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Abstract—Non-player characters (NPCs) in games are tradi-
tionally hard-coded or dependent on pre-specified goals, and
consequently struggle to behave sensibly in ever-changing and
possibly unpredictable game worlds. To make them fit for new
developments in procedural content generation, we introduce the
principle of Coupled Empowerment Maximisation as an intrinsic
motivation for game NPCs. We focus on the development of
a general game companion, designed to support the player in
achieving their goals. We evaluate our approach against three
intuitive and abstract companion duties. We develop dedicated
scenarios for each duty in a dungeon-crawler game testbed, and
provide qualitative evidence that the emergent NPC behaviour
fulfils these duties. We argue that this generic approach can speed
up NPC AI development, improve automatic game evolution and
introduce NPCs to full game-generation systems.

I. INTRODUCTION

Dogmeat from Fallout or Ellie from The Last of Us or the
pet from Nethack – memorable companions are an important
part of our gaming experience. But companions can also be
a great source of annoyance, especially when their behaviour
fails miserably [1]. The vast majority of companions are hard-
coded by means of e.g. finite state machines or behaviour
trees, and consequently struggle to produce believable or even
plausible behaviour in unforeseen contexts ([2], [3]). More
advanced companions can adapt their behaviour by means
of planning, or by learning a policy via neural networks or
traditional reinforcement learning. Nevertheless, they require
intense training or pre-specified rewards, which again renders
them inflexible especially in sandbox games where players
with a large choice of options can change a dynamic world.
In the future, the demands on non-player character (NPC) AI
in general are likely to increase further [4]. This is particularly
emphasised by progress in procedural content generation,
which not only focusses on game elements such as levels and
game mechanics ([4], [5]), but ultimately aims at generating
entire games [6]. How can NPC AI deal with these ever-
changing and potentially unpredictable game worlds?

One answer [2] is to drive the NPCs’ behaviour by means
of intrinsic motivation, such as artificial curiosity [7] or learn-
ing progress [8]. Instead of relying on pre-defined goals or
behaviours which might become meaningless when the game
changes, intrinsically motivated agents perform “an activity for
its inherent satisfactions rather than for some separable conse-
quence” [9]. Models of intrinsic motivation ground behaviour

in the agent’s sensorimotor relationship with the world [8], so
changes to the world or the agent’s embodiment are reflected in
potentially new behaviour. A curious mouse and a curious bird
would consequently behave differently, moderated by their
embodiment and environment. In this paper, we will work with
the intrinsic motivation of empowerment [10], a measure of
how much an agent is in control of the world it can perceive.
We have previously argued [11] that empowerment reflects an
agent’s drive to maintain its own precarious existence, and
allows them to adapt to changes in their embodiment and
environment. But while empowerment might be very useful
to produce an intrinsically motivated general NPC, we have
to look specifically into how to turn it into a good companion.

Players seem to expect a companion to behave differently
than a general NPC. For instance, in a qualitative study
on companion behaviour, a player said “I dislike that [the
companion] prioritises getting to the exit herself over helping
[me] first” [1], stressing the delicate balance between support
and independence. McGee and Abraham [12] argue that the
NPC must account for the player’s goals as part of coordinated
decision-making, possibly incorporating uncertainty. To guide
our approach, we identify the following three companion
duties, which should generalise across a range of game genres:

1) Player Integrity: Ensure that the player can continue
playing the game. Act against any limiting force.

2) Support: Support and do not hinder the player in achiev-
ing their goals. Maintain operational proximity, i.e. act
towards states where you can support the player.

3) Companion Integrity: Secure your own existence and
ability to act in order to support the player long term.

We did not define any explicit, goal-specific companion duties
which could constrain the NPC’s adaptivity. Instead, their goal
directedness will arise from the interaction with the player.

We design an intrinsically motivated, general companion
NPC based on the Coupled Empowerment Maximisation
(CEM) principle. CEM establishes a general frame for support
by relating an agent’s action selection policy not only to their
own, but also to the empowerment of other agents. We provide
an intuition and formalisation of the principle. We evaluate our
approach qualitatively in a dungeon-crawler testbed, by means
of observing whether the NPC fulfils its companion duties. We
finish with a discussion, conclusion and future work.



