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Fisher’s F-ratio illustrated graphically 

 
Introduction  
Calculating Fisher’s F-ratio is a key step in a number of statistical procedures involving 
null hypothesis significance testing. This is particularly so in the case of ANOVA 

(analysis of variance) in its several forms, but even multiple regression includes a test of 
significance of the overall model which employs an F-ratio. The present paper aims at 
making the basic ideas behind this common statistic more comprehensible by providing a 

visual counterpart to, and justification for, its algebraic definition.   
 

As an example of how the definition works, consider the following very simple set of 
data comprising an independent variable consisting of three groups, where the values of 

the dependent variable are 1, 2, 3 for the first group, 4, 5, 6 for the second group and 7, 8, 
9 for the third group. The groups could represent three drug treatments, and the numbers, 
a measure of clinical outcome for each of nine participants. One might represent this set 

of data as a row vector thus: (1, 2, 3, 4, 5, 6, 7, 8, 9). 
 

The first step with ANOVA is to calculate the so-called “total sum of squares” for these 
data, which is defined as the sum of squared deviations of the data points from the 
overall mean. Here, the mean is 5, and the sum of squared deviations from it is 16 + 9 + 

4 + 1 + 0 + 1 + 4 + 9 + 16, or 60. This total is then partitioned into two quantities, the 
“within groups” and “between groups” sums of squares. The within groups sum of 

squares is found by taking the squared deviations within each group from the mean for 
that group, and adding these. In this instance each group contributes 2 to the sum, 

making a total of 6. The between groups sum of squares is defined as what is left over 
when this sum of squares is subtracted from the total sum of squares, namely 54.  
 

From these sums of squares, two “mean squares” are now calculated. The within groups 
mean square (MSW) is found by dividing the within groups sum of squares by the within 

groups degrees of freedom, which is equal to the total number of data points reduced by 
the number of groups, or 6 with this dataset. The between groups mean square (MSB)  is 
found by dividing the between groups sum of squares by the between groups degrees of 

freedom, which is equal to the number of groups reduced by one, in this case 2. Finally 
Fisher’s F is found as the ratio (MSB)/(MSW). The output of such a calculation for the 

example given above is shown in Table 1. I will ignore the “significance” value of .001 
for the moment as it is not strictly relevant to the present discussion. 

  
Table 1: output of ANOVA calculation for the example 
 

ANOVA 

Score   

 Sum of Squares df Mean Square F Sig. 

Between Groups 54.000 2 27.000 27.000 .001 

Within Groups 6.000 6 1.000   

Total 60.000 8    



 
2 

 
In teaching ANOVA to students, the calculation outlined above is usually justified as 
follows. On the assumption that the null hypothesis is true, the between groups and 

within groups mean squares will each be independent, unbiassed estimates of the same 
quantity, namely the variance of the underlying population. Both mean squares should 

therefore, if the null is true, yield roughly equal outcomes, so that their ratio – Fisher’s F 
– is expected to be around one. If the F-ratio is much larger than one, we are therefore 

justified in rejecting the null hypothesis.  
 
There is usually no discussion of why F-ratios of much larger than one may enable us to 

reject the null whereas ratios much smaller than one, which seem equally to contradict 
the null hypothesis, do not. Moreover, the logic of why the mean sums were chosen to 

compare estimates of population variance, rather than, say, one of the mean sums and the 
variance of the total dataset, is not explained. The student is to be forgiven if they 
conclude that statistics is a dark art.  

 
It is, however, possible to represent the F-ratio visually on a two-dimensional diagram in 

a logical and straightforward way. There is a cost to be paid for this: to explain the 
procedure it is necessary to abandon a sole focus on the null hypothesis, and to include 
the experimental hypothesis explicitly. One has also to address the relationship between 

hypotheses and models. I suggest however that this increase in complexity is worthwhile 
because it brings with it an ability to perceive what the F-ratio is really doing. There are 

also unexpected fringe benefits. Effect sizes are emphasised in modern texts on orthodox 
statistics, but the usual explanation of the standard effect size measures used in ANOVA 
(eta-squared and its variants) is arcane. Using the diagram, two of them – eta-squared (or 

equivalently, R-squared) and epsilon-squared (which is identical to the so-called 
adjusted R-squared) – emerge in plain sight from the geometry of the situation. 

