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Abstract. In this work the swarm behavior principles of Craig W.
Reynolds are combined with deterministic traits. This is done by us-
ing leaders with motions based on space filling curves like Peano and
Hilbert. Our goal is to evaluate how the swarm of agents works with
this approach, supposing the entire swarm will better explore the en-
tire space. Therefore, we examine di↵erent combinations of Peano and
Hilbert with the already known swarm algorithms and test them in a
practical challenge for the harvesting of manganese nodules on the sea
ground with the use of autonomous robots. We run experiments with
various settings, then evaluate and describe the results. In the last sec-
tion some further development ideas and thoughts for the expansion of
this study are considered.
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1 Introduction

Simultaneously with the applied research on renewable resources, it is useful to
find novel ways for opening up fossil ones. As example, manganese nodules can be
found on the sea bottom. A considerable application field involves rust and cor-
rosion prevention on steel [9,10]. The degradation could be reduced substantially
by collecting these manganese nodules from the sea bottom using specialized au-
tonomous agents. Our focus in this work is to evaluate di↵erent ways in handling
the movement of these agents. The experiments can be extended to cover other
collecting tasks. The base for our application is a framework for simulation and
improvement of swarm behavior in changing environments [1], which we redesign
and extend. It simulates the swarm behavior by using the principles of Craig W.
Reynolds [2]. The main purpose of the framework regarding the application is to
deploy agents with a specific strategy and then to gather them. While gathering,
the agents are collecting the manganese which is distributed on every position
in the coordinate system. Once gathered together, there is no more movement
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and the simulation ends. Naturally manganese occurs in form of nodules, thus it
is distributed uniformly. For the di↵erent forms of the manganese distributions,
we created several benchmarks used in the results’ comparison. The next step of
improvement would be the collecting procedure. The greater distance the agents
move, the higher is the probability to find manganese. Consequently, we intend
to reach a way for passing through a larger area. The easiest solution would be
to define for each agent its own path. This would probably scatter the swarm be-
cause of the bad orientation, the changing environment and the uneven surface.
Most of the research works regarding swarm behavior are inspired by nature like
genetic algorithms or particle swarm optimization. These outcomes focus on fish
schools or bird flocks. An alternative discussion could consider, for example, a
pack of wolves. A pack of wolves means actually autonomous individuals with a
specific hierarchy. Not every wolf has the same power regarding decisions for the
pack. Normally there is one wolf who leads the group and the others are followers
[11]. This contribution aims to study this notion more closely. We intend to set
one or more leaders who will move after a given route, but still be part of the
swarm, and the rest calculate their new position, that means every iteration in
consideration of all agents.

2 Background

This section introduces previous work the application is based on, followed by
three main topics: Moving Algorithms, Particle Swarm Optimization, Hilbert
and Peano Curves.

2.1 Framework for Adaptive Swarms Simulation and Optimization

The application we consider first is based on [1]. The framework is an application
that runs a simulation of autonomous robots using moving algorithms Random,
Square, Circle, Gauss, and Bad Centers [1]. It contains several fundamental
deployment strategies used from where the moving algorithms start. The front
end uses the open source framework of processing.org [4]. It creates the chosen
deployment strategies and calculates the movement of the autonomous agents,
as well as the collection of manganese nodules. In addition, the number of agents
can be settled and it counts the distance in walked meters of all agents together.

2.2 Moving Algorithms

In our practical application, it is required to build a swarm of autonomous agents,
where each agent individually moves forward taking into consideration the other
agents of the group. There are e�cient algorithms for swarm behavior and move-
ment of agents that are implemented in the application [6]. The previous work [1]
uses a simplification of the bird flock movement described by Craig W. Reynolds
[2]. The contribution implemented three di↵erent algorithms that run simulta-
neously: cohesion, separation, alignment.
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2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was introduced in 1995 by J. Kennedy and
R. Eberhart [6]. The innovation was building swarm behavioral approaches for
solving problems by iteratively improving a candidate’s solution until termina-
tion criteria is satisfied [7]. It is similar to a genetic algorithm as both algorithms
are initialized with a random population, in PSO called particles. The di↵erence
is that in PSO algorithms, each particle is assigned to a randomized velocity and
the particles move through hyperspace. Each particle is defined by its position,
velocity, current objective value and personal best value of all time. PSO also
keeps track of the global best value that is the best objective value of all particles
and also the corresponding position.

2.4 Space Filling Curves

A Space Filling Curve is a special function of calculus that fully covers a two
or three dimensional space. Giuseppe Peano (1858-1932) discovered them first
in 1890. He wanted to create a continuous mapping construction from the unit
interval onto the unit square [7].

