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Abstract. A palindrome is a string x = a1 · · · an which is equal to its
reversal x̃ = an · · · a1. We consider gapped palindromes which are strings
of the form uvũ, where u, v are strings, |v| ≥ 2, and ũ is the reversal of u.
Replicating the standard notion of string exponent, we define the anti-
exponent of a gapped palindrome uvũ as the quotient of |uvũ| by |uv|.
To get an efficient computation of maximal anti-exponent of factors in
a palindrome-free string, we apply techniques based on the suffix au-
tomaton and the reversed Lempel-Ziv factorisation. Our algorithm runs
in O(n) time on a fixed-size alphabet or O(n log σ) on a large alphabet,
which dramatically outperforms the naive cubic-time solution.

1 Introduction

A palindrome is a string x = a1 · · ·an which is equal to its reversal x̃ = an · · · a1.
For example, x1 = abba = x̃1 and x2 = abaaba = x̃2 are palindromes.

The understanding of palindromic structures is one of the fundamental prob-
lems in language theory and algorithm design. Early studies by Manacher [16]
and Galil [10] contributed to the construction of linear-time algorithms to find
palindromes in a string. Crochemore and Rytter [6] presented a parallel algo-
rithm to compute even-length palindromes in O(log n) time using n processors.
Knuth, Morris and Pratt gave a linear-time algorithm to compute palstars (con-
catenations of even-length palindromes) in a given string [13].

The palindromic structure plays an important role in molecular biology and
it is significant to both DNA and RNA sequences [18, 20]; for example, many
restriction enzymes recognize specific palindromic sequences and cut them. How-
ever, the definition of a biological palindrome is slightly different from the def-
inition above, as it needs to take into account Watson-Crick base pair rules. A
nucleotide sequence is a palindrome, if it is equal to its reversed complement
(C complements G and A complements T). For example, the DNA sequence
ACCTAGGT is a palindrome because it is equal to the reversal of its complement
TGGATCCA.
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In this work, we study gapped palindromes, which are strings of the form
uvũ, where u, v are strings, |v| ≥ 2, and ũ is the reversal of u. The strings
u and ũ are called the anti-borders of the gapped palindrome. For example,
desserts make me stressed has anti-borders ‘desserts ’ and ‘ stressed’

(example from [14]). This palindrome-like structure is also important in molec-
ular biology; for example, gapped palindromes form stem-loop intra molecular
base pairing structures known as hairpins or hairpin loops. Hairpins can be
found in single-stranded DNA but more frequently in RNA, where the structure
of the molecule influences its biological function; see [15, 21] for more examples
of related genome research.

Gusfield [12] presented a linear-time algorithm for computing fixed-length
gapped palindromes. Kolpakov and Kucherov [14] studied maximal gapped palin-
dromes, i.e gapped palindromes with anti-borders that cannot be extended out-
ward or inward while preserving the palindromic structure. They proposed two
linear-time algorithms for computing two classes of gapped palindromes: The
first algorithm computes maximal long-armed palindromes, where a long-armed
palindrome is a gapped palindrome uvũ, such that |v| ≤ |u|. The second al-
gorithm computes maximal length-constrained palindromes, where a length-
constrained palindrome is a gapped palindromes uvũ, such that MinGap ≤
|v| ≤ MaxGap and MinLen ≤ |u|, for some constants MinGap, MaxGap and
MinLen.

A closely related problem was presented in [3], in which a linear-time algo-
rithm to find the longest previous reverse factor occurring at each position of
a string is proposed. Such a factor is a principal notion used for the optimal
detection of various types of palindromes. The ability to compute the longest
previous reverse factor found many applications especially for RNA secondary
structure prediction and text compression when reverse factors are accounted
for [11]. This development led to the reversed Lempel-Ziv factorisation used in
[14].

In this article, we consider a fixed palindrome-free string, that is, a string
containing no palindrome of length greater than 1. For such string, we present
a linear-time algorithm to compute the maximal anti-exponent of the gapped
palindromes (a preliminary version was presented in [2]). This notion encom-
passes the detection of the most significant gapped palindromes occurring in a
string and can be extended easily to biological palindromes.