 

Procedure  
Consider the example of a one-way ANOVA, with the independent variable comprising 

k separate groups and having a total sample size of N. The procedure can be extended to 
multifactorial ANOVA, and indeed to repeated measures ANOVA, but to illustrate the 

basic principle this will suffice. A model is defined as an approximation to the actual 
data, which involves assigning a value to each sample point, determined by the model. A 

standard measure of how far a model departs from the data, is given by the lack-of-fit 
sum of squares (which I abbreviate to lofsos); this is the sum of the squared 

differences between the actual value of the dependent variable and the value for that 
data point predicted by the model, taken over the whole sample.  

 

The null hypothesis states that the groups are all drawn randomly from the same 

population. Corresponding to this hypothesis are a whole continuum of possible models, 
each consistent with the hypothesis. Each of these models approximates all the data 

points by a single number, which is called the parameter representing that model. It is 
well known that out of all such models, the one which fits the data most closely by the 

lofsos criterion is the model whose parameter is the mean of all the sample data: call it 
the null model. 
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In the case of the earlier example, the null model will approximate all the values of the 

dependent variable by the grand mean of 5. One could represent it as a row vector thus:  
(5, 5, 5, 5, 5, 5, 5, 5, 5). It can be seen by examining the definitions that the lofsos of the 

null model is identical to the “total sum of squares” as defined earlier.   

 

Typically, a between-subjects design will be used to test a causal hypothesis, claiming an 
effect of the differing treatments represented by the various groups on the dependent 
variable. In its most basic form, the causal hypothesis is the logical contrary to the null 

hypothesis: it states that the population means from which the groups are sampled are not 
all equal. The causal hypothesis is, as with the null hypothesis, also compatible with 

many different models but as before, there is a unique causal model that best fits the data. 
That model is the one which approximates every data point by the mean of the group to 

which it belongs, (this group mean being the best estimate of the corresponding 
population mean).  
 

In the earlier example, the causal model will represent all members of each group by that 
group mean, which appears in row vector form as (2, 2, 2, 5, 5, 5, 8, 8, 8), having three 

parameters. The lofsos of the causal model is, from the definition, the same as the within 
group sum of squares. In the general case where there are k separate groups the causal 
model has k parameters, one for each group, each parameter being equal to its group mean. 

Incidentally, if N is the sample size, the data points and models in vector form can be 

considered as points in an N-dimensional Euclidean space, and the lofsos of a model is then 
simply the squared Euclidean distance between the model vector and the data vector.  

 

At this point it is necessary to introduce one final model: the saturated model, which 

approximates the dataset by itself. The saturated model can be represented by the same 
row vector as the original set of data: in the previous case, (1, 2, 3, 4, 5, 6, 7, 8, 9). Since 

each value of this vector is given by the data, there are in general N numbers required to 
specify the model: it has N parameters. The lofsos of the saturated model is evidently 

zero. The point of the saturated model will appear presently.  
 
In Figure 1, I have plotted these three models derived from the example, with lofsos on 
the vertical axis and the number of parameters on the horizontal axis. The figure 
includes vertical lines indicating the size of the total sum of squares (the lofsos of the 
null model: 60), within groups sum of squares (the lofsos of the causal model: 6) and 
the between groups sum of squares (54), as well as the between groups degrees of 
freedom (2) and within groups degrees of freedom (6).   
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Figure 1: null, causal and saturated models plotted on a lofsos-parameter diagram, with 

mean squares, sums of squares and degrees of freedom indicated 

 

 

Given the definitions of the mean squares as the ratio between the appropriate sum of 

squares to the appropriate degrees of freedom, it is clear that MSB is the gradient of the 

line joining the null and causal models, and MSW is the gradient of the line connecting the 

causal and saturated models (the point of the saturated model should now be clear: it was 

needed so that both these statistics could be represented on the same diagram). Fisher’s 

F-ratio appears as the ratio of these two gradients.  

