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Abstract

The theory of constant polynomial combinants has been well developed [2] and
it is linked to the linear part of the constant Determinantal Assignment prob-
lem [1] that provides the unifying description of the pole and zero assignment
problems in Linear Systems. Considering the case of dynamic pole, zero assign-
ment problems leads to the emergence of dynamic polynomial combinants. This
paper aims to demonstrate the origin of dynamic polynomial combinants from
Linear Systems, and develop the fundamentals of the relevant theory by estab-
lishing their link to the theory of Generalised Resultants and examining issues of
their parameterization according to the notions of order and degree. The paper
provides a description of the key spectral assignment problems, derives the con-
ditions for arbitrary assignability of spectrum and introduces a parameterization
of combinants according to their order and degree.

Key Words: Linear Systems, Spectrum Assignment, Generalised Resultants, Dio-
fantine Equations, Polynomial Combinants.
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1. Introduction

For the study of problems of linear feedback synthesis which are of the determinantal
type [1] (such as pole zero assignment, stabilisation) a specific school of thought has
been developed which is specially suited to tackle such problems. This framework is
referred to as algebro-geometric because it relies on tools from algebra and algebraic
geometry. The essence of the problems faced in this set-up is that they are of a
multi-linear nature. The main difficulty of the determinantal problems in the case of
frequency assignment lies in that the problem is equivalent to finding real solutions
to sets of nonlinear and linear equations; in the case of stabilisation, this is equivalent
to determining solutions of nonlinear equations and nonlinear inequalities. The first
of the two problems naturally belongs to the intersection theory of complex algebraic
varieties, whereas, the latter belongs to the intersection theory of semi-algebraic sets.
Determining real intersections is not an easy problem [9]; furthermore, it is also
important to be able to compute solutions whenever they exist. The use of algebraic
Geometry in the study of spectrum assignment problems was originally introduced
in [5], [6], where an affine space approach has been used. The main emphasis in this
approach has been the use of intersection theory for the development of necessary
conditions and the deployment of special techniques for establishing generic sufficient
conditions. Issues of dealing with non-generic cases as well as computation of solutions
are hardly addressed.

The Determinantal Assignment Problem Approach (DAP) [1] has been formulated
as a unifying approach for all problems of frequency assignment (dynamic and con-
stant pole zero) and its basis lies on the fact that determinantal problems are of a
multi-linear nature and thus may be naturally split into a linear and multi-linear
problem (decomposability of multivectors). In this framework, the final solution is
thus reduced to the solvability of a set of linear equations (characterising the linear
problem) together with quadratics (characterising the multi-linear problem of decom-
posability). The approach heavily relies on exterior algebra and this has implications
on the computability of solutions (reconstruction of solutions whenever they exist)
and introduces new sets of invariants (of a projective character) which, in turn, char-
acterise the solvability of the problem. This approach has been further developed
in [7], [8] by the development of a “blow-up” methodology for linearization of multi-
linear maps that permit the development of computations, as well as techniques for
establishing the development of real solutions [9]. The distinct advantages of the DAP
approach, which is a projective space approach, are: it provides the means for com-
puting the solutions; it can handle both generic and exact solvability investigations,
and it introduces new criteria for the characterisation of solvability of different prob-
lems. Furthermore, it provides a set-up for exterior algebra computations by using
the methodology of “Global Linearization” [7], [8]. Most of the work in the DAP
framework has been on problems dealing with non-dynamic compensation, where the
linear part of the problem is expressed as a constant polynomial combinant, and the
study of its properties is well developed [2]. Dynamic compensation problems may
also be studied within the DAP framework, but their linear sub-problem depends on
dynamic polynomial combinants which have much richer properties. Of course, real
intersection theory of varieties is once more the central issue, but the linear varieties
(linear part of the problem), as well as the multi-linear part becomes more complex
in the dynamic case.

This paper deals with the development of the fundamentals of the theory of dynamic
combinants, which define the linear part of the dynamic DAP problem, by examin-
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ing the origin of the dynamic combinants in Control Theory problems, introducing
the basic problems related to spectrum assignment, examining their parameteriza-
tion according to their order and degree, consider their representation in terms of
generalised resultants and finally establishing the conditions spectral assignability,
which are equivalent to the solvability of a Diofantine Equation over R[s]. The work
here provides the means for studying the properties of the linear varieties of the Dy-
namic DAP and set up the appropriate framework that allows the study of spectrum
assignment properties of dynamic combinants.

Throughout the paper the following notation is adopted: If F is a field, or ring then
Fm×n denotes the set of m× n matrices over F If H is a map, then R(H), N r(H),
N l(H) denote the range, right, left nullspaces respectively. Qk,n denotes the set
of lexicographically ordered, strictly increasing sequences of k integers from the set
ñ , {1, 2, . . . , n}. If V is a vector space and {vi1 , . . . , vik} are vectors of V then
vi1 ∧ . . . ∧ vik = vω ∧, ω = (i1, . . . , ik) denotes their exterior product and ∧r V the
r−th exterior power of V. If H ∈ Fm×n and r ≤ min{m,n}, then Cr(H) denotes the
r−th compound matrix of H [10]. We shall denote by R[s], R(s), Rpr(s)the ring of
polynomials, rational functions and proper rational functions over R respectively.