The solution proposed in this article is a special type of divide-and-conquer
technique. The technique we use is unbalanced contrary to what is traditional to
impose for improving the running time or the memory space of resulting recur-
sive algorithms. In fact, the balanced divide-and-conquer approach is unlikely to
improve the running time of our solution as it would lead to a O(n log n)-time
algorithm. Our technique is essentially based on the reversed Ziv-Lempel fac-
torisation of the input string, in which factors have various lengths. Despite the
unbalanced feature, the solution provides an algorithm running in linear time,
at least on a fixed-sized alphabet. This strategy has been initiated in [4] and ap-



plied since then to a variety of problems related to repeats occurring in strings,
like in [1].

2 Prelimnaries

Let x = x[1]x[2] · · ·x[n] be a string of length |x| = n over an ordered alphabet
Σ of size σ = |Σ|. Let x[i] be the letter of x at position i, 1 ≤ i ≤ n. The
empty string is denoted by ǫ. A factor of x is a string of the form x[i . . j] =
x[i]x[i + 1] . . . x[j], 1 ≤ i ≤ j ≤ n. A factor x[i . . j] is a prefix of x if i = 1, and
a suffix of x if j = n. The reversal of x is the string x̃ = x[n]x[n − 1] · · ·x[1]. If
x = x̃, then x is a palindrome.

The string x has period p, if x[i] = x[i+p], whenever both sides of the equality
are defined. The period of x, denoted by period(x), is the smallest period of x.
The exponent of x, denoted by exp(x), is defined as exp(x) = n/period(x). For
example, exp(restore) = 7/5, exp(mama) = 2 and exp(alfalfa) = 7/3.

A factor w = uvũ is a gapped palindrome, if u, v are strings, |v| ≥ 2, and v is
not a palindrome. Here, u and ũ are called the anti-borders of w if and only if u
is the longest prefix of w for which ũ is a suffix. Note that a gapped palindrome
is not a palindrome because the gap |v| ≥ 2 is not allowed to be a palindrome.

A gapped palindrome is said to be maximal if its anti-borders cannot be
extended outward or inward preserving the palindromic structure as in Fig 1.
The anti-exponent of w is defined as |w|/|uv|. Further, themaximal anti-exponent

of x is defined as the maximum value among the anti-exponents of all gapped
palindromes occurring in x.

c u v ũa b d

Fig. 1. Both anti-borders cannot be extended inward (a 6= b) or outward (c 6= d)
preserving the palindromic structure whenever letters a, b, c, d exist.

In this paper, we consider a fixed palindrome-free string x of length n (con-
taining no palindrome of length greater than 1). Note that a palindrome-free
string contains no gapped palindrome of anti-exponent greater than 2. For such
string, we compute the maximal anti-exponent of its factors.

3 Algorithm Scheme

The core result of this paper is algorithm MaxAntiExpGP, that computes the
maximal anti-exponent of a fixed palindrome-free string x. The algorithm detects
and processes potential gapped palindromes of the form uvũ, where u and v are
strings and |v| ≥ 2. This is realised with the help of procedure MaxAntiExp,



explained in the next section, which detects those gapped palindromes in the
concatenation of two strings and whose anti-exponents are not less than the
current maximal anti-exponent.

AlgorithmMaxAntiExpGP relies on the reversed Lempel-Ziv factorisation;
see [14] for more details. The reversed Lempel-Ziv factorisation of a string x is
defined as a sequence of non-empty strings, z1, z2, . . . , zk satisfying the following
properties:

– x = z1z2 · · · zk,

– zi is the longest prefix of zizi+1 · · · zk occurring in ˜z1z2 · · · zi−1,

– when this prefix is empty, zi is the first letter of zizi+1 · · · zk, this letter does
not occur previously in z1z2 · · · zi−1.

For example, the reversed Lempel-Ziv factorisation of string aababaabab is
a.a.b.a.baa.bab. The reversed factorisation of a given string of length n can be
computed in O(n) in both time and space by exploiting the suffix array and the
LCP array (see [7]).

In the following, we modify the reversed factorisation for the purpose of our
algorithm by defining z1 as the longest prefix of x in which no letter occurs more
than once.