 
It is evident from this diagram that the causal model for our example lies below the line 
joining the null and saturated models. A moment’s thought will confirm that this will be 
the case when, and only when, the gradient MSB is steeper than the gradient MSW. This 
condition is clearly equivalent to the statement that MSB/MSW > 1. It follows that the 
plot of the causal model lies below the line joining the null and the saturated models in 
the lofsos-parameter diagram if, and only if, Fisher’s F is greater than one. 
 

 

Justification  
Why should this be significant, in the non-statistical sense of the word? The null and 
saturated models are both lacking in interest, in terms of what they tell us about the data. 

The null model fails to distinguish in any way between the data points, and so does not 
tell us whether (or in what direction) any one of the group means differs from any of the 
others. The saturated model is equally unhelpful, but in the opposite direction. A model 
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which uses the data to represent themselves has perfect fit, but at the expense of lacking 
any predictive validity. 

 

This suggests that the line joining the null and saturated models (see Figure 2: it is the 

line NS) might represent the point plots of all models which share, with the models at 
both extremities of the line, the property of being without value in terms of conveying 
useful information about the underlying structure of the data. In fact it can be shown that 

this line represents something quite concrete. Taking the example in the diagram above, 
there are 9 sample points. Consider a model with three parameters. The line joining the 

null and saturated models has a slope of 60/8 or 7.5, so the point on this line vertically 
above the three parameter mark, which is two parameter units to the right of the plot of 
the null model, is at a vertical lofsos value of 60 – 2 x 7.5 or 45. Now suppose that I take 

all possible ways of dividing the original dataset into three groups, and for each such 
combination, I calculate the lofsos for that model, in which the data are approximated by 

the group means. Then the grand average of the lofsos values for all these combinations 
will be precisely 45. 

 

This result is quite general (a proof is given at the end of this paper). This means that the 
line joining the null and saturated models represents, for each value of parameter on the 
horizontal axis, a lofsos value that would be obtained on average by choosing 

appropriate numbers of subgroups of the dataset totally at random and calculating the 
corresponding models. Clearly, a prospective model should fit the data better than this – 

in other words, it should plot below this line – if it is to improve on the average 
performance of a model obtained in this random manner, and so to have any merit. 
 

The null model-saturated model line slopes downwards to the right, meaning that the 
more complex models, with higher parameter values, have (as their complexity 

increases) a more severe threshhold to overcome if they are to plot below this line, like 
the steadily dropping bar in a limbo-dancing contest. Complexity, measured by number 

of parameters, is penalized in a linear manner. The line therefore represents a numerical 
representation of Occam’s razor. It might perhaps therefore fairly be dubbed the “Occam 
line” for this dataset. 

 

The criterion that the causal model should lie below the Occam line on the lofsos-

parameter diagram if it is to be preferred to the null model, is the same as specifying 
that the F-ratio for a dataset be greater than one, if the null hypothesis is to be rejected. 
This viewpoint shows why an F-ratio that is significantly less than one is not of interest: this 
represents a model that lies above the line, and so fits the data worse than the null model 

once the penalty for complexity has been imposed. Clearly such a model is undesirable.  

