial effects on financial stability stem from (i) the reduction in economic damages as a result of slower global warming and (ii) the lower reliance of firms' green investment on bank lending. A higher value of β_2 reinforces generally the financial stability effects of green QE. However, the rise in the price of green bonds is lower compared to the baseline green QE scenario (Fig. 4k). The reason is that firms issue more green bonds in order to fund their higher desired green investment. For a given demand for green bonds, this tends to reduce the bond price.

6. Conclusion

The fundamental changes that are expected to take place in the climate system in the next decades are likely to have severe implications for the stability of the financial system. The purpose of this article was to analyse these implications by using a stock-flow-fund ecological macroeconomic model. Emphasis was placed on the effects of climate change damages on the financial position of firms and asset price deflation. The model was estimated and calibrated using global data and simulations were conducted for the period 2015-2115.

Our simulation analysis for the interactions between climate change and financial stability produced three key results. First, by destroying the capital of firms and reducing their profitability and liquidity, climate change is likely to increase rate of default of corporate loans that could harm the stability of the banking system. Second, the damages caused by climate change can lead to a portfolio reallocation that can cause a gradual decline in the price of corporate bonds. Third, financial instability might adversely affect credit expansion and the investment in green capital, with adverse feedback effects on climate change. The sensitivity analysis illustrated that these results do not change qualitatively when key parameter values are modified.

The article also investigated how a green QE programme could reduce the risks imposed on the financial system by climate change. The simulation results showed that, by increasing the price of green corporate bonds, the implementation of a green QE programme can reduce climate-induced financial instability and restrict global warming. However, green QE does not turn out to

be by itself capable of preventing a substantial reduction in atmospheric temperature. Even with an optimistic assumption about the sensitivity of green investment to the divergence between the green bond yield and the conventional bond yield, global warming is still severe. Hence, many other types of environmental policies and strategies need to be implemented in conjunction with a green QE programme in order to keep atmospheric temperature close to 2°C and prevent climate-induced financial instability.

References

- Aglietta, M., Espagne, E., 2016. Climate and finance systemic risks, more than an analogy? The climate fragility hypothesis. CEPII Working Paper No. 2016-10.
- Alli Abbas, S.M., Blattner, L., De Broeck, M., El-Ganainy, A., Huet, M., 2014. Sovereign debt composition in advanced economies: a historical perspective. IMF Working Paper No. 14-162.
- Allianz, 2015. Global Wealth Report 2015. Allianz Economic Research, August.
- Anderson, V., 2015. Green Money: Reclaiming Quantitative Easing Money Creation for the Common Good. Green/EFA group in the European Parliament, June.
- Assenza, T., Delli Gatti, D., Grazzini, J., 2015. Emergent dynamics of a macroeconomic agent based model with capital and credit. Journal of Economic Dynamics and Control, 50, 5-28.
- Bank of America Merrill Lynch, 2014. Bond Indices: Global High Grade Profiles. Bond Indices Global, September.
- Barkawi, A., Monnin, P., 2015. Monetary policy and sustainability: the case of Bangladesh. CEP Discussion Note No. 2015/1.
- Barker, T., Dagoumas, A., Rubin, J., 2009. The macroeconomic rebound effect and the world economy. Energy Efficiency, 2, 411-427.
- Batten, S., Sowerbutts, R., Tanaka, M., 2016. Let's talk about the weather: the impact of climate change on central banks. Bank of England Staff Working Paper No. 603.
- Battiston, S., Mandel, A., Monasterolo, I., Schütze, F., Visentin, G., 2017. A climate stress-test of the financial system. Nature Climate Change, 7, 283-288.
- BCBS, 2006. International Convergence of Capital Measurement and Capital Standards: A Revised Framework Comprehensive Version. Bank for International Settlements, June.
- BGR, 2015. Energy Study 2015: Reserves, Resources and Availability of Energy Resources. Federal Institute for Geosciences and Natural Resources (BGR).
- Blecker, R., 2002. Distribution, demand and growth in neo-Kaleckian macro-models, in: Setterfield, M. (ed.), The Economics of Demand-led Growth: Challenging the Supply-Side Vision of the Long Run, Edward Elgar, Cheltenham, UK and Northampton, MA, USA.
- Caiani, A., Godin, A., Caverzasi, E., Gallegati, M., Kinsella, S., Stiglitz, J.E., 2016. Agent based-stock flow consistent macroeconomics: towards a benchmark model. Journal of Economic Dynamics and Control, 69, 375-408.

- Campiglio, E., 2016. Beyond carbon pricing: the role of banking and monetary policy in financing the transition to a low-carbon economy. Ecological Economics, 121, 220-230.
- Carbon Tracker Initiative, 2011. Unburnable Carbon: Are the World's Financial Markets Carrying a Carbon Bubble? London: Investor Watch.
- Climate Bonds Initiative, 2016. Bonds and Climate Change: The State of the Market in 2016. Climate Bonds Initiative in association with HSBC Climate Change Centre of Excellence, July.
- Dafermos, Y., Nikolaidi, M., Galanis, G., 2017. A stock-flow-fund ecological macroeconomic model. Ecological Economics, 131, 191-207.
- Dietz, S., Bowen, A., Dixon, C., Gradwell, P., 2016. 'Climate value at risk' of global financial assets. Nature Climate Change, 6, 676–679.
- EEA, 2012. Material resources and waste 2012 update: the European environment state and outlook 2010. EEA, Copenhagen.
- FTSE Russell, 2016. FTSE Global Bond Index Series.
- Georgescu-Roegen, N., 1971. The Entropy Law and the Economic Process. Harvard University Press, Cambridge, UK.
- Georgescu-Roegen, N., 1979. Energy analysis and economic valuation. Southern Economic Journal, 45 (4), 1023-1058.
- Georgescu-Roegen, N., 1984. Feasible recipes versus viable technologies. Atlantic Economic Journal, 12 (1), 21-31.
- Godley, W., 1999. Money and credit in a Keynesian model of income determination. Cambridge Journal of Economics, 23 (2), 393-411.
- Godley, W., Lavoie, M., 2007. Monetary Economics: An Integrated Approach to Credit, Money, Income, Production and Wealth. Palgrave Macmillan, Basingstoke, UK.
- Haas, W., Krausmann, F., Wiedenhofer, D., Heinz, M., 2015. How circular is the global economy? An assessment of material flows, waste production, and recycling in the European Union and the world in 2005. Journal of Industrial Ecology, 19 (5), 765–777.
- IEA, 2016. World Energy Outlook 2016, International Energy Agency.
- Jakab, J., Kumhof, M., 2015. Banks are not intermediaries of loanable funds and why this matters. Bank of England Working Paper No. 529.
- Johnson, V., 2012. Unburnable Carbon: Rational Investment for Sustainability. The New Economics Foundation, London, UK.
- Kaldor, N., 1940. A model of the trade cycle. Economic Journal, 50 (197), 78-92.

