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Climate change, financial stability and monetary policy 

Abstract: Using a stock-flow-fund ecological macroeconomic model, we analyse (i) the effects of 

climate change on financial stability and (ii) the financial and global warming implications of a 

green QE programme. Emphasis is placed on the impact of climate change damages on the price 

of financial assets and the financial position of firms and banks. The model is estimated and 

calibrated using global data and simulations are conducted for the period 2015-2115. Four key 

results arise. First, by destroying the capital of firms and reducing their profitability, climate 

change is likely to gradually deteriorate the liquidity of firms, leading to a higher rate of default 

that could harm both the financial and the non-financial corporate sector. Second, climate change 

damages can lead to a portfolio reallocation that can cause a gradual decline in the price of 

corporate bonds. Third, financial instability might adversely affect credit expansion and the 

investment in green capital, with adverse feedback effects on climate change. Fourth, the 

implementation of a green QE programme can reduce climate-induced financial instability and 

restrict global warming. The effectiveness of this programme depends positively on the 

responsiveness of green investment to changes in bond yields. 
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Climate change, financial stability and monetary policy 
 

1. Introduction  

 

Climate change is likely to have severe effects on the stability of the financial system (see, for 

instance, Aglietta and Espagne, 2016; Batten et al., 2016; Scott et al., 2017). Two broad climate-

related financial risks have been identified: (a) the transition risks that have to do with the re-pricing 

of carbon-intensive assets as a result of the transition to a low-carbon economy; (b) the physical 

risks that are linked to the economic damages of climate-related events. So far, most studies have 

concentrated on the implications of transition risks (see e.g. Carbon Tracker Initiative, 2011; 

Johnson, 2012; Plantinga and Scholtens, 2016; Battiston et al., 2017). Less attention has been paid 

to the detailed analysis of the physical risks. The investigation of these risks is particularly 

important because it would help us understand how the financial system could be impaired if the 

transition to a low-carbon economy is very slow in the next decades (and, consequently, severe 

global warming is not ultimately avoided). 

 

In this paper, we develop an ecological macroeconomic model that sheds light on the physical 

effects of climate change on financial stability. This is called the DEFINE (Dynamic Ecosystem-

FINance-Economy) model and is an extension of the stock-flow-fund model of Dafermos et al. 

(2017). The latter relies on a novel synthesis of the stock-flow consistent approach of Godley and 

Lavoie (2007) with the flow-fund model of Georgescu-Roegen (1971, ch. 9; 1979; 1984).1 The 

model is calibrated and estimated using global data and simulations are presented which illustrate 

the effects of climate change on the financial system. We pay attention to the following key 

channels. First, the increase in temperature and the economic catastrophes caused by climate 

change could reduce the profitability of firms and could deteriorate their financial position. 

Accordingly, debt defaults could arise which would lead to systemic bank losses. Second, lower 

firm profitability combined with global warming-related damages can affect the confidence of 

investors, inducing a rise in liquidity preference and a fire sale of the financial assets issued by the 

corporate sector.  

 

                                                 
1 See the model’s website: www.define-model.org. 

http://www.define-model.org/


2 

 

Dietz et al. (2016) have recently investigated quantitatively the physical impact of climate change 

on the financial system. They use a standard Integrated Assessment model (IAM) and the climate 

value at risk (VAR) framework. Assuming that climate change can reduce the dividend payments 

of firms and, hence, the price of financial assets, they provide various estimates about the climate-

induced loss in the value of financial assets. Our study moves beyond their analysis in three 

different ways. First, by relying on the stock-flow consistent approach, we portray explicitly the 

balance sheets and the financial flows in the financial sector. This allows us to model the climate-

induced fragility that can be caused in the financial structures of firms and banks, a feature which 

is absent in Dietz et al. (2016). Second, we utilise a multiple financial asset portfolio choice 

framework which permits an explicit analysis of the climate-induced effects on the demand of 

financial assets in a world of fundamental uncertainty. This allows us to capture the implications 

of a fire sale of certain financial assets. These implications are not explicitly considered in the 

model of Dietz et al. (2016) where climate damages do not have diversified effects on different 

financial assets. Third, the financial system in our model has a non-neutral impact on economic 

activity: credit availability and the price of financial assets affect economic growth and 

employment. Accordingly, the interactions between economic performance and financial 

(in)stability are explicitly taken into account. This is crucial since the feedback economic effects of 

bank losses and asset price deflation can exacerbate climate-induced financial instability (see 

Batten et al., 2016). On the contrary, Dietz et al. (2016) utilise a neoclassical growth framework 

where long-run growth is independent of the financial structure of firms and banks. This leaves 

little room for the analysis of the macroeconomic implications of climate-induced financial 

problems.  

 

Our simulation results illustrate that in a business as usual scenario climate change is likely to have 

important adverse effects on the default of firms, the leverage of banks and the price of financial 

assets. Remarkably, this climate-induced financial instability causes problems in the financing of 

green investment disrupting the transition to a low-carbon and more ecologically efficient 

economy.  

 

An additional contribution of this paper is that it examines how monetary policy could reduce the 

risks imposed on the financial system by climate change. Drawing on the recent discussions about 

the potential use of monetary policy in tackling climate change (see e.g. Murphy and Hines, 2010; 
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Werner, 2012; Rozenberg et al., 2013; Anderson, 2015; Barkawi and Monnin, 2015; Campiglio, 

2016; Matikainen et al., 2017; UN Environment Inquiry, 2017; Monasterolo and Raberto, 2018), 

we examine the extent to which a global green quantitative easing (QE) programme could 

ameliorate the financial distress caused by climate change. This programme involves the purchase 

of green corporate bonds. The simulations presented about the effects of a green QE programme 

are of growing relevance since in a world of climate change central banks might not be able to 

safeguard financial stability without using new unconventional tools in a prudential manner. 

 

The paper’s outline is as follows. Section 2 presents the structure of the model and the key 

equations that capture the links between climate change, financial stability and monetary policy. 

Section 3 describes the calibration, estimation and validation of the model. Section 4 analyses our 

simulations about the effects of climate change on the financial system. Section 5 focuses on the 

impact of a green QE programme. Section 6 concludes. 

 

 

2. The model 

 

The DEFINE 1.0 model (version: 09-2017) consists of two big blocks: (i) the ‘ecosystem’ block 

that encapsulates the carbon cycle, the interaction between temperature and carbon, the 

flows/stocks of energy and matter and the evolution of ecological efficiency indicators; (ii) the 

‘macroeconomy and financial system’ block that includes the financial transactions, the balance 

sheet structure and the behaviour of households, firms, banks, central banks and the government 

sector. 

 

Firms produce one type of material good which is used for durable consumption and investment 

purposes. The matter that is necessary in the production process is either extracted from the 

ground or comes from recycling the demolished/discarded socio-economic stock.2 Energy is 

produced by using both renewable and non-renewable sources. Production results in CO2 

emissions and waste. A distinction is made between green and conventional capital. The higher 

the use of green capital the lower the energy and material intensity and the higher the recycling 

rate and the use of renewables.  

                                                 
2 The socio-economic stock includes capital goods and durable consumption goods. 
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Firms invest in conventional and green capital by using retained profits, loans and bonds. Banks 

impose credit rationing on firm loans. This means that they play an active role in the 

determination of output and the accumulation of green capital. Households receive labour 

income, buy durable consumption goods and accumulate wealth in the form of deposits, 

corporate bonds and government securities. There are no household loans. Commercial banks 

accumulate capital and distribute part of their profits to households. Central banks determine the 

base interest rate, provide liquidity to the commercial banks and purchase government securities 

and corporate bonds. Governments collect taxes and conduct fiscal policy. Inflation has been 

assumed away and, for simplicity, the price of goods is equal to unity. We use US dollar ($) as a 

reference currency.  

 

The skeleton of the model is captured by four matrices:  

 

(1) The physical flow matrix (Table 1) which portrays the inflows and the outflows of matter and 

energy that take place as a result of the production process. The First Law of Thermodynamics 

implies that energy and matter cannot be created or destroyed. This is reflected in the material and 

energy balance.  

Table 1: Physical flow matrix  

Material 

balance

Energy 

balance

Inputs

Extracted matter +M

Renewable energy +ER

Non-renewable energy +CEN +EN

Oxygen +O2

Outputs

Industrial CO2 emissions -EMIS IN

Waste -W

Dissipated energy -ED

Change in socio-economic stock -ΔSES

Total 0 0  

Note: The table refers to annual global flows. Matter is measured in Gt and energy is measured in EJ. 

 



5 

 

(2) The physical stock-flow matrix (Table 2) which presents the dynamic change in material and 

non-renewable energy reserves, the atmospheric CO2 concentration, the socio-economic stock 

and the stock of hazardous waste. The first row of the matrix shows the stocks of the previous 

year. The last row presents the stocks at the end of the current year. Additions to stocks are 

denoted by a plus sign. Reductions of stocks are denoted by a minus sign. 

 

Table 2: Physical stock-flow matrix 

Material 

reserves

Non-renewable 

energy reserves

Atmospheric CO2

 concentration

Socio-economic 

stock

Hazardous

waste

Opening stock REV M -1 REV E -1 CO2 AT -1 SES -1 HWS -1

Additions to stock

   Resources converted into reserves +CONV M +CONV E

   CO2 emissions +EMIS

   Production of material goods +MY

   Non-recycled hazardous waste +hazW

Reductions of stock

   Extraction -M -EN

   Net transfer to oceans/bioshpere

   Demolished/disposed material goods -DEM

Closing stock REV M REV E CO2 AT SES HWS

  121111 221   UPAT COCO 

 

Note: The table refers to annual global stocks and flows. Matter is measured in Gt and energy is measured in EJ. 

 

(3) The transactions flow matrix (Table 3) which shows the transactions that take place between 

the various sectors of the economy. Inflows are denoted by a plus sign and outflows are denoted 

by a minus sign. 

 

(4) The balance sheet matrix (Table 4) which includes the assets and the liabilities of the sectors. 