2. Linear Systems and Dynamic Polynomial Combinants

Consider the linear system [11] described by S (A,B,C,D) :

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×p, y = Cx+Du, C ∈ Rm×n, D ∈ Rm×p (1)

where (A,B) is controllable, (A,C) is observable, or by the transfer function matrix
G(s) = C(sI − A)−1B + D, where . In terms of left, right coprime matrix fraction
descriptions (LCMFD, RCMFD), G(s) may be represented as

G(s) = D−1
l (s)Nl(s) = Nr(s)D

−1
r (s) (2)

where Nı(s), Nr(s) ∈ Rm×p[s], Dı ∈ Rm×m[s] and Dr(s) ∈ Rp×p The system will be
called square if m = p and nonsquare if m ̸= p. Within the state space framework
we may define a number of constant, frequency assignment problems such as the
Pole assignment by state feedback, Design of an n-state observer, Pole assignment
by constant output feedback and Zero assignment by squaring down, which are all
reduced to a Constant Determinantal assignment problem [1]. A number of dynamic
assignment problems may be defined on a linear system as shown below:

Dynamic Compensation Problems

Consider the standard feedback configuration [11]

If G(s) ∈ Rpr(s)m×p, C(s) ∈ R(s)p×m , and assume coprime MFD”s as in (2) and

C(s) = Aℓ(s)
−1Bℓ(s) = Br(s)Ar(s)

−1 (3)

The closed loop characteristic polynomial may be expressed as [10]:

f(s) = det

{
[Dℓ(s), N ℓ(s)]

[
Ar (s)
Br (s)

]}
= det

{
[Aℓ(s), B ℓ(s)]

[
Dr (s)
Nr (s)

]}
(4)



232 N. Karcanias and G. E. Galanis

Figure 1: Feedback Configuration

1 if p ≤ m, then C(s) may be interpreted as feedback compensator and we will
use the expression of the closed loop polynomial described by (4a)

2 if p ≥ m, the C(s) may be interpreted as pre-compensator and we will use the
expression of the closed loop polynomial described by (4b).

The above general dynamic formulation covers a number of important families of C(s)
compensators [11] as : (a) Constant, (b) PI, (c) PD, (d) PID, (e) Bounded degree.
In fact,

(a) Constant Controllers : If p ≤ m, Aℓ = Ip, Bℓ = K ∈ Rp×m, then (4) expresses
the constant output feedback case, whereas if p ≥ m , Ar = Im, Br = K ∈ Rp×m
expresses the constant pre-compensation formulation of the problem.

(b) Proportional plus Integral Controllers: Such controllers are defined by

C(s) = K0 +
1

s
K1 = [sIp]

−1[sK0 +K1] (5)

where K0,K1 ∈ Rp×m and the left MFD for C(s) is coprime, iff rank(K) = p. From
the above the determinantal problem for the output feedback PI design is expressed
as :

f(s) = det

{
[sIp, sK0 +K1]

[
Dr(s)
Nr(s)

]}

= det

[Ip,K0,K1]

 sDr(s)
sNr(s)
Nr(s)

 (6)

(c) Proportional plus Derivative Controllers: Such controllers are expressed as

C(s) = sK0 +K1 = [Ip]
−1[sK0 +K1] (7)
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where K0, K1 ∈ Rp×m and the left MFD for C(s) is coprime for finite s and also for
s = ∞ if rank(K0) = p. From the above the determinantal output PD feedback is
expressed as :

f(s) = det{[Ip, sK0 +K1]

[
Dr(s)
Nr(s)

]
} = det{[Ip,K1,K0]

 Dr(s)
Nr(s)
sNr(s)

} (8)

(d) PID Controllers: These controllers are expressed as

C(s) = K0 +
1

s
K1 + sK2 = [sIp]

−1[s2K2 + sK0 +K1] (9)

where K0,K1 ∈ Rp×m and the left MFD is coprime with the only exception possibly
at s = 0, s = ∞ (coprimeness at s=0 is guaranteed by rank(K1) = p and at s = ∞ by
rank(K2) = p. From the above, the determinantal output PID feedback is expressed
as :

f(s) = det

{
[sIp, s

2K2 + sK0 +K1]

[
Dr(s)
Nr(s)

]}

= det

[Ip,K2,K0,K1]


sDr(s)
ssNr(s)
sNr(s)
Nr(s)


 (10)

(e) Observability Index Bounded Dynamics (OBD) Controllers: These are
defined by the property that their McMillan degree is equal to pk, where k is the ob-
servability index [11] of the controller. Such controllers are expressed by the composite
MFD representation as

[Al(s), Bl(s)] = Tks
k + . . .+ T0 (11)

Tk, Tk−1, . . . , T0 ∈ Rp×(p×m) and Tk = [Ip, X]. Note that the above representation is
not always coprime, and coprimeness has to be guaranteed first for McMillan degree
to be pk; otherwise, the McMillan degree is less than pk. The dynamic determinantal
OBD output feedback problem is expressed as

f(s) = det

{
[Tks

k + . . .+ T0]

[
Dr(s)
Nr(s)

]}
= det{(Tksk + . . .+ T0)M(s)} =

= det

[Tk, Tk−1, . . . , T0]


skM(s)
sk−1M(s)

...
M(s)


 (12)
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Remark 2.1 The above formulation of the determinantal dynamic assignment prob-
lems is based on the assumption that p ≤ m and thus output feedback configuration
is used. If p ≥ m, we can similarly formulate the corresponding problems as de-
terminantal dynamic pre-compensation problems and use right coprime MFDs for
C(s).

-
Abstract Determinantal Assignment Problem

All the problems introduced above, belong to the same problem family i.e. the de-
terminantal assignment problem (DAP) [1]. This problem is to solve the following
equation with respect to polynomial matrix H(s):

det(H(s)M(s)) = f(s) (13)

where f(s) is a polynomial of an appropriate degree d. The difficulty for the solution
of DAP is mainly due to the multi-linear nature of the problem, as this is described
by its determinantal character. We should note, however, that in all cases mentioned
previously, all dynamics can be shifted from H(s) toM(s), which, in turn, transforms
the problem to a constant DAP. This problem may be described as follows:

Let M(s) ∈ Rp×m[s], r ≤ p, such that rank M(s) = r and let H be a family of full
rank r× p constant matrices having a certain structure. Solve with respect to H ∈ H
the equation:

fM (s,H) = det(HM(s)) = f(s) (14)

where f(s) is a real polynomial of an appropriate degree d.

Remark 2.2 The degree of the polynomial f(s) depends firstly upon the degree of
M(s) and secondly, upon the structure of H. Generically, the degree of f(s) is equal
to the degree of M(s).