- Klomp, J., 2014. Financial fragility and natural disasters: an empirical analysis. Journal of Financial Stability. 13 (2014), 180-192.
- Lamperti, F., Dosi, G., Napoletano, M., Roventini, A., Sapio, A., 2017. Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-Based Integrated Assessment Model. LEM Working Paper Series.
- Lown, C., Morgan, D.P., 2006. The credit cycle and the business cycle: new findings using the loan officer opinion survey. Journal of Money, Credit, and Banking, 38 (6), 1575-1597.
- Monasterolo, I., Raberto, M., 2018. The EIRIN flow-of-funds behavioural model of green fiscal policies and green sovereign bonds. Ecological Economics, 144, 228-243.
- Matikainen, S., Campiglio, E., Zenghelis, D., 2017. The climate impact of quantitative easing. Policy Paper, Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science.
- Murphy, R., Hines, C., 2010. Green Quantitative Easing: Paying for the Economy we Need. Finance for the Future, Norfolk, December.
- Nordhaus, W., 2016. Projections and uncertainties about climate change in an era of minimal climate policies. Cowles Foundation Discussion Paper No. 2057.
- OECD, 2015. Green Bonds Mobilising the Debt Capital Markets for a Low-carbon Transition. Policy Perspectives, December.
- Plantinga, A., Scholtens, B., 2016. The financial impact of divestment from fossil fuels. 16005-EEF, University of Groningen.
- Rozenberg, J., Hallegatte, S., Perrissin-Fabert, B., Hourcade, J.-C., 2013. Funding low-carbon investments in the absence of a carbon tax. Climate Policy, 13 (1), 134-141.
- Scott, M., van Huizen, J., Jung, C., 2017. The Bank of England's response to climate change. Quarterly Bulletin 2017 Q2, Bank of England.
- Skidmore, M., 2001. Risk, natural disasters, and household savings in a life cycle model. Japan and the World Economy, 13 (2001), 15-34.
- Skott, P., Zipperer, B., 2012. An empirical evaluation of three post-Keynesian models. European Journal of Economics and Economic Policies: Intervention, 9 (2), 277-308.
- United Nations, 2015. World Population Prospects: Key Findings and Advance Tables, United Nations, New York.
- UN Environment Inquiry, 2017. On the Role of Central Banks in Enhancing Green Finance. UN Environment Inquiry into the design of a sustainable financial system, Geneva.

- Werner, R., 2012. Replace bond purchases with solar PV purchases. University of Southampton Management School, Centre for Banking, Finance and Sustainable Development, Policy News, 3 (1), February.
- Weitzman, M.L., 2012. GHG targets as insurance against catastrophic climate damages. Journal of Public Economic Theory, 14 (2), 221-244.

Appendix A

3.1 Ecosystem

3.1.1 Matter, recycling and waste

 $CO2_{LO} = \phi_{23}CO2_{UP-1} + \phi_{33}CO2_{LO-1}$

 $F = F_{2 \times CO2} log_2 \frac{CO2_{AT}}{CO2_{AT-PRE}} + F_{EX}$

 $F_{EX} = F_{EX-1} + fex$

$MY = \mu Y$	(A1)
M = MY - REC	(A2)
$REC = \rho DEM$	(A3)
$DEM = \mu \left(\delta K_{-1} + \xi DC_{-1} \right)$	(A4)
$SES = SES_{-1} + MY - DEM$	(A5)
$W = M + CEN + O2 - EMIS_{IN} - \Delta SES$	(A6)
$CEN = \frac{EMIS_{IN}}{car}$	(A7)
	(4.0)
$O2 = EMIS_{IN} - CEN$	(A8)
$HWS = HWS_{-1} + hazW$	(A9)
$hazrario = \frac{HWS}{POP}$	(A10)
$REV_{M} = REV_{M-1} + CON_{M} - M$	(A11)
$CON_M = con_M RES_{M-1}$	(A12)
$RES_M = RES_{M-1} - CON_M$	(A13)
$dep_{M} = \frac{M}{REV_{M-1}}$	(A14)
3.1.2 Energy	
$E = \varepsilon Y$	(A15)
$ER = \partial E$	(A16)
EN = E - ER	(A17)
ED = EN + ER	(A18)
$REV_E = REV_{E-1} + CON_E - EN$	(A19)
$CON_E = con_E RES_{E-1}$	(A20)
$RES_E = RES_{E-1} - CON_E$	(A21)
$dep_E = \frac{EN}{REV_{E-1}}$	(A22)
3.1.3 Emissions and climate change	
$EMIS_{IN} = \omega EN$	(A23)
$EMIS_L = EMIS_{L-1}(1-lr)$	(A24)
$EMIS = EMIS_{IN} + EMIS_{L}$	(A25)
$CO2_{AT} = EMIS + \phi_{11}CO2_{AT-1} + \phi_{21}CO2_{UP-1}$	(A26)
$CO2_{UP} = \phi_{12}CO2_{AT-1} + \phi_{22}CO2_{UP-1} + \phi_{32}CO2_{LO-1}$	(A27)

(A28)

(A29)

(A30)

$$T_{AT} = T_{AT-1} + t_1 \left(F - \frac{F_{2 \times CO2}}{S} T_{AT-1} - t_2 (T_{AT-1} - T_{LO-1}) \right)$$
(A31)

$$T_{LO} = T_{LO-1} + t_3 (T_{AT-1} - T_{LO-1}) \tag{A32}$$

3.1.4 Ecological efficiency and technology

$$\omega = \omega_{-1}(1 + g_{\omega}) \tag{A33}$$

$$g_{\omega} = g_{\omega - 1}(1 - \zeta_1) \tag{A34}$$

$$\mu = \mu^{max} - \frac{\mu^{max} - \mu^{min}}{1 + \pi_1 e^{-\pi_2(K_G/K_C)}}$$
(A35)

$$\rho = \frac{\rho^{max}}{1 + \pi_3 e^{-\pi_4 (K_G / K_C)}} \tag{A36}$$

$$\varepsilon = \varepsilon^{max} - \frac{\varepsilon^{max} - \varepsilon^{min}}{1 + \pi_5 e^{-\pi_6 (K_G/K_C)}} \tag{A37}$$

$$\theta = \frac{1}{1 + \pi_7 e^{-\pi_8(K_G/K_C)}} \tag{A38}$$

3.2 Macroeconomy and financial system

3.2.1 Output determination and damages

$$Y_M^* = \frac{REV_{M-1} + REC}{\mu} \tag{A39}$$

$$Y_E^* = \frac{REV_{E-1}}{(1-\theta)\varepsilon} \tag{A40}$$

$$Y_K^* = \nu K \tag{A41}$$

$$Y_N^* = \lambda h L F \tag{A42}$$

$$Y^* = \min(Y_M^*, Y_E^*, Y_K^*, Y_N^*) \tag{A43}$$

$$Y = C + I + G \tag{A44}$$

$$um = \frac{Y}{Y_M^*} \tag{A45}$$

$$ue = \frac{Y}{Y_E^*} \tag{A46}$$

$$u = \frac{Y}{Y_K^*} \tag{A47}$$

$$re = \frac{Y}{Y_N^*} \tag{A48}$$

$$D_T = 1 - \frac{1}{1 + \eta_1 T_{AT} + \eta_2 T_{AT}^2 + \eta_3 T_{AT}^{6.754}}$$
(A49)