 

This does not of course suffice to show how the distribution of the F-ratio is calculated in any 

given case. But it does provide a logical foundation for an explanation of what the F-ratio is 

really doing. The presence of random error in the sampling of data from a population or 

populations means that the F-ratio must not only be greater than one, but significantly greater 

than one for the causal hypothesis to be preferred, in order to limit the type I error rate.  
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Incidentally, the notion that the Occam line is related to the set of all sets of subgroup 

partitions with a particular parameter number suggests that there is a natural distribution-free 

statistical test for significance, if the normality or other requirements for the standard 

distribution of the F-ratio are violated. If this happens, consider an F-ratio significant at (for 

example) the .05 level if and only if the F-ratio for the actual grouping of the data is within 

the top 5% of all F-ratios obtained by all different possible combinations of the data into the 

same number of subgroups, of the same sizes. This is evidently equivalent to specifying that 

the causal model actually obtained is closer (in terms of lofsos distance) to the data than at 

least 95% of the possible alternative combinations of the same number of subgroups and 

subgroup sizes. The method appears to ensure limitation of actual type I error rates to 

nominal alpha levels whatever the distribution of the dependent variable. In the case of our 

example, it happens that the lofsos of the actual grouping into three groups of three points 

each is the smallest possible among the 1680 possible such subgroups, meaning that the 

causal model can be preferred to the null model at a significance level of less than .001. The 

case for this method has been put with great eloquentce in Mewhort (2005) and Mewhort, 

Johns and Kelly (2010).  

 

 

How effect sizes emerge naturally from the diagram 

  
In what follows, to avoid confusion of letters I have referred to the model under test as 
the full model rather than the causal model. 

 
 

Figure 2: illustrating alternative effect sizes on a lofsos diagram. With AN normalized in 

length to equal 1, BN = R-squared and CN = adjusted R-squared 
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In figure 2 the points N, F and S represent the null, full (or causal) and saturated models 
on a lofsos-parameter diagram, and the line NS is the Occam line. Note that point A is at 

the point on the horizontal parameter axis corresponding to the number of parameters for 
the null model (usually 1, but in the case of a repeated measures ANOVA, it will be 

greater than 1). The lines AN and ED are vertical, and the line BF is horizontal, and 
parallel to AS. The line CF is an extension of the line FS, so that CFS is one straight 

line. 

 

The lofsos of the null model is the distance AN, and the lofsos of the full model is the 

distance FD, which is equal to the distance AB. So the improvement in the lofsos 
given by the full model is given by AN – AB, or a distance BN. The relative 
improvement is now just BN/AN. 

 

This measure of effect size has a name, or rather two names. In ANOVA-type analyses, 
it is usually called η

2
 or eta-squared. In multiple regression, it is called R

2
 or R-squared. 

But the two symbols refer to exactly the same thing, conceptually. 

 

However, there is still a problem. To understand this, imagine that F was actually situated 
on the Occam line, vertically above its present position, at point E. Using the previous 

definition, the full model would still have a positive effect size, because point E has a 
smaller lofsos than N, even though it is doing no better than would be expected if the null 
hypothesis were true. In other words, this measure of effect size takes no account of  
Occam’s principle. Surely, we would want any point on the Occam line to have an 
effect size of zero. This represents the well-known fact that eta-squared or R-squared 
suffers from a positive bias (as we will see below). 

 

Looking at the diagram, there is, however, a natural definition of effect size for F which 
does not have this handicap. Surely the improvement in lofsos for F that we should be 
measuring is not the improvement relative to the null model, but that relative to the 
equivalent model with the same number of parameters as the full model. This equivalent 
model is located by definition on the Occam line, at position E. The lofsos for this 
model is the distance ED. The improvement achieved by F is now not NB, but FE, 
which is smaller. So the correct measure of effect size is EF/ED. This is precisely the 
effect size known as adjusted R-squared in regression calculations, or as epsilon-squared 
(ε

2
) in the context of analysis of variance.

 

 

To see how this measure relates to the original R-squared measure of effect size, extend 
the line SF, until it hits the line AN at C. By similar triangles, EF/ED = NC/NA. The 

correct effect size is therefore NC/NA, compared with the original estimate of effect size, 
of NB/NA. Since NC is smaller than NB, the real effect size is smaller than the apparent 
one, confirming that R-squared was indeed biased positively. 