The determinantal assignment problem has two main aspects. The first has to do with
the solvability conditions for the problem and the second, whenever this problem is
solvable, to provide methods for constructing these solutions. If hi(s)

t, mi(s), i ∈ r̃,
we denote the rows of H(s), columns of M(s) respectively, then

Cr(H) = ht1 ∧ . . . ∧ h
t
r = ht ∧ ∈ Rl×σ (15)

Cr(M(s)) = m1(s) ∧ . . . ∧mr(s) = m(s)∧ ∈ Rσ[s], σ = (
p
r
). (16)

and by Binet-Cauchy theorem [10] we have that [1] :

fM (s,H) = Cr(H)Cr(M(s)) =< h(s)∧,m(s)∧ >=
∑

ω∈Qr,p

hω(s)mω(s) (17)

where < ·, · > denotes inner product, ω = (i1, . . . , ir) ∈ Qr,p and hω(s), mω(s) are the
coordinates of h(s)∧,m(s)∧ respectively. Note that hω(s) is the r × r minor of H(s),
which corresponds to the ω set of columns of H(s) and thus hω(s), is a multilinear
alternating function of the entries hij(s) of H(s). The multilinear, skew symmetric
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nature of DAP suggests that the natural framework for its study is that of exterior
algebra. The essence of exterior algebra is that it reduces the study of multilinear
skew-symmetric functions to the simpler study of linear functions. The study of the
zero structure of the multilinear function fM (s,H) may thus be reduced to a linear
subproblem and a standard multilinear algebra problem as it is shown below.

1 Linear subproblem of DAP: Set m(s)∧ = p(s)∈ Rσ[s]. Determine whether
there exists a k(s) ∈ Rσ[s], k(s) ̸= 0, such that

fM (s, k) = ktp(s) =
∑

kipi(s) = f(s), i ∈ σ
∼
, f(s) ∈ R[s] (18)

2 Multilinear subproblem of DAP : Assume that K is the family of solution
vectors k(s) of (18). Determine whether there exists H(s)t = [h1(s), ...,hr(s)],
where H(s)t ∈ Rp×r[s] , such that

h1(s) ∧ . . . ∧ hk(s) = h(s)∧ = k(s) ∈ K (19)

-

The polynomials fM (s, k(s)) are generated by p(s) = [p
1
(s), . . . , pi(s), . . . , pσ(s)]

t ∈
Rσ[s], or as linear combinations of the set P = {pi(s) ∈ R[s], i ∈ σ̃} and they will be
referred to as dynamic polynomial combinants. The study of the spectral properties
of such polynomials is the objective of this paper.

3. Basic Definitions and Representation of Dynamic Combinants

Given a set of polynomials P = {pi(s) ∈ R[s], i ∈ m̃} and a family of polynomial sets
< K >= {Kd,∀d ∈ Z+ : K = (k1(s) : k1(s) ∈ R[s], i ∈ m̃), d = max{deg(ki(s))}},
we consider

f(s,K,P) =
∑

ki(s)pi(s), where ki(s) ∈ Kd (20)

which are referred to as d order dynamic-polynomial combinants of P and are polyno-
mials with some degree p. Dynamic compensation of linear systems always involves
polynomial combinants generated by the corresponding system descriptions. Concepts
such as those of multivariable zeros and decoupling zeros are related to the greatest
common divisor [12], [4], [13] of certain sets P associated with the system they define
fixed zeros of the associated combinants. The pole, zero assignment and stabilizability
properties of linear systems are based on properties of corresponding combinants and
thus on the structure of sets P, which generate these combinants. The examination
of those properties of a set P which affect the assignability, stabilizability and ”nearly
fixed” zero phenomena of the corresponding combinants f(s,K,P) is the main drive
for the research here. This paper develops the fundamentals of the theory of poly-
nomial combinants. The representation problem of given order and degree dynamic
polynomial combinants is considered here, which involves a parameterization of all sets
< K >= {Kd,∀d ∈ Z+ : K = (k1(s) : k1(s) ∈ R[s], i ∈ m̃), d = max{deg(ki(s))}}
which lead to a polynomial combinant of a given degree p.

Given the sets P with m elements and maximal degree n and the set K of m elements
and maximal degree d of R[s], the generated combinant is denoted by

fd(s,K,P) =

m∑
i=1

ki(s)pi(s) = ϕ(s) (21)
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This is a polynomial generated by the set P and characterised by the order d of K
and the resulted degree ∂[fd(s,K,P)] of the combinant. We always assume that the
maximal degree polynomial in K, k1(s) ̸= 0 and such sets K are referred to as proper.
If we explicitly define P as

P = {pi(s) ∈ R[s], i ∈ m̃, n = deg{p1(s)} ≥ deg{pi(s)}, i = 2, . . . ,m,

q = max{deg{pi(s)}; i = 2, . . . ,m} (22)

p1(s) = sn + an−1s
n−1 + . . .+ a1s+ a0, pi(s) = bi,qs

q + . . .+ bi,1s+ b1,0,

i = 2, . . . ,m (23)

p(s) =


p1(s)
p2(s)
...

pm(s)

 = [p
0
, p

1
, . . . , p

n
]


1
s
...
sn

 = Pen(s) (24)

Then the set P will be referred to as an (m;n(q))-ordered set of R[s] . Consider now
a set of m polynomials of maximal degree d, K = {ki(s) ∈ R[s], i ∈ m̃, deg{ki(s)} ≤
d}, referred to in short as an (m; d) set of R[s]. The resulting polynomial combinant
is

fd(s,K,P) =
m∑
i=1

, ki(s)pi(s) = kt(s)p(s) (25)

where

kt(s) = [k1(s), k2(s), . . . , km(s)]t = kt0 +s k1
t+ . . .+ sd ktd (26)

is defined as a d-order polynomial combinant of , or in short as d − R[s] −
combinant of P. The matrix P ∈ Rm×(n+1) generates the representative p(s) ∈
Rm[s] of and it is referred to as the basis matrix of. Clearly fd(s,K, ) ∈ R[s]and some
interesting problems related to its spectrum stem from the fact that the setKmay take
arbitrary form in terms of its degree and selection of free parameters. The combi-
nant fd(s,K, ) as a polynomial of R[s] has degree ∂[fd(s,K, )] that clearly satisfies the
inequality

−∞ ≤ ∂[fd(s,K,P)] ≤ n+ q (27)

In the following we consider two different representations of fd(s,K,P) and the para-
metrisation of all combinants of different order and degree and show how these lead
to standard linear algebra problem formulations. The order and degree parameteri-
sations introduce some interesting links with the theory of generalised resultants.