$$D_{TP} = pD_T \tag{A50}$$

$$D_{TF} = 1 - \frac{1 - D_T}{1 - D_{TP}} \tag{A51}$$

3.2.2 Firms

$$TP_{G} = Y - wN - \text{int}_{C} L_{C-1} - \text{int}_{G} L_{G-1} - \delta K_{-1} - coupon_{C} b_{C-1} - coupon_{C} b_{G-1}$$
(A52)

$$TP = TP_G - T_F$$

$$RP = s_F TP_A$$

$$QA54$$

$$DP = TP = RP$$

$$A (A55)$$

$$P = \frac{RP}{K}$$

$$(A56)$$

$$P = \frac{a_{00}}{(1 + exp(a_{01} - a_1u_A - a_2r_A + a_3g_{x-1} + a_4ur_1^{n_{00}} + a_{x_1}(0.5 - ue_A)^{n_{00}} + a_{x_1}(0.5 - um_A)^{n_{00}})^{K_A + E_F} K_A + \delta K_A} (15 - D_{r-1})^{(15 - D_{r-1})} (15 - D_{r-1})^{(15 - D_{r-1})} (15 - D_{r-1})^{n_{00}} (15 - ue_A)^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} (15 - ue_A)^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} (15 - ue_A)^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + \delta K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + E_F K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + E_F K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + E_F K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + E_F K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + E_F K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + E_F K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + E_F K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A + E_F K_A} (15 - D_{r-1})^{n_{00}} K_A + E_F K_A} (15 - D_{r-1})^{n_$$

(A118)

 $BP_D = BP - BP_U$

$$HPM = h_1D$$

$$SEC_B = h_2D$$

$$A = A_{-1} + APPM + AL_G + AL_C + ASEC_B + DL - AD - BR_U - BAILOUT$$

$$CR_C = \frac{CR^{max}}{1 + r_0 \exp[r_1 - r_2 dsr_{-1} - r_3([ev_{B-1} - lev_B^{max})] + r_4(CAR_{-1} - CAR^{min})]} + \varepsilon_{CR}$$

$$CR_G = \frac{CR^{max}}{1 + l_0 \exp[r_1 - r_2 dsr_{-1} - l_3([ev_{B-1} - lev_B^{max})] + l_4(CAR_{-1} - CAR^{min})]} + \varepsilon_{CR}$$

$$L_C = L_{C-1} + (1 - CR_C)NL_C^D - repL_{C-1} - depL_{C-1}$$

$$L_G = L_G - 1 + (1 - CR_C)NL_C^D - repL_{G-1} - depL_{G-1}$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_{G-1} - depL_{G-1}$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_{G-1} - depL_{G-1}$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_{G-1}$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_C = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1 - depL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - repL_G - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L_G - 1 + (1 - CR_C)NL_G^D - 1$$

$$L_G = L$$

 $SEC_{CB} = SEC_{CB-1} + \Delta HPM - \Delta A - p_C \Delta b_{CCB} - p_G \Delta b_{GGB}$

(A139-red)

