
On Suffix Tree Breadth

Golnaz Badkobeh1,?, Juha Kärkkäinen2, Simon J. Puglisi2,??, and Bella
Zhukova2,??

1 Department of Computer Science
University of Warwick

Conventry, United Kingdom
g.badkobeh@warwick.ac.uk

2 Helsinki Institute for Information Technology
Department of Computer Science

University of Helsinki
Helsinki, Finland

{juha.karkkainen,puglisi,bzhukova}@cs.helsinki.fi

Abstract. The suffix tree — the compacted trie of all the suffixes of a
string — is the most important and widely-used data structure in string
processing. We consider a natural combinatorial question about suffix
trees: for a string S of length n, how many nodes νS(d) can there be at
(string) depth d in its suffix tree? We prove ν(n, d) = maxS∈Σn νS(d)
is O((n/d) logn), and show that this bound is almost tight, describing
strings for which νS(d) is Ω((n/d) log(n/d)).

1 Introduction

The suffix tree, TS , of a string S of n symbols is a compacted trie containing all
the suffixes of S. Since its discovery by Weiner 44 years ago [6] — as an optimal
solution to the longest common substring problem — the suffix tree has emerged
as perhaps the most important abstraction in string processing [1], and now has
dozens of applications, most notably in bioinformatics [5].

Consequently, combinatorial properties of suffix trees are of great interest,
and have been exploited in various ways to obtain faster construction algo-
rithms, succinct representations, and efficient pattern matching and discovery
algorithms.

Our focus in this article is a natural combinatorial question about suffix
trees: how many nodes νS(d) can there be at (string) depth d in the suffix
tree of a string S? We prove that ν(n, d) = maxS∈Σn νS(d) is O((n/d) log n),
and show that this bound is almost tight, describing strings for which νS(d) is
Ω((n/d) log(n/d)).

In the following section we lay down notation and formally define basic con-
cepts. Section 3 and Section 4 deal with the upper bound and lower bound in
turn, and we close with a discussion of the results.

? Supported by a Leverhulme Early Career Fellowship.
?? Supported by the Academy of Finland via grant 294143.



2 G. Badkobeh, J. Kärkkäinen, S. J. Puglisi, and B. Zhukova

2 Preliminaries

Throughout we consider a string S = S[1..n] = S[1]S[2] . . . S[n] of n symbols
drawn from an ordered alphabet Σ of size σ. For i = 1, . . . , n we write S[i..n] to
denote the suffix of S of length n − i + 1, that is S[i..n] = S[i]S[i + 1] · · ·S[n].
For convenience we will frequently refer to suffix S[i..n] simply as “suffix i”.

The suffix tree of S is a compact trie representing all the suffixes of S. Every
suffix tree node either represents a suffix or is a branching node. Each branching
node represents a string that occurs at least twice in S and has at least two
distinct symbols following those occurrences. The string depth — or simply
depth — of a node is the length of the string it represents. Figs. 1 and 2 show
examples of suffix trees.

The suffix array of S, denoted SA, is an array SA[1..n] which contains a
permutation of the integers 1..n such that S[SA[1]..n] < S[SA[2]..n] < · · · <
S[SA[n]..n]. In other words, SA[j] = i iff S[i..n] is the jth suffix of S in ascend-
ing lexicographical order. We use SA−1 to denote the inverse permutation. For
convenience, we also define SA[0] = n+ 1 to represent the empty suffix.

The lcp array LCP = LCP[1..n] is an array defined by S and SA. Let lcp(i, j)
denote the length of the longest common prefix of suffixes i and j. For every
j ∈ 1..n,

LCP[j] = lcp(SA[j − 1],SA[j]),

that is, LCP contains the length of the longest common prefix for each pair of
lexicographically adjacent suffixes.

The permuted lcp array — PLCP[1..n] — has the same contents as LCP but
in a different order. Specifically, for every j ∈ 1..n,

PLCP[SA[j]] = LCP[j]. (1)

Then PLCP[i] = lcp(i, φ(i)) when we define φ(i) = SA[SA−1[i]− 1].
A binary de Bruijn sequence of order k, denoted by βk, is a binary word of

length 2k+k−1 where each of the 2k words of length k over the binary alphabet
appears as a factor exactly once. As an example, β4 = aaaabaabbababbbbaaa is
a de Bruijn sequence of order 4, see Fig. 1.