Fixed Order Representations of Dynamic Combinants: Generalised Resul-
tant Representations

For the general (m;d) set K with a representative vector
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k(s)t = kt0 + skt1 + . . .+ sdktd = [k1(s), k2(s), . . . , km(s)] (28)

where ki(s) = ki,0 + ki,1s+ . . .+ ki,ds
d, then fd(s,K,P) may be expressed as

fd(s,K,P) =
m∑
i=1

[ki,d, . . . , ki,1, k1,0]


sdpi(s)

...
spi(s)
pi(s)

 = [kt1,d, . . . , k
t
m,d]


p
i,d
(s)

...
p
m,d

(s)

 (29)

The above leads to the following representation of dynamic combinants:

Proposition 3.1 Every dynamic combinant fd(s,K,P) defined by an (m;d) set K is
equivalent to a constant polynomial combinant defined by the (m(d+1);0) set K0 and
generated by the (m(d+1);(n+d)(q+d)) the d-th power of the (m;n(q)) set P, defined
by

Pd = {sdp1(s), . . . , sp1(s), p1; . . . ; sdpm(s), . . . , spm(s), pm(s)} (30)

The above leads to the following representation of dynamic combinants as equivalent
constant combinants. If µ = n+d, ẽµ(s)

t = [sµ, sµ−1, . . . , s, 1] , then ∂ [p1,d(s)] = n+d
, ∂ [pi,d(s)] ≤ q + d for all i=2,3,. . . ,m and

p
1,d

(s) =


1 an−1 an−2 · · · a1 a0 0 · · · 0
0 1 an−1 · · · a2 a1 a0 · · · 0
...

. . .
...

0 0 · · · 1 an−1 · · · · · · a1 a0

 ẽµ(s) (31)

or
p
1,d

(s) = Sn,d(p1)ẽµ(s), Sn,d(p1) ∈ R(d+1)×(µ+1) (32)

and for i = 2, 3, . . . ,m

p
i,d
(s) =


0 . . . 0 bi,q . . . bi,1 bi,0 0 . . . . . . 0
0 . . . 0 0 bi,q . . . bi,1 bi,0 0 . . . 0
... 0

...
. . .

. . .
...

0 . . . 0 0 . . . 0 bi,q . . . . . . bi,1 bi,0

 ẽµ(s) (33)

(3.9b)

p
i,d
(s) = Sn,d(pi)ẽµ(s), Sn,d(pi) ∈ R(d+1)×(µ+1)i = 2, 3, . . . ,m. (34)

The set Pd has then a matrix representation as shown below

p
d
(s) =


p
1,d

(s)

p
2,d

(s)

...
p
m,d

(s)

 =


Sn,d(p1)
Sn,d(p2)

...
Sn,d(pm)

 ẽµ(s) = SP,dẽµ(s) (35)
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where SP,d ∈ Rm(d+1)×(µ+1) and is referred to as the d-th Resultant representation of
the set P. Clearly,SP,d is the basis matrix Pd set.

Fixed Order Representations of Dynamic Combinants: Toeplitz Represen-
tation

An alternative expression for the dynamic combinant is obtained using the basis
matrix description of the set P. Thus , let us assume that

p(s) =

 p1(s)
...

pm(s)

 = P ẽn(s), P = [p
n
, . . . , p

1
, p

0
] ∈ Rm×(n+1) (36)

where P is the basis matrix of P. Then,

fd(s,K,P) = (kt0 + skt1 + · · ·+ sdktd)P ẽn(s) =

= kt0P ẽn(s) + skt1P ẽn(s) + · · ·+ sdktdP ẽn(s) =

= ktd[P, 0, . . . , 0]̃eµ(s) + ktd−1[0, P, 0, . . . , 0]̃eµ(s) + · · ·+ kt0[0, . . . , 0, P ]̃eµ(s) =

= [ktd, k
t
d−1, . . . , k

t
0]


p
0
, p

1
, p

2
, . . . , p

n
, 0, · · · · · · 0

0 p
0
, p

1
, p

2
, . . . , p

n
, 0, · · · 0

...
. . .

. . .
. . . 0

0, · · · · · · 0 p
0
, p

1
, p

2
, . . . , p

n
,

 eµ(s) (37)

or equivalently

fd(s,K,P) = ktd+1,mQP,dẽµ(s), QP,d ∈ Rm×(d+1)×(µ+1). (38)

The matrix QP,d generating the dynamic combinant as a constant combinant is re-
ferred to as the d-th Toeplitz Toeplitz Representation of the set P. From the construc-
tion of the matrices SP,d, QP,d we have

Remark 3.1 The matrices QP,d and SP,d associated with P have the same dimen-
sions and are permutation equivalent, i.e. ∃ permutation matrices PL, PR such that

QP,d = PLSP,dPR. (39)

The above implies that establishing the rank properties of SP,d implies the same
properties forQP,d and vice versa. Thus either of the two representations may be used.
In the following we shall concentrate on the Generalised Resultant representation and
the general properties may be referred back to the Toeplitz Representations as well.
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4. Fixed degree and order Parametrisation of (m; d) sets K and
Combinants

The general unstructured representation of dynamic combinants considered before
may lead to combinants of varying degree. An alternative characterisation based
on the fixed degree of fd(s,K,P), but with varying order K provides an alternative
parametrisation of the K sets. We always assume proper sets K, i.e. k1(s) ̸= 0. The
fixed degree parametrisation of combinants is summarised by the following result

Theorem 4.1 Given the (m; q(n)) set P and a general proper (m; d) set K, then the
following properties hold true

(i) For all proper (m; d) sets K

n ≤ ∂[fd(s,K,P)] ≤ n+ d (40)

(ii) If p ∈ N>0, p ≥ n then the family {Kp} for which ∂[fd(s,K,P)] = p, satisfies
the conditions

∂[k1(s)] ≤ p− n, ∂[ki(s)] ≤ p− q, i = 2, . . . ,m (41)

where at least one of the first two conditions holds as an equality.