We use a plus sign for assets and a minus sign for liabilities. 
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Table 3: Transactions flow matrix 

Households Government sector Total

Current Capital Current Capital Current Capital

Consumption -C +C 0

Government expenditures +G -G 0

Conventional investment +I C -I C 0

Green investment +I G -I G 0

Wages +wN -wN 0

Taxes -T H -T F +T 0

Firms' profits +DP -TP +RP 0

Commercial banks' profits +BP D -BP +BP U 0

Interest on deposits +int D D -1  -int D D -1 0

Capital depreciation -δK -1 +δK -1 0

Interest on conventional loans -int C L C-1 +int C L C-1 0

Interest on green loans -int GL G-1 +int GL G-1 0

Interest on conventional bonds +coupon Cb CH-1 -coupon C b C-1 +coupon C b CCB-1 0

Interest on green bonds +coupon Gb GH-1 -coupon Gb G-1 +coupon Gb GCB-1 0

Interest on government securities +int S SEC H-1 +int S SEC B-1 -int S SEC -1 +int S SEC CB-1 0

Interest on advances -int AA -1 +int AA -1 0

Central bank's profits +CBP -CBP 0

Bailout of banks +BAILOUT -BAILOUT 0

Δdeposits -ΔD +ΔD 0

Δconventional loans +ΔL C -ΔL C 0

Δgreen loans +ΔL G -ΔL G 0

Δconventional bonds -p CΔb CH +p C Δb C -p C Δb CCB 0

Δgreen bonds -p GΔb GH +p GΔb G -p GΔb GCB 0

Δgovernment securities -ΔSEC H -ΔSEC B +ΔSEC -ΔSEC CB 0

Δadvances +ΔA -ΔA 0

Δhigh-powered money -ΔHPM +ΔHPM 0

Defaulted loans +DL -DL 0

Total 0 0 0 0 0 0 0 0 0

Firms Commercial banks Central banks

 

Note: The table refers to annual global flows in trillion US$. 
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Table 4: Balance sheet matrix 

Households Firms Commercial 

banks

Government 

sector

Central 

banks

Total

Conventional capital +K C +K C

Green capital +K G +K G

Durable consumption goods +DC +DC

Deposits +D -D 0

Conventional loans -L C +L C 0

Green loans -L G +L G 0

Conventional bonds +p C b CH -p C b C +p C b CCB 0

Green bonds +p G b GH -p G b G +p G b GCB 0

Government securities +SEC H +SEC B -SEC +SEC CB 0

High-powered money +HPM -HPM 0

Advances -A +A 0

Total (net worth) +V H +V F +K B -SEC +V CB +K C +K G +DC  

Note: The table refers to annual global stocks in trillion US$. 

 

The model extends the model developed by Dafermos et al. (2017) by including a bond market, 

central banking, the government sector, household portfolio choice and an endogenous rate of 

default for firms. In what follows we present the equations of the model that are more relevant 

for the interactions between climate change, financial stability and monetary policy. The full list of 

equations is reported in Appendix A. Additional details about the foundations of the model and 

the justification of the equations can be found in Dafermos et al. (2017). 

 

2.1. Emissions and climate change 

 

The equations about emissions and climate change draw on Nordhaus (2016). Every year 

industrial CO2 emissions ( INEMIS ) are generated due to the use of non-renewable energy sources 

( EN ): 

 

ENEMISIN   (1) 

 

where   is the CO2 intensity, defined as the industrial emissions produced per unit of non-

renewable energy use.  

 

Every year land-use CO2 emissions ( LEMIS ) are also generated because of changes in the use of 

land (Eq. 2). These emissions are assumed to decline exogenously at a rate lr :  
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 lrEMISEMIS LL   11  (2) 

 

Total CO2 emissions ( EMIS ) are given by:  

 

LIN EMISEMISEMIS   (3) 

 

The carbon cycle, represented by Eqs. (4)-(6), shows that every year there is exchange of carbon 

between the atmosphere and the upper ocean/biosphere and between the upper ocean/biosphere 

and the lower ocean. In particular, we have: 

 

121111 222   UPATAT COCOEMISCO   (4) 

132122112 2222   LOUPATUP COCOCOCO   (5) 

133123 222   LOUPLO COCOCO   (6) 

 

where ATCO2  is the atmospheric CO2 concentration, UPCO2  is the upper ocean/biosphere CO2 

concentration and LOCO2  is the lower ocean CO2 concentration. 

 

The accumulation of atmospheric CO2 and other greenhouse gases increases radiative forcing ( F ) 

as follows:  

 

EX
PREAT

AT
CO F

CO

CO
logFF 




2

2
222  (7) 

 

where 22 COF   is the increase in radiative forcing (since the pre-industrial period) due to doubling 

of CO2 concentration from pre-industrial levels ( PREATCO 2 ). For simplicity, the radiative forcing 

due to non-CO2 greenhouse gas emissions ( EXF ) is determined exogenously: 

 

fexFF EXEX  1  (8) 

 

where fex  is the annual increase in radiative forcing (since the pre-industrial period) due to non-

CO2 agents. 

 

As shown in Eq. (9), the rise in radiative forcing places upward pressures on atmospheric 

temperature ( ATT ):  
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 







 


 1121

22
11 LOATAT

CO
ATAT TTtT

S

F
FtTT  (9) 

 

where S  is the equilibrium climate sensitivity, i.e. the increase in equilibrium temperature due to 

doubling of CO2 concentration from pre-industrial levels. 

 

The temperature of the lower oceans ( LOT ) is given by: 

 

 1131   LOATLOLO TTtTT  (10) 

 

2.2. Green capital, energy intensity and renewable energy 

 

Green capital allows firms to produce the same output with less energy. This is captured by the 

following logistic function: 

 

 CG KK

minmax
max

e 6
51










  (11) 

 

where   is energy intensity and max  and min  are, respectively, the maximum and the minimum 

potential values of energy intensity. As the ratio of green capital ( GK ) to conventional capital 

( CK ) increases, energy intensity goes down. The use of the logistic function implies that the 

installation of green capital (relative to conventional capital) initially generates a slow 

improvement in energy intensity. However, as installation expands further, the improvement 

reaches a take-off point after which energy intensity improves much more rapidly due to the 

learning obtained from installation experience and the overall expansion of green capital 

infrastructure. Finally, as energy intensity approaches its potential minimum, improvement starts 

to slow. 

 

A similar logistic function is used for the effects of green capital accumulation on the share of 

renewable energy in total energy produced ( ): 

 

 CG KKe 871

1





  (12) 
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By definition, the maximum potential value of   is 1. Note that in Dafermos et al. (2017) the 

formulation of the links between green capital and ecological efficiency indicators is quite 

different since it does not rely on logistic functions. The use of logistic functions in the present 

model allows for a more realistic representation that takes into account the processes of learning-

by-doing and learning-by-installation which play a key role in the diffusion of new technologies. 

 

2.3. Output determination and damages 

 

Eq. (13) shows our Leontief-type production function:  

 

 *
N

*
K

*
E

*
M

* Y,Y,Y,YminY   (13) 

 

where *Y  is the potential output. The potential output is the minimum of (i) the matter-

determined potential output ( *
MY ) which depends on material reserves, (ii) the energy-determined 

potential output ( *
EY ) which is a function of non-renewable energy reserves, (iii) the capital-

determined potential output ( *
KY ) that relies on capital stock and capital productivity, and (iv) the 

labour-determined potential output ( *
NY ) which depends on labour force and labour productivity. 

 

The actual output ( Y ) is demand-determined. Aggregate demand is equal to consumption 

expenditures ( C ) plus investment expenditures ( I ) plus government expenditures ( G ):  

 

GICY   (14) 

 

However, demand is not independent of supply. When Y  approaches *Y , demand tends to 

decline due to supply-side constraints (this is achieved via our investment function described 

below).  

 

Output determination is affected by climate change as follows: global warming causes damages to 

capital stock and capital productivity, decreasing *
KY ; it also causes damages to labour force and 

labour productivity, reducing *
NY  (see Dafermos et al., 2017 and the references therein). These 

damages (a) deteriorate the expectations of households and firms, reducing consumption and 
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investment, and, hence aggregate demand3 and (b) increase the scarcity of capital and labour 

placing downward pressures on aggregate demand via the supply constraints.  

 

Eq. (15) is the damage function, which shows how atmospheric temperature and damages are 

linked:  

 

7546
3

2
211

1
1

.
ATATAT

T
TTT

D
 

  (15) 

 

TD  is the proportional damage which lies between 0 (no damage) and 1 (complete catastrophe). 

Eq. (15) has been proposed by Weitzman (2012). The variable TD  enters into both (i) the 

determination of capital and labour and their productivities and (ii) the consumption and 

investment demand. In our baseline scenario we assume that 50.DT   when CT o6 .4  

 

2.4. The financing of investment  

 

Firms’ investment is formalised as a two-stage process. At a first stage, firms decide their overall 

desired investment in both green and conventional capital. At a second stage, they allocate their 

desired investment between the two types of capital. Eq. (16) captures the first stage:  

 

 1111111111 1,,,,, 























 






















 TI

D DKKKumueurgruI  
 (16) 

 

Desired investment ( DI ), adjusted for the damage effect, is given by net investment plus the 

depreciated capital;   is the depreciation rate of capital stock. Net investment is affected by a 

number of factors. First, following the Kaleckian approach (see e.g. Blecker, 2002), it depends 

positively on the rate of (retained) profits ( r ) and the rate of capacity utilisation ( u ). The impact 

of these factors is assumed to be non-linear in general line with the tradition that draws on Kaldor 

(1940). This means that when the profit rate and capacity utilisation are very low or very high 

their effects on investment become rather small. Second, investment is also a negative function of 

the growth rate of energy intensity ( g ). This captures the rebound effect linked to the fact that 

firms invest more when energy intensity declines, since energy costs go down. This higher 

                                                 
3 For some empirical evidence about the impact of natural disasters on the saving behaviour of households, see 
Skidmore (2001).  
4 Our damage function captures the aggregate effects of climate change. For a damage function that considers 
explicitly the heterogeneity of climate shocks across agents, see Lamperti et al. (2017).  
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investment increases the use of energy, partially offsetting the positive effects of energy efficiency 

improvements.5 Third, following Skott and Zipperer (2012), we assume a non-linear impact of 

unemployment rate (ur ) on investment: when unemployment approaches zero, there is a scarcity 

of labour that discourages entrepreneurs to invest. This means that, by reducing labour 

productivity and labour force (and, hence, unemployment), climate change can have a negative 

impact on investment. Fourth, the scarcity of energy and material resources can dampen 

investment, for example because of a rise in resource prices; ue  and um capture the utilisation of 

energy and material resources respectively. This impact, however, is highly non-linear: energy and 

material scarcity affects investment only when the depletion of the resources has become very 

severe. Fifth, in order to capture exogenous random factors that might affect desired investment, 

we have assumed that DI  also depends on a random component, I , that follows a stochastic 

AR(1) process. Overall, our investment function implies that demand declines (or stops 

increasing) when it approaches potential output. This allows us to take explicit into account the 

environmental supply-side effects on aggregate demand mentioned above. 