II. BACKGROUND

A wide body of research exists on companion AI and
related notions. While the notion of “companions”, “sidekicks”
and “assistants” usually refer to a unidirectional, supportive
relationship towards the player (cf. [1]), research on “part-
ners” and “team-mates” puts more emphasis on bidirectional
collaboration and shared goals (cf. [12]). We are interested
in support; Nevertheless, only few projects from the first
category are relevant to us, as the majority specialises in
specific game genres. We in contrast propose a notion for
general companion-like behaviour in an arbitrary game.

We equip NPCs with the skill to coordinate their actions
with the player in a supportive way. Most related work
addresses this challenge by modelling the player’s goals
explicitly. Fern and Tadepalli [13] represent the player as a
noisy utility maximisation agent which is more likely to select
actions that have a high utility of completing a given task.
The player’s intentions are modelled by means of Markov-
Decision-Processes (MDPs) which can capture uncertainty in
human action-selection and in the environment. Nguyen et
al. [14] extend this approach in their Collaborative Action
Planner with Intention Recognition (CAPIR), combining pre-
computed MDP action policies and online Bayesian belief
updates. They improve the performance of Fern’s and Tade-
palli’s framework by decomposing tasks into subtasks. Their
approach is evaluated in a maze game where a companion
has to help the player kill ghosts. Macindoe, Kaelbling and
Lozano-Pérez [15] buid on CAPIR by steering NPC decision-
making by the information it can gain about the player’s
intentions. They evaluate their framework in a cooperative
pursuit game. Our formalism is also concerned with planning,
i.e. the simulation of experience, and is capable of accounting
for uncertainty in the player’s behaviour and the environment.
We do not model the player’s goals explicitly, but introduce
them implicitly into the policy. While the utility function in
these projects must be pre-defined, our approach employs
intrinsic motivation to overcome this limitation.

If we constrain our scope to intrinsically motivated agents,
the body of research becomes much smaller. The work by
Merrick and Maher ([2], [16]) is most closely related, looking
at how intrinsically motivated reinforcement learning [17] can
support NPCs in learning complex tasks in a dynamic game
world. They propose two models of motivation as reward
signals for Q-learning: an agent’s interest in a new situation,
given past experiences, and its competence based on the error
in learning policy updates. Their qualitative studies in Second
Life and a quantitative analysis of behavioural variety and
complexity in dedicated RPG testbeds confirm that intrinsic
motivation allows agents to adapt their behaviour in an unex-
pectedly changing environment. In contrast to our study, their
NPCs act in solitude, and not in favour of other agents such
as the player. In a related study, Forgette and Katchabaw [3]
focus on the development of more believable NPC behaviour,
by letting them choose actions in order to maintain basic
desires such as hunger or social contact. Similar to Merrick

and Maher, their focus is on learning complex sequences of
actions to satisfy their motives, while we are interested in
establishing supportive, immediate reactions to the player’s
actions. Forgette and Katchabaw’s desires can only loosely be
considered intrinsic, as they rely on sensor semantics (cf. [8]).
Unfortunately, this dependency makes the approach unsuitable
in PCG or dynamically changing game worlds.

Empowerment as intrinsic motivation has so far only been
employed for general game-playing, but not to steer the
behaviour of companion or enemy NPCs. Anthony, Polani and
Nehaniv [18] analysed empowerment maximisation to drive
player behaviour in Sokoban and Pac-Man, and in the same
course proposed several optimisation methods. Mohamed and
Rezende [19] focus primarily on optimisation, with a likely
application in general game playing.

III. FORMAL MODEL

We propose the principle of coupled empowerment max-
imisation (CEM) as an abstract notion for companion-like
behaviour in highly flexible and adaptive NPCs. We recently
introduced CEM in a co-creativity context [20], and will
expand it here to fit the requirements of companion NPCs.
We first provide an intuition and definition of the underlying
empowerment formalism and its variations. Equipped with
this, we show how the different notions come together in CEM
to drive the decision-making of NPCs.