Appendix B. Initial values for endogenous variables

Symbol	Description	Value	Remarks/sources
A	Advances (trillion US\$)	6.5	Calculated from the identity $K_B = L_C + L_G + HPM + SEC_B - A - D$ using the initial
			values of K_B , L_C , L_G , HPM , SEC_B and D
В	Value of total corporate bonds (trillion US\$)	12.0	Based on OECD (2015, p. 3); we use the figure for the debt securities issued by
			non-financial corporations
3AILOUT	Bailout funds provided to the banking system from the government sector	0	No bailout is assumed in 2015 since $lev_B < lev_B^{max}$ and $CAR > CAR^{min}$
s_c	Value of conventional corporate bonds (trillion US\$)	11.7	Calculated from Eq. (A93) using the initial values of B and B_G
C	Number of conventional bonds (trillions)	0.117	Calculated from Eq. (A91) using the initial values of p_C and B_C
CCB	Value of conventional corporate bonds held by central banks (trillion US\$)	0.1	Based on the recent holdings of central banks as part of their corporate sector
	Number of conventional corporate bonds held by central banks (trillions)	0.001	purchase programmes Calculated from Eq. (A136) using the initial values of p_C and B_{CCB}
CCB CH	Value of conventional corporate bonds held by households (trillion US\$)	11.6	Calculated from Eq. (A89) using the initial values of B_{CCB} and B_{CC}
CH CH	Number of conventional corporate bonds held by households (trillions)	0.1	Calculated from Eq. (A108) using the initial values of p_C and B_{CH}
G G	Value of green corporate bonds (trillion US\$)	0.3	Based on Climate Bonds Initiative (2016); we estimate the value of bonds held by
~			the non-financial corporate sector using the outstanding value of both labelled and unlabelled green/climate-alligned bonds
G	Number of green corporate bonds (trillions)	0.003	Calculated from Eq. (A92) using the initial values of p_G and B_G
G GCB	Value of green corporate bonds held by central banks (trillion US\$)	0	There was no green QE programme in 2015
GCB GCB	Number of green corporate bonds held by central banks (trillions)	0	Calculated from Eq. (A137) using the initial values of p_G and B_{GCB}
GH	Value of green corporate bonds held by households (trillion US\$)	0.30	Calculated from Eq. (A90) using the initial values of B_G and B_{GCB}
GH	Number of green corporate bonds held by households (trillions)	0.0030	Calculated from Eq. (A109) using the initial values of p_G and B_{GH}
P 	Profits of banks (trillion US\$)	2.84	Calculated from Eq. (A115) using the initial values of L_C , L_G , SEC_B , D and A
P_D	Distributed profits of banks (trillion US\$)	0.48	Calculated from Eq. (A118) using the initial values of BP and BP _U
P_U	Retained profits of banks (trillion US\$)	2.37	Calculated from Eq. (A117) using the initial value of BP
ΑR	Consumption (trillion US\$) Capital adequacy ratio	48.0 0.1	Calculated from Eq. (A44) using the initial values of Y, G and I
BP	Central banks' profits (trillion US\$)	0.2	Calculated from Eq. (A127) using the initial values of K_B , L_C , L_G and SEC_B Calculated from Eq. (A133) using the initial values of b_{CCB} , b_{GCB} , A and SEC_{CB}
EN	Carbon mass of the non-renewable energy sources (Gt)	9.9	Calculated from Eq. (A7) using the initial value of $EMIS_{IN}$
$O2_{AT}$	Atmospheric CO ₂ concentration (Gt)	3120	Taken from NOAA/ESRL (National Oceanic & Atmospheric
		1686.8	Administration/Earth System Research Laboratory) Based on the DICE-2016R model (Nordhaus, 2016); Gt of carbon have been
$O2_{LO}$	Lower ocean CO ₂ concentration (Gt)	1000.0	transformed into Gt of CO ₂
$O2_{\mathit{UP}}$	Upper ocean/biosphere CO ₂ concentration (Gt)	6380.6	Based on the DICE-2016R model (Nordhaus, 2016); Gt of carbon have been
03.1	Amount of non-noncomble annual recognized into non-noncomble	1626.0	transformed into Gt of CO ₂
ON_E	Amount of non-renewable energy resources converted into non-renewable energy reserves (EJ)	1626.0	Calculated from Eq. (A20) using the initial value of RES_E
ON_M	Amount of material resources converted into material reserves (Gt)	194	Calculated from Eq. (A12) using the initial value of RES_M
R_C	Degree of credit rationing for conventional loans	0.2	Calculated from Eq. (A122) using the initial values of dsr , lev_B and CAR
\mathbb{R}_G	Degree of credit rationing for green loans	0.3	Calculated from Eq. (A123) using the initial values of dsr, lev _B and CAR
	Deposits (trillion US\$)	66.0	Based on Allianz (2015)
C	Stock of durable consumption goods (trillion US\$)	1256	Calculated from Eq. (A4) using the initial values of K, DEM, δ and μ
f	Rate of default	0.040	Based on World Bank
EM	Demolished/discarded socio-economic stock (Gt)	17.0	Based on Haas et al. (2015)
b_E	Energy depletion ratio	0.013	Calculated from Eq. (A22) using the initial values of EN and REV_E
p_M L	Matter depletion ratio Amount of defaulted loans (trillion US\$)	0.008 2.2	Selected from a reasonable range of values Calculated from Eq. (A94) using the initial values of L and def
P	Distributed profits of firms (trillion US\$)	17.2	Calculated from Eq. (A55) using the initial values of TP and RP
r	Debt service ratio	0.41	. , , ,
			Calculated from Eq. (A97) using the initial values of L_C , L_G , b_C , b_G , TP , p_C and
		0.0020	
T	Total proportional damage caused by global warming	0.0028	Calculated from Eq. (A49) using the initial value of T_{AT}
TF TP	Part of damage that affects directly the fund-service resources Part of damage that reduces the productivities of fund-service resources	0.0026 0.0003	Calculated from Eq. (A51) using the initial values of D_T and D_{TP} Calculated from Eq. (A50) using the initial value of D_T
TP	Energy used for the production of output (E])	580.0	Based on IEA (International Energy Agency); total primary energy supply is used
D	Dissipated energy (EJ)	580.0	Calculated from Eq. (A18) using the initial values of EN and ER
MIS	Total CO ₂ emissions (Gt)	38.9	Calculated from Eq. (A25) using the initial values of $EMIS_{IN}$ and $EMIS_{L}$
MIS_{IN}	Industrial CO ₂ emissions (Gt)	36.3	Taken from CDIAC (Carbon Dioxide Information Analysis Center)
MIS_L	Land-use CO ₂ emissions (Gt)	2.6	Taken from the DICE-2016R model (Nordhaus, 2016)
N	Energy produced from non-renewable sources (EJ)	498.8	Calculated from Eq. (A17) using the initial values of E and ER
R	Energy produced from renewable sources (EJ)	81.2	Calculated from Eq. (A16) using the initial values of θ and E
EX	Radiative forcing over pre-industrial levels (W/m^2) Radiative forcing, over pre-industrial levels, due to non-CO ₂ greenhouse gases	2.46 0.50	Calculated from Eq. (A29) using the initial values of $CO2_{AT}$ and F_{EX} Based on the DICE-2016R model (Nordhaus, 2016)
	(W/m^2)		
	Government expenditures (trillion US\$)	11.6	Calculated from Eq. (A129) using the initial value of Y
POP	Growth rate of population	0.012	Taken from United Nations (medium fertility variant)
x20	Growth rate of the autonomous proportion of desired green investment funded via bonds	0.040	Calibrated such that the model generates the baseline scenario
ВО	Growth rate of the autonomous share of green investment in total investment	0.004	Calibrated such that the model generates the baseline scenario