 

Eqs. (17) and (18) refer to the second stage of firms’ investment process: 

 

DD
G II   (17) 

D
G

DD
C III   (18) 

 

where   is the share of green investment ( D
GI ) in overall desired investment (Eq. 17). Desired 

conventional investment ( D
CI ) is determined as a residual (Eq. 18).  

 

Eq. (19) shows that the share of green investment depends on three factors: 

 

      131111210 1   TCGLCGL Dyieldyieldshintintsh   (19) 

 

where Cint  is the interest rate on conventional loans, Gint  is the interest rate on green loans, 

Cyield  is the yield on conventional bonds, Gyield  is the yield on green bonds and Lsh  is the share 

of loans in the total liabilities of firms (loans plus bonds).  

 

The first factor, captured by the term 10   , reflects exogenous institutional or technological 

developments that affect the investment in green capital. The second factor, captured by the term 

                                                 
5 For a description of the rebound effects see Barker et al. (2009). 
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     11112 1   CGLCGL yieldyieldshintintsh , reflects the borrowing cost of investing in green 

capital relative to conventional capital. As the cost of borrowing of green capital (via bank lending 

or bonds) declines compared to conventional capital, firms tend to increase green investment. 

Finally, we posit that climate change damages lead to more green investment since these damages 

induce firms to increase mitigation and might lead governments to adopt stricter regulation 

against the investment in conventional capital. 

 

As mentioned above, retained profits are not in general sufficient to cover the desired investment 

expenditures. This means that firms need external finance, which is obtained via bonds and bank 

loans. It is assumed that firms first issue bonds and then demand new loans from banks in order 

to cover the rest amount of their desired expenditures. Only a proportion of the demanded new 

loans is provided. In other words, the model assumes that there is a quantity rationing of credit. 

This is in line with recent empirical evidence that shows that the quantity rationing of credit is a 

more important driver of macroeconomic activity than the price rationing of credit (see Jakab and 

Kumhof, 2015).  

 

For simplicity, the long-term bonds issued by firms are never redeemed. The proportion of firms’ 

desired investment which is funded via bonds is given by: 

 

C

D
C

CC
p

Ix
bb

1
1    (20) 

G

D
G

GG
p

Ix
bb

2
1    (21) 

 

where Cb  is the number of conventional bonds, Gb  is the number of green bonds, 1x  is the 

proportion of firms’ conventional desired investment financed via bonds, 2x  is the proportion of 

firms’ green desired investment funded via bonds, Cp  is the price of conventional bonds and Gp  

is the price of green bonds. 

 

The proportion of desired investment covered by green or conventional bonds is a negative 

function of the bond yield. Formally: 

 

111101  Cyieldxxx  (22) 

121202  Gyieldxxx  (23) 
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We postulate a price-clearing mechanism in the bond market: 

 

C

C
C

b

B
p   (24) 

G

G
G

b

B
p   (25) 

 

where CB  and GB  denote the value of conventional and green bonds held by households and 

central banks. Prices tend to increase whenever households and central banks hold a higher 

amount of corporate bonds in their portfolio. A rise in the price of bonds produces a decline in 

the bond yield, which has two effects on firms’ investment. First, since firms pay a lower interest 

rate on bonds, their profitability improves increasing their desired investment. Second, a lower 

bond yield (which can result from a rise in bond prices) induces firms to increase the proportion 

of desired investment covered via bonds. This is crucial because firms need to rely less on bank 

lending in order to finance their investment. The disadvantage of bank lending is that, due to 

credit rationing, banks provide only a proportion of the loans demanded by firms. Accordingly, 

the less firms rely on bank loans in order to finance their desired investment the higher their 

ability to undertake their desired investment. 

 

Based on firms’ budget constraint, the new loans are determined as follows:  

 

GGGG
D
G

D
G bpKrepLRPINL    11  (26) 

  CCCC
D
C

D
C bpKrepLRPINL    111  (27) 

 

where D
GNL  denotes the desired new green loans, D

CNL  denotes the desired new conventional 

loans, GL  is the outstanding amount of green loans, CL  is the outstanding amount of 

conventional loans and RP  denotes the retained profits of firms.  

 

Firms might default on their loans. When this happens, a part of their accumulated loans is not 

repaid, deteriorating the financial position of banks. The amount of defaulted loans ( DL ) is equal 

to: 

 

1 defLDL  (28) 

 

where L  denotes the total loans of firms. 
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The rate of default ( def ) is assumed to increase when firms become less liquid. The illiquidity of 

firms is captured by an illiquidity ratio, illiq , which expresses the cash outflows of firms relative to 

their cash inflows. Cash outflows include wages, interest, taxes, loan repayments and maintenance 

capital expenditures (which are equal to depreciation). Cash inflows comprise the revenues from 

sales and the funds obtained from bank loans and the issuance of bonds. The default rate is a 

non-linear positive function of illiq : 

 













1illiqfdef  (29) 

 

Eq. (29) suggests that, as cash outflows increase compared to cash inflows, the ability of firms to 

repay their debt declines. 

 

2.5. The portfolio choice of households 

 

Households invest their expected financial wealth ( HFV ) in four different assets: government 

securities ( HSEC ), conventional corporate bonds ( CHB ), green corporate bonds ( GHB ) and 

deposits ( D ); Sint  is the interest rate on government securities and Dint  is the interest rate on 

deposits. In the portfolio choice, captured by Eqs. (30)-(33n), Godley’s (1999) imperfect asset 

substitutability framework is adopted.6  

 

1

1
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1 


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  (33n) 

GHGCHCH bpbpSECCDD   1  (33) 

 

Households’ asset allocation is driven by three factors. The first factor is the global warming 

damages. We posit that damages affect households’ confidence and increase the precautionary 

                                                 
6 The parameters in the portfolio choice equations satisfy the horizontal, vertical and symmetry constraints.  
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demand for more liquid and less risky assets (see also Batten et al., 2016). Since damages destroy 

capital and the profitability opportunities of firms, we assume that as TD  increases, households 

reduce their holding of corporate conventional bonds and increase the proportion of their wealth 

held in deposits and government securities which are considered safer.7 Second, asset allocation 

responds to alterations in the relative rates on return. The holding of each asset relies positively 

on its own rate of return and negatively on the other asset’s rate of return. Third, a rise in the 

transactions demand for money (as a result of higher expected income) induces households to 

substitute deposits for other assets.8 

 

2.6. Credit rationing and bank leverage 

 

As mentioned above, banks impose credit rationing on the loans demanded by firms: they supply 

only a proportion of demanded loans. Following the empirical evidence presented in Lown and 

Morgan (2006), the degree of credit rationing both on conventional loans (
CCR ) and green loans 

(
GCR ) relies on the financial health of both firms and banks. In particular, credit rationing 

increases as the debt service ratio of firms ( dsr ) increases,9 as the bank leverage ( Blev ) approaches 

its maximum acceptable value ( max
Blev ) and as the capital adequacy ratio (CAR ) approaches its 

minimum acceptable value ( minCAR ): 10 

 

    CR
minmax

BBC CARCAR,levlev,dsrrCR 

























 111
 (34) 

    CR
minmax

BBG CARCAR,levlev,dsrlCR 

























 111
 (35) 

 

As in the case of investment, we assume that credit rationing is also dependent on a random 

component, CR , that follows a stochastic AR(1) process.  

 

                                                 
7 It could be argued that the demand for green corporate bonds is also affected negatively by the climate change 
damages that harm firms’ financial position. However, climate change damages might at the same time induce 
households to hold more green bonds in order to contribute to the restriction of global warming. Hence, the overall 
impact of damages on the demand of green bonds is ambiguous. For this reason, we assume that 030 '  in our 

simulations.  
8 Note that balance sheet restrictions require that Eq. (33n) must be replaced by Eq. (33) in the computer simulations. 
9 The debt service ratio is defined as the ratio of debt payment commitments (interest plus principal repayments) to 
profits before interest. Its key difference with the illiquidity ratio is that the latter takes into account the new flow of 
credit.   
10 In our simulations, the maximum bank leverage and the minimum capital adequacy ratio are determined based on 
the Basel III regulatory framework.  
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The bank leverage ratio is defined as:  

 

  BBGCB KHPMSECLLlev   (36) 

 

where BSEC  is the government securities that banks hold, HPM  is high-powered money and BK  

is the capital of banks. 

 

The capital adequacy ratio of banks is equal to:  

 

  BSGCLB SECwLLwKCAR   (37) 

 

where Lw  and Sw  are the risk weights on loans and securities respectively. 

 

We assume that when the bank leverage ratio becomes higher than its maximum value and/or the 

capital adequacy ratio falls below its minimum value, the government steps in and bailouts the 

banking sector in order to avoid a financial collapse. The bailout takes the form of a capital 

transfer. This means that it has a negative impact on the fiscal balance and the government 

acquires no financial assets as a result of its intervention. The bailout funds are equal to the 

amount that is necessary for the banking sector to restore the capital needed in order to comply 

with the regulatory requirements. 

 

2.7. Central banks and green QE 

 

Central banks determine the base interest rate, provide liquidity to commercial banks (via 

advances) and buy government securities (acting as residual purchasers). Moreover, in the context 

of QE programmes, they buy bonds issued by the firm sector. Currently, central banks do not 

explicitly distinguish between the holdings of conventional and green bonds. However, in order to 

analyse the implications of a green QE programme, we assume that central banks announce 

separately the amount of conventional bond and green bond purchases. The value of 

conventional corporate bonds held be central banks ( CCBB ) is: 

 

1 CCCCB BsB   (38) 
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where Cs  is the share of total outstanding conventional bonds that central banks desire to keep 

on their balance sheet. Currently, this share is very low since the corporate bond purchases of 

central banks represent a very small proportion of the total bond market. 

 

The central banks’ holdings of corporate green bonds ( GCBB ) are given by: 

 

1 GGGCB BsB   (39) 

 

where Gs  is the share of total outstanding green bonds that central banks desire to keep on their 

balance sheet. We assume that this share is currently equal to zero since central banks do not 

implement green QE programmes.  