A. Empowerment

Empowerment [10] is defined between an agent’s actuators
and sensors. In a deterministic environment, it quantifies the
options available to an agent in terms of availability and
visibility. In a stochastic setting, this generalises to its poten-
tial, perceived influence on the environment. Empowerment is
measured in bits; It is zero when the agent has no control
over its sensors, i.e. when all actions lead to the same or
a random outcome, and it increases when different actions
lead to separate perceivable outcomes. For simplicity, we
focus on interactions which are discrete in time and space,
but continuous implementations exist. An extensive survey of
motivations, intuitions and past research can be found in [21].

At the centre of the empowerment definition is the interpre-
tation of an agent’s embodiment as an information-theoretic
communication channel between its actuator A and sensor S,
where in A and S represent the possible actions and sensor
states. The agent’s interaction with the world is usually de-
scribed as a perception-action loop [22] as in Fig. 1. Modelled
by means of a causal Bayesian network, the figure illustrates
the turn-wise interaction of the player and a companion NPC,
unrolled in time. Each agent is represented by their sensor
and actuator, and the black, solid arrows imply causation
between these random variables. The companion chooses an
action based on its sensor input at time t, influencing the
rest of the environment R and the player’s sensor in the next
time step. The player’s sensor informs the player’s actions,
which influence the environment and the companion’s sensor
at t + 2. The latter in turn affects the companion’s actions,
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Fig. 1: Perception-action loop for player (SP , AP ) and companion (SC , AC), illustrating three different types of 2-step empowerment. The
agents interact in turnwise order, and are represented by their sensors and actuators. Purple, dotted lines (top) represent player empowerment.
Violet, dotted lines (bottom) stand for companion empowerment, and red dashed lines for companion-player transfer empowerment.

and the cycle repeats itself. The environment is affected
both by its preceding state and the character’s actions. The
causal probability distribution p(SC

t+2|SC
t , AC

t ) then represents
the (potentially noisy) communication channel between the
companion’s actions before-, and its future sensor states after
the player has performed an action.

Empowerment Est is then defined as the maximum potential
information flow that could possibly be induced by a suitable
choice of actions, in a particular state st. This can be for-
malised as the channel capacity:

Est = max
p(at)

I(St+2;At)

= max
p(at)

∑
A,S

p(st+2|st, at)p(at) log
p(st+2|st, at)∑

A
p(st+2|st, at)p(at)

Here, I(St+2;At) represents the mutual information be-
tween sensors and actuators. Empowerment as defined here
is the maximum amount of information that the active agent
can inject into the environment with its actions at t, and
perceive again at t + 2, after the other agent performed. N-
step empowerment is a generalisation of this principle where
not a set of single actions A, but a set of action sequences
As

t = (At;At+2; . . . ;At+2(n−1)) and their impact on a future
sensor state St+2n are evaluated. The parameter n specifies the
agent’s lookahead. For a detailed introduction to the general
information-theoretic notions, consult [23].

Fig. 1 illustrates the three variants of 2-step empowerment
used in this paper: Companion- (EC , , bottom) and player
empowerment (EP , , top) correspond to the NPC’s and
player’s perceived influence on their own future sensor state.
Companion-player transfer empowerment (ET , ) maps the
companion’s actions to the player’s future sensor, quantifying
the companion’s influence on the player’s perception.

Empowerment is local, i.e. the agent’s knowledge of the
dynamics p(St+2|St, At) is sufficient to calculate it. The
information-theoretic grounding makes it domain-independent
and universal, i.e. it can be applied to every agent-world
interaction that can be modelled as a perception-action loop. It
can thus be computed for arbitrary setups of what a NPC can
see and do, and can cope with changes to a game’s mechanics,
affecting how the NPC can interact with the world and player.

B. Coupled Empowerment Maximisation

Empowerment does not measure an agent’s actual, but
rather their potential influence on the environment. The em-

powerment maximisation hypothesis [21] suggests that an
agent should, in the absence of any explicit goals, choose
actions which likely lead to states with a higher influence
on the environment, i.e. potentially more options. Coupled
empowerment maximisation (CEM) is an extension of this
principle to the multi-agent case, and we use it to formalise
companion-like behaviour in a very general and flexible way.