 

To find a formula for the new effect size in terms of R-squared, proceed as follows. 

To simplify the calculations, I am going to take NA to be of unit length (this amounts 
to dividing all original lengths by the length of NA, leaving all ratios and therefore 
effect sizes unchanged). 
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If the length of AN is 1, then the length of NB must be R-squared (since NB/NA = R
2
). 

So by subtraction, the length of AB is 1 – R
2
, and this is equal to the length of FD since 

ABFD is a rectangle (the equality of AB and FD is obvious from the diagram). 
 

Since the triangles SDF and SAC are similar, the length of AC is AS/DS times the length 

of FD. You can see this as before by imagining FD projected from S onto AN. The length 

of the image is proportional to its distance from S. 

 

But AS represents the difference between the number of parameters of the null model 

and the parameters of the saturated model, which is the definition of the degrees of 

freedom of the null model. By a similar argument, DS is the number of degrees of 

freedom of the full model, or equivalently the within groups degrees of freedom. 
 

So with the obvious notation, the length of AC is dfN /dfW.(1 – R2), and the length of NC is  

1 –  {dfN /dfW.(1 – R2)}, which is the standard formula for adjusted R2, sometimes called 

Wherry’s formula. 
 

It is possible for adjusted R-squared to turn out to be negative. This is the case if, 

and only if, the plot for the full model is above the Occam line. In that case, the 

model is clearly has no merit. 

 

In ANOVA, the formula given for epsilon-squared is: 
 

ε
2
 = (SSB – dfB.MSW  )/SST 

 

where the first SS is the between sum of squares (corresponding to the distance NB in the 
diagram), the df is the “between” degrees of freedom, namely the parameter difference  
AD, the MS term is the mean within sum of squares (which is the slope of the line FS, ie 
the denominator in the F-ratio) and the final SS term is the total sum of squares, which 
is the distance AN. 

 

It can be seen that this is equivalent to the formula for adjusted R-squared as follows. 
Since MSW  is the gradient of the line CF, and since dfB is the length BF, dfB.MSW is 
the vertical rise of CF over the distance BF, namely BC. So (SSB – dfB.MSW) is simply 
the length NB – CB = NC, and the whole expression is NC/NA, which is identical to 
the previous formula for adjusted R-squared. 
 
Incidentally, R-squared and adjusted R-squared are terms borrowed from the 

technical language of multiple regression, whereas eta-squared and epsilon-squared 
are terms for the same concept when used in the ANOVA context. The two areas of 
statistics were developed independently to analyse observational and experimental 
data respectively, and the consequent overlapping terminology has never been 
rationalized. Perhaps as a result, it does not seem to be widely known that these 
identities hold. Adjusted R-squared is in general use as a bias-corrected effect size 
measure in regression work. The most widely recommended measure for ANOVA is 

not, however, its equivalent, epsilon-squared, but a different statistic known as ω
2
 or 

omega-squared. Omega-squared goes some way towards correcting the positive bias 



 
9 

of eta-squared, but the analysis above would suggest that it does not do so as well as 
epsilon-squared. There is evidence to support the claim that of the three measures, 
epsilon-squared is indeed the least biased (Albers & Lakens, submitted for 
publication; Okada, 2013).  

 
 

Mathematical proof that the Occam line represents the lofsos plots of the average 

models for each parameter value 
 

Suppose the dataset is of size N, and designate the lofsos of the null model by 

lofsos(null). The geometry of the Occam line is such that by well known principles of 

similar triangles, the vertical distance of the Occam line above the horizontal axis at the 

point corresponding to a parameter number of k is: 

  

lofsos(null).{(N – k)/(N – 1)}.  

 

Call this lofsos(k) for short. For k = 1, this of course gives a value of lofsos(null), as we 

would expect since the null model has one parameter, and for the saturated model with N 

= k, it reduces to the correct distance of zero. 