 

3. Calibration, estimation and validation of the model  

 

We have calibrated and estimated the DEFINE 1.0 model employing global data. Parameter 

values (a) have been econometrically estimated using panel data, (b) have been directly calibrated 

using related data, previous studies or reasonable range of values, or (c) have been indirectly 

calibrated such that the model matches the initial values obtained from the data or generates the 

baseline scenario. The details are reported in Appendix B and Appendix C. 

 

The model is simulated for the period 2015-2115. The aim of the simulations is to illuminate the 

long-run trends in the interactions between the financial system and climate change. Hence, no 

explicit attention is paid to short-run fluctuations and business cycles. Since the model includes 

some stochastic processes, we perform 200 Monte Carlo simulations and we report the across-run 

averages.  

 

In the baseline scenario (see Table 5) we assume that the economy grows on average at a rate 

slightly lower than 2.7% till 2050; in other words, we postulate an economic expansion a little bit 

lower than the one observed over the last two decades or so. Drawing on the United Nations 

(2015) population projections (medium fertility variant), the population is assumed to grow at a 

declining rate, becoming equal to around 9.77bn people in 2050. The improvement in the 

ecological efficiency indicators is quite modest: for example, the share of renewable energy is 

increased to about 18% till 2050 (from about 14% which is the current level), while energy 

intensity is assumed to become approximately 25% lower in 2050 compared to its 2015 level. The 
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improvement in ecological efficiency is associated with the accumulation of green capital. The 

cumulative green investment from 2015 to 2050 equals around US$47tn. We also assume that in 

the baseline scenario the price index in the conventional bond market remains relatively stable till 

2050, while the green bond price index improves in the next decade or so as a result of an 

increasing demand for green bonds.  

 

Table 5: Baseline scenario 

Variable Value/trend

Economic growth till 2050 slightly lower than 2.7% (on average)

Unemployment rate till 2050 around 6% (on average)

Population in 2050 9.77bn

Labour force-to-population ratio in 2050 0.45

Share of renewable energy in total energy in 2050 around 18%

CO2 intensity in 2050 as a ratio of CO2 intensity in 2015 around 0.9

Material intensity in 2050 as a ratio of material intensity in 2015 around 0.9

Energy intensity in 2050 as a ratio of energy intensity in 2015 around 0.75

Recycling rate in 2050 as a ratio of recycling rate in 2015 around 1.4

Default rate till 2050 slightly higher than 4% (on average)

Cumulative green investment till 2050 around US$47tn

Cumulative conventional investment till 2050 around US$828tn

Price index of conventional bonds quite stable till around 2050

Price index of green bonds increases slightly in the next decade or so  

 

We do not expect that the structure of the time series data in the next decades will necessarily be 

the same with the structure of past times series. However, it is a useful exercise to compare the 

auto- and cross-correlation structure of our simulated data with the observed one in order to 

check whether the model produces data with reasonable time-series properties.11 This is done in 

Fig. 1. Figs. 1a-1d show the auto-correlation structure of the cyclical component of the simulated 

and observed time series for output, consumption, investment and employment up to 20 lags. 

Figs. 1e-1h show the correlation between the cyclical component of output at time t and of 

output, investment, consumption and employment at time t-lag. The series are expressed in logs 

and the HP filter has been used to isolate the cyclical component. The simulated data refer to the 

baseline scenario and capture only the period 2015-2050 in order to avoid the significant 

disturbances to the data structures that are caused by climate change after 2050, when the 2oC 

threshold is passed. 

 

 

                                                 
11 For similar validation exercises see Assenza et al. (2015) and Caiani et al. (2016).  
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Fig. 1: Auto-correlations and cross-correlations of observed and simulated data 
 
(a) Auto-correlation: output 

 
(c) Auto-correlation: consumption 

 
(e) Cross-correlation: output 

 
(g) Cross-correlation: consumption 

 
 

(b) Auto-correlation: investment 

 
(d) Auto-correlation: employment 

 
(f) Cross-correlation: investment 

 
(h) Cross-correlation: employment 

 
 

Note: The series are expressed in logs and the HP filter has been used to isolate the cyclical component. The data for the observed variables have been taken 
from World Bank. Real output is available for the period 1960-2016, real consumption and real investment are available for the period 1970-2015 and 
employment is available for the period 1991-2016. 
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The auto-correlation structure of our simulated data is similar to the auto-correlation structure of 

the observed data. This is especially the case for the structure of our simulated output which looks 

remarkably close to the empirically observed structure. Moreover, simulated investment, 

consumption and employment appear to be pro-cyclical, in tune with the empirical data, and their 

peak behaviour resembles the behaviour observed in the real data. These results suggest that our 

model generates data with empirically reasonable properties.    

 

4. Climate change and financial stability 

 

Fig. 2 summarises the main channels through which climate change and financial stability interact. 

Fig. 3 plots the simulation results. In the baseline scenario CO2 emissions increase significantly 

over the next decades (Fig. 3c). This rise is mainly driven both by the exponential increase in 

output due to positive economic growth (Fig. 3a) and the very slow improvement in energy 

efficiciency and the share of renewable energy in total energy (Fig 3b). Hence, CO2 concentration 

in the atmposphere increases, leading to severe global warming: as Fig. 3d indicates, in 2100 

temperature becomes about 4.2oC higher than the pre-industrial levels.12  

 

The rise in atmospheric temperature leads to climate change damages. Accordingly, the growth 

rate of output starts declining (Fig. 3a). This slowdown of economic activity becomes more 

intense after the mid of the 21st century when temperature passes 2oC. Declining economic 

growth and the desctruction of capital harms the profitability of firms (Fig. 3e) and deteriorates 

their liquidity, which in turn increases their rate of default (Fig. 3f) and thereby increases the bank 

leverage (Fig. 3g) and decreases the capital adequacy ratio.13 The overall result is an increase in 

credit rationing which feeds back into economic growth (Fig. 3a) and the profitability and liquidity 

of firms, giving rise to a vicious financial cycle. This also slows down the investment in green 

capital, disrupting the transition to a low-carbon and more ecologically efficient economy. 

Crucially, at some point in time the capital of banks becomes insufficient to cover the regulatory 

requirements. Thus, the government sector steps in and bailouts the banks with adverse effects on 

the public debt-to-output ratio (Fig. 3h).   

                                                 
12 This increase in temperature in our baseline scenario is broadly in line with the results of key integrated 
assesssment models (see Nordhaus, 2016). 
13 The impact of climate damages on bank leverage is in line with the empirical evidence reported in Klomp (2014) 
which shows that natural disasters deteriorate the financial robustness of banks.   
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Fig. 2: Channels through which climate change and financial stability interact in the model 

 

 

Climate damages also affect the liquidity preference of households. The destruction of capital and 

the decline in the profitability of firms induces a reallocation of household financial wealth from 

corporate bonds towards deposits and government securities, which are deemed much safer. This 

is shown in Fig. 3i. The result is a decline in the price of corporate conventional bonds in the last 

decades of our simulation period (Fig. 3j). This is an example of a climate-induced asset price 

deflation. The price of green corporate bonds also falls in our baseline scenario, after the increase 

in the first years (Fig. 3k). However, the main reason behind this fall is not the decline in the 

demand for green bonds from households. This fall is primarily explained by the increase in the 

supply of green bonds since desired green investment continuously increases in our simulation 

period (Fig. 3l).  

 

Bond price deflation has negative effects on economic growth because it reduces both the wealth-

related consumption and the ability of firms to rely on the bond market in order to fund their 

desired investment. It also leads to less green investment which affects adversely the improvement 

in ecological efficiency. 
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Fig. 3: Evolution of environmental, macroeconomic and financial variables, baseline scenario and sensitivity analysis 
 

(a) Growth rate of output 

 
(c) CO2 emissions  

 
 
 
 

 

 
(b) Share of renewable energy in total energy   

 
(d) Atmospheric temperature  
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(continued from the previous page) 

(e) Firms’ rate of profit 

 
(g) Banks’ leverage ratio 

 

 
 

(f) Default rate 

 
(h) Public debt-to-output ratio 
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(continued from the previous page) 

(i) Share of conventional bonds in households’ wealth 

 
(k) Green bonds price index 

 

 
 

(j) Conventional bonds price index 

 
(l) Share of desired green investment in total investment 

 
Note: The figure reports across-run averages from 200 Monte Carlo simulations. The values used in the simulations are reported in Appendix B and Appendix C (baseline scenario). The following parameters are modified in the sensitivity tests: '

10 , '
20 , 

'
40 , 2def , 2r , 2l , 3r , 3l , 

4r  and 
4l . In Sensitivity Test I the values of these parameters are 50% higher compared to the baseline scenario. In Sensitivity Test II they are 50% lower. 
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How does the baseline scenario change when key parameters are modified? Space limitations do 

not allow us to explore this question in detail. However, we conduct a sensitivity analysis that 

concentrates on the key parameters that are related to the responsiveness of the financial system 

to climate damages: (i) the sensitivity of the default rate to the illiquidity ratio; (ii) the sensitivity of 

credit rationing to the debt service ratio of firms, bank leverage and capital adequacy ratio; (iii) the 

parameters of the portfolio choice that capture the sensitivity of the liquidity preference of 

households to the global warming damages. In Sensitivity Test I the values of these parameters 

are 50% higher compared to the baseline scenario. In Sensitivity Test II they are 50% lower.   

 

As expected, the default rate increases (decreases) more quickly when its sensitivity to the 

illiquidity ratio is higher (lower) compared to the baseline (Fig. 3f). The same holds for the bank 

leverage ratio (Fig. 3g). Also, the price of green corporate bonds declines more rapidly when the 

portfolio choice of households is more responsive to climate change damages (Fig 3k). Overall, 

the effects of climate change on financial stability are qualitatively similar but the parameter values 

affect the severity and the time horizon of the climate-induced financial instability.   

 

 

5. Effects of a green QE programme 

 

In this section we analyse how our results change when a green QE programme is implemented. 