Peano Curve. Till 1890 one assumed that a constant curve with parametric
function of only one variable x = �(t) and y =  (t), cannot reflect surjectively
the unit interval onto the unit square. The reason for this was the theorem of
Eugen Natto, who showed that a bijection must be unsteady to satisfy this.
However, Peano found a steady function fp, such that fp(I) = 2.

Definition 1. Peano Curve [10]. The projection fp : I ! 2 with

fp(03, t1t2t3t4) =
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and the operator k

tj = 2tj(tj = 0, 1, 2), where k

v is the v-th iteration of k, we
call Peano Curve.

So according to this definition we have:
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To create the Peano’s curve we start at point (0, 0) and finish in the diagonal
corner at point (1, 1). The starting point of a sub square must be the endpoint
of the previous sub square. Figure 1 illustrates where the start- and endpoints
are with the use of arrows.
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Fig. 1. Construction order and orientation for the Peano Curve.

Hilbert Curve. Peano (1890) introduced first the space-filling curves. Hilbert
(1891) popularized their existence and gave an insight into their generation. His
statement was that if the unit interval can be mapped steady onto the unit
square, then also sub intervals can be mapped steadily onto sub squares. In the
first step, Hilbert divided the unit interval into four sub intervals of the same
size as well as the unit square into four equally sized sub squares, where each
sub interval is mapped onto one sub square [7].

3 Implementation Details

This section describes shortly the practical changes and extensions that were nec-
essary to implement for the experimental procedure. At first, some new classes
had to be implemented to lay the basis for the new Manganese-Nodule-Model.
These new classes help us to represent the nodules on the map and for back-
ground calculations as well as. Some of the new implemented classes and inter-
faces include: DeployRing, DeploymentStrategy, ManganeseNodule, VisualMan-
ganeseNodule. The used benchmarks for the manganese nodules distribution are
independent files. Each line represents a y-value and each char represents an
x-value in the coordinate system of the graphical user interface. The lines are
filled with numbers from 0 to 7 in accordance with the size of the nodule, where
zero means that no nodule can be found on this position.

3.1 Peano/Hilbert Algorithms

The Peano algorithm is implemented using a recursive function, that is called
every time when the agent moves into the next unit square. The function calls
change from clockwise rotation to negative rotation (counterclockwise). The im-
plementation of the Hilbert Algorithm is analogous to the Peano Algorithm
(Alg. 1). The basic structure of how the exploring through the sub squares is
done is fixed.

4 Experimental Results

This section presents relevant results we achieved with the extended implemen-
tations to the application. The distance and the collected amount of manganese
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Algorithm 1: Pseudo Code Peano Algorithm

peanoAlgorithm(length, direction, rotation, deep){
if under lowest level then

return
end

peanoAlgorithm(length, direction, clockwise rotation, deep-1)
step forward with given length and direction

peanoAlgorithm(length, direction, counterclockwise rotation, deep-1)
step forward with given length and direction

peanoAlgorithm(length, direction, rotation, deep-1)
direction turn clockwise with given rotation degree
step forward with given length and direction

direction turn clockwise with given rotation degree
peanoAlgorithm(length, direction, counterclockwise rotation, deep-1)
step forward with given length and direction

peanoAlgorithm(length, direction, rotation, deep-1)
step forward with given length and direction

peanoAlgorithm(length, direction, counterclockwise rotation, deep-1)
direction turn counterclockwise with given rotation degree
step forward with given length and direction

direction turn counterclockwise with given rotation degree
peanoAlgorithm(length, direction, rotation, deep-1)
step forward with given length and direction

peanoAlgorithm(length, direction, counterclockwise rotation, deep-1)
step forward with given length and direction

peanoAlgorithm(length, direction, rotation, deep-1)
}

of all agents in one pass are the examined variables. The di↵erence of agents be-
tween Rob Total and the sum of Rob Hilbert and Rob Peano are robots behaving
according to the principles of typical Moving Algorithms.

4.1 Diamond, Square, Peano 0-50

In this experiment we increased the number of Peano Robots and ran 1000 iter-
ations with every increase. This experiment runs with the benchmark Diamonds
and the deployment strategy Square. With every increase of the number of Peano
Robots, the covered distance of all robots increases by 30 000m to 50 000m with
an average increase of 46 081.46m. The collected manganese does not increase
constantly. The global maximum of 53 080 kg is reached with a constellation of
44 Peano Robots (see Fig.2, left). The biggest discrepancy of 15 is between the
first and the second measurement, with an increase of 589%. The fewer meters
a robot has to travel for the same amount of manganese, the more e�cient it
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is. The second diagram in Fig.2 (right) shows this relation of average distance
per kg manganese for each number of Peano Robots. The best e�ciency oc-
curs without any Peano robot in the simulation with an average distance of
3mkg�1 manganese. But as we can see in the other diagram (Fig.2, left) the
total amount of manganese is very little. So we want to focus on analyzing all
cases where Peano robots are involved. There are a few amounts of Peano robots
with a very close distance per kg manganese. This is the case with the amount
of 2, 3, 4, 5 and 6 Peano robots (average absolute deviation 3.9m), with the
amount of 16 to 21 Peano robots (average absolute deviation 3m) or with the
amount of 36 to 42 Peano robots (average absolute deviation 2.1m). Another
interesting point can be seen at 44 Peano Robots where the total manganese
maximum is. The distance per kg manganese diagram shows here a local min-
imum of 383mkg�1 manganese. This leads to the conclusion that we have a
reasonably e�cient constellation.
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Fig. 2. Analysis of Diamonds, Square, Peano 0-50 increase: collected amount of man-
ganese for (left); relation between the total amount of collected manganese and the
distance all robots have covered.