 

This value has been claimed to represent in some sense the value of lofsos for a k-

parameter model which is telling us nothing useful about the dataset. This is the meaning 

of the Occam penalty, which tells us to treat any model which plots on this line in the 

lofsos-parameter diagram, as equivalent to both the null and the saturated models. I will 

now justify this statement.  

 

By the definition of lofsos, if the total dataset is represented as {xi:1 < i < N},  

 

lofsos(null) = ΣN(xi – x̄)
2
,  

 

where x̄ is the overall mean, and any text on mathematical statistics shows that this can 

be simplified to  

 

Σ(xi
2
) – (Σxi)

2
/N. 

 

Expanding the right hand term, this in turn reduces to  

 

{(N – 1)/N}.Σ(xi
2
) – {2/N}.Σ i ≠ j(xixj) 

 

Therefore the height of the Occam line for parameter value k is  

 

[{(N – 1)/N}.Σ(xi
2
) – {2/N}.Σ i ≠ j(xixj)].{(N – k)/(N – 1)} 

 

= {(N – k)/N}.Σ(xi
2
) – {2/N}.{(N – k)/(N – 1)}.Σ i ≠ j(xixj)………………….(1) 

 

Suppose now that I divide the actual dataset of  N points into k disjoint subsets,  

of size n1, …, nk.  
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the division into the k subsets can be written  

{x11, x12, …}, {x21, x22, …}, …, {xk1, xk2, …}, where the size of the r-th subset is nr.  

 

What is the lofsos value for this particular division? 

 

It is the sum of the values of the form Σn(xi – x̄)
2
, where n runs through the values n1, …, 

nk, and the values of xi for, say, the r-th subset runs through the nr values  

{xr1, xr2, …} and x̄ = x̄r is the mean of the r-th subset. I write the summand in the 

simplified form Σn(xi – x̄)
2
 to prevent a proliferation of subscripts. 

 

Each such summand can be written, using the same reasoning as above, in the form  

 

{(n – 1)/n}.Σ(xi
2
) – {2/n}.Σ i ≠ j(xixj), where now the summation is taken over only the 

values xri and xrj in the r-th subset, omitting the r subscript for simplicity. So the total 

lofsos can be written in the form 

 

Σ[{(n – 1)/n}.Σ(xi
2
) – {2/n}.Σ i ≠ j(xixj)]  …………………………………(2) 

 

where the leftmost summation is taken over the subsets numbered from 1 through k, and 

the interior summations are taken within these successive subsets.  

 

I will now show that when these expressions are taken over all the possible combinations 

into which the original set can be thus divided, the average value of all these expressions 

lies on the Occam line. By “all the possible combinations” I mean all distinct 

subdivisions of the original set of size N into subsets of sizes n1 through nk.  

 

The main result I will need is that the result of averaging all possible expressions of the 

form (2) must be of the form  

 

α.Σ(xi
2
) + β.Σ i ≠ j(xixj) ……………………………….(3) 

 

The summations in (3) are taken over all the values of {xi:1 < i < N} in the original 

dataset.  

 

A heuristic explanation for (3) is that when taking the average of the expressions (2) over 

all possible combinations of subsets, each datapoint is treated precisely equally: the 

symmetry of the situation means that the coefficient of each term xi
2
 must be equal to that 

for any other term xj
2
 for any values of i and j. Likewise, any pair (i, j) with i ≠ j must 

have the same coefficient in the final average for the term (xixj), as does any other pair  

(p, q) with p ≠ q, for the term (xpxq).  