We suppose that in 2020 central banks around the globe decide that they will purchase 25% of the 

outstanding green bonds and they commit themselves that they will keep the same share of the 

green bond market over the next decades. We also assume that the proportion of conventional 

corporate bonds held by central banks remains equal to its current level.14      

 

Experimentation with various parameter values has shown that the parameter that plays a key role 

in determining the effectiveness of a green QE programme is the sensitivity of the share of 

desired green investment to the divergence between the green bond yield and the conventional 

bond yield ( 2 ) – see Eq. (19). The higher the value of 2  the more firms’ green investment 

responds to a monetary policy-induced decline in the yield of green bonds. Consequently, in our 

                                                 
14 We find that the effects of a green QE programme do not differ significantly if we assume that central banks stop 
holding conventional corporate bonds.  
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simulations we consider a green QE scenario whereby 2  is equal to its baseline value and 

another green QE scenario in which a more optimistic value of 2  is assumed.   

 

The effects of the green QE programme are portrayed in Fig. 4. As Fig. 4k shows, green QE 

boosts the price of green corporate bonds. This has various positive implications for climate 

change and financial stability. Regarding climate change, the resulting reduction in the green bond 

yield leads to a lower cost of borrowing for firms and a lower reliance on bank lending. This 

increases overall investment, including green investment. More importantly, since the price of 

green bonds increases relative to the price of conventional bonds (Figs. 4j and 4k), the share of 

desired green investment in total investment goes up (Fig. 4l). As firms invest more in green 

capital, the use of renewable energy increases (Fig. 4b). This leads to lower CO2 emissions and 

slower global warming from what would otherwise be the case.  

 

It should, however, be pointed out that in our simulations green QE cannot by itself prevent a 

substantial rise in atmospheric temperature: even with the optimistic value of 2 , global warming 

is not significantly lower than 4oC at the end of the century. There are two key reasons for that. 

First, the interest rate is just one of the factors that affect green investment. Therefore, a decline 

in the green bond yield is not sufficient to bring about a substantial rise in green investment. 

Second, a higher 2  is conducive to lower damages, allowing economic activity to expand more 

rapidly in the optimistic green QE scenario (Fig. 4a). This higher economic activity places upward 

pressures on CO2 emissions (Fig. 4c).  
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Fig. 4: Effects of the implementation of a green QE programme 
 

(a) Growth rate of output 

 
(c) CO2 emissions  

 
 
 

 

 

 
(b) Share of renewable energy in total energy   

 
(d) Atmospheric temperature  
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(continued from the previous page) 

(e) Firms’ rate of profit 

 
(g) Banks’ leverage ratio 

 

 
 

(f) Default rate 

 
(h) Public debt-to-output ratio 
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(continued from the previous page) 

(i) Share of conventional bonds in households’ wealth 

 
(k) Green bonds price index 

 

 
 

(j) Conventional bonds price index 

 
(l) Share of desired green investment in total investment 

 
Note: The figure reports across-run averages from 200 Monte Carlo simulations. The values used in the simulations are reported in Appendix B and Appendix C (baseline scenario). In Green QE (baseline) the sensitivity of the desired green 
investment to the divergence between the green bond yield and the conventional bond yield (

2 ) is equal to 1. In Green QE (optimistic) we have that 52  . The implementation of Green QE starts in 2020. This is captured by an increase 

in 
Gs  from 0 to 0.25.  
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Regarding financial stability, green QE increases firm profitability and reduces the liquidity 

problems of firms. This makes the default rate and the bank leverage lower compared to the 

baseline (Figs. 4f and 4g); it also reduces the public debt-to-output ratio (Fig. 4h). These beneficial 

effects on financial stability stem from (i) the reduction in economic damages as a result of slower 

global warming and (ii) the lower reliance of firms’ green investment on bank lending. A higher 

value of 2  reinforces generally the financial stability effects of green QE. However, the rise in 

the price of green bonds is lower compared to the baseline green QE scenario (Fig. 4k). The 

reason is that firms issue more green bonds in order to fund their higher desired green 

investment. For a given demand for green bonds, this tends to reduce the bond price.    

 

6. Conclusion 

 

The fundamental changes that are expected to take place in the climate system in the next decades 

are likely to have severe implications for the stability of the financial system. The purpose of this 

article was to analyse these implications by using a stock-flow-fund ecological macroeconomic 

model. Emphasis was placed on the effects of climate change damages on the financial position 

of firms and asset price deflation. The model was estimated and calibrated using global data and 

simulations were conducted for the period 2015-2115.   

 

Our simulation analysis for the interactions between climate change and financial stability 

produced three key results. First, by destroying the capital of firms and reducing their profitability 

and liquidity, climate change is likely to increase rate of default of corporate loans that could harm 

the stability of the banking system. Second, the damages caused by climate change can lead to a 

portfolio reallocation that can cause a gradual decline in the price of corporate bonds. Third, 

financial instability might adversely affect credit expansion and the investment in green capital, 

with adverse feedback effects on climate change. The sensitivity analysis illustrated that these 

results do not change qualitatively when key parameter values are modified.  

 

The article also investigated how a green QE programme could reduce the risks imposed on the 

financial system by climate change. The simulation results showed that, by increasing the price of 

green corporate bonds, the implementation of a green QE programme can reduce climate-

induced financial instability and restrict global warming. However, green QE does not turn out to 
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be by itself capable of preventing a substantial reduction in atmospheric temperature. Even with 

an optimistic assumption about the sensitivity of green investment to the divergence between the 

green bond yield and the conventional bond yield, global warming is still severe. Hence, many 

other types of environmental policies and strategies need to be implemented in conjunction with a 

green QE programme in order to keep atmospheric temperature close to 2oC and prevent 

climate-induced financial instability.  
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Appendix B. Initial values for endogenous variables 
 

Symbol Description Value Remarks/sources

A Advances (trillion US$) 6.5 Calculated from the identity K B =L C +L G +HPM+SEC B -A -D  using the initial 

values of K B , L C , L G , HPM , SEC B  and D

B
Value of total corporate bonds (trillion US$) 12.0 Based on OECD (2015, p. 3); we use the figure for the debt securities issued by 

non-financial corporations
BAILOUT Bailout funds provided to the banking system from the government sector 0 No bailout is assumed in 2015 since lev B <lev B

max
  and CAR>CAR

min

BC Value of conventional corporate bonds (trillion US$) 11.7 Calculated from Eq. (A93) using the initial values of B  and BG

b C Number of conventional bonds (trillions) 0.117 Calculated from Eq. (A91) using the initial values of p C and BC

BCCB
Value of conventional corporate bonds held by central banks (trillion US$) 0.1 Based on the recent holdings of central banks as part of their corporate sector 

purchase programmes

b CCB Number of conventional corporate bonds held by central banks (trillions) 0.001 Calculated from Eq. (A136) using the initial values of p C and BCCB

BCH Value of conventional corporate bonds held by households (trillion US$) 11.6 Calculated from Eq. (A89) using the initial values of BCCB and B C

b CH Number of conventional corporate bonds held by households (trillions) 0.1 Calculated from Eq. (A108) using the initial values of p C and BCH

BG
Value of green corporate bonds (trillion US$) 0.3 Based on Climate Bonds Initiative (2016); we estimate the value of bonds held by 

the non-financial corporate sector using the outstanding value of both labelled and 

unlabelled green/climate-alligned bonds 

b G Number of green corporate bonds (trillions) 0.003 Calculated from Eq. (A92) using the initial values of p G and BG

BGCB Value of green corporate bonds held by central banks (trillion US$) 0 There was no green QE programme in 2015

b GCB Number of green corporate bonds held by central banks (trillions) 0 Calculated from Eq. (A137) using the initial values of p G and B GCB

BGH Value of green corporate bonds held by households (trillion US$) 0.30 Calculated from Eq. (A90) using the initial values of BG and BGCB

b GH Number of green corporate bonds held by households (trillions) 0.0030 Calculated from Eq. (A109) using the initial values of p G and B GH

BP Profits of banks (trillion US$) 2.84 Calculated from Eq. (A115) using the initial values of L C , L G , SEC B , D and A

BP D Distributed profits of banks (trillion US$) 0.48 Calculated from Eq. (A118) using the initial values of BP and BP U

BP U Retained profits of banks (trillion US$) 2.37 Calculated from Eq. (A117) using the initial value of BP

C Consumption (trillion US$) 48.0 Calculated from Eq. (A44) using the initial values of Y , G and I

CAR Capital adequacy ratio 0.1 Calculated from Eq. (A127) using the initial values of K B , L C , L G  and SEC B

CBP Central banks' profits (trillion US$) 0.2 Calculated from Eq. (A133) using the initial values of b CCB , b GCB , A and SEC CB

CEN Carbon mass of the non-renewable energy sources (Gt) 9.9 Calculated from Eq. (A7) using the initial value of EMIS IN 

CO2 AT Atmospheric CO2 concentration (Gt) 3120 Taken from NOAA/ESRL (National Oceanic & Atmospheric 

Administration/Earth System Research Laboratory)

CO2 LO Lower ocean CO2 concentration (Gt) 1686.8 Based on the DICE-2016R model (Nordhaus, 2016); Gt of carbon have been 

transformed into Gt of CO2

CO2 UP Upper ocean/biosphere CO2 concentration (Gt) 6380.6 Based on the DICE-2016R model (Nordhaus, 2016); Gt of carbon have been 

transformed into Gt of CO2

CON E
Amount of non-renewable energy resources converted into non-renewable 

energy reserves (EJ)

1626.0 Calculated from Eq. (A20) using the initial value of RES E 

CON M Amount of material resources converted into material reserves (Gt) 194 Calculated from Eq. (A12) using the initial value of RES M

CR C Degree of credit rationing for conventional loans 0.2 Calculated from Eq. (A122) using the initial values of dsr , lev B and CAR

CR G Degree of credit rationing for green loans 0.3 Calculated from Eq. (A123) using the initial values of dsr , lev B and CAR

D Deposits (trillion US$) 66.0 Based on Allianz (2015)

DC Stock of durable consumption goods (trillion US$) 1256 Calculated from Eq. (A4) using the initial values of K , DEM , δ  and μ

def Rate of default 0.040 Based on World Bank

DEM Demolished/discarded socio-economic stock (Gt) 17.0 Based on Haas et al. (2015)

dep E Energy depletion ratio 0.013 Calculated from Eq. (A22) using the initial values of EN  and REV E

dep M Matter depletion ratio 0.008 Selected from a reasonable range of values

DL Amount of defaulted loans (trillion US$) 2.2 Calculated from Eq. (A94) using the initial values of L and def

DP Distributed profits of firms (trillion US$) 17.2 Calculated from Eq. (A55) using the initial values of TP  and RP

dsr Debt service ratio 0.41 Calculated from Eq. (A97) using the initial values of L C , L G , b C , b G , TP , p C and 

p G

D T Total proportional damage caused by global warming 0.0028 Calculated from Eq. (A49) using the initial value of T AT