3 Upper Bound

We are interested in the quantity ν(n, d), which is the maximum number of
branching nodes at depth d over any string of length n.

A trivial upper bound on ν(n, d) — relevant for shallow levels — is ν(n, d) ≤
σd for strings over an alphabet of size σ. Another easy upper bound is ν(n, d) ≤
(n− d)/2, since there are n− d suffixes longer than d and each branching node
at depth d must represent a prefix of at least two such suffixes. In particular,
ν(2k + k − 1, k − 1) = 2k−1 since the upper bound is matched by a binary de
Bruijn sequence of order k, as shown in Fig. 1.



On Suffix Tree Breadth 3

19

18

17

1

a
ba
a
bba

ba
bbbba

a
a

2

ba
a
bba

ba
bbbba

a
a

a

3

a
a
bba

ba
bbbba

a
a

6

ba
ba
bbbba

a
a

b

a

4
a
bba

ba
bbbba

a
a

10
bbbba

a
a

a

7

a
ba
bbbba

a
a

12

bba
a
a

b

b

a

16

a

5

bba
ba
bbbba

a
a

a

9

a
bbbba

a
a

11

bbba
a
a

b

a

15

a
a

8

ba
bbbba

a
a

a

14

a
a
a

13

ba
a
a

b

b

b

Fig. 1. The suffix tree of string β4 = aaaabaabbababbbbaaa, the binary de Bruijn se-
quence of order 4. The dashed rectangle contains internal nodes at depth 3.

Based on the above, ν(n, d) increases with d up to level d ≈ logσ n and then
starts to go down. The main result of this section is a much tighter upper bound
for larger d showing a quick decrease after level log n.

Our upperbound proof makes use of the concept of irreducible lcp values, first
defined in [3]. We say that PLCP[i] = lcp(i, φ(i)) is reducible if S[i−1] = S[φ(i)−1]
and irreducible otherwise. In particular, it is irreducible if i = 1 or φ(i) = 1.
Reducible values are easy to compute via the next lemma.

Lemma 1 ([3]). If PLCP[i] is reducible, then PLCP[i] = PLCP[i− 1]− 1.

We also need an upper bound on the sum of irreducible lcp values.

Lemma 2 ([3,2]). The sum of all irreducible lcp values is ≤ n log n.

Theorem 3. The number of branching nodes at depth d in the suffix tree for a
string of length n is ≤ (n/d) log n.

Proof. Let S be a string with ν(n, d) branching nodes at depth d in the suffix
tree of S. Every such branching node corresponds to one or more values d in the
lcp array, each of which in turn corresponds to a position in the PLCP array
with value d. In other words, the number of d’s in the PLCP array of S is an
upper bound on νS(d). Let i1, . . . , ir be the positions of irreducible values in the
PCLP array in ascending order, and let ir+1 = n+ 1. Since i1 = 1, the intervals
PLCP[ij ..ij+1 − 1], j = 1..n, form a partitioning of the PLCP array. Due to



4 G. Badkobeh, J. Kärkkäinen, S. J. Puglisi, and B. Zhukova

38

37

36

35

34

33

32

1 2

0

3

0

4 10

10

0

5 11

10

0

6 18

00

12 22

10

10

0

7 19

00

13 23

10

10

0

30 8

00

16 20

10

00

28 14

00

26 24

10

10

10

0

31 9

00

17 21

10

00

29 15

00

27 25

10

10
10

Fig. 2. The suffix tree of string W2,4 = 00000000100000101000100010101010000000.
The dashed rectangle contains internal nodes at depth 6.

Lemma 1, for every j = 1..n, PLCP[ij ..ij+1−1] contains at most one d and only
if PLCP[ij ] ≥ d. Therefore, each occurrence of d can be mapped to a unique
irreducible lcp value ≥ d. Using Lemma 2, dν(n, d) ≤ n log n so the upper bound
follows. ut

4 Lower Bound

This section is devoted to proving the following result.

Theorem 4. For any positive integers j ≥ 1 and k ≥ 3, there exists a string
of length n = j(2k + k − 1) such that its suffix tree has ≥ 1

2

(
n
d − 1

)
log

(
n
d − 1

)
branching nodes at depth d = j(k − 1).