(iii) The fixed degree p family {Kp} contains n− q + 1 subfamilies parameterised by
a fixed order d. The possible values for the order are:

d1 = p− q > d2 = p− q − 1 > . . . > dn−q+1 = p− n (42)

and the corresponding subfamilies are

{Kd1p }={ki(s) : ∂[k1(s)]≤p−n, ∂[k2(s)] = d1 = p−q, ∂[ki(s)] ≤ d1, i=3, . . . ,m}

{Kd2p } = {ki(s) : ∂[k1(s)] = p− n, ∂[k2(s)] = d2 =p− q − 1, ∂[ki(s)] ≤ d2,

i=3, . . . ,m}

...

{Kdn−q+1
p } = {ki(s) : ∂[k1(s)] = ∂[k2(s)] = dn−q+1 = p− n, ∂[ki(s)] ≤ p− n,

i = 3, . . . ,m} (43)

Proof: Parts (i) and (ii) are rather straight forward and follow from the definition of
the combinant. The parameterisation implied by part (iii) follows by the construction
of the combinant as indicated by the following table

p1(s) : ∂[p1(s)] = n, k1(s) ∂[k1(s)] ≤ p− n
p2(s) : ∂[p2(s)] = q, k2(s) ∂[k2(s)] ≤ p− q

...
...

...
...

pm(s) : ∂[pm(s)] ≤ q, km(s) ∂[km(s)] ≤ p− q

(44)

where amongst the first two relationships at least one is an equality. The above
table follows from the need to guarantee degree p to the fd(s,K,P) combinant. The
condition from the above implies:
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— If ∂[k2(s)] = p−q > p−n then we have the maximal degree d1 = p−q subfamily
of {Kd1p } with degrees

∂[k1(s)] ≤ p− n, ∂[k2(s)] = d1 = p− q, ∂[ki(s)] ≤ d1, i = 3, . . . ,m.

— If ∂[k2(s)] = p−q−1 > p−n then we have the next value of degree d2 = p−q−1
and the {Kd2p } subfamily with degrees

∂[k1(s)] = p− n, ∂[k2(s)] = d2 = p− q − 1, ∂[ki(s)] ≤ d2, i = 3, . . . ,m

— the process finishes when ∂[k1(s)] = p− n = ∂[k2(s)] = dn−q+1, when

∂[k1(s)] = ∂[k2(s)] = dn−q+1 = p− n, ∂[ki(s)] ≤ p− n, i = 3, . . . ,m.

Clearly this is the last family in {Kp} for which the degree has minimal value dn−q+1 =
p− n .

Remark 4.1 For the (m,n(q)) set P the degree of the proper combinants (corre-
sponding to proper sets K) takes values p ≥ n.

The entire family of proper combinants of P may thus be parameterised by degree
and orders and the entire set may be characterised by the sets of K vectors which will
be denoted as < K > Clearly,

< K >= {Kn}
∪

{Kn+1}
∪
. . .
∪
. . . {Kn+q−1} (45)

whereas each subset {Kp} has the structure defined by the previous result.

Corollary 4.1 Given an (m;q) set P and a general (m;q) set K, then:

(i) The minimal degree family p=n, {Kn} is expressed as

{Kn} = {{K0
n} :< K0

n >= (0, . . . , 0);
{K1

n} :< K1
n >= (0, 1, . . . , 1);

...
{Kn−qn } :< Kn−qn >= (0, n− q, . . . , n− q)}

(46)

(ii) The general degree family p = n+ d, {Kp} is then expressed as

{Kp} = {{Kdp} :< Kdp >= (0, . . . , 0) + (d, d, . . . , d)
{Kd+1

p } :< Kd+1
p >= (0, 1, . . . , 1) + (d, d, . . . , d)

...
{Kd+n−qp } :< Kd+n−qp >= (0, n− q, . . . , n− q) + (d, d, . . . , d)}.

(47)
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(iii) For the general degree p family, p ≥ n, the values of possible orders, in decreasing
order, are

d1 = p− q > d2 = p− q − 1 > · · · > dn−q = p− n+ 1 > dn−q+1 = p− n (48)

and are given as di = p− q+1− i, i = 1, 2, . . . , n− q+1, or in increasing order

d̃1 = p− n < d̃2 = p− n+ 1 < · · · < d̃n−q = p− q − 1 < d̃n−q+1 = p− q

and are given recursively as d̃i = p− n− 1 + i, i = 1, 2, . . . , n− q + 1.

The proof of the above result follows by induction. Amongst all (m; d) sets K, the
set which is defined by

{Kn−1
n+q−1} = {k1(s) : ∂[k1(s)] = q − 1, ki(s) : ∂[ki(s)] = n− 1, i = 2, . . . ,m} (49)

plays a particular role in our study and it is referred to as the Sylvester set of P. The
general p degree family may be expressed as

{Kp} = {Kd̃ip , d̃i = p− n− 1 + i, i = 1, 2, . . . , n− q + 1} =

= {Kp−np ;Kp−n+1
p ; . . . ;Kp−q+1

p ;Kp−qp }. (50)

The element Kp−qp that corresponds to the highest order p − q will be referred to as
the generator of the family and its degrees are

{Kp−qp } = (p− n, p− q, . . . , p− q). (51)

Similarly, the element Kp−np that corresponds to the lowest order p− n is referred to
as a co-generator of the family and its degrees are

{Kp−np } = (p− n, p− n, . . . , p− n). (52)

The above suggests that the entire family of vector sets K may be expressed in a
“direct sum” form as

< K >= {Kn}
∪

{Kn+1}
∪
. . . {Kn+q−1}

∪
. . .

