
On Two LZ78-style Grammars: Compression Bounds and

Compressed-Space Computation

Golnaz Badkobeh∗1, Travis Gagie2, Shunsuke Inenaga3, Tomasz Kociumaka†4,
Dmitry Kosolobov5, and Simon J. Puglisi‡5

1Department of Computer Science, University of Warwick, Coventry, England
g.badkobeh@warwick.ac.uk

2EIT, Diego Portales University and CeBiB, Santiago, Chile
travis.gagie@mail.udp.cl

3Department of Informatics, Kyushu University, Fukuoka, Japan
inenaga@inf.kyushu-u.ac.jp

4Institute of Informatics, University of Warsaw, Warsaw, Poland
kociumaka@mimuw.edu.pl

5Department of Computer Science, University of Helsinki, Helsinki, Finland
dkosolobov@mail.ru puglisi@cs.helsinki.fi

Abstract

We investigate two closely related LZ78-based compression schemes: LZMW (an old scheme by
Miller and Wegman) and LZD (a recent variant by Goto et al.). Both LZD and LZMW naturally
produce a grammar for a string of length n; we show that the size of this grammar can be larger

than the size of the smallest grammar by a factor Ω(n
1
3) but is always within a factor O((n

logn
)
2
3).

In addition, we show that the standard algorithms using Θ(z) working space to construct the LZD

and LZMW parsings, where z is the size of the parsing, work in Ω(n
5
4) time in the worst case.

We then describe a new Las Vegas LZD/LZMW parsing algorithm that uses O(z logn) space and
O(n + z log2 n) time with high probability.

Keywords: LZMW, LZD, LZ78, compression, smallest grammar

1 Introduction

The LZ78 parsing [19] is a classic dictionary compression technique, discovered by Lempel and Ziv in
1978, that gained wide use during the 1990s in, for example, the Unix compress tool and the GIF image
format. Not written about until much later was that LZ78 actually produces a representation of the
input string as a context-free grammar. In recent years, grammar compressors have garnered immense
interest, particularly in the context of compressed text indexing: it is now possible to efficiently execute
many operations directly on grammar-compressed strings, without resorting to full decompression (e.g.,
see [3, 4, 6, 7, 10, 16]).

A wide variety of grammar compressors are now known, many of them analyzed by Charikar et al. [5]
in their study of the smallest grammar problem, which is to compute the smallest context-free grammar
that generates the input string (and only this string). Charikar et al. show that this problem is NP-hard,
and further provide lower bounds on approximation ratios for many grammar compressors. LZ78 is shown
to approximate the smallest grammar particularly poorly, and can be larger than the smallest grammar
by a factor Ω(n

2
3 / log n) (in [9] this bound was improved to Ω((n

logn)
2
3)), where n is the input length.

Our focus in this paper is on the LZD [8] and LZMW [14] grammar compression algorithms, two
variants of LZ78 that usually outperform LZ78 in practice. Despite their accepted empirical advantage
over LZ78, no formal analysis of the compression performance of LZD and LZMW in terms of the size
of the smallest grammar exists. This paper addresses that need. Moreover, we show that the standard

∗Supported by the Leverhulme Trust on the Leverhulme Early Career Scheme.
†Supported by Polish budget funds for science in 2013–2017 under the ‘Diamond Grant’ program.
‡Supported by the Academy of Finland via grant 294143.

1

mailto:g.badkobeh@warwick.ac.uk
g.badkobeh@warwick.ac.uk
mailto:travis.gagie@mail.udp.cl
travis.gagie@mail.udp.cl
mailto:inenaga@inf.kyushu-u.ac.jp
inenaga@inf.kyushu-u.ac.jp
mailto:kociumaka@mimuw.edu.pl
kociumaka@mimuw.edu.pl
mailto:dkosolobov@mail.ru
dkosolobov@mail.ru
mailto:puglisi@cs.helsinki.fi
puglisi@cs.helsinki.fi

algorithms for computing LZD and LZMW have undesirable worst case performance, and provide an
alternative algorithm that runs in log-linear randomized time. In particular the contributions of this
article are as follows:

1. We show that the size of the grammar produced by LZD and LZMW can be larger than the size of
the smallest grammar by a factor Ω(n

1
3) but is always within a factor O((n

logn)
2
3). To our knowledge

these are the first non-trivial bounds on compression performance known for these algorithms.