Algorithm MaxAntiExpGP analyses strings z2 to zk sequentially. At step
i, the algorithm assumes that z1, z2, . . . , zi−1 have been processed and ẽ is
equal to the maximal anti-exponent of the prefix z1.z2 · · · zi−1 of x. The gapped
palindromes that need to be considered at this step are those involving string zi.
These gapped palindromes uvũ are either internal to zi or occur partially in zi.
Note that ũ can only occur within zi−1zi and none of z1, z2, · · · , zi−1 can be a
factor of ũ. This follows directly from the definition of the reversed factorisation.

We further distinguish four possible cases according to the location of the
gapped palindrome uvũ as follows (see Fig. 2):

(i) Both occurrences of u and ũ are inside zi.

(ii) The occurrence of u is inside zi−1, while ũ ends in zi.

(iii) The occurrence of u starts in zi−1, while ũ is inside zi.

(iv) The occurrence of u starts in z1 · · · zi−2, while ũ is inside zi−1zi.

In Case (i), the gapped palindrome uvũ, which is inside zi, occurs previously
in z1.z2 · · · zi−1 as ũṽu. Although, theses two gapped palindromes are different,
they have the same anti-exponent. Therefore this case needs no further action.
The other cases are handled by calls to MaxAntiExp procedure described in
the following section. For any two strings z, w and a positive rational number ẽ,
MaxAntiExp(z, w, ẽ) returns the maximal anti-exponent of zw, if such value
is greater than ẽ, and returns ẽ otherwise.



z1 z2 zi−1 zi

u1 ũ1 (i)

u2 ũ2 (ii)

u3 ũ3 (ii) (iii)

u4 ũ4 (iii)

u5 ũ5 (iv)

Fig. 2. All possible locations of a gapped palindrome uvũ involving strings zi of the
reversed factorisation of the string: (i) both u and ũ are inside zi; (ii) occurrence of u
is inside zi−1; (iii) occurrence of ũ is inside zi; (iv) occurrence of ũ is inside zi−1zi.

MaxAntiExpGP(x)

1 (z1, z2, . . . , zk)← reversed-factorisation of x
2 ⊲ z1 is the longest prefix of x in which no letter repeats
3 ẽ← 1
4 for i← 2 to k do

5 ẽ←MaxAntiExp(zi−1, zi, ẽ)
6 ẽ←MaxAntiExp(z̃i, z̃i−1, ẽ)
7 if i > 2 then

8 ẽ←MaxAntiExp(z1 · · · zi−2, zi−1zi, ẽ)
9 return ẽ

Theorem 1. For any given palindrome-free string x, Algorithm MaxAnti-

ExpGP computes the maximal anti-exponent of x.

Proof.

ProcedureMaxAntiExp(z, w, ẽ) is designed to check for gapped palindromes
of anti-exponents greater than ẽ. These gapped palindromes are of the form uvũ
such that u occurs in z and ũ is inside w.

Recall that the maximal anti-exponent of any fixed palindrome-free string is
at least 1, thus ẽ is correctly initialised to 1 (Line 3).

At the beginning of each iteration i, 2 ≤ i ≤ k, the algorithm assumes that
ẽ is the maximal anti-exponent of z1z2 · · · zi−1. Recall that ũ cannot start in
z1z2 · · · zi−2, otherwise zi−1 would not satisfy the the definition of the reversed
factorisation. Additionally, any gapped palindrome within zi does not need to
be considered. This is because the anti-exponent of such gapped palindrome and
its reversal are equal; the reversal of such gapped palindrome must occur in
z1z2 · · · zi−1 by definition of zi

As discussed earlier, there are three cases to be considered: Line 5 deals with
gapped palindromes satisfying case (ii), Line 6 deals with gapped palindromes
satisfying case (iii), and Line 8 deals with gapped palindromes satisfying case
(iv). Thus, all relevant gapped palindromes are considered. This implies that the
maximal anti-exponent ẽ returned by the algorithm is that of z1z2 · · · zk = x,
which completes the proof.



Note that variable ẽ can be initialised by (σ + 1)/σ, if x is long enough; see
the following remark.