D TF Part of damage that affects directly the fund-service resources 0.0026 Calculated from Eq. (A51) using the initial values of D T and D TP

D TP Part of damage that reduces the productivities of fund-service resources 0.0003 Calculated from Eq. (A50) using the initial value of D T

E Energy used for the production of output (EJ) 580.0 Based on IEA (International Energy Agency); total primary energy supply is used

ED Dissipated energy (EJ) 580.0 Calculated from Eq. (A18) using the initial values of EN and ER

EMIS Total CO2 emissions (Gt) 38.9 Calculated from Eq. (A25) using the initial values of EMIS IN  and EMIS L

EMIS IN Industrial CO2 emissions (Gt) 36.3 Taken from CDIAC (Carbon Dioxide Information Analysis Center)

EMIS L Land-use CO2 emissions (Gt) 2.6 Taken from the DICE-2016R model (Nordhaus, 2016)

EN Energy produced from non-renewable sources (EJ) 498.8 Calculated from Eq. (A17) using the initial values of E and ER

ER Energy produced from renewable sources (EJ) 81.2 Calculated from Eq. (A16) using the initial values of θ and E

F Radiative forcing over pre-industrial levels (W/m
2
) 2.46 Calculated from Eq. (A29) using the initial values of CO2 AT and F EX

F EX
Radiative forcing, over pre-industrial levels, due to non-CO2 greenhouse gases 

(W/m
2
)

0.50 Based on the DICE-2016R model (Nordhaus, 2016)

G Government expenditures (trillion US$) 11.6 Calculated from Eq. (A129) using the initial value of Y

g POP Growth rate of population 0.012 Taken from United Nations (medium fertility variant)

g x20
Growth rate of the autonomous proportion of desired green investment 

funded via bonds

0.040 Calibrated such that the model generates the baseline scenario

g β0 Growth rate of the autonomous share of green investment in total investment 0.004 Calibrated such that the model generates the baseline scenario  
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Symbol Description Value Remarks/sources

g λ Growth rate of labour productivity 0.016 Calculated from Eq. (A75) using the initial values of g Y  and σ 0

g λ30
Growth rate of the households' portoflio choice parameter related to the 

autonomous demand for green bonds

0.040 Calibrated such that the model generates the baseline scenario

g ω Growth rate of CO2 intensity -0.005 Calibrated such that the model generates the baseline scenario

hazratio Hazardous waste accumulation ratio (tonnes per person) 1.90 Calculated from Eq. (A10) using the initial values of HWS and POP

HPM High-powered money 13.20 Calculated from Eq. (A119) using the initial value of D

HWS Stock of hazardous waste (Gt) 14.0 Calculated assuming a constant ratio of hazardous waste to GDP since 1960

I Total investment (trillion US$) 14.6 Calibrated such that the model generates the baseline scenario

I C Conventional investment (trillion US$) 13.9 Calculated from Eq. (A67) using the initial values of I  and I G

I C
D Desired conventional investment (trillion US$) 16.1 Calculated from the identity I C

D
=I

D
-I G

D
; we use the initial values of I

D
 and I G

D

I
D Desired total investment (trillion US$) 17.0 Calibrated such that the model generates the baseline scenario

I G
Green investment (trillion US$) 0.7 Based on IEA (2016); we use a higher value than the one reported in IEA (2016) 

since green investment in our model  is not confined to investment in energy 

efficiency and renewables (it also includes investment in recyclicing and material 

efficiency)

I G
D Desired green investment (trillion US$) 0.9 Calculated such that it is reasonably higher than I G

illiq Illiquidity ratio 0.72 Calculated from Eq. (A96) using the initial values of L C , L G , b C , b G , w , N , T F , δ , 

K , Y , CR C , NL C
D

, CR G , NL G
D

, p C and p G

K Total capital stock of firms (trillion US$) 222.6 Calculated from the identity K =(K /Y )*Y using the initial value of Y and assuming 

that K/Y =3 (based on Penn World Table 9.0)

K B
Capital of banks (trillion US$) 8.0 Calculated from Eq. (A126) using the initial values of lev B , L C , L G , SEC B  and 

HPM

K C Conventional capital stock (trillion US$) 214.2 Calculated from Eq. (A71) using the initial values of K  and K G

K G Green capital stock (trillion US$) 8.4 Calculated from Eq. (A72) using the initial values of K  and κ

L Total loans of firms (trillion US$) 55.4 Calculated from the identity L =(credit -B/Y )*Y; credit is the credit to the non-

financial corporations in percent of GDP taken from BIS (Bank for International 

Settlements); it is assumed that credit  includes both loans and bonds

L C Conventional loans (trillion US$) 53.3 Calculated from Eq. (A68) using the initial values of L  and L G

L G
Green loans (trillion US$) 2.1 Calculated by assuming that L G /L=K G /K=κ ; we use the initial values of κ  and L

lev B Banks' leverage ratio 10.0 Taken from World Bank

LF Labour force (billion people) 3.40 Taken from World Bank 

lf 1
Autonomous labour force-to-population ratio 0.465 Calculated from Eq. (A113) using the initial values of LF , POP , hazratio  and D TF

M Extraction of new matter from the ground, excluding the matter included in 

non-renewable energy sources (Gt)

48.0 Based on the data provided by www.materialflows.net; the figure includes industrial 

and construction minerals plus ores

MY Output in material terms (Gt) 53.1 Calculated from Eq. (A2) using the initial values of M  and REC

N Number of employees (billion people) 3.2 Calculated from the definition of the rate of employment (re=N/LF ) using the 

initial values of re  and LF

NL C
D Desired new amount of conventional loans (trillion US$) 10.7 Calculated from Eq. (A64) using the initial values of I C

D
, β , RP , L C , δ,  K C , p C , 

and b C

NL G
D Desired new amount of green loans (trillion US$) 0.7 Calculated from Eq. (A63) using the initial values of I G

D
, β , RP , L G , δ,  K G , p G 

and b G

O2 Oxygen used for the combustion of fossil fuels (Gt) 26.4 Calculated from Eq. (A8) using the initial values of EMIS IN  and CEN

p C Price of conventional corporate bonds (US$) 100 The price has been normalised such that it is equal to 100 in 2015

p G Price of green corporate bonds (US$) 100 The price has been normalised such that it is equal to 100 in 2015

POP Population (billions) 7.35 Taken from United Nations (medium fertility variant)

r Rate of retained profits 0.009 Calculated from Eq. (A56) using the initial values of RP  and K 

re Rate of employment 0.94 Calculated from Eq. (A80) using the initial value of ur

REC Recycled socio-economic stock (Gt) 5.1 Calculated from Eq. (A3) using the initial values of ρ and DEM

RES E Non-renewable energy resources (EJ) 542000 Based on BGR (2015, p. 33)

RES M Material resources (Gt) 388889 Calculated by assuming  RES M /REV M =64.8 (based on UNEP, 2011)

REV E Non-renewable energy reserves (EJ) 37000 Based on BGR (2015, p. 33)

REV M Material reserves (Gt) 6000 Calculated from Eq. (A14) using the initial values of M and dep M

RP Retained profits of firms (trillion US$) 2.0 Calculated from Eq. (A54) using the initial value of TP

SEC Total amount of government securities 59.8 Calculated from the identity general government debt-to-GDP =SEC/Y  using the initial 

value of Y and the value of the general government debt-to-GDP  ratio (taken from 

IMF)

SEC B Government securities held by banks (trillion US$) 12.0 Calculated by assuming that SEC B /SEC=0.2 based on Alli Abbas et al. (2014)

SEC CB
Government securities held by central banks (trillion US$) 6.6 Calculated from the identity SEC CB =HPM+V CB -p C b CCB -p G b GCB -A  using the 

initial values of V CB , p C , b CCB , p G , b GCB , A  and HPM

SEC H Government securities held by households (trillion US$) 41.3 Calculated from Eq. (A138) using the initial values of SEC, SEC CB  and SEC B

SES Socio-economic stock (Gt) 1058.5 Calculated from the identity SES =μ (K +DC ) using the initial values of μ , K  and 

DC

sh L Share of loans in total firm liabilities 0.82 Calculated from the formula sh L =L /(L +B ) using the initial values of L  and B

T Total taxes (trillion US$) 10.5 Calculated from Eq. (A132) using the initial values of T H  and T F  
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Symbol Description Value Remarks/sources

T AT Atmospheric temperature over pre-industrial levels (
o
C) 1.0 Based on Met Office

T F Taxes on firms' profits (trillion US$) 3.3 Calculated from Eq. (A131) using the initial value of TP G

T H Taxes on households' disposable income 7.2 Calculated from Eq. (A130) using the initial value Y H

T LO Lower ocean temperature over pre-industrial levels (
o
C) 0.0068 Taken from the DICE-2016R model (Nordhaus, 2016)

TP Total profits of firms (trillion US$) 19.2 Calculated from Eq. (A53) using the initial values of TP G  and T F

TP G
Total gross profits of firms (trillion US$) 22.5 Calculated from Eq. (A52) using the initial values of Y , w , N , L C , L G , δ,  K, b C 

and b G

u Rate of capacity utilisation 0.72 Based on World Bank, Enterprise Surveys

ue Rate of energy utilisation 0.01 Calculated from Eq. (A46) using the initial values of Y and Y E
*

um Rate of matter utilisation 0.01 Calculated from Eq. (A45) using the initial values of Y and Y M
*

ur Unemployment rate 0.06 Based on World Bank

v Capital productivity 0.46 Calculated from Eqs. (A41) and (A47) using the initial values of Y , u  and K

V CB Wealth of central banks (trillion US$) 0 It is assumed that there are no accumulated capital gains for the central banks

V HF
Financial wealth of households (trillion US$) 119.2 Calculated from the identity V HF =D +p C b CH +p G b GH +SEC H  using the initial 

values of SEC H , p C , b CH , p G , b GH  and D

w Annual wage rate (trillion US$/billions of employees) 12.07 Calculated from Eq. (A78) using the initial value of λ

W Waste (Gt) 11.90 Calculated from the identity W=DEM -REC  using the initial values of DEM  and 