{Kp} = {Kp−np }
∪

{Kp−n+1
p }

∪
. . .
∪

{Kp−qp } (53)

for all p ≥ n. This parametrisation of K sets leads to a corresponding parametrisation
of generalised resultants that is considered next.

5. Generalised Resultants based on Fixed degree and order
Parametrisations

The parameterisation of the sets K based on degree and order induces in a natural
parameterisation of the corresponding Generalized Resultants. This is now considered
here and this provides the basis for the study of the properties of the family of
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Generalised Resultants. We consider the general (m;d) set K that leads to a combinant
of degree p which is defined by:

{Kdp} = {k1(s) : ∂[k1(s)] = p− n = d̃, k2(s) : ∂[k2(s)] = d,

d̃ ≤ d ≤ d∗ = p− q, ki(s) : ∂[ki(s)] ≤ d, i = 3, . . . ,m} (54)

The above set {Kdp}, p ≥ n and with d taking values as above, represents the general
set generating dynamic combinants a given degree d and order p. Note that in the
above expression we consider all ki(s), i = 3, . . . ,m as polynomials with reference
degree d (∂[ki(s)] ≤ d) and thus we can express them as

k1(s) = k1,d̃s
d̃ + · · ·+ k1,1s+ k1,0 = [k1,d̃, . . . , k1,1, k1,0]ẽd̃(s) = kt

1,d̃
ẽd̃(s)

ki(s) = ki,ds
d + · · ·+ ki,1s+ ki,0 = [ki,d, . . . , ki,1, ki,0]ẽd(s) = ki,d̃ẽd̃(s). (55)

ẽµ(s)
t = [sµ, sµ−1, . . . , s, 1].

Using this representation for {Kdp} the corresponding combinant becomes

fd(s,K,P) =
m∑
i=1

ki(s)pi(s) =

= kt
1,d̃


sd̃p1(s)

...
sp1(s)
p1(s)

+
m∑
i=2

kt
i,d̃


sdpi(s)

...
spi(s)
pi(s)

 (56)

Proposition 5.1 The dynamic combinant fd(s,Kdd,P) is equivalent to a constant
combinant of degree p that is generated by the set:

Pdp = {sd̃p1(s), . . . , sp1(s), p1(s); sdp2(s), . . . , sp2(s), p2(s); . . . ;
sdpm(s), . . . , spm(s), pm(s)} (57)

where d̃ = p− n, d̃ ≤ d ≤ p− q = d∗.

The set Pdp is the (p, d)-power of P and has degree p. The polynomial vector repre-
sentative is

p
p,d

(s) =


p
1,d̃

(s)

p
2,d

(s)

...
p
m,d

(s)

 =


Sn,d̃(p1)
Sn,d(p2)

...
Sn,d(pm)

 ẽp(s) = Sp,dẽp(s) (58)

where the structure of the Toeplitz type blocks above Sn,d̃(p1), Sq,d(pi) i = 2, . . . ,m

defining the corresponding Generalised Resultants is given below
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Proposition 5.2 The Generalised Resultants corresponding to the parameterized set
{Kdp} are defined by:

(i) Given that p
1,d̃

(s) has degree d̃+ n = p− n+ n = p then

Sn,d̃(p1) =


1 an−1 an−2 · · · a1 a0 0 · · · 0
0 1 an−1 · · · a2 a1 a0 · · · 0
...

. . .
...

0 0 · · · 1 an−1 · · · · · · a1 a0

 ∈ R(d̃+1)×(p+1)

(59)

(ii) Given that p
1,d

(s) has degree d + q which satisfies the inequality p − (n − q) ≤
d+ q ≤ p and thus d+ q+1 ≤ p+1. The structure of Sq,d(pi) is defined for all
i = 2, . . . ,m and ∀d : p− n ≤ d ≤ p− q by

Sq,d(pi) =
0 . . . 0 bi,q . . . bi,1 bi,0 0 . . . . . . 0
0 . . . 0 0 bi,q . . . bi,1 bi,0 0 . . . 0
... 0

...
. . .

. . .
...

0 . . . 0 0 . . . 0 bi,q . . . . . . bi,1 bi,0

 ∈ R(d+1)×(p+1)

(60)

Clearly in the boundary case d = p−q, there is no zero block and when d = p−n, then
the zero block takes its maximal dimension n − q. The matrix Sp,d ∈ Rσ×(p+1), σ =
p− n− d+m(d+ 1) will be called the (p, d)-generalised resultant of the set P where
p− n ≤ d ≤ p− q. Clearly the Sp,d is the basis matrix of the (p, d) power of P,Pdp .

Remark 5.1 For the given (m;n(q)) set P we can parameterise all dynamic combi-
nants in terms of the degree p and the corresponding order d as

(a) p = n: then 0 ≤ d ≤ n− q

(b) p = n+ 1: then 1 ≤ d ≤ n− q + 1

(c) p > n+ 1: then p− n ≤ d ≤ p− q

and their properties are defined by the properties of corresponding (p, d)-generalised
resultants Sp,d(P).

In the following we will investigate the properties of all dynamic combinants by con-
sidering the corresponding family

S(P) = {Sp,d ∀ p ≥ n and ∀ d : p− n ≤ d ≤ p− q} (61)

which will be referred to as the family of generalised resultants of the set P. Amongst
the elements of S(P) we distinguish a special element that corresponds to p = n+q−1,
d = n−1 and thus ∂[k1(s)] = p−n = q−1. This generalised resultant Sn+q−1,n−1(P)
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is denoted in short as S̃P and it is referred to as the Sylvester Resultant of the set P
and has the following form

S̃P =


Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)

 ∈ Rτ×(n+q), τ = [q + (m− 1)n] (62)

where Sn,q−1(p1) ∈ Rq×(n+q),Sq,n−1(pi) ∈ Rq×(n+q), j = 2, . . . ,m and τ = [q + (m−
1)n]. The characteristic of this is that none of the blocks Sn,q−1(p1),Sq,n−1(pi) have

zero columns blocks and that the rank of S̃P is clearly related to algebraic properties
of P, as it will be seen subsequently.