Fig. 2 illustrates the turn-wise interaction of player P ,
companion C and enemy E. Each interaction cycle is initiated
by the player performing an action, which the companion will
react to, followed by enemies. Each agent can affect the others
either explicitly, or implicitly through their impact on the
shared game world, which can be quantified by empowerment.
Given the previous intuition, we suggest that increasing the
empowerment of a goal-directed agent can be considered
as supporting them in performing and achieving their tasks.
We consequently hypothesise that equipping an NPC with an
action selection policy which not only maximises their own-
but also the player’s empowerment leads to the emergence of
companion-like behaviour. We specifically suggest the policy

π(st) = argmax
at

(
αC · E[EC

st+4
]at

+ αT · E[ET
st+4

]at
+ αP · E[EP

st+3
]at

)
with parameters αC , αP , αT representing the influence of each
empowerment type in the overall coupling. The CEM princi-
ple establishes a depdendency between the NPC’s decision-
making and the player. Given a certain state, the policy returns
the action which maximises the NPC’s expected coupled em-
powerment, i.e. the combination of its own expected empower-
ment E[EC ], the expected empowerment of the player E[EP ],
and the NPC’s influence on the player’s sensor state, i.e.
expected companion-player transfer empowerment E[ET ]. The
latter allows the companion to maintain operational proximity,
i.e. to put the NPC in a position where it could potentially
affect and thereby maximise the player’s empowerment. We
look at expected empowerment, because the companion must
consider all possible ways the player could behave.

The calculation of coupled empowerment therefore involves
several estimation steps, which are illustrated in Fig. 2. To
select an action in t+1, the NPC has to calculate the expected
coupled empowerment for each of its actions at+1 separately.
As a first step, we thus have to estimate which potential
player states at t + 3 each of the companion’s actions and
the enemies’ reactions might lead to. From there on, we have
to anticipate how the player might react, resulting in potential
companion states at t + 4. This estimation stage is denoted
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Fig. 2: Causal Bayesian network illustrating the turn-wise interaction of player P , companion C and enemies E. The solid grey lines
denote mutual influence. The solid black lines denote the companion’s future state estimation, preceding the calculation of 3 types of 2-step
empowerment: player- (purple dotted, top), companion- (violet dotted, middle) and companion-player transfer empowerment (red dashed).

by black, solid arrows in Fig. 2. We then calculate player
empowerment ( , top) in t + 3, as well as companion- ( ,
middle) and companion-player transfer empowerment ( ) in
t+4. This involves another n rounds of estimations, depending
on the lookahead n. Expected coupled empowerment is finally
calculated by weighting the individual empowerment values
with the probability of the states the NPC’s actions trigger.

Note that empowerment maximisation per se is not goal-
oriented. Nevertheless, coupled empowerment introduces the
player’s empowerment into the companion’s policy, and thus
guides the companion by means of the player’s goals.

IV. EVALUATION: GENERAL COMPANION-LIKE
BEHAVIOUR

We claim that maximising coupled empowerment realises
companion-like behaviour. We evaluate this claim qualita-
tively, by designing several dedicated scenarios to probe each
of the companion duties outlined earlier. We describe the
emergent behaviour, and highlight the contributions of the in-
dividual empowerment types coupled in the agent’s policy, and
how they blend together. Our goal is to create highly flexible
and adaptive companions. Since explicit constraints decrease
this flexibility, we start with the plain formalism, highlight
drawbacks in the various scenarios, and propose modifications
which maintain this flexibility as needed. Importantly, we do
not tailor the formalism to each scenario; instead, we extend
it successively to eventually generalise across all of them.

A. Testbed

The following experiments were set in a minimal dungeon-
crawler game in which the player, supported by a companion
NPC, has to navigate through rooms connected by corridors
and defeat enemies in order to reach a goal state. Agents inter-
act in turn-wise order, starting with the player, and followed by
the companion and enemies. All agents have health points, and
can either move one step in each direction, shoot, or idle. They
can only hit other agents within a certain range in their view
direction, which changes with movement. While the player’s
actions cannot be exactly predicted by the companion, the
enemies act, for the sake of simplicity, deterministically: They
always shoot at, or chase, the closest non-enemy.