Symbol	Description	Value	Remarks/sources
gλ	Growth rate of labour productivity	0.016	Calculated from Eq. (A75) using the initial values of g_Y and σ_θ
<i>д</i> 130	Growth rate of the households' portoflio choice parameter related to the autonomous demand for green bonds	0.040	Calibrated such that the model generates the baseline scenario
gω	Growth rate of CO ₂ intensity	-0.005	Calibrated such that the model generates the baseline scenario
bazratio	Hazardous waste accumulation ratio (tonnes per person)	1.90	Calculated from Eq. (A10) using the initial values of HWS and POP
HPM	High-powered money	13.20	Calculated from Eq. (A119) using the initial value of D
HWS	Stock of hazardous waste (Gt)	14.0	Calculated assuming a constant ratio of hazardous waste to GDP since 1960
I	Total investment (trillion US\$)	14.6	Calibrated such that the model generates the baseline scenario
I_C	Conventional investment (trillion US\$)	13.9	Calculated from Eq. (A67) using the initial values of I and I_G
I_C^D	Desired conventional investment (trillion US\$)	16.1	Calculated from the identity $I_C^{\ D} = I^D - I_G^{\ D}$; we use the initial values of I^D and $I_G^{\ D}$
I^D	Desired total investment (trillion US\$)	17.0	Calibrated such that the model generates the baseline scenario
I_G	Green investment (trillion US\$)	0.7	Based on IEA (2016); we use a higher value than the one reported in IEA (2016)
			since green investment in our model is not confined to investment in energy efficiency and renewables (it also includes investment in recyclicing and material efficiency)
I_G^D	Desired green investment (trillion US\$)	0.9	Calculated such that it is reasonably higher than I_G
illiq	Illiquidity ratio	0.72	Calculated from Eq. (A96) using the initial values of L_C , L_G , b_C , b_G , w , N , T_F , δ ,
	inqually factor	0.72	$K, Y, CR_C, NL_C^D, CR_G, NL_G^D, p_C$ and p_G
K	Total capital stock of firms (trillion US\$)	222.6	Calculated from the identity $K = (K/Y)*Y$ using the initial value of Y and assuming
			that $K/Y=3$ (based on Penn World Table 9.0)
K_B	Capital of banks (trillion US\$)	8.0	Calculated from Eq. (A126) using the initial values of lev_B , L_C , L_G , SEC_B and HPM
K_C	Conventional capital stock (trillion US\$)	214.2	Calculated from Eq. (A71) using the initial values of K and K_G
K_G	Green capital stock (trillion US\$)	8.4	Calculated from Eq. (A72) using the initial values of K and \varkappa
L	Total loans of firms (trillion US\$)	55.4	Calculated from the identity $L = (redit - B/Y)^*Y$; $credit$ is the credit to the non-financial corporations in percent of GDP taken from BIS (Bank for International Settlements); it is assumed that $credit$ includes both loans and bonds
L_C	Conventional loans (trillion US\$)	53.3	Calculated from Eq. (A68) using the initial values of L and L_G
L_G	Green loans (trillion US\$)	2.1	Calculated by assuming that $L_G/L=K_G/K=\varkappa$; we use the initial values of \varkappa and L
lev _B	Banks' leverage ratio	10.0	Taken from World Bank
LF	Labour force (billion people)	3.40	Taken from World Bank
	Autonomous labour force-to-population ratio	0.465	Calculated from Eq. (A113) using the initial values of LF, POP, hazratio and D_{TF}
Y ₁			
M	Extraction of new matter from the ground, excluding the matter included in non-renewable energy sources (Gt)	48.0	Based on the data provided by www.materialflows.net; the figure includes industrial and construction minerals plus ores
MY	Output in material terms (Gt)	53.1	Calculated from Eq. (A2) using the initial values of M and REC
N	Number of employees (billion people)	3.2	Calculated from the definition of the rate of employment ($re=N/LF$) using the initial values of re and LF
NL_C^D	Desired new amount of conventional loans (trillion US\$)	10.7	Calculated from Eq. (A64) using the initial values of $I_C^{\ D}$, β , RP, L_C , δ , K_C , p_C , and b_C
NL_G^D	Desired new amount of green loans (trillion US\$)	0.7	Calculated from Eq. (A63) using the initial values of I_G^D , β , RP , L_G , δ , K_G , p_G and b_G
O2	Oxygen used for the combustion of fossil fuels (Gt)	26.4	Calculated from Eq. (A8) using the initial values of $EMIS_{IN}$ and CEN
b _C	Price of conventional corporate bonds (US\$)	100	The price has been normalised such that it is equal to 100 in 2015
b_G	Price of green corporate bonds (US\$)	100	The price has been normalised such that it is equal to 100 in 2015
POP	Population (billions)	7.35	Taken from United Nations (medium fertility variant)
	Rate of retained profits	0.009	Calculated from Eq. (A56) using the initial values of RP and K
re	Rate of employment	0.94	Calculated from Eq. (A80) using the initial value of <i>w</i>
REC	Recycled socio-economic stock (Gt)	5.1	Calculated from Eq. (A3) using the initial values of ρ and DEM
RES _E	Non-renewable energy resources (EJ)	542000	Based on BGR (2015, p. 33)
RES_M	Material resources (Gt)	388889	Calculated by assuming RES_M/REV_M =64.8 (based on UNEP, 2011)
REV_E	Non-renewable energy reserves (EJ)	37000	Based on BGR (2015, p. 33)
REV_{M}	Material reserves (Gt)	6000	Calculated from Eq. (A14) using the initial values of M and dep_M
RP	Retained profits of firms (trillion US\$)	2.0	Calculated from Eq. (A54) using the initial value of TP
SEC	Total amount of government securities	59.8	Calculated from the identity general government debt-to-GDP= SEC/Y using the initial value of Y and the value of the general government debt-to-GDP ratio (taken from IMF)
SEC_B	Government securities held by banks (trillion US\$)	12.0	Calculated by assuming that SEC_B/SEC =0.2 based on Alli Abbas et al. (2014)
SEC_{CB}	Government securities held by central banks (trillion US\$)	6.6	Calculated from the identity $SEC_{CB} = HPM + V_{CB} - p_C b_{CCB} - p_G b_{GCB} - A$ using the
an c			initial values of V_{CB} , p_C , b_{CCB} , p_G , b_{GCB} , A and HPM
SEC _H SES	Government securities held by households (trillion US\$) Socio-economic stock (Gt)	41.3 1058.5	Calculated from Eq. (A138) using the initial values of SEC , SEC_{CB} and SEC_B Calculated from the identity $SES = \mu(K + DC)$ using the initial values of μ , K and
			DC
sb_L	Share of loans in total firm liabilities	0.82	Calculated from the formula $\mathfrak{S}_L = L/(L+B)$ using the initial values of L and B
T	Total taxes (trillion US\$)	10.5	Calculated from Eq. (A132) using the initial values of T_H and T_F

Symbol	Description	Value	Remarks/sources
T_{AT}	Atmospheric temperature over pre-industrial levels (°C)	1.0	Based on Met Office
T_F	Taxes on firms' profits (trillion US\$)	3.3	Calculated from Eq. (A131) using the initial value of TP _G
T_H	Taxes on households' disposable income	7.2	Calculated from Eq. (A130) using the initial value Y_H
T_{LO}	Lower ocean temperature over pre-industrial levels (°C)	0.0068	Taken from the DICE-2016R model (Nordhaus, 2016)
TP	Total profits of firms (trillion US\$)	19.2	Calculated from Eq. (A53) using the initial values of TP_G and T_F
TP_G	Total gross profits of firms (trillion US\$)	22.5	Calculated from Eq. (A52) using the initial values of Y , w , N , L_C , L_G , δ , K , b_C and b_C
и	Rate of capacity utilisation	0.72	Based on World Bank, Enterprise Surveys
ие	Rate of energy utilisation	0.72	Calculated from Eq. (A46) using the initial values of Y and Y_E^*
um	Rate of matter utilisation	0.01	Calculated from Eq. (A45) using the initial values of Y and Y_M^*
ur	Unemployment rate	0.06	Based on World Bank
**	Capital productivity	0.46	Calculated from Eqs. (A41) and (A47) using the initial values of Y , u and K
V_{CB}			It is assumed that there are no accumulated capital gains for the central banks
-	Wealth of central banks (trillion US\$)	0	1 0
V_{HF}	Financial wealth of households (trillion US\$)	119.2	Calculated from the identity $V_{HF} = D + p_C b_{CH} + p_G b_{GH} + SEC_H$ using the initial
			values of SEC_H , p_C , b_{CH} , p_G , b_{GH} and D
w	Annual wage rate (trillion US\$/billions of employees)	12.07	Calculated from Eq. (A78) using the initial value of λ
W	Waste (Gt)	11.90	Calculated from the identity $W=DEM-REC$ using the initial values of DEM and REC
x_1	Proportion of desired conventional investment funded via bonds	0.02	Calibrated such that the model generates the baseline scenario
x_2	Proportion of desired green investment funded via bonds	0.01	Calibrated such that the model generates the baseline scenario
x_{20}	Autonomous proportion of desired green investment funded via bonds	0.01	Calculated from Eq. (A84) using the initial values of yield $_G$ and x_2
Y	Output (trillion US\$)	74.2	Taken from IMF, World Economic Outlook (current prices)
Y^*	Potential output (trillion US\$)	78.9	Calculated from Eq. (A43) using the initial values of Y_M^* , Y_E^* , Y_K^* and Y_N^*
Y_E^*	Energy-determined potential output (trillion US\$)	5504.0	Calculated from Eq. (A40) using the initial values of REV $_E$, θ and ε
Y_H	Disposable income of households (trillion US\$)	51.1	Calculated from Eq. (A99) using the initial values of Y_{HG} and T_{H}
Y_{HG}	Gross disposable income of households (trillion US\$)	58.3	Calculated from Eq. (A98) using the initial values of w , N , DP , BP_D , D , SEC_H ,
			b_{CH} and b_{GH}
yield $_C$	Yield on conventional corporate bonds	0.05	Based on FTSE Russell (2016)
yield _G	Yield on green corporate bonds	0.05	Based on FTSE Russell (2016)
Y_K^*	Capital-determined potential output (trillion US\$)	103.1	Calculated from Eq. (A41) using the initial values of v and K
Y_{M}^{*}	Matter-determined potential output (trillion US\$)	8391.3	Calculated from Eq. (A39) using the initial values of REV_M , REC and μ
Y_N^*	Labour-determined potential output (trillion US\$)	78.9	Calculated from Eq. (A42) using the initial values of λ and LF
β	Share of desired green investment in total investment	0.05	Calculated from Eq. (58) using the initial values of I_G^D and I^D
β_0	Autonomous share of desired green investment in total investment	0.05	Calculated from Eq. (60) using the initial values of β , sh_L , $yield_G$, $yield_C$ and D_T
δ	Depreciation rate of capital stock	0.04	Calculated from Eq. (A73) using the initial value D_{TF}
ε	Energy intensity (EJ/trillion US\$)	7.82	Calculated from the definition of energy intensity (ε = E/Y) using the initial values of E and Y
θ	Share of renewable energy in total energy	0.14	Based on IEA (International Energy Agency); total primary energy supply is used
ж	Ratio of green capital to total capital	0.04	Selected such that it is reasonably lower than I_G/I
λ	Hourly labour productivity (trillion US\$/(billions of employees*annual hours worked per employee))	0.01	Calculated from Eq. (A79) using the initial values of Y and N
λ_{30}	Households' portoflio choice parameter related to the autonomous demand	0.01	Calculated from Eq. (A104) using the initial values of B_{GH} , V_{HF} , D_T , yield C_G , yield C_G
·~30	for green bonds	****	calculated from Eq. (A104) using the findal values of D_{GH} , V_{HF} , D_{T} , yield G and Y_H
μ	Material intensity (kg/\$)	0.72	Calculated from the definition of material intensity $(\mu = MY/Y)$ using the initial values of MY and Y
e	Recycling rate	0.30	Based on Haas et al. (2015)
σ_0	Autonomous growth rate of labour productivity	-0.02	Calibrated such that the model generates the baseline scenario
ω	CO ₂ intensity (Gt/E])	0.07	Calculated from Eq. (A23) using the initial values of EMIS IN and EN