Remark 1. Let x be a given string such that |x| > σ. Then, for long enough x,
let y be a factor of x which is composed of one appearance of all letters from Σ,
hence |y| = σ. If a is a letter from Σ such that a is adjacent to y in x, and a is the
first letter of y, then the factor ya is a gapped palindrome. The anti-exponent
of this gapped palindrome is (|y| + 1)/|y|. Then variable ẽ can be initialised to
(σ + 1)/σ.

4 Computing the Maximal Anti-Exponent

Procedure MaxAntiExp(z, w, ẽ) is designed to compute the maximal anti-
exponent of zw by considering gapped palindromes uvũ such that u occurs in
z, ũ is inside w, and whose anti-exponent is at least ẽ. In particular, at each
position of z, the procedure finds the factors of zw beginning in this position
that have the form uvũ with ũ inside w and updates the current maximal anti-
exponent with the value of |uvũ|/|uv|. Before detailing the procedure, we present
the suffix automaton data structure which is the fundamental algorithmic tool
used by MaxAntiExp.

The suffix automaton of string w, denoted S(w), is the minimal partial de-
terministic finite automaton whose language is the set of suffixes of w (see [5,
Section 6.6] for more description and for efficient construction); an example is
given in Fig. 3. This data structure has an initial state, denoted s0, and a tran-

sition function represented by the edges in the figure.
Let goto denotes the transition function, then the suffix-link, SLw, and the

length function, Lw, are defined as follows: For a given non empty string x such
that si = goto(s0, x), then SLw[si] = sj = goto(s0, x

′), where x′ is the longest
suffix of x such that si 6= sj . As for the length function, Lw[s] is length of
the longest factor x of w such that s = goto(s0, x). Additionally, we define the
shortest-path function, denoted SPw, as follows: SPw[s] is the length of the
shortest-path from s0 to s; see Table 1 for complete example.

sj 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SLw[sj ] s0 s11 s12 s13 s14 s12 s1 s13 s14 s1 s0 s0 s0 s11
Lw[sj ] 0 1 2 3 4 5 6 7 8 9 10 1 2 1 2

SPw[sj ] 0 1 2 3 4 5 6 7 8 9 10 2 3 4 4

Table 1. Suffix-links SLw[sj ], the lengths function Lw[sj ] and shortest-paths SPw[sj ]
for each state sj , 0 ≤ j ≤ 14, of the suffix automaton in Fig. 3.

Observe that each state s of S(w) is associated with a set of factors Fw(s)
such that Fw(s) = {x | x = w[i, j], s = goto(s0, x), 1 ≤ i ≤ j ≤ n}. Furthermore,



s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s11

s12

s13 s14

b a d c a d b c a b

c

a

d
c

b

c

bd

a

d

b

Fig. 3. Suffix automaton of string w = badcadbcab.

the Length of the longest factor x′ ∈ Fw(s) is denoted by Lw[s], and SPw[s]
denotes position j in w such that there exists a factor x′′ ∈ Fw(s), x

′′ = w[i . . j]
and j is as small as possible.

For example, in Fig. 3, Fw(s5) = {badca, adca, dca}, while Fw(s12) = {ad, d}.
Thus, Lw[s5] = 3, Lw[s12] = 5, SPw[s5] = 5 and SPw[s12] = 3.

The construction of the suffix automaton S(w) together with arrays SLw,
Lw and SPw can be done in linear time [5, Section 6.6]. It is well-known that the
suffix automaton S(w) has no more than 2|w|-2 states and 3|w| − 4 edges inde-
pendently of the alphabet size [5]. The transition function can be implemented
in O(1) time for a fixed size alphabet, or O(log σ) for a large alphabet; transition
function may be implemented by lists of successors.

Moreover, the suffix automaton S(w) can be used to compute the factor r
such that r is the longest prefix of w whose reversal occurs in w, Note that w
here is a fixed palindrome-free string, thus, r and r̃ do not overlap (see Fig. 4).
Such factor can be computed by spelling w̃ from the initial state s0 of S(w); this
is only valid if w is not a palindrome. Procedure MaxAntiExp aims to extend
r to the left and r̃ to the right; this is achieved by spelling z̃ and exploiting the
suffix automaton S(w).

z w

i

r r̃

Fig. 4. Factor r is the longest prefix of w whose reversal occurs in w, where r and r̃

do not overlap and position i is the end position of r̃.