2. Space usage during compression is often a concern. For both LZD and LZMW, parsing algorithms
are known that use O(z) space, where z is the size of the final parsing. We describe strings for

which these algorithms require Ω(n
5
4) time. (The only previous analysis is an O(n2/ log n) upper

bound [8].)

3. We describe a Monte-Carlo parsing algorithm for LZD/LZMW that uses a z-fast trie [2] and an
AVL-grammar [15] to achieve O(z log n) space and O(n+ z log2 n) time for inputs over the integer
alphabet {0, 1, . . . , nO(1)}. This algorithm works in the streaming model and computes the parsing
with high probability. Using the Monte-Carlo solution, we obtain a Las Vegas algorithm that, with
high probability, works in the same space and time.

In what follows we provide formal definitions and examples of LZD and LZMW parsings. Section 2
then establishes bounds for the approximation ratios for the sizes of the LZD/LZMW grammars. In
Section 3 we consider the time efficiency of current space-efficient parsing schemes for LZD/LZMW.
Section 4 provides an algorithm with significantly better (albeit randomized) performance. Conclusions
and reflections are offered in Section 5.

1.1 Preliminaries.

We consider strings drawn from an alphabet Σ of size σ = |Σ|. The empty string is denoted by ε. The ith
letter of a string s is denoted by s[i] for i such that 1 ≤ i ≤ |s|, and the substring of s that begins at
position i and ends at position j is denoted by s[i..j] for 1 ≤ i ≤ j ≤ |s|. Let s[i..j] = ε if j < i. For any
i, j, the set {k ∈ Z : i ≤ k ≤ j} (possibly empty) is denoted by [i..j].

For convenience, we assume that the last letter of the input string s is $, where $ is a special delimiter
letter that does not occur elsewhere in the string.

Definition 1.1. The LZD (LZ–Double) parsing [8] of a string s of length n is the parsing s = p1p2 · · · pz
such that, for i ∈ [1..z], pi = pi1pi2 where pi1 is the longest prefix of s[k..n] and pi2 is the longest
prefix of s[k + |pi1 |..n] with pi1 , pi2 ∈ {p1, . . . , pi−1} ∪ Σ where k = |p1 · · · pi−1|+ 1. We refer to the set
Σ ∪

⋃
i∈[1..z]{pi} as the dictionary of LZD.

Definition 1.2. The LZMW (LZ–Miller–Wegman) parsing [14] of a string s of length n is the parsing
s = p1p2 · · · pz such that, for i ∈ [1..z], pi is the longest prefix of s[k..n] with pi ∈ {pjpj+1 : 1 ≤ j ≤ i−2}∪Σ
where k = |p1 · · · pi−1|+ 1. We refer to the set

⋃
i∈[2..z]{pi−1pi} as the dictionary of LZMW.

Example 1.3. The LZD parsing of the string s = abbaababaaba$ is p1 = ab, p2 = ba, p3 = abab, p4 = aab,
and p5 = a$. This can be represented by (a, b), (b, a), (1, 1), (a, 1), (a, $). The LZMW parsing of s is the
following: p1 = a, p2 = b, p3 = b, p4 = a, p5 = ab, p6 = ab, p7 = aab, p8 = a, and p9 = $. This can be
represented by (a, b, b, a, 1, 1, 4, a, $).

Notice that the LZD/LZMW parsing of string s can be seen as a grammar that only generates s,
with production rules of form pi → pjpk (j < i, k < i) or pi → a (∈ Σ) for each phrase pi, and the start
rule S → p1p2 · · · pz. The size of a grammar is the total number of symbols in the right-hand side of the
production rules. Thus, the size of the LZD (resp., LZMW) grammar is only by a constant factor larger
than the number of phrases in the LZD (resp., LZMW) parsing.

2 Approximating the Smallest Grammar

The following theorem shows that, although LZD and LZMW have good compression performance in
practice on high-entropy strings, their performance on low-entropy strings can be very poor.

2

Theorem 2.1. For arbitrarily large n, there are strings s of length n for which the size of the grammars
produced by the LZD and LZMW parsings is larger than the size of the smallest grammar generating s by
a factor Ω(n

1
3).

Proof. Our proof is inspired by [5, Section VI, C]. Let k ≥ 4 be an integer that is a power of 2. We will

construct a string s of length n = Θ(k3) that can be encoded by a grammar of size O(k) = O(n
1
3), but for

which the LZMW parsing produces a grammar of size Ω(k2) = Ω(n
2
3). The input alphabet is {a, b, c, d};

the letters c and d serve as separators. Denote δi = aibbak−i and γi = bai a aib c ba ba2 ba3 · · · bai. The
string s is as follows:

x = δkδk−1 δkδk−2 δkδk−3 · · · δkδk/2+1 δka
k−1,

s = γ0γ1 · · · γk−1δ0dδ1d · · · δkd caa caa2a2 · · · ca2
i−1a2

i

a2
i · · · ca k

2−1a
k
2 a

k
2 dc x

k
2 .