Appendix C. Values for parameters and exogenous variables (baseline scenario)

Symbol	Description	Value	Remarks/sources
ad_K	Fraction of gross damages to capital stock avoided through adaptation	0.80	Selected from a reasonable range of values
ad_{LF}	Fraction of gross damages to labour force avoided through adaptation	0.70	Selected from a reasonable range of values
ad_P	Fraction of gross damages to productivity avoided through adaptation	0.90	Selected from a reasonable range of values
c 1	Propensity to consume out of disposable income	0.73	Calibrated such that the model generates the baseline scenario
c_2	Propensity to consume out of financial wealth	0.10	Empirically estimated using data for a panel of countries (the econometric estimations are available upon request)
car	Coefficient for the conversion of Gt of carbon into Gt of CO2	3.67	Taken from CDIAC (Carbon Dioxide Information Analysis Center)
CAR^{min}	Minimum capital adequacy ratio	0.08	Based on the Basel III regulatory framework
$CO2_{AT-PRE}$	Pre-industrial CO ₂ concentration in atmosphere (Gt)	2156.2	Taken from DICE-2016R model (Nordhaus, 2016); Gt of carbon have been
CO2 _{LO-PRE}	Pre-industrial CO ₂ concentration in upper ocean/biosphere (Gt)	6307.2	transformed into Gt of ${\rm CO_2}$ Taken from DICE-2016R model (Nordhaus, 2016); Gt of carbon have been
CO2 LIP. PRE	Pre-industrial CO ₂ concentration in lower ocean (Gt)	1320.1	transformed into Gt of $\rm CO_2$ Taken from DICE-2016R model (Nordhaus, 2016); Gt of carbon have been
011142	2		transformed into Gt of CO ₂
con_E	Conversion rate of non-renewable energy resources into reserves	0.003	Selected from a reasonable range of values
con_M	Conversion rate of material resources into reserves	0.0005	Selected from a reasonable range of values
coupon _C	Fixed coupon paid per conventional corporate bond (US\$)	5	Calculated from Eq. (A87) using the initial values of p _C and yield _C
coupon _G	Fixed coupon paid per green corporate bond (US\$)	5	Calculated from Eq. (A88) using the initial values of p _G and yield _G
CR max	Maximum degree of credit rationing	0.5	Selected from a reasonable range of values
def max	Maximum default rate of loans	0.2	Selected from a reasonable range of values
def ₀	Parameter of the default rate function	4.00	Calculated from Eq. (A95) using the initial value of illiq
def 1	Parameter of the default rate function	5.65	Calibrated such that the model generates the baseline scenario
def 2	Parameter of the default rate function (related to the sensitivity of the default	7.81	Selected from a reasonable range of values
	rate to the illiquidity ratio of firms)	2.7	THE COLUMN THAT IS SOLO
F_{2xCO2}	Increase in radiative forcing (since the pre-industrial period) due to doubling of CO ₂ concentration from pre-industrial levels (W/m ²)	3./	Taken from the DICE-2016R model (Nordhaus, 2016)
fex	Annual increase in radiative forcing (since the pre-industrial period) due to non-	0.006	Based on the DICE-2016R model (Nordhaus, 2016)
	CO_2 agents (W/m^2)		
gov	Share of government expenditures in output	0.16	Based on World Bank; the figure includes only the consumption government expenditures
h	Annual working hours per employee	1800	Based on Penn World Table 9.0
b_1	Banks' reserve ratio	0.2	Based on World Bank
b_2	Banks' government securities-to-deposits ratio	0.18	Calculated from Eq. (A120) using the initial values of SEC _B and D
haz	Proportion of hazardous waste in total waste	0.04	EEA (2012, p. 22) reports a figure equal to 3.7% for EU-27
int_A	Interest rate on advances	0.02	Based on Global Interest Rate Monitor
int _C	Interest rate on conventional loans	0.07	Based on World Bank
int _D	Interest rate on deposits	0.015	Based on World Bank
int G	Interest rate on green loans	0.08	Based on World Bank; it is assumed that int_G -int $_C$ =0.01
int _S	Interest rate on government securities	0.012	Based on Bank of America Merrill Lynch (2014)
l_0	Parameter of the function of credit rationing on green loans	0.67	Calculated from Eq. (A123) using the initial values of dsr, CAR and lev B
l_1	Parameter of the function of credit rationing on green loans	-0.24	Calibrated such that the model generates the baseline scenario
l_2	Parameter of the function of credit rationing on green loans (related to the sensitivity of credit rationing to the default rate)	2.08	Selected from a reasonable range of values
l_3	Parameter of the function of credit ratioing on green loans (related to the sensitivity of credit rationing to the leverage ratio of banks)	0.04	Selected from a reasonable range of values
l_4	Parameter of the function of credit ratioing on green loans (related to the	2.08	Selected from a reasonable range of values
	sensitivity of credit rationing to the capital adequacy ratio of banks)		
lev B max	Maximum leverage ratio	33.33	Based on the Basel III regulatory framework (the Basel III bank leverage can be proxied by the capital-to-assets ratio and its minimum value is 3% ; since in our model the bank leverage is defined as the assets-to-capital ratio, the maxium value used is equal to $1/0.03$)
If_2	Sensitivity of the labour force-to-population ratio to hazardous waste	0.001	Selected from a reasonable range of values
lr	Rate of decline of land-use CO_2 emissions	0.024	Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect a 1-year time step
p	Share of productivity damage in total damage caused by global warming	0.1	Selected from a reasonable range of values
r_0	Parameter of the function of credit rationing on conventional loans	1.50	Calculated from Eq. (A122) using the initial values of dsr, CAR and lev B
r_1	Parameter of the function of credit rationing on conventional loans	-0.24	Calibrated such that the model generates the baseline scenario
r_2	Parameter of the function of credit rationing on conventional loans (related to the sensitivity of credit rationing to the default rate)	2.08	Selected from a reasonable range of values
r_3	Parameter of the the function of credit ratioing on conventional loans (related to the sensitivity of credit ratioing to the leverage ratio of banks)	0.04	Selected from a reasonable range of values
r_4		2.08	Selected from a reasonable range of values
rep	Loan repayment ratio	0.1	Selected from a reasonable range of values
Š	Equilibrium climate sensitivity, i.e. increase in equilibrium temperature due to	3.1	Taken from then DICE-2016R model (Nordhaus, 2016)