We chose this game type for various reasons: It tradition-
ally relies on procedural content generation and elements of
chance, and therefore poses interesting challenges to a general
NPC policy. Classic examples such as Nethack, but also more

recent variants such as Hashtag Dungeon illustrate how our
minimal testbed can be extended to introduce new challenges
to the formalism. Dungeon crawlers are traditionally discrete
in time and space and thus simplify the computation and
analysis of agent behaviour. The core mechanics are grounded
in the behaviour of living beings, and thus connect with the
biological origins of empowerment [11].

The player and companion sensors are local, non-
overlapping and asymmetric. We model locality by only ac-
counting for entities such as other characters in a maximum
distance of two units around the agent. They are represented
by an id and their relative position. Sensors do not overlap, i.e.
they only comprise the agent’s own absolute position, rotation,
and health. They are asymmetric, in that the player sensor also
comprises the game status (running, lost, won).

The non-overlapping sensor would make our NPC strictly
egocentric, if it only maximised its own empowerment. In our
simulations though, we weight the player’s empowerment the
most by αP = 0.5, the companion’s own empowerment by
αC = 0.2, and the companion-to-player transfer empowerment
by αT = 0.3, in order to reflect the companion duty hierarchy.
These values were determined by experimentation, and work
across all scenarios. They can be varied to some extent, and
we will provide details on their limits in each scenario. By
default, we assume a lookahead of n = 2.

B. Duty 1: Ensure Player Integrity
A companion must protect the player, and prevent its

death. Fig. 3 show a scenario in which the player is directly
threatened: An enemy faces the player, ready to shoot. The
companion in turn faces the enemy, and could therefore rescue
the player. The figures illustrate the empowerment values
relevant to the policy, by means of mapping them as greyscale
values to different positions in the scene. Brighter hues indi-
cate higher empowerment. The player, companion and enemies
are represented by purple, violet and orange squares with
letters “P”, “C” and “E”, respectively. The numbers on the
bottom specify their current and maximum health.

In Fig. 3a, the player position was fixed and the companion
moved around. The value at a particular location corresponds
to the player’s empowerment, if the companion was in that
position and chose to shoot. According to the core formalism
(cf. sec. III-A), empowerment would drop to zero if the player
was killed. Consequently, it is highest if the companion either
faces the enemy in close range, expressing the potential to



(a) Player empowerment, given
that the companion chose to shoot
in a certain position, n = 2.

(b) Companion-player transfer
empowerment for non-local
sensor, n = 2.

Fig. 3: 1st scenario. The player is threatened to be killed by an
enemy. The companion faces the enemy, and could rescue the player.

(a) Vanilla (b) Modification applied

Fig. 4: 1st scenario. Player empowerment, given the companion
shoots in a certain position, and player health >n, n=2. Health-
performance consistency (right) indicates clearly where to shoot.

shoot, or steps between the two to take the bullet. It is less
preferable for the player to be faced by the companion, because
the latter could turn its weapon against the ally. Fig. 3b
illustrates the companion’s role as bodyguard by means of
companion-to-player transfer empowerment, i.e. its influence
on the player’s future sensor state. It shows that the companion
could still save the player by stepping in from the side.

CEM makes the companion kill the enemy for any value of
αC and αT , as long as αP >0. If αP =0, the companion does
not have access to the player’s sensor state. As their sensors do
not overlap, the companion would not “care” about the player.
Importantly, the companion would defend the player even if
the enemies did not pose a threat to itself.

Unfortunately, the companion would only protect the player
as long as its lookahead n is larger than the player’s health.
The reason can be found in an actual inconsistency present
in many (video) games: In nature, a living being’s health not
only indicates its closeness to death, but also corresponds to
a decline in the ability to interact successfully with the world
[11]. In games, health or similar labels for fitness often only
represent a mere warning, and affect the agent’s performance
irregularly or only when dropping to zero. A companion can
thus only foresee the tragic consequences of the enemy’s
actions if it evaluates the environment dynamics far enough

ahead. This can be expensive to compute, but could also result
in overcautious overall behaviour. We therefore suggest to
make the relationship between a character’s health and actual
performance more consistent, by introducing noise into the
agent’s state transition probabilities:

p(St+3|st, at)?=


p(s1t+3|st, at)
p(s2t+3|st, at)

...
p(sDt+3|st, at)

�


γ
γ
...