Fig. 3. Diamond, Square, Peano 0-50: Screenshots experimental procedure after 500
iterations (left) resp. after 1000 iterations (right).

To run the simulation only with Hilbert Robots brings unsatisfactory results.
In this case, the total amount of manganese breaks down roughly 21% compared
to the simulation run with 49 Hilbert Robots.
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4.2 Lines, Square, Peano 0-50

In this experiment we switched our benchmark to the benchmark Lines. The
deployment strategy is Square and we increase the number of Peano Robots
from 0-50.
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Fig. 4. Analysis of Lines, Square, Peano 0-50 increase: collected amount of manganese
(left); relation between the total amount of collected manganese and the distance all
robots have covered (right).

Fig. 5. Lines, Square, Peano 0-50: Screenshots experimental procedure after 500 iter-
ations (left) resp. after 1000 iterations (right).

With every increase of the number of Peano Robots, the covered distance
of all robots increases by 30 000m to 50 000m with an average increase of
46 081.46m. This is identical to the results in Table 1. The collected manganese
increases constantly up to an amount of 38 Peano Robots. The global maximum
of 18 090 kg is reached with a constellation of 44 Peano Robots (see Fig. 4, left).
With an amount of 6 Peano Robots we achieve a result of 10 341 kg total man-
ganese. This is more than 50% from what we achieve with our global maximum
with 44 Peano Robots. That means, we have achieved half of the global maxi-
mum with an e�ciency of 26.99mkg�1 manganese in contrast to 112.48mkg�1

manganese. In conclusion we get 100% more manganese for 416.75% less e�-
ciency. That is in no reasonable relation to the benefits. Overall the distance
per kg manganese increases almost linearly up to the global maximum of total
manganese with 44 Peano Robots and goes steeply up afterwards. It is striking
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that this experiment has its maximum with the same amount of Peano Robots.
The only thing that distinguishes these two experiments are the used benchmark
maps.

4.3 Diamond, Square, Peano 1-25-1, Hilbert 1-49

In this experiment we mixed Hilbert and Peano Robots as well as robots using
the moving Algorithms described by [2]: Cohesion, Separation and Alignment.
We begin with increasing the amount of both Peano and Hilbert Robots from 0
up to 25. Then all robots are either Peano or Hilbert Robots. From this point
we decrease the amount of Peano Robots and keep increasing the amount of
Hilbert Robots. This experiment runs with the benchmark Diamonds and the
deployment strategy Square. A total of 1000 iterations were ran with every
increase. The results are presented in Table 1.

On the whole the results of this experiment are related to the two experiments
we did before. The Total Mangan diagramm (Fig. 6, left) shows a rapid growth
in the first 25 iterations. This is justified because every time we increase the
amount of robots by two, one Hilbert Robot and one Peano Robot. For the
next 15 iterations (25-10 Peano & 25-40 Hilbert) the total collected amount of
mangan is more or less even. This leads to the conclusion that both algorithms
have a similar e�ciency, as apparently the proportion of the robots between
Peano and Hilbert are distributed, as long as there is a minimum of 20% of the
other programmed Robots. If we pass this 20%, the e�ciency breaks down very
fast and there is a result of 100 more meter per kg mangan for the proportion of
1 Peano/49 Hilbert to 10 Peano/40 Hilbert. The latter marks also the maximum
of the overall amount of collected mangen with 6078 kg. These are approximately
700 kg more mangan than running only one of the algorithms.
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Fig. 6. Analysis of Diamonds, Square, Peano 1-25-1, Hilbert 1-49 increase: collected
amount of manganese (left); relation between the total amount of collected manganese
and the distance all robots have covered.