We have |s| = Θ(k3). Consider the prefix γ0γ1 · · · γk−1 δ0dδ1d · · · dδkd, which will ensure the strings
δi are in the LZMW dictionary.

We will show by induction on i that each substring γi of the prefix γ0γ1 · · · γk−1 is composed of the
phrases bai, a, aib, cbaba2 · · · bai in the parsing of the string s. It is trivial for i = 0. Suppose that i > 0
and the assertion holds for all γi′ and i′ < i. It follows from the inductive hypothesis that bai is the
longest prefix of γi that is equal to a concatenation of two adjacent phrases introduced before the starting
position of γi. Hence, by the definition of LZMW, the string γi starts with the phrase bai. In the same
way we deduce that the phrase bai is followed by the phrases a, aib, and cbaba2 · · · bai.

By a similar inductive argument, one can show that each substring δid of the substring δ0dδ1d · · · δkdc
is composed of the phrases aib, bak−i, d. Since the phrases aib and bak−i are adjacent, the LZMW
dictionary now contains the strings δi = aibbak−i for all i = 0, 1, . . . , k.

Similarly, the substring caacaa2a2 · · · ca2i−1a2ia2i · · · ca k
2−1a

k
2 a

k
2 dc is parsed as c, a, a, ca, a2, a2, . . . ,

ca2
i−1, a2

i

, a2
i

, . . . , ca
k
2−1, a

k
2 , a

k
2 , dc. In what follows we need only the string ak introduced to the

dictionary by the pair of phrases a
k
2 .

Finally, consider the substring x
k
2 . Observe that the first occurrence of x is parsed in (almost) the

way it is written, i.e., it is parsed as δk, δk−1, δk, δk−2, . . . , δk, δk/2+1, δk. But the last phrase is ak instead

of ak−1. In other words, the parsing of the second occurrence of x starts from the second position of x
and, therefore, the first phrases of this parsing are as follows:

δk−1, δk−2, δk−1, δk−3, . . . , δk−1, δk/2, δk−1.

Again, the last phrase is ak and, hence, the parsing of the third occurrence of x starts with the third
position of x, and so on.

The LZMW parsing of s, therefore, consists of Ω(k2) phrases and the size of the LZMW grammar is
Ω(k2). But there is a grammar of size O(k) producing s:

S → Γ0Γ1 · · ·Γk−1∆0d∆1d · · ·∆kdcA2cA5cA11 · · · cAk/2+k−1dcXk/2,
A0 → ε, B0 → c, Ai → Ai−1a, Bi → Bi−1bAi for i ∈ [1..2k],
Γi → bA2i+1bBi, ∆i → AibbAk−i for i ∈ [0..k],
X → ∆k∆k−1 ∆k∆k−2 · · ·∆k∆k/2+1 ∆kAk−1 .

Using similar ideas we can describe a troublesome string for the LZD scheme:

s = (a2 c2 a3 c3 · · · akck)(bb abb a2bb a3 · · · bbak−1bb)(δ0d2δ1d3 · · · δkdk+2)x
k
2 .

As above, the size of the grammar corresponding to the LZD parsing of s is Ω(k2) whereas the size of
the smallest grammar is O(k); hence, the result follows.

S → A2C2A3C3 · · ·AkCkbbA1bbA2 · · · bbAk−1bb∆0D2∆1D3 · · ·∆kDk+2X
k/2,

A0 → ε, C0 → ε,D0 → ε, Ai → Ai−1a,Ci → Ci−1c,Di → Di−1d for i ∈ [1..k+2],
∆i → AibbAk−i for i ∈ [0..k], X → ∆k∆k−1 ∆k∆k−2 · · ·∆k∆k/2+1 ∆kAk−1 .

The analysis is similar to the above but simpler, so, we omit it. To additionally verify the correctness of
both constructions, we conducted experiments on small k and, indeed, observed the described behavior;
the code can be found in [1].

3

We can also show that the upper bound for the approximation ratio of the LZ78 parsing given in [5]
also applies to the LZD and LZMW parsings. For this, we will use the following known results.