1− γ

 , γ= ht

hmax

Here, ht and hmax stands for the agent’s current and maxi-
mum health, as representative for some arbitrary fitness label.
The state sDt+3 resembles the agent’s default follow-up state,
e.g. the state resulting from idling. The more an agent’s health
decreases, the more likely it becomes that its actions will
lead to the default state. Applied to all available actions, the
modification will lead to a consistent, gradual decrease of an
agent’s empowerment with their health.

Fig. 4 illustrates the effect of this modification in the
previous scenario. Here, health-performance consistency al-
lows the companion to clearly differentiate between actions
that contribute to the player’s empowerment, despite a short
lookahead n<ht. The companion not only acts when the
player faces death, but also protects the latter from being
harmed. We will assume this modification by default in the
following scenarios. The behaviour can be watched online1.

C. Duty 2: Support the Player

In order to support the player in achieving their goals, the
companion should strive for states in which it can affect the
player and its perceivable environment best. Depending on the
NPC’s action set, this operational proximity can be different
from spatial proximity: We can imagine an NPC which can
operate terminals, but has no capacity for melee attacks. Such
a companion might support the player most by staying remote,
where it could e.g. unlock doors or trap the player’s enemies.
In our second scenario in Fig. 5, spatial proximity is key and
we expect the companion to stay close to the player and follow
them from one room to the other.

However, this is not self-evident: The companion’s empow-
erment (Fig. 5a) is particularly low at the room edges and
corners, but also in the corridor. Here, the NPC’s sequences
of navigational actions collapse into very few follow-up states,
as the agent can neither move north nor south. If the NPC’s
policy was only about maximising its own empowerment, it
would move to the centre of the current room, and avoid
the corridors. Nevertheless, adding companion-player transfer
empowerment to the equation renders all states but the ones
in which the player can be directly influenced less attractive
(Fig. 5b). When coupled with the other empowerment types,
it compensates for the barrier induced by the companion’s
empowerment (Fig. 5c). For the default setup and αT ≥0.3, the
companion consequently follows the player through the cor-
ridor and maintains spatial proximity. Note that this scenario

1Video on duty 1 (Ensure Player Integrity): http://y2u.be/uh3J_ENh11M



(a) Companion empowerment, n=2.

(b) Companion-player transfer empowerment, n=2.

(c) Coupled empowerment with movement trace, n=2.

Fig. 5: 2nd scenario. The transfer empowerment in the coupling
allows the companion to maintain operational proximity, and thus to
follow the player through bottlenecks such as a narrow corridor.

only represents one example of an empowerment bottleneck,
and that our formalism should generalise to other situations.

The notion of support implies not hindering the player from
reaching their goals. In our third scenario, we check that the
companion does not block the player’s movement at any time,
while maintaining spatial proximity. Fig. 6a shows the player’s
empowerment for different companion positions. The values
are low around the player, because the companion would
constrain its movement. The same applies to the companion’s
periphery in respect to the player. Left alone, they would add
up and lead to generally repellent behaviour; Nevertheless,
the transfer empowerment in the coupling (Fig. 6b) makes
the companion maintain spatial proximity, while not blocking
the player whenever possible. It will consequently prefer the
corners around the player and either go ahead or follow.

Fig. 7a, showing companion empowerment for different
companion positions, highlights a shortcoming in the initial
formalism: Here, low values between companion and player
illustrate that the player can occasionally be perceived as

(a) Player empowerment, given
companion positions, n=2.

(b) Companion-player transfer
empowerment, n=2.

Fig. 6: 3rd scenario. The companion is reflected as an impediment
to movement in the player’s empowerment. Once coupled, it makes
the companion seek proximity off the player’s axes.