REC

x 1 Proportion of desired conventional investment funded via bonds 0.02 Calibrated such that the model generates the baseline scenario

x 2 Proportion of desired green investment funded via bonds 0.01 Calibrated such that the model generates the baseline scenario

x 20 Autonomous proportion of desired green investment funded via bonds 0.01 Calculated from Eq. (A84) using the initial values of yield G and x 2

Y Output (trillion US$) 74.2 Taken from IMF, World Economic Outlook (current prices)

Y
* Potential output (trillion US$) 78.9 Calculated from Eq. (A43) using the initial values of Y M

*
, Y E

*
, Y K

*
 and Y N

*

Y E
* Energy-determined potential output (trillion US$) 5504.0 Calculated from Eq. (A40) using the initial values of REV E , θ  and ε

Y H Disposable income of households (trillion US$) 51.1 Calculated from Eq. (A99) using the initial values of Y HG  and T H

Y HG
Gross disposable income of households (trillion US$) 58.3 Calculated from Eq. (A98) using the initial values of w , N , DP , BP D ,  D, SEC H , 

b CH  and b GH

yield C Yield on conventional corporate bonds 0.05 Based on FTSE Russell (2016)

yield G Yield on green corporate bonds 0.05 Based on FTSE Russell (2016)

Y K
* Capital-determined potential output (trillion US$) 103.1 Calculated from Eq. (A41) using the initial values of v  and Κ

Y M
* Matter-determined potential output (trillion US$) 8391.3 Calculated from Eq. (A39) using the initial values of REV M , REC  and μ

Y N
* Labour-determined potential output (trillion US$) 78.9 Calculated from Eq. (A42) using the initial values of λ and LF

β Share of desired green investment in total investment 0.05 Calculated from Eq. (58) using the initial values of I G
D

 and I
D

β 0 Autonomous share of desired green investment in total investment 0.05 Calculated from Eq. (60) using the initial values of β , sh L , yield G , yield C  and D T

δ Depreciation rate of capital stock 0.04 Calculated from Eq. (A73) using the initial value D TF

ε Energy intensity (EJ/trillion US$) 7.82 Calculated from the definition of energy intensity (ε=Ε/Y ) using the initial values of 

Ε  and Y

θ Share of renewable energy in total energy 0.14 Based on IEA (International Energy Agency); total primary energy supply is used

κ Ratio of green capital to total capital 0.04 Selected such that it is reasonably lower than I G /I

λ Hourly labour productivity (trillion US$/(billions of employees*annual hours 

worked per employee))

0.01 Calculated from Eq. (A79) using the initial values of Y and N

λ30
Households' portoflio choice parameter related to the autonomous demand 

for green bonds

0.01 Calculated from Eq. (A104) using the initial values of BGH , V HF , D T , yield C , yield G 

and Y H

μ Material intensity (kg/$) 0.72 Calculated from the definition of material intensity (μ =MY /Y ) using the initial 

values of MY and Y

ρ Recycling rate 0.30 Based on Haas et al. (2015)

σ 0 Autonomous growth rate of labour productivity -0.02 Calibrated such that the model generates the baseline scenario

ω CO2 intensity (Gt/EJ) 0.07 Calculated from Eq. (A23) using the initial values of EMIS IN  and EN  
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Appendix C. Values for parameters and exogenous variables (baseline scenario) 
 

Symbol Description Value Remarks/sources

ad K Fraction of gross damages to capital stock avoided through adaptation 0.80 Selected from a reasonable range of values

ad LF Fraction of gross damages to labour force avoided through adaptation 0.70 Selected from a reasonable range of values

ad P Fraction of gross damages to productivity avoided through adaptation 0.90 Selected from a reasonable range of values

c 1 Propensity to consume out of disposable income 0.73 Calibrated such that the model generates the baseline scenario

c 2
Propensity to consume out of financial wealth 0.10 Empirically estimated using data for a panel of countries (the econometric 

estimations are available upon request)

car Coefficient for the conversion of Gt of carbon into Gt of CO2 3.67 Taken from CDIAC (Carbon Dioxide Information Analysis Center)

CAR
min Minimum capital adequacy ratio 0.08 Based on the Basel III regulatory framework

CO2 AT-PRE Pre-industrial CO2 concentration in atmosphere (Gt) 2156.2 Taken from DICE-2016R model (Nordhaus, 2016); Gt of carbon have been 

transformed into Gt of CO2

CO2 LO-PRE Pre-industrial CO2 concentration in upper ocean/biosphere (Gt) 6307.2 Taken from DICE-2016R model (Nordhaus, 2016); Gt of carbon have been 

transformed into Gt of CO2

CO2 UP-PRE Pre-industrial CO2 concentration in lower ocean (Gt) 1320.1 Taken from DICE-2016R model (Nordhaus, 2016); Gt of carbon have been 

transformed into Gt of CO2

con Ε Conversion rate of non-renewable energy resources into reserves 0.003 Selected from a reasonable range of values

con M Conversion rate of material resources into reserves 0.0005 Selected from a reasonable range of values

coupon C Fixed coupon paid per conventional corporate bond (US$) 5 Calculated from Eq. (A87) using the initial values of p C and yield C

coupon G Fixed coupon paid per green corporate bond (US$) 5 Calculated from Eq. (A88) using the initial values of p G and yield G

CR
max Maximum degree of credit rationing 0.5 Selected from a reasonable range of values 

def
max Maximum default rate of loans 0.2 Selected from a reasonable range of values 

def 0 Parameter of the default rate function 4.00 Calculated from Eq. (A95) using the initial value of illiq 

def 1 Parameter of the default rate function 5.65 Calibrated such that the model generates the baseline scenario

def 2
Parameter of the default rate function (related to the sensitivity of the default 

rate to the illiquidity ratio of firms)

7.81 Selected from a reasonable range of values 

F 2xCO2
Increase in radiative forcing (since the pre-industrial period) due to doubling of 

CO2 concentration from pre-industrial levels (W/m
2
)

3.7 Taken from the DICE-2016R model (Nordhaus, 2016)

fex Annual increase in radiative forcing (since the pre-industrial period) due to non-

CO2 agents (W/m
2
)

0.006 Based on the DICE-2016R model (Nordhaus, 2016)

gov Share of government expenditures in output 0.16 Based on World Bank; the figure includes only the consumption government 

expenditures

h Annual working hours per employee 1800 Based on Penn World Table 9.0

h 1 Banks' reserve ratio 0.2 Based on World Bank

h 2 Banks' government securities-to-deposits ratio 0.18 Calculated from Eq. (A120) using the initial values of SEC B  and D

haz Proportion of hazardous waste in total waste 0.04 EEA (2012, p. 22) reports a figure equal to 3.7% for EU-27

int A Interest rate on advances 0.02 Based on Global Interest Rate Monitor

int C Interest rate on conventional loans 0.07 Based on World Bank

int D Interest rate on deposits 0.015 Based on World Bank

int G Interest rate on green loans 0.08 Based on World Bank; it is assumed that int G -int C =0.01

int S Interest rate on government securities 0.012 Based on Bank of America Merrill Lynch (2014)

l 0 Parameter of the function of credit rationing on green loans 0.67 Calculated from Eq. (A123) using the initial values of dsr , CAR  and lev B

l 1
Parameter of the function of credit rationing on green loans -0.24 Calibrated such that the model generates the baseline scenario

l 2
Parameter of the function of credit rationing on green loans (related to the 

sensitivity of credit rationing to the default rate)

2.08 Selected from a reasonable range of values 

l 3
Parameter of the function of credit ratioing on green loans (related to the 

sensitivity of credit rationing to the leverage ratio of banks)

0.04 Selected from a reasonable range of values 

l 4
Parameter of the function of credit ratioing on green loans (related to the 

sensitivity of credit rationing to the capital adequacy ratio of banks)

2.08 Selected from a reasonable range of values 

lev B
max Maximum leverage ratio 33.33 Based on the Basel III regulatory framework (the Basel III bank leverage can be 

proxied by the capital-to-assets ratio and its minimum value is 3%; since in our 

model the bank leverage is defined as the assets-to-capital ratio, the maxium value 

used is equal to 1/0.03)

lf 2
Sensitivity of the labour force-to-population ratio to hazardous waste 0.001 Selected from a reasonable range of values 

lr Rate of decline of land-use CO2 emissions 0.024 Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect 

a 1-year time step

p Share of productivity damage in total damage caused by global warming 0.1 Selected from a reasonable range of values

r 0 Parameter of the function of credit rationing on conventional loans 1.50 Calculated from Eq. (A122) using the initial values of dsr , CAR  and lev B

r 1
Parameter of the function of credit rationing on conventional loans -0.24 Calibrated such that the model generates the baseline scenario

r 2
Parameter of the function of credit rationing on conventional loans (related to 

the sensitivity of credit rationing to the default rate)

2.08 Selected from a reasonable range of values 

r 3
Parameter of the the function of credit ratioing on conventional loans (related 

to the sensitivity of credit rationing to the leverage ratio of banks)

0.04 Selected from a reasonable range of values 

r 4
Parameter of the the function of credit ratioing on conventional loans  (related 

to the sensitivity of credit rationing to the capital adequacy ratio of banks)

2.08 Selected from a reasonable range of values 

rep Loan repayment ratio 0.1 Selected from a reasonable range of values 

S Equilibrium climate sensitivity, i.e. increase in equilibrium temperature due to 

doubling of CO2 concentration from pre-industrial levels (
o
C)

3.1 Taken from then DICE-2016R model (Nordhaus, 2016)
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Symbol Description Value Remarks/sources

s B Banks' retention rate 0.86 Calibrated such that the model generates the baseline scenario 

s C Share of conventional corporate bonds held by central banks (trillion US$) 0.01 Calculated from Eq. (135) using the initial values of BCCB  and B C

s F Firms' retention rate 0.10 Calibrated such that the model generates the baseline scenario 

s G Share of green corporate bonds held by central banks (trillion US$) 0.00 Calculated from Eq. (134) using the initial values of BGCB  and B G

s W Wage income share 0.52 Based on Penn World Table 9.0

t 1
Speed of adjustment parameter in the atmospheric temperature equation 0.020 Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect 

a 1-year time step

t 2
Coefficient of heat loss from the atmosphere to the lower ocean (atmospheric 

temperature equation)

0.018 Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect 

a 1-year time step

t 3
Coefficient of heat loss from the atmosphere to the lower ocean (lower ocean 

temperature equation)