Symbol	Description	Value	Remarks/sources
s_B	Banks' retention rate	0.86	Calibrated such that the model generates the baseline scenario
s _C	Share of conventional corporate bonds held by central banks (trillion US\$)	0.01	Calculated from Eq. (135) using the initial values of B_{CCB} and B_{C}
s_F	Firms' retention rate	0.10	Calibrated such that the model generates the baseline scenario
s_G	Share of green corporate bonds held by central banks (trillion US\$)	0.00	Calculated from Eq. (134) using the initial values of B_{GCB} and B_{G}
S _W	Wage income share	0.52	Based on Penn World Table 9.0
t_{t}	Speed of adjustment parameter in the atmospheric temperature equation	0.020	Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect a 1-year time step
t_2	Coefficient of heat loss from the atmosphere to the lower ocean (atmospheric temperature equation)	0.018	Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect a 1-year time step
t_3	Coefficient of heat loss from the atmosphere to the lower ocean (lower ocean	0.005	Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect
***	temperature equation)	1.0	a 1-year time step Based on BCBS (2006)
w _L	Risk weight on loans	0.0	Based on BCBS (2006)
w_S	Risk weight on government securities Autonomous proportion of desired conventional investment funded via bonds		Calculated from Eq. (A83) using the initial values of yield C and C
X ₁₀	Sensitivity of the proportion of desired conventional investment funded via	0.10	Selected from a reasonable range of values
X ₁₁	bonds to the conventional bond yield	0.10	Selected from a reasonable range of values
	·	0.10	01 - 16 11 6 1
X 21	Sensitivity of the proportion of desired green investment funded via bonds to the green bond yield	0.10	Selected from a reasonable range of values
a_{00}	Parameter of the desired investment function	0.16	Calibrated such that the model generates the baseline scenario
a_{01}	Parameter of the desired investment function	1.35	Calibrated such that the model generates the baseline scenario
a_1	Parameter of the desired investment function (related to the sensitivity of investment to the capacity utilisation)	2.00	Based on econometric estimations for a panel of countries (available upon request)
a_2	Parameter of the desired investment function (related to the sensitivity of investment to the rate of profit)	1.84	Based on econometric estimations for a panel of countries (available upon request)
a_3	Parameter of the desired investment function (related to the sensitivity of investment to the growth rate of energy intensity)	0.08	Based on econometric estimations for a panel of countries (available upon request)
a ₄₁		0.02	Based on econometric estimations for a panel of countries (available upon request)
a_{42}	Parameter in the investment function (related to the sensitivity of investment to	0.5	Selected from a reasonable range of values
a ₅₁	the unemployment rate) Parameter in the investment function (related to the sensitivity of investment to	0.01	Selected from a reasonable range of values
a 52	the energy utilisation rate) Parameter in the investment function (related to the sensitivity of investment to	0.99	Selected from a reasonable range of values
a ₆₁	the energy utilisation rate) Parameter in the investment function (related to the sensitivity of investment to	0.01	Selected from a reasonable range of values
a ₆₂	the matter utilisation rate) Parameter in the investment function (related to the sensitivity of investment to	0.99	Selected from a reasonable range of values
	the matter utilisation rate)		
β_1	Autonomous share of desired green investment in total investment	0.02	Calibrated such that the model generates the baseline scenario
β_2	Sensitivity of the desired green investment share to the interest rate differential between green loans/bonds and conventional loans/bonds	2	Selected from a reasonable range of values
β_3	Sensitivity of the desired green investment share to global warming damages	0.5	Selected from a reasonable range of values
δ_{θ}	Depreciation rate of capital stock when there are no global warming damages	0.04	Based on Penn World Table 9.0
ε ^{max}	Maximum potential value of energy intensity (EJ/trillion US\$)	12	Selected such that it is reasonably higher than initial ε
ε^{min}	Minimum potential value of energy intensity (EJ/trillion US\$)	3	Selected such that it is reasonably higher than 0
51	Rate of decline of the (absolute) growth rate of CO2 intensity	0.03	Calibrated such that the model generates the baseline scenario
ζ_2	Rate of decline of the growth rate of β_0	0.10	Calibrated such that the model generates the baseline scenario
53	Rate of decline of the autonomous (absolute) growth rate of labour	0.01	Calibrated such that the model generates the baseline scenario
ζ4	Rate of decline of the growth rates of x_{20} and λ_{30}	0.20	Calibrated such that the model generates the baseline scenario
55	Rate of decline of the growth rate of population	0.02	Calibrated such that the model generates the baseline scenario
56	Rate of decline of the autonomous labour force-to-population ratio	0.0007	Calibrated such that the model generates the baseline scenario
71	Parameter of damage function	0	Based on Weitzmann (2012); D_T =50% when T_{AT} =6°C
η_2	Parameter of damage function	0.00284	Based on Weitzmann (2012); $D_T = 50\%$ when $T_{AT} = 6^{\circ}$ C
η ₃	Parameter of damage function	0.000005	Based on Weitzmann (2012); D_T =50% when T_{AT} =6°C
λ_{10}	Parameter of households' portfolio choice	0.36	Calculated from Eq. (A102) using the initial values of SEC_H , V_{HF} , D_T , yield C_T ,
	•		yield $_G$ and Y_H
λ_{t0}	Parameter of households' portfolio choice	0.10	Selected from a reasonable range of values
λ_{11}	Parameter of households' portfolio choice	0.03	Calculated from the constraint $\lambda_{11} = -\lambda_{21} - \lambda_{31} - \lambda_{41}$
λ_{12}	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ ₁₃	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ_{14}	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ ₁₅	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ_{20}	Parameter of households' portfolio choice	0.10	Calculated from Eq. (A103) using the initial values of B_{CH} , V_{HF} , D_T , yield C_T , yield C_T
			and Y_H