(a) Health-Performance Consis-
tency

(b) Health-Performance Consis-
tency and Minimal Synchronicity

Fig. 7: 3rd scenario. Without applying the trust function, the player
will be reflected as thread in the companion’s empowerment.

a threat. This is the case because the companion considers
scenarios where the player’s actions would harm it as feasible
as any other, and weights them equally in the calculation of
expected empowerment. As a consequence, the companion
might e.g. “flee” from the player, preferring not to stay within
their shooting range. We suggest that this behaviour is unnat-
ural for the interaction of a supporting agent and one which
benefits from this support and its continuity. In general terms,
it appears necessary for companion-like behaviour to emerge
that player and companion realise trust, in terms of not con-
sidering actions from their ally which threaten their existence
significantly. We consequently applied a correction function
to the action transition probabilities after the calculation of
empowerment, in order to remove actions counteracting such
trust from the expected empowerment calculation. Actions are
included in the trusted set A?

P ⊆AP as follows:

a∈A?
P ⇔¬

(
p(st+3|st+2, a)>τ ∧ EC(st+3)=0 ∧ EC(st+2)>0

)
The function removes player actions which reduce the com-
panion’s empowerment to zero with probability τ>0. The
companion therefore still considers player actions which are
unlikely to be fatal, but might benefit the player significantly.
Not only the player, but also the enemies could decrease the
companion’s empowerment to zero. In order to not confuse



Fig. 8: 4th scenario: Companion and player are threatened simultaneously. Successive moves from left to right: the companion escapes its
own death, rescues the player, and finally defends itself. Left: coupled empowerment, for n=2. Arrows indicate shooting.

both effects, we calculate and compare companion empow-
erment before and after the player performed. Applied to
the previous scenario (Fig. 7b) the expected empowerment
of remaining in the player’s shooting range would increase,
making this action more likely to be performed. It also only
applies when agents are close to death, i.e. empowerment can
actually be decreased to zero in a single step. We will assume
the modification to be present in the following scenarios. Our
observations were documented in a video available online2.

D. Duty 3: Ensure Own Integrity

We demonstrated earlier that the companion will protect
the player from threats. Various earlier studies ([18], [24])
showed that empowerment maximisation makes agents death-
averse, allowing the NPC to defend itself against threats. In our
fifth scenario, we look at a more complex dilemma addressing
both the duties to protect the player and itself: What happens
if companion and player are threatened at the same time?
More specifically, what happens if the player might only be
harmed, compared to the situation where it might be killed if
the companion did not react immediately?

Fig. 8 illustrates the outcome of the first case by means of
a series of movements. The first image in the series shows
the coupled empowerment in the initial situation. Here, the
dark area between the companion and the enemy on the left
renders the latter as a threat, while the white area towards
the other enemy highlights the companion’s potential to save
the player from harm. The following images illustrate that the
companion will first escape from the enemy on the left, while
accepting that the player will be harmed. It will then kill the
player’s enemy before the latter kills the player. The remaining
enemy and companion follow each other, until the companion
eventually kills the enemy to save its own existence.

In the second case, the initial situation is the same, but the
player’s health is set to one. For the default parameter config-
uration and alphaP >0.5, the companion will sacrifice itself
to rescue the player from death, thus fulfilling the hierarchy of
duties outlined earlier. A video with both scenarios is online3.

V. DISCUSSION

Our experiments provide evidence that CEM enables the
emergence of companion-like behaviour. We proposed to
extend the formalism with a consistent relationship between

2Video on duty 2 (Support the Player): http://y2u.be/6g9qoa5BdwU
3Video on duty 3 (Ensure Own Integrity): http://y2u.be/z3gZ0iGE0wg

an agent’s fitness indicator, e.g. health, and its performance.
This modification represents a heuristic when the NPC does
not have a sufficiently large lookahead n. It thus reduces
computational complexity, but is not necessary for supportive
behaviour to emerge. Our trust function represents a minimal
case of coordination in anticipation, which complements the
coordination in the agent’s policy established by the CEM
principle. In contrast to health-performance consistency, we
suggest that coordination in anticipation is strictly necessary
for supportive behaviour, and that generalising trust to both
negative and positive effects on player and companion would
result in more fine-tuned, supportive behaviour. We therefore
propose to weight the likelihood of actions gradually according
to p(a)∝∆Es in future implementations. Coordination must
be extended into the calculation of empowerment itself, in
order to create more reliable biases for the policy. Learning
the actual distribution of actions as part of player modelling
would also contribute significantly to coordination, and speed
up calculation by pruning the search tree.