6. Spectrum Assignment of Dynamic Combinants and the Sylvester
Resultant

We have described the link of dynamic combinants to Generalised Resultants, the
structure of the family S(P) of all generalised resultants, and we now consider the
problem of arbitrary assignment of the spectrum of dynamic combinants for some
appropriate order and degree. This is part of the more general problem dealing with
the parameterisation of all possible degree and order combinants for which assignment
may be achieved. Given that problems of spectrum assignment of dynamic combinants
are always reduced to equivalent problems of constant combinants, we start our study
by reviewing the basic results from the theory of constant combinants

Spectral Properties and Assignability of Constant Polynomial Combinants

Consider the (m;n(q)) set P as described previously, with a polynomial vector rep-
resentative

p(s) =


p1(s)
p2(s)
...

pm(s)

 = [p
n
, p
n−1

, . . . , p
1
, p

0
]


sn

sn−1

...
s
1

 = P̃ ẽn(s) (63)

where P̃ ∈ Rm×(n+1) is the basis matrix of P with respect to the vector ẽn(s). The
constant polynomial combinant fd(s,K,P) is defined by

f0(s,K,P) =

m∑
i=1

kipi(s) = [k1, k2, . . . , km]P̃ ẽn(s) (64)

where K = {ki ∈ R, i ∈ m̃} is an arbitrary set. Clearly this is a polynomial of
maximal degree n and if k1 ̸= 0 then it has degree n. We may thus write

f0(s,K,P) = ktP̃ ẽn(s) = ϕ(s) = [ϕn, . . . , ϕ1, ϕ0]ẽn(s) (65)

The above suggests that study of properties of f0(s,K,P) is equivalent to a study of
properties of degree n polynomials with real coefficients defined by a vector ϕ of Rn+1

which are defined by:

[k1, k2, . . . , km][p
n
, p
n−1

, . . . , p
1
, p

0
] = [ϕn, . . . , ϕ1, ϕ0] (66)
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or
ktP̃ = ϕt, P̃ ∈ Rm×(n+1) (67)

Lemma 6.1 For the set P with a basis matrix P̃ ∈ Rm×(n+1) the constant combinant
f0(s,K,P) is arbitrarily assignable if and only if

rank{P̃} = n+ 1 (68)

Clearly, if f0(s,K,P) is assignable a necessary condition is that m > n. The study of
constant combinants has been given in [2], where also some classification of the sets
has been given according to their spectra assignability properties.

Definition 6.1 If for a set P there exists k such that f0(s,K,P) = ϕ0 ∈ R, ̸= 0, then
the n-th degree combinant has all its roots at s = ∞ and P may be referred to as
∞− assignable set. In the case where there is no k such that f0(s,K,P) = ϕ0 ∈ R
then f0(s,K,P) has effective degree at least one and the set P will be called strongly
non - assignable. For strongly non assignable sets, for all k at least one of the roots
of f0(s,K,P) is finite.

Proposition 6.1 Consider the set P with a basis matrix P̃ = [p
n
, p
n−1

, . . . , p
1
, p

0
] ∈

Rm×(n+1). The following properties hold true:

(i) The set P is ∞− assignable if and only if

Nℓ{[pn, pn−1
, . . . , p

1
]} ≠ {0} (69)

(ii) The set P is strongly nonassignable if and only if

Nℓ{[pn, pn−1
, . . . , p

1
]} = {0} (70)

Furthermore, f0(s,K,P) has at least ν finite roots for all K if and only if

Nℓ{[pn, pn−1
, . . . , p

ν
]} = {0} (71)

If we denote by P̃ (ν) = [p
n
, p
n−1

, . . . , p
ν
] the submatrix of P̃ , then if Nℓ{P̃ ν} = {0}

and Nr{P̃ (ν+1)} ̸= {0} then ν will be called the index of P and denotes the least
number of finite zeros of f0(s,K,P) for all K. The existence of finite roots for all k
when ν ≥ 1 raises the question of whether there exists a region Ω of C that contains
the ν finite roots. Such a problem has been investigated [14]. We consider next the
spectrum assignment case for the dynamic case.

Spectral Assignability of Dynamic Combinants

We start our investigation of assignability by using the previous Lemma that estab-
lishes assignability for the case of constant combinants. This result together with
the reduction of dynamic combinants to equivalent constant formulation leads to the
following result:
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Proposition 6.2 Given the (m;n(q)) set P, then the combinant fd(s,K,P) generated
by the (m; d) set K is assignable, if and only if the m(d + 1) × (d + n + 1) Toeplitz
representation QP,d defined by (37) satisfies the condition

rank{QP,d} = n+ d+ 1 (72)

The link of coprimeness of P to the assignability is considered next

Proposition 6.3 If the set P is not coprime and ϕ(s) is its GCD, then for all d and
all K sets the combinant fd(s,K,P) is not completely assignable and

rank{QP,d} < n+ d+ 1 (73)

Proof:

If P is not coprime and ϕ(s) is its GCD, then if P = {pi(s), i ∈ m̃} we may
write pi(s) = ϕ(s)p̃i(s), i ∈ m̃ and thus fd(s,K,P) =

∑m
i=1 ki(s)pi(s) =

ϕ(s){
∑m
i=1 ki(s)p̃i(s)}. Clearly fd(s,K,P) has all zeros of ϕ(s) as fixed zeros and

thus for all K we do not have assignability. For such sets P (ϕ(s) nontrivial gcd), we
have that

rank{QP,d} ≤ min(m(d+ 1), n+ d+ 1) (74)

and thus rank{QP,d} ≤ n+ d+1. If equality holds true, then by the previous Lemma
we have assignability of fd(s,K,P) which contradicts the assumption made above

Corollary 6.1 Necessary condition for complete assignability of fd(s,K,P) for some
d is that P is coprime.

We consider next sufficient conditions for the assignability of combinants for some
appropriate order d. This study involves an extensive use of generalised resultants.
For the special case of resultants with p = n+ q− 1, d = n− 1 the so called Sylvester

resultant S̃P = Sn+q−1,n−1(P) we have the following well known property [3],[4].