Recall that procedure MaxAntiExp considers for each position in z, the
factors of the form uvũ starting at this position such that ũ is inside w. The
procedure tries to update the current maximal anti-exponent with the value of
|uvũ|/|uv|. If ũ occurs more than once inside w, the procedure considers the
left-most occurrence as this is associated with the factor of the greatest anti-
exponent. The following lemmas allow MaxAntiExp to discard some of these
factors and hence compute the maximal anti-exponent of zw efficiently.

Lemma 1. Let u′ be a prefix of u such that ũ′ and ũ are associated with the

same state of S(w). And let uvũ and u′v′ũ′ be two gapped palindromes in zw
occurring at same the position. Then the anti-exponent of uvũ is grater than that

of u′v′ũ′.

Proof.

The hypothesis implies that both u and u′ occur at the same position in
z (see Fig. 5). Thus, the gapped palindromes uvũ and u′v′ũ′ are of the same
length, |uvũ| = |u′v′ũ′|. If |u′| ≤ |u|, then the anti-exponent of u′v′ũ′ is not
greater than that of uvũ.

z w

j

(1) u v ũ

(2) u′
v′ ũ′

Fig. 5. Gapped palindrome (1) has a greater anti-exponent than that of gapped palin-
drome (2).

Note that the anti-border ũ′ may have an internal occurrence in uvũ, which
would lead to a gapped palindrome having a greater anti-exponent. For example,
let z = abcad and w = badcba. Then the gapped palindrome abcadbadcba has
anti-exponent 11/8 while the anti-border ba infers gapped palindrome abcadba
of greater anti-exponent 7/5.

Lemma 2. Let uv′ũ and uvũ be two gapped palindromes occurring at positions j
and k of zw, respectively, such that j < k. Then the anti-exponent of the gapped

palindrome uv′ũ is not greater than that uvũ.

Proof. Let ũ be the the anti-border of gapped palindromes uvũ and uv′ũ.
The procedure considers the left-most occurrence of ũ in w. Thus, both gapped
palindromes end at the same position and |v| < |v′| (see Fig. 6). Therefore,
1 + |u|/|uv| > 1 + |u|/|uv′|, which completes the proof.



z w

j k

(1) u v ũ

(2) u v′ ũ

Fig. 6. Gapped palindrome (1) occurring at position k has a greater anti-exponent
than gapped palindrome (2) occurring at position j < k.

MaxAntiExp(z, w, ẽ)

1 S ← suffix automaton of w

2 (s, ℓ)← ReadR(S, w)
3 ⊲ ReadR() computes factor r as in Fig.4 then spells r̃ exploiting S(w).
4 Mark(s0)
5 for j ← 1 to min{⌊|w|/(ẽ− 1)⌋, |z|} do
6 while goto(s, z[|z| − j + 1]) = NIL and s 6= s0 do

7 (s, ℓ)← (SLw[s],Lw[SLw[s]])
8 if goto(s, z[|z| − j + 1]) 6= NIL then

9 (s, ℓ)← (goto(s, z[|z| − j + 1]), ℓ+ 1)
10 (s′, ℓ′)← (s, ℓ)
11 while s′ unmarked do

12 ẽ← max{ẽ, (j + SPw[s])/(j − ℓ′ + SPw[s])}
13 if ℓ′ = Lw[s

′] then
14 Mark(s′)
15 (s′, ℓ′)← (SLw[s

′],L[SLw[s
′]])

16 return ẽ

Now we are ready to give the details of the procedure MaMaxAntiExp. In
Line 1, the suffix automaton S(w) is built. Then in Line 2, the suffix automaton
is used by function ReadR to first compute factor r; which is the longest prefix
of w whose reversal occurs in w as explained earlier (see Fig. 4). Next, function
ReadR proceeds by spelling r̃ and exploiting S(w). The current state of the
automaton together with the length of r are finally returned.