We fixed the parameters of αP , αC , αT to allow for sensible
behaviour across all scenarios. This exact configuration might
not work in an arbitrary game; We therefore suggest two
alternative solutions: Looking closely at the companion duties,
we claim that ensuring its own and the player’s integrity
emerges from general player support. We could translate this
hierarchy into the policy, and consequently choose actions pri-
marily to maximise player empowerment, followed by transfer
and companion empowerment. Alternatively or in addition,
we propose to evolve the NPC’s parameters by means of
automated play-throughs with a general game-playing agent.

Our goal was to investigate the richness of behaviour
induced by the CEM principle, and we consequently abstained
from any unnecessary constraints. Employing this principle in
an actual game might nevertheless require explicit constraints
to meet two industry requirements: predictability and perfor-
mance. Empowerment as an intrinsic motivation allows for
maximum adaptivity and flexibility in NPCs, but as a con-
sequence might trigger surprising behaviour. If predictability
is a strict requirement, we can fix the behaviour emerging
from CEM before deployment, or use the formalism as a
mere intuition pump to assist designers. Alternatively, we can
define illegal behaviours as constraints on top of the policy,
if the designer favours surprisingness over adaptivity. Such
explicit constraints can also help in decreasing computational
complexity, by pruning the search tree. Empowerment can be



approximated and serve as tie-breaker to increase behavioural
variety. Optimisation methods allow for larger lookaheads,
and thus more behavioural complexity. Existing optimisations
use Monte-Carlo sampling [21], the information-bottleneck
method [18] and deep neural networks [19].

VI. CONCLUSION & FUTURE WORK

We formalised and evaluated the principle of coupled em-
powerment maximisation (CEM) to design an intrinsically
motivated NPC capable of companion-like behaviour. We
started with the raw formalism, and successively added modifi-
cations which generalise across the scenarios. Our experiments
show that CEM establishes a sufficiently general frame for
companion-like behaviour by inducing the player’s goal into
the companion’s policy, making it unnecessary to specify the
NPC behaviour explicitly at design time. Given our exper-
imental evidence and the universality of the formalism, we
hypothesise that the principle generalises to a wide range of
game scenarios and genres.

If this proves correct, the flexibility and adaptivity of
CEM could make NPCs fit for the most recent challenges
in the games industry and academic research. It could allow
industry to save efforts and reduce costs of manually authoring
NPC behaviour, especially in games with a strong focus
on procedurally generated content. Even if a game relies
strongly on scripting, our formalism can help in establishing a
default mode of interaction with the player and other agents.
In automatic game evolution and rapid prototyping, NPCs
driven by CEM will allow us to stretch the parameter space
and search regions where pre-defined NPCs would break. It
could enhance research in computational game creativity, by
increasing novelty and surprisingness in NPC behaviour, and
serve as cornerstone in the automatic generation of complete
games, which presently does not incorporate NPCs. Given
these developments, we hope to see NPCs soon in general
game playing competitions.

We plan to expand this research in three directions. First,
we want to investigate how well the principle generalises by
changing the mechanics and increasing the complexity of our
testbed. We particularly plan to look at shared resources such
as health packs or ammunition, additional actions which might
complement with the player’s skills, and more sophisticated
mechanics such as traps or door openers. A second potential
branch of future research concerns human player experience.
We are interested in evaluating qualitatively how enjoyable it
is to play with our companions, especially in respect to the
player’s perception of agency. We suggest that empowerment
relates closely to agency [11], and that varying the policy
parameters might affect the player’s locus of control, and
the perceived “character” of the NPCs. Finally, we want
to investigate how well this principle can be reversed to
generate enemy NPCs, demonstrating non-obvious ways to be
antagonistic. All branches will require more work in reducing
computational complexity and improving coordination.
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