Symbol	Description	Value	Remarks/sources
λ ₂₀	Parameter of households' portfolio choice	-0.20	Selected from a reasonable range of values
λ_{21}	Parameter of households' portfolio choice	-0.01	Calculated from the constraint $\lambda_{21} = \lambda_{12}$
λ_{22}	Parameter of households' portfolio choice	0.03	Calculated from the constraint $\lambda_{22} = -\lambda_{12} - \lambda_{32} - \lambda_{42}$
λ_{23}	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ_{24}	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ_{25}	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ ₃₀ ΄	Parameter of households' portfolio choice	0.00	Global warming damages are assumed to have no impact on the holdings of green bonds
λ_{31}	Parameter of households' portfolio choice	-0.01	Calculated from the constraint $\lambda_{31} = \lambda_{13}$
λ_{32}	Parameter of households' portfolio choice	-0.01	Calculated from the constraint $\lambda_{32} = \lambda_{23}$
λ_{33}	Parameter of households' portfolio choice	0.03	Calculated from the constraint $\lambda_{33} = -\lambda_{13} - \lambda_{23} - \lambda_{43}$
λ_{34}	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ35	Parameter of households' portfolio choice	-0.01	Selected from a reasonable range of values
λ_{40}	Parameter of households' portfolio choice	0.53	Calculated from the constraint $\lambda_{40} = 1 - \lambda_{10} - \lambda_{20} - \lambda_{30}$
λ_{40}	Parameter of households' portfolio choice	0.10	Selected from a reasonable range of values
λ ₄₁	Parameter of households' portfolio choice	-0.01	Calculated from the constraint $\lambda_{4f} = \lambda_{14}$
λ_{42}	Parameter of households' portfolio choice	-0.01	Calculated from the constraint $\lambda_{42} = \lambda_{24}$
λ ₄₃	Parameter of households' portfolio choice	-0.01	Calculated from the constraint $\lambda_{43} = \lambda_{34}$
λ ₄₄	Parameter of households' portfolio choice	0.03	Calculated from the constraint $\lambda_{44} = -\lambda_{14} - \lambda_{24} - \lambda_{34}$
λ ₄₅	Parameter of households' portfolio choice	0.03	Calculated from the constraint $\lambda_{45} = -\lambda_{15} - \lambda_{25} - \lambda_{35}$
µ max	Maximum potential value of material intensity (kg/US\$)	1.5	Selected such that it is reasonably higher than initial μ
µ min	Minimum potential value of material intensity (kg/US\$)	0.3	Selected such that it is reasonably higher than 0
Ĕ	Proportion of durable consumption goods discarded every year	0.012	Selected such that the initial growth of DC is equal to the growth rate of output
π_1	Parameter linking the green capital-conventional capital ratio with material intensity	1.01	Calibrated such that initial μ corresponds to initial \varkappa and $\mu(2050)$ =0.9 $\mu(2015)$ in line with the baseline scenario
π_2	Parameter linking the green capital-conventional capital ratio with material	16.29	Calibrated such that initial μ corresponds to initial \varkappa and μ (2050)=0.9 μ (2015) in line
π_3	intensity Parameter linking the green capital-conventional capital ratio with recycling rate	6.88	with the baseline scenario Calibrated such that initial ϱ corresponds to initial \varkappa and ϱ (2050)=1.4 ϱ (2015) in line
π_4	Parameter linking the green capital-conventional capital ratio with recycling rate	36.02	with the baseline scenario Calibrated such that initial ϱ corresponds to initial \varkappa and ϱ (2050)=1.4 ϱ (2015) in line with the baseline scenario
π_5	Parameter linking the green capital-conventional capital ratio with energy intensity	9.37	Calibrated such that initial ε corresponds to initial \varkappa and ε (2050)=0.75 ε (2015) in line with the baseline scenario
π_6	Parameter linking the green capital-conventional capital ratio with energy intensity	53.29	Calibrated such that initial ε corresponds to initial \varkappa and $\varepsilon(2050)$ =0.75 $\varepsilon(2015)$ in line with the baseline scenario
π_7	Parameter linking the green capital-conventional capital ratio with the share of renewable energy	12.29	Calibrated such that initial θ corresponds to initial \varkappa and θ (2050)=0.18 in line with the baseline scenario
π_8	Parameter linking the green capital-conventional capital ratio with the share of renewable energy	17.63	Calibrated such that initial θ corresponds to initial \varkappa and θ (2050)=0.18 in line with the baseline scenario
ϱ^{max}	Maximum potential value of recycling rate	0.8	Selected such that it is reasonably lower than 1
σ_1	Autonomous growth rate of labour productivity	0.01	Calibrated such that the model generates the baseline scenario
σ_2	Sensitivity of labour productivity growth to the growth rate of output	0.92	Empirically estimated using data for a panel of countries (the econometric estimations are available upon request)
τ_F	Firms' tax rate	0.15	Selected from a reasonable range of values
	Households' tax rate	0.13	Calibrated such that the model generates the baseline scenario
φ_{11}	Transfer coefficient for carbon from the atmosphere to the atmosphere	0.9760	Calculated from the formula φ_{11} =1- φ_{12} (see the DICE-2016R model, Nordhaus, 2016)
φ_{12}	Transfer coefficient for carbon from the atmosphere to the upper ocean/biosphere	0.0240	Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect a 1-year time step
φ ₂₁	Transfer coefficient for carbon from the upper ocean/biosphere to the atmosphere	0.0392	Calculated from the formula $\varphi_{21} = \varphi_{12}(CO2_{AT-PRE}/CO2_{UP-PRE})$ (see the DICE-2016R model, Nordhaus, 2016)
φ_{22}	Transfer coefficient for carbon from the upper ocean/biosphere to the upper ocean/biosphere	0.9595	Calculated from the formula φ_{22} =1- φ_{21} - φ_{23} (see the DICE-2016R model, Nordhaus, 2016)
φ_{23}	Transfer coefficient for carbon from the upper ocean/biosphere to the lower ocean	0.0013	Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect a 1-year time step
φ 32	Transfer coefficient for carbon from the lower ocean to the upper ocean/biosphere	0.0003	Calculated from the formula $\varphi_{32} = \varphi_{23} (CO2_{UP-PRE} / CO2_{LO-PRE})$ (see the DICE-2016R model, Nordhaus, 2016)
φ_{33}	Transfer coefficient for carbon from the lower ocean to the lower ocean	0.9997	Calculated from the formula φ_{33} =1- φ_{32} (see the DICE-2016R model, Nordhaus, 2016)