 

In more mathematical terms, consider the set of expressions of the form (2) over all the 

N!/(n1!n2! …nk!) possible subdivisions of the original dataset. This set can be operated on 

by members of the complete group of permutations on N objects, the symmetric group 

SN, in the obvious way, with elements of SN permuting the subscripts in the algebraic 
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expressions. Since the set of expressions corresponds to the whole set of possible 

subdivisions of the dataset, the set is closed under the effect of SN. This means that the 

sum of the algebraic expressions is invariant under the action of any member of SN: any 

symmetric group element merely permutes the terms of the sum among themselves, 

leaving the sum itself unaltered. So the average of the terms, which is merely the sum of 

the terms divided by a constant, is also invariant. It is immediately obvious that the only 

expression in the terms xi
2
 and (xixj) with i ≠ j that satisfies these criteria is the one where 

all the terms xi
2
 have the same coefficient as one another, and likewise all the terms (xixj) 

with i ≠ j have the same coefficient, whence the form of (3) follows.  

 

It may appear that we are not much further forward. But there is a very useful property of 

the original expressions of the form (2) which we can now exploit. 

 

Consider one of the expressions of this form, corresponding to a particular subdivision of 

the dataset: it does not matter which one. Suppose we add the coefficients of the terms of 

the form xi
2
. I show that this sum does not depend on the subdivision. In the expression  

 

Σ[{(n – 1)/n}.Σ(xi
2
) – {2/n}.Σ i ≠ j(xixj)]   

 

Consider any particular summand, which can be written 

 

{(n – 1)/n}.Σ(xi
2
) – {2/n}.Σ i ≠ j(xixj). 

 

There are n terms of the form xi
2
, each with coefficient (n – 1)/n, so the sum of the 

coefficients is n – 1. This is the case for each of the k summands, so the overall sum of 

the coefficients of squared terms is  

 

(n1 – 1) + … + (nk – 1) = n1 +  … + nk – k = N – k. 

 

Since this sum of coefficients does not depend on the particular subdivision chosen, the 

sum of these coefficients in the average taken over all possible subdivisions must also be 

N – k.  

 

From (3), this sum is also equal to α.N, so α.N = N – k, and finally,  

 

α = (N – k)/N. 

 

The value of β is found similarly. The sum of the coefficients for xixj in  

 

{(n – 1)/n}.Σ(xi
2
) – {2/n}.Σ i ≠ j(xixj) is –(2/n).n.(n – 1)/2, or –(n – 1),  

 

since there are n.(n – 1)/2 ways of choosing terms xixj out of n possible terms, and each 

such term has the same coefficient –2/n. As before, summing this over all values of n = ni 

for this particular subdivision gives a total of –(N – k). 
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The sum of the coefficients in the expression for the average over all subdivisions, 

expression (3), must therefore also be –(N – k). 

 

The second term in (3), namely β.Σ i ≠ j(xixj), is taken over all such pairs from the set {xi:1 

< i < N}, of which there are N(N – 1)/2 terms, each with the same coefficient β. These 

coefficients sum to β.N(N – 1)/2 which I have shown is equal to –(N – k). 

 

Therefore β = –2(N – k)/N(N – 1). 

 

Substituting these values in (3), we have: the result of averaging all possible expressions 

of the form (2) must be of the form  

 

{(N – k)/N}.Σ(xi
2
) – 2{(N – k)/N(N – 1)}.Σ i ≠ j(xixj) ……………………………….(4) 

and this expression is seen to be identical to (1), which lies on the Occam line.  

 

Therefore this point on the Occam line represents the lofsos that we would expect for a k-

parameter model consisting of k groups, if the k groups were chosen entirely at random 

subject to the first one having n1 points, the second one having n2, and so on.  

 

Clearly if this is the case, then any model which plots on the Occam line and which 

consists of k groups with n1, etc points, is doing no better than if the points had been 

grouped entirely at random. Such a model is certainly not telling us anything useful about 

the data. 

 

What about the general k-parameter model with k groups? Any such model must specify 

in advance the size of the subgroups, and therefore can be analyzed as above, with the 

values of ni as given. Since the point on the Occam line depends only on the value of k 

and not on the sizes of the subgroups, the same analysis applies, and the same conclusion 

follows: the model must plot below the line in order to have any kind of merit.  
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