5 Conclusions and Future Work

This work focuses only on the idea to combine swarm behavior with deterministic
leaders by using space filling curves. There are still many more things to try in
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Table 1. Diamond, Square, Peano, Hilbert

Exp. Benchmark Deploy. St. Robots Peano Hilbert Mangan Distance

102 Diamond Square 50 0 0 237 kg 673.03 m

103 Diamond Square 50 1 1 1567 kg 114,910.56 m

104 Diamond Square 50 2 2 2133 kg 220,147.01 m

105 Diamond Square 50 3 3 2715 kg 310,008.24 m

106 Diamond Square 50 4 4 3222 kg 406,158.29 m

107 Diamond Square 50 5 5 3402 kg 519,118.26 m

108 Diamond Square 50 6 6 2976 kg 644,629.99 m

109 Diamond Square 50 7 7 2652 kg 763,532.13 m

110 Diamond Square 50 8 8 3068 kg 871,160.00 m

111 Diamond Square 50 9 9 3854 kg 963,823.71 m

112 Diamond Square 50 10 10 3944 kg 1,040,938.41 m

113 Diamond Square 50 11 11 4597 kg 1,125,638.16 m

114 Diamond Square 50 12 12 4628 kg 1,226,243.96 m

115 Diamond Square 50 13 13 4587 kg 1,341,671.41 m

116 Diamond Square 50 14 14 4480 kg 1,466,358.73 m

117 Diamond Square 50 15 15 4424 kg 1,602,618.82 m

118 Diamond Square 50 16 16 4631 kg 1,730,787.65 m

119 Diamond Square 50 17 17 4792 kg 1,847,645.98 m

120 Diamond Square 50 18 18 4971 kg 1,955,750.29 m

121 Diamond Square 50 19 19 4978 kg 2,049,028.65 m

122 Diamond Square 50 20 20 5155 kg 2,126,192.66 m

123 Diamond Square 50 21 21 4866 kg 2,189,012.96 m

124 Diamond Square 50 22 22 4972 kg 2,260,848.88 m

125 Diamond Square 50 23 23 5190 kg 2,350,150.97 m

126 Diamond Square 50 24 24 5102 kg 2,458,013.63 m

127 Diamond Square 50 25 25 5386 kg 2,525,939.83 m

128 Diamond Square 50 24 26 5494 kg 2,538,747.79 m

129 Diamond Square 50 23 27 5439 kg 2,550,909.82 m

130 Diamond Square 50 22 28 5583 kg 2,562,398.69 m

131 Diamond Square 50 21 29 5640 kg 2,573,282.37 m

132 Diamond Square 50 20 30 5646 kg 2,583,499.01 m

133 Diamond Square 50 19 31 5709 kg 2,593,153.25 m

134 Diamond Square 50 18 32 5709 kg 2,602,156.73 m

135 Diamond Square 50 17 33 5646 kg 2,610,406.45 m

136 Diamond Square 50 16 34 5709 kg 2,617,783.89 m

137 Diamond Square 50 15 35 5625 kg 2,624,155.36 m

138 Diamond Square 50 14 36 5691 kg 2,629,374.63 m

139 Diamond Square 50 13 37 5679 kg 2,635,330.66 m

140 Diamond Square 50 12 38 5631 kg 2,642,137.89 m

141 Diamond Square 50 11 39 5640 kg 2,649,930.41 m

142 Diamond Square 50 10 40 6078 kg 2,658,829.66 m

143 Diamond Square 50 9 41 5826 kg 2,668,914.30 m

144 Diamond Square 50 8 42 5590 kg 2,680,376.23 m

145 Diamond Square 50 7 43 5157 kg 2,692,600.50 m

146 Diamond Square 50 6 44 4784 kg 2,705,362.02 m

147 Diamond Square 50 5 45 4674 kg 2,718,559.67 m

148 Diamond Square 50 4 46 4771 kg 2,732,079.43 m

149 Diamond Square 50 3 47 5165 kg 2,745,848.07 m

150 Diamond Square 50 2 48 4994 kg 2,759,815.88 m

151 Diamond Square 50 1 49 5084 kg 2,773,938.04 m
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order to go deeper into this topic, especially using the applied research. For
example, we can consider leaders with varied power (weight), i. e. the one who
collected the most manganese the last time (number of iterations, seconds) will
get the highest weight when calculating the next position of each autonomous
agent of the group. Additionally, a distributed system could be considered and
thereby the communication between the agents would be intensified. In order to
get as much manganese as possible, the swarm could divide and follow di↵erent
leaders or we can vary the number of agents following a specific leader. If the
leader loses power, some agents can join another swarm. The leader stays on his
deterministic path: thus the chance to find undetected manganese fields remains
high. If a leader does not find anything for a long time, he may become a follower
and join a swarm. This could also be possible the other way around. If there is a
big swarm, new leaders could be chosen to search in a specific direction. Another
extension would be to integrate deterministic motions with genetic algorithms,
for instance build populations with di↵erent amounts of Hilbert, Peano and
swarm agents, like this work already did, but develop the next generation using
the principles of genetic algorithms

References
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