Proof. Our proof is based on a construction of the following string, Wj,k. Let βk
be a binary de Bruijn sequence of order k. Clearly, the suffix tree of βk is full
up to depth k − 1, and has 2k−1 nodes at depth k − 1. Now, let Wj,k = wj(βk)
where morphism wj is the following{

wj(a) = 0j

wj(b) = 10j−1



On Suffix Tree Breadth 5

It is clear that |Wj,k| = n = j(2k + k − 1). Let m = νWj,k
(j(k − 1)) denote the

number of branching nodes of the suffix tree of string Wj,k at depth d = j(k−1).
We claim that m ≥ 2k−1. If both ya and yb occur in βk for some string y,
then both x0 and x1 occur in Wi,j for x = wj(y). Thus every branching node
representing y in the suffix tree of βk is uniquely mapped to a branching node
representing x = wj(y) in the suffix tree of Wi,j . Since the suffix tree of βk has
2k−1 branching nodes at depth k − 1, the claim m ≥ 2k−1 follows.

What remains is to show the steps for the calculation of the lower bound.

Since m ≥ 2k−1 and d = j(k − 1) = n(k−1)
(2k+k−1) , we have n

d = 2k

k−1 + 1 ≤ 2m
k−1 + 1,

which implies

m ≥ 1

2

(n
d
− 1

)
(k − 1) ≥ 1

2

(n
d
− 1

)
log

(
2k

k − 1

)
=

1

2

(n
d
− 1

)
log

(n
d
− 1

)
.

ut

5 Discussion

Notice that the lowerbound construction implies d = Ω(log n); thus it does not
contradict the upper bounds for small d discussed in Section 3.

The upper and lower bounds of Theorems 3 and 4 are asymptotically equal
when d = O(n1−ε) for any constant ε > 0. We conjecture that the lower bound
is asymptotically tight even for larger d, but proving a matching upper bound
remains an open problem.

Essentially the same bounds hold for all variants and generalizations. We have
counted only branching nodes but including leaves (and unary nodes representing
suffixes) too would not change much as there can be only one leaf (or unary
node) at each level. Similarly, adding a unique terminator symbol to the end of
the string adds at most one node per level. Considering a suffix tree of multiple
strings (containing all suffixes of all strings) could add more leafs to a level
but no more than n/d leafs at a level d; thus the asymptotic results do not
change. Another variant considers the string to be cyclic — replacing suffixes
with rotations — and even suffix trees for collections of cyclic strings have been
considered [2,4]. All the results hold in this case too: the key result for the upper
bound, Lemma 2, was proved for collections of cyclic strings [2], and de Bruijn
sequences are naturally defined as cyclic strings. Finally, notice that Theorems 3
and 4 hold for any alphabet size.

References

1. Apostolico, A., Crochemore, M., Farach-Colton, M., Galil, Z., Muthukrishnan, S.:
40 years of suffix trees. Commun. ACM 59(4), 66–73 (2016)

2. Kärkkäinen, J., Kempa, D., Piatkowski, M.: Tighter bounds for the sum of irre-
ducible LCP values. Theor. Comput. Sci. 656, 265–278 (2016), https://doi.org/
10.1016/j.tcs.2015.12.009

https://doi.org/10.1016/j.tcs.2015.12.009
https://doi.org/10.1016/j.tcs.2015.12.009


6 G. Badkobeh, J. Kärkkäinen, S. J. Puglisi, and B. Zhukova

3. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Combinatorial Pattern Matching, 20th Annual Symposium, CPM 2009. Lecture
Notes in Computer Science, vol. 5577, pp. 181–192. Springer (2009), https://doi.
org/10.1007/978-3-642-02441-2_17

4. Kärkkäinen, J., Piatkowski, M., Puglisi, S.J.: String inference from longest-common-
prefix array. In: 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017. pp. 62:1–62:14 (2017), https://doi.org/10.4230/

LIPIcs.ICALP.2017.62

5. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press (2015), http://www.genome-scale.info/

6. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory. pp. 1–11. IEEE Computer Society (1973)

https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.1007/978-3-642-02441-2_17
https://doi.org/10.4230/LIPIcs.ICALP.2017.62
https://doi.org/10.4230/LIPIcs.ICALP.2017.62
http://www.genome-scale.info/

	On Suffix Tree Breadth 