Procedure MaxAntiExp proceeds by spelling z̃ and exploiting S(w) (Lines
5 to 15). At iteration j, let uvũ be the gapped palindrome of zw beginning in
position |z| − j + 1, and s be is the current state of S(w) such that ũ is the
longest factor in Fw(s). Let u′ be a prefix of u, then any gapped palindromes
of the forms uv1ũ or u′v2ũ′ that begin in position k < |z| − j + 1 cannot have
anti-exponent greater than that of uvũ. Therefore, the current state s is marked
to inform the next steps of the procedure. The value of the anti-exponent of uvũ
can be easily determined as demonstrated in Fig. 7.

Example 1. Let z = bcadbacbdac and w = badcadbcab. The maximal anti-
exponent of zw is 17/10. The computations performed at each step of procedure
MaxAntiExp are as follows:



z w

|z| − j + 1

u v ũ
✲✛

j
✲✛

ℓ

✲✛

SPw[s]

Fig. 7. The anti-exponent of gapped palindrome uvũ is computed as j+SPw[s]
j+SPw[s]−ℓ

, where

s is the current state of S(w) and ℓ = |u|.

j 1 2 3 4 5 6 7 8 9 10 11
z[12− j] c a d b c a b d a c b

s s10 s8 s9 s6 s7 s8 s9 s10 s12 s11 s13 s1
ℓ 2 2 3 3 4 5 6 7 1 1 1 1

anti-exp 9/7 11/8 9/6 11/7 13/8 15/9 17/10 11/10 11/10 14/13 12/11
5/4 7/5 6/4 7/6

Theorem 2. Given strings z, w over an ordered alphabet Σ, and a rational

number ẽ ≥ 1 + 1/σ. Let G be the set of all gapped palindromes uvũ in zw such

that u begins in z, ũ is inside w, and the anti-exponent of uvũ is greater than ẽ.
Then procedure MaxAntiExp returns the maximum anti-exponent of a gapped

palindrome from G if G is not empty, and returns ẽ otherwise.

Proof.

The correctness of procedure MaxAntiExp relies on Lemmas 1 & 2 and
exploiting the properties of the suffix automaton.

Firstly, we show that the procedure does not require to investigate more
positions than those specified in Line 5. This is because all gapped palindromes
from G, which begin earlier in z, have anti-exponents less than ẽ.

Secondly, let Gj be the subset of G whose elements are gapped palindromes
beginning in position |z| − j + 1 in z. Then for all possible j, we show that the
procedure identifies correctly the subset of Gj that needs to be considered.

The following properties related to state s of S(w) and ℓ, are known from
[5, Section 6.6]: Let u be the longest prefix of z[|z|− j +1 . . |z|]w whose reversal
is inside w, then (1) s is the state reached by spelling r̃z[|z|] . . z[|z| − j + 1],
where r is the longest prefix of w whose reversal r̃ appears in w, and (2) ℓ =
|u| = |ũ|. These properties hold after executing Line 2 where variables s and ℓ
are initialized from the benefit of spelling r̃ by function ReadR. At Line 9, ũ is
the longest anti-border of a gapped palindrome in Gj . Lines 11 to 15 check out
the anti-exponents of u1v1ũ1, u2v2ũ2, u3v3ũ3, · · ·, such that ũ1 is a suffix of ũ,
ũ1 ∈ Fw(s

′

1), s
′

1 = SLw[s] and s′1 is unmarked state. Similarly, for i = 2, 3, . . .,
ũi is a suffix of ˜ui−1, ũi ∈ Fw(s

′

i), s
′

i = SLw[s
′

i−1] and s′i is unmarked state. The
procedure tries to update ẽ with the anti-exponent of each uiviũi (Line 9). At
Line 12, the procedure checks if state s′ needs to be marked. This is done to
avoid checking gapped palindromes uiv

′ũi belong to sets Gk, k > j (Lemma 1).



Finally note the initial state of S(w) is marked in Line 4 because it corre-
sponds to an empty string u, that is a gapped palindrome of exponent 1, which
is not greater than the values of ẽ. This proves that the algorithm runs through
all relevant gapped palindromes in G.

5 Complexity Analysis

Proposition 1. Applied for strings z, w and a rational number ẽ ≥ 1 + 1/σ,
procedure MaxAntiExp requires O(|w|σ) space and O(|w|+ |z|) time, or O(|w|)
space and O((|w| + |z|) log σ) time for a large alphabet.

Proof.