0.005 Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect 

a 1-year time step

w L Risk weight on loans 1.0 Based on BCBS (2006)

w S Risk weight on government securities 0.0 Based on BCBS (2006)

x 10 Autonomous proportion of desired conventional investment funded via bonds 0.02 Calculated from Eq. (A83) using the initial values of yield C and x 1

x 11
Sensitivity of the proportion of desired conventional investment funded via 

bonds to the conventional bond yield

0.10 Selected from a reasonable range of values 

x 21
Sensitivity of the proportion of desired green investment funded via bonds to 

the green bond yield

0.10 Selected from a reasonable range of values 

α 00 Parameter of the desired investment function 0.16 Calibrated such that the model generates the baseline scenario

α 01 Parameter of the desired investment function 1.35 Calibrated such that the model generates the baseline scenario

α 1
Parameter of the desired investment function (related to the sensitivity of  

investment to the capacity utilisation)

2.00 Based on econometric estimations for a panel of countries (available upon request)

α 2
Parameter of the desired investment function (related to the sensitivity of 

investment to the rate of profit)

1.84 Based on econometric estimations for a panel of countries (available upon request)

α 3
Parameter of the desired investment function (related to the sensitivity of  

investment to the growth rate of energy intensity)

0.08 Based on econometric estimations for a panel of countries (available upon request)

α 41
Parameter in the investment function (related to the sensitivity of investment to 

the unemployment rate)

0.02 Based on econometric estimations for a panel of countries (available upon request)

α 42
Parameter in the investment function (related to the sensitivity of investment to 

the unemployment rate)

0.5 Selected from a reasonable range of values 

α 51
Parameter in the investment function (related to the sensitivity of investment to 

the energy utilisation rate)

0.01 Selected from a reasonable range of values 

α 52
Parameter in the investment function (related to the sensitivity of investment to 

the energy utilisation rate)

0.99 Selected from a reasonable range of values 

α 61
Parameter in the investment function (related to the sensitivity of investment to 

the matter utilisation rate)

0.01 Selected from a reasonable range of values 

α 62
Parameter in the investment function (related to the sensitivity of investment to 

the matter utilisation rate)

0.99 Selected from a reasonable range of values 

β 1 Autonomous share of desired green investment in total investment 0.02 Calibrated such that the model generates the baseline scenario

β 2
Sensitivity of the desired green investment share to the interest rate differential 

between green loans/bonds and conventional loans/bonds

2 Selected from a reasonable range of values 

β 3 Sensitivity of the desired green investment share to global warming damages 0.5 Selected from a reasonable range of values 

δ 0 Depreciation rate of capital stock when there are no global warming damages 0.04 Based on Penn World Table 9.0

ε
max Maximum potential value of energy intensity (EJ/trillion US$) 12 Selected such that it is reasonably higher than initial ε

ε
min Minimum potential value of energy intensity (EJ/trillion US$) 3 Selected such that it is reasonably higher than 0

ζ 1 Rate of decline of the (absolute) growth rate of CO2 intensity 0.03 Calibrated such that the model generates the baseline scenario

ζ 2 Rate of decline of the growth rate of β 0 0.10 Calibrated such that the model generates the baseline scenario

ζ 3 Rate of decline of the autonomous (absolute) growth rate of  labour 0.01 Calibrated such that the model generates the baseline scenario

ζ 4 Rate of decline of the growth rates of x 20  and λ 30
0.20 Calibrated such that the model generates the baseline scenario

ζ 5 Rate of decline of the growth rate of population 0.02 Calibrated such that the model generates the baseline scenario

ζ 6 Rate of decline of the autonomous labour force-to-population ratio 0.0007 Calibrated such that the model generates the baseline scenario

η 1 Parameter of damage function 0 Based on Weitzmann (2012); D T =50% when T AT =6
o
C

η 2 Parameter of damage function 0.00284 Based on Weitzmann (2012); D T =50% when T AT =6
o
C

η 3 Parameter of damage function 0.000005 Based on Weitzmann (2012); D T =50% when T AT =6
o
C

λ10
Parameter of households' portfolio choice 0.36 Calculated from Eq. (A102) using the initial values of SEC H , V HF , D T , yield C , 

yield G  and Y H

λ10
' Parameter of households' portfolio choice 0.10 Selected from a reasonable range of values 

λ11 Parameter of households' portfolio choice 0.03 Calculated from the constraint λ 11 =-λ 21 -λ 31 -λ 41

λ12 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ13 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ14 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ15 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ20
Parameter of households' portfolio choice 0.10 Calculated from Eq. (A103) using the initial values of BCH , V HF , D T , yield C , yield G 

and Y H  
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Symbol Description Value Remarks/sources

λ20
' Parameter of households' portfolio choice -0.20 Selected from a reasonable range of values 

λ21 Parameter of households' portfolio choice -0.01 Calculated from the constraint λ 21 =λ 12

λ22 Parameter of households' portfolio choice 0.03 Calculated from the constraint λ 22 =-λ 12 -λ 32 -λ 42

λ23 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ24 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ25 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ30
' Parameter of households' portfolio choice 0.00 Global warming damages are assumed to have no impact on the holdings of green 

bonds

λ31 Parameter of households' portfolio choice -0.01 Calculated from the constraint λ 31 =λ 13

λ32 Parameter of households' portfolio choice -0.01 Calculated from the constraint λ 32 =λ 23

λ33 Parameter of households' portfolio choice 0.03 Calculated from the constraint λ 33 =-λ 13 -λ 23 -λ 43

λ34 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ35 Parameter of households' portfolio choice -0.01 Selected from a reasonable range of values 

λ40 Parameter of households' portfolio choice 0.53 Calculated from the constraint λ 40 =1-λ 10 -λ 20 -λ 30

λ40
' Parameter of households' portfolio choice 0.10 Selected from a reasonable range of values 

λ41 Parameter of households' portfolio choice -0.01 Calculated from the constraint λ 41 =λ14

λ42 Parameter of households' portfolio choice -0.01 Calculated from the constraint λ 42 =λ 24

λ43 Parameter of households' portfolio choice -0.01 Calculated from the constraint λ 43 =λ 34

λ44 Parameter of households' portfolio choice 0.03 Calculated from the constraint λ 44 =-λ 14 -λ 24 -λ 34

λ45 Parameter of households' portfolio choice 0.03 Calculated from the constraint λ 45 =-λ 15 -λ 25 -λ 35

μ
max Maximum potential value of material intensity (kg/US$) 1.5 Selected such that it is reasonably higher than initial μ

μ
min Minimum potential value of material intensity (kg/US$) 0.3 Selected such that it is reasonably higher than 0

ξ Proportion of durable consumption goods discarded every year 0.012 Selected such that the initial growth of DC  is equal to the growth rate of output

π 1
Parameter linking the green capital-conventional capital ratio with material 

intensity

1.01 Calibrated such that initial μ  corresponds to initial κ  and μ (2050)=0.9μ (2015) in line 

with the baseline scenario

π 2
Parameter linking the green capital-conventional capital ratio with material 

intensity

16.29 Calibrated such that initial μ  corresponds to initial κ  and μ (2050)=0.9μ (2015) in line 

with the baseline scenario

π 3
Parameter linking the green capital-conventional capital ratio with recycling rate 6.88 Calibrated such that initial ρ  corresponds to initial κ  and ρ (2050)=1.4ρ (2015) in line 

with the baseline scenario

π 4
Parameter linking the green capital-conventional capital ratio with recycling rate 36.02 Calibrated such that initial ρ  corresponds to initial κ  and ρ (2050)=1.4ρ (2015) in line 

with the baseline scenario

π 5
Parameter linking the green capital-conventional capital ratio with energy 

intensity

9.37 Calibrated such that initial ε corresponds to initial κ  and ε (2050)=0.75ε (2015) in line 

with the baseline scenario

π 6
Parameter linking the green capital-conventional capital ratio with energy 

intensity

53.29 Calibrated such that initial ε  corresponds to initial κ  and ε (2050)=0.75ε (2015) in line 

with the baseline scenario

π 7
Parameter linking the green capital-conventional capital ratio with the share of 

renewable energy 

12.29 Calibrated such that initial θ  corresponds to initial κ  and θ (2050)=0.18 in line with 

the baseline scenario

π 8
Parameter linking the green capital-conventional capital ratio with the share of 

renewable energy 

17.63 Calibrated such that initial θ  corresponds to initial κ  and θ (2050)=0.18 in line with 

the baseline scenario

ρ
max Maximum potential value of recycling rate 0.8 Selected such that it is reasonably lower than 1

σ 1 Autonomous growth rate of labour productivity 0.01 Calibrated such that the model generates the baseline scenario

σ 2
Sensitivity of labour productivity growth to the growth rate of output 0.92 Empirically estimated using data for a panel of countries (the econometric 

estimations are available upon request)

τ F Firms' tax rate 0.15 Selected from a reasonable range of values

τ H Households' tax rate 0.13 Calibrated such that the model generates the baseline scenario

φ 11
Transfer coefficient for carbon from the atmosphere to the atmosphere 0.9760 Calculated from the formula φ 11 =1-φ 12  (see the DICE-2016R model, Nordhaus, 

2016)

φ 12
Transfer coefficient for carbon from the atmosphere to the upper 

ocean/biosphere 

0.0240 Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect 

a 1-year time step

φ 21
Transfer coefficient for carbon from the upper ocean/biosphere to the 

atmosphere 

0.0392 Calculated from the formula φ 21 =φ 12 (CO2 AT-PRE /CO2 UP-PRE ) (see the DICE-

2016R model, Nordhaus, 2016)

φ 22
Transfer coefficient for carbon from the upper ocean/biosphere to the upper 

ocean/biosphere 

0.9595 Calculated from the formula φ 22 =1-φ 21 -φ 23  (see the DICE-2016R model, 

Nordhaus, 2016)

φ 23
Transfer coefficient for carbon from the upper ocean/biosphere to the lower 

ocean 

0.0013 Taken from the DICE-2016R model (Nordhaus, 2016); has been adjusted to reflect 

a 1-year time step

φ 32
Transfer coefficient for carbon from the lower ocean to the upper 

ocean/biosphere 

0.0003 Calculated from the formula φ 32 =φ 23 (CO2 UP-PRE /CO2 LO-PRE ) (see the DICE-

2016R model, Nordhaus, 2016)

φ 33
Transfer coefficient for carbon from the lower ocean to the lower ocean 0.9997 Calculated from the formula φ 33 =1-φ 32  (see the DICE-2016R model, Nordhaus, 

2016)  