Lemma 6.2 Let P be an (m,n(q)) set with Sylvester Resultant S̃P . The set P is

coprime, if and only if S̃P has full rank

We may now state the main result on the assignability of dynamic combinants:

Theorem 6.1 Let P be an (m,n(q)) set. There exists a d such that fd(s,K,P) is
completely assignable, if and only if the set P is coprime.

Proof:
The necessity has already been established by the previous proposition. To prove
sufficiency, we consider d = n − 1. We consider a special combinant of degree p =
n+ q − 1 and order n− 1 such as

f̃n−1(s,K,P) =
m∑
i=1

ki(s)pi(s) (75)

where
∂[k1(s)] = q − 1, ∂[ki(s)] = n− 1, i = 2, 3, . . . ,m. (76)
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If we denote

k1(s) = k̃
t

1ẽq−1(s), ki(s) = k̃
t

iẽn−1(s), i = 2, 3, . . . ,m (77)

then

f̃n−1(s,K,P) = [k̃
t

1, k̃
t

2, . . . , k̃
t

m]


Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)

 ẽn+q−1(s) (78)

k̃
t
S̃n+q−1,n−1(P)ẽp(s) = k̃

t
S̃P ẽp(s)

However, S̃P is the Sylvester resultant and by the previous Lemma it has full rank,

since the set P is coprime. Therefore, rank{S̃P} = n+ q and given that S̃P and QP,d
are equivalent under column - row permutations, then assignability is established.

Corollary 6.2 From the (m,n(q)) coprime set P the following properties hold true:

(i) There exists a combinant f̃n−1(s,K,P) of degree p = n+q−1 and order d = n−1
which is completely assignable

(ii) All combinants fn−1(s,K,P) of order d=n-1 and degree p : n+q−1 ≤ p ≤ 2n−1
are also completely assignable.

Proof:

Part(i) follows from Theorem (6.1) proof by the construction of the Sylvester resultant

which leads to the definition of the combinant f̃n−1(s,K,P) with
∂[k1(s)] = q − 1 and ∂[ki(s)] = n − 1, i = 2, . . . ,m. Consider now the general
combinant of order d = n − 1 which has maximal degree p = 2n − 1. We can then
express k1(s) as

k1(s) = kn−1,1s
n−1 + . . .+ kq,1s

q + kq−1,1s
q−1 + . . .+ k1,1s+ k0,1 =

= [kn−1,1, . . . , kq,1; kq−1,1, k1,1, k0,1]ẽn−1(s) =

= [k̂
t

1; k̃
t

1]ẽn−1(s) (79)

Then fn−1(s,K,P) =
∑m
i=1 ki(s)pi(s), ∂[ki(s)] = n− 1 can be expressed as

fn−1(s,K,P) = [k̂
t

1; k̃
t

1, k̃
t

2, . . . , k̃
t

m]S2n−1,n−1(P)ẽ2n−1(s) (80)

where the generalised resultant S2n−1,n−1(P) = ŜP may be partitioned according to

the partitioning of [k̂
t

1; k̃
t
] and it is expressed as
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ŜP =



1 an−1 · · · · · ·
... x · · · x

0 1 an−1 · · · · · ·
... x · · · x

...
. . .

. . .
... x · · · x

...
. . .

. . .
...

...
...

. . .
. . .

...

0 0 1
... x · · · x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... S̃p



(81)

The upper block diagonal structure of ŜP and the full rank property of the Sylvester

Resultant S̃P implies that ŜP has full rank since rank{ŜP} = n − q + rank{S̃P} =
2n − 1. The proof for any degree p = n + q − 1 ≤ p < 2n − 1 follows along similar
lines.

The matrix ŜP defined above is an extension of the Sylvester Resultant and may be
referred to as n-order extended Sylvester Resultant. The special combinant of order
d = n− 1 and degree p = n+ q − 1 will be referred to as the Sylvester combinant of
the set P.

Remark 6.1 For the Sylvester combinant f̃n−1(s,K,P):

f̃n−1(s,K,P) =
m∑
i=1

ki(s)pi(s) (82)

∂[k1(s)] = q − 1, ∂[ki(s)] = n − 1, i = 2, . . . ,m the zero assignment problem is

equivalent to making f̃n−1(s,K,P) be an arbitrary polynomial α(s) of degree n+q-1,
i.e. α(s) = αtẽn+q−1(s). This is equivalent to solving the equation

[k̃
t

1; k̃
t

2; . . . ; k̃
t

m]


Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)

 = αt (83)

or

k̃
t
S̃P = αt. (84)

Under coprimeness assumption the above equation has always a solution and the
number of degrees of freedom is ρs = mn+1−2n. For the case m = 2 the assignment
problem has a unique solution.

From corollary (6.2) it is clear that the two combinants of the same order d = n−1 and
different degree may be both assignable. In fact, under the coprimeness assumption,

both combinants f̃n−1(s,K,P), fn−1(s,K,P) of degree respectively n + q − 1 and
2n − 1 are assignable This raises the following important questions of investigating
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the assignability of all combinants fd(s,K,P) with d < n − 1 and parameterize all

combinants f̂d(s,K,P) of order d, d ≤ n − 1 and degree p ≤ n + q − 1 which are
assignable.

7. Conclusions

The fundamentals of the theory of dynamic polynomial combinants have been intro-
duced and their representation in terms of Generalized Resultants has been estab-
lished. The parameterization of combinants in terms of order and degree has been
introduced and this lays the foundations for investigating the properties of the fam-
ily of Generalised Resultants. The current framework allows the development of the
theory of dynamic combinants that may answer questions related to zero distribution
of combinants, and its links to the existence of a nontrivial GCD, as well as “approx-
imate GCD”. The conditions for existence of spectrum assignable combinants have
been established and these are equivalent to the coprimeness of the generating set
P. Amongst the problems under current investigation is the minimal design problem
dealing with finding the least order and degree for which spectrum assignability may
be guaranteed.
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