The space required for the algorithm is exclusively used to store the suffix
automaton S(w) and arrays SLw, Lw and SPw. Note that the suffix automaton
S(w) has no more than 2|w| − 2 states and 3|w| − 4 edges independently of the
alphabet size [5]. According to the implementation of the transition function
of the automaton, the space complexity of procedure MaxAntiExp is either
O(|w|σ) or O(|w|) for a large alphabet.

As for the time complexity, the construction of the automaton together with
the arrays SLw, Lw and SPw, are known from [5, Section 6.6] to require O(|w|)
time (Line 1). The time required by Line 2 is either O(|w|) time or O(|w| log σ)
for a large alphabet, according to the implementation of the transition function.
Recall that the transition function can be implemented in O(1) time, or O(log σ)
for a large alphabet.

Each iteration of the loop (excluding Lines 11 to 15) costs in O(1) time for a
fixed-size alphabet or O(log σ) time for a large alphabet; this is mainly the cost of
goto. Therefore the total running time of the for loop is either O(min{⌊|w|/(ẽ−
1)⌋, |z|}) for a fixed size alphabet or O(min{⌊|w|/(ẽ − 1)⌋, |z|} logσ) for a large
alphabet.

Next, let us consider the number of times Line 12 is executed, this is done
once for each ui associated with an unmarked state. If it is done more than
once for a given position, then the second value of s′ comes from the suffix-
link. A crucial observation is that condition at Line 13 holds for such a state.
Therefore, since S(w) has no more than 2|w| − 2 states, the total number of
extra executions of Line 12 is at most 2|w| − 2. Which gives a total of O(|w|)
time for a fixed size alphabet or O(|w| log σ) time for large alphabet. Summing
the above contributions to time and space completes the proof.

Theorem 3. Applied to any palindrome-free string of length n, Algorithm Max-

AntiExpGP requires O(n) time and O(nσ) space, or O(n log σ) time and O(n)
space for a large alphabet.

Proof. Computing the reversed factorisation (z1, z2, . . . , zk) of a string of length
n takes O(n) time independently of alphabet size and O(n) space.



Next instructions execute in linear space; this follows directly from Proposi-
tion 1. Note that the space bound is independent of the alphabet size.

Line 5 takes O(|zi−1|+ |zi|) time for a fixed size alphabet or O(|zi−1|+ |zi|)
time for large alphabet, i = 2, . . . , k. This sums up, for large enough input, to
either O(n) time for a fixed size alphabet or O(n log σ) time for a large alphabet.
The same argument applies for Line 6 & 8 which completes the prof.

6 Conclusion

In this paper, algorithmMaxAntiExpGP calculates the maximal anti-exponent
of a fixed palindrome-free string. The algorithm first computes the the LZ re-
versed factorisation of the input string. Then, for each pair of adjacent reversed
factors, the algorithm calls procedure MaxAntiExp to calculate the associated
maximal anti-exponent. Algorithm MaxAntiExpGP runs in O(n) time for a
fixed-size alphabet or (O(n log σ) time for a large alphabet, where n is the size
of the input string and σ is the size of the alphabet Σ.

However, as far as we know, the number of distinct gapped palindromes in
a string x whose anti-exponents equals to the maximal anti-exponent of x is
currently unknown and constitutes an interesting combinatoric problem.

Another interesting question is the notion of a smallest unavoidable anti-
exponent that we call the anti-repetitive threshod of the alphabet. If ẽ is this
anti-exponent, then it is the smallest rational number for which there exists an
infinite string whose the anti-exponents of its finite gapped palindromes are at
most ẽ. Dejean [9] introduced similar notion for factor exponents and called it
the repetitive threshold RT(σ) of an alphabet of size σ. It is the smallest rational
number for which there exists an infinite string whose finite factors have exponent
at most RT(σ). It is known from Thue [19] that RT (2) = 2, Dejean [9] proved
that RT (3) = 7/4 and stated the exact values of RT(σ) for every alphabet size
σ > 3. Her conjecture was eventually proved in 2009 after partial proofs given
by several authors (see [17, 8] and ref. therein).

Beyond the algorithmic aspect of the study of gapped palindromes, our paper
opens a new research subject in Combinatorics on Words.
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