Lemma 2.2 ([5]). If there is a grammar of size m generating a given string, then this string contains at
most mk distinct substrings of length k.

Lemma 2.3 ([8]). All phrases in the LZD parsing of a given string are distinct.

Lemma 2.4. Let p1p2 · · · pz be the LZMW parsing of a given string. Then, for any i ∈ [2..z] and
j ∈ [i+2..z], we have pi−1pi 6= pj−1pj.

Proof. If pi−1pi = pj−1pj for i < j − 1, then, by the definition of LZMW, the phrase pj−1 either is equal
to pi−1pi or contains pi−1pi as a prefix, which is a contradiction.

Now we are ready to show an upper bound on the approximation ratio of the LZD and LZMW
parsings.

Theorem 2.5. For all strings s of length n, the size of the grammar produced by the LZD/LZMW parsing
is larger than the size of the smallest grammar generating s by at most a factor O((n/ log n)2/3).

Proof. The theorem can be shown by an analogous way as for the upper bound of the LZ78 parsing
against the smallest grammar [5] (which is especially straightforward for LZD due to Lemma 2.3), but we
provide a full proof for completeness.

Let us consider LZMW. Suppose that s is a string of length n and m∗ is the size of the smallest
grammar generating s. Let p1, p2, . . . , pz be the LZMW parsing of s. It suffices to evaluate the number z
of phrases since the total size of the grammar produced by LZMW is only by a constant factor larger
than z.

Consider the multiset S = {p1p2, p2p3, . . . , pz−1pz} (recall that a multiset can contain an element
more than one time). Let pi1pi1+1, pi2pi2+1, . . . , piz−1

piz−1+1 be a sequence of all strings from S sorted in
increasing order of their lengths (again, some strings may occur more than once in the sequence). We
partition the sequence by grouping the first 2 ·m∗ strings, then the next 2 · 2m∗ strings, the next 2 · 3m∗
strings, and so forth. Let r be the minimal integer satisfying 2(1m∗ + 2m∗ + · · ·+ rm∗ + (r + 1)m∗) > z.
This implies that z = O(r2m∗).

By Lemma 2.4, any string has at most two occurrences in the multiset S. Also, it follows from
Lemma 2.2 that s contains at most km∗ distinct substrings of length k. Thus, for any k ≥ 1, there are at
most 2km∗ strings from S that generate substrings of length k. This implies that each string in the kth
group generates a substring of length at least k. Hence, we have that

2n ≥ |pi1pi1+1|+ |pi2pi2+1|+ · · ·+ |piz−1
piz−1+1| ≥ 2(12m∗ + 22m∗ + · · ·+ r2m∗),

which implies that r = O((n/m∗)1/3). By plugging this into z = O(r2m∗), we obtain z = O((n/m∗)2/3m∗)
and thus the approximation ratio of the grammar produced by LZMW is O((n/m∗)2/3). Since m∗ =
Ω(log n), we finally get the desired bound O((n/ log n)2/3).

Let us sketch the analysis of LZD, which is very similar. In this case, we consider the set S′ of all
phrases p1, p2, . . . , pz (not pairs as in LZMW) of the LZD parsing. Let pi1 , . . . , piz be the sequence of all
strings from S′ sorted by the increasing order of lengths. We partition the sequence into groups of size
1m∗, 2m∗, 3m∗, . . . (without the factor 2 as in LZMW). It follows from Lemma 2.3 that any string occurs
in S′ at most once. Therefore, similar to the case of LZMW, we obtain n = |pi1 |+ |pi2 |+ · · ·+ |piz | ≥
12m∗ + 22m∗ + · · ·+ r2m∗, which implies the result in the same way as above.

3 Small-Space Computation

In this section we analyze the time required to compute the LZD and LZMW parsings using the O(z)-space
algorithms described by Goto et al. [8] and Miller and Wegman [14], where z is the number of phrases.
We focus on LZD throughout, but a very similar algorithm and analysis applies for LZMW. Goto et al.
upperbound the runtime at O(z(m + min(z,m) log σ)), where m is the length of the longest LZD (or
LZMW) phrase and σ is the size of the input alphabet. Because m = O(n) and z = O(n), the runtime is

4

upper bounded by O(n2). Below we provide a lower bound of Ω(n5/4) on the worst-case runtime, but
before doing so we provide the reader with a description of Goto et al.’s algorithm [8].1

Näıve parsing algorithms. In the compacted trie for a set of strings, each edge label ` is represented
as a pair of positions delimiting an occurrence of ` in the set. In this way we can store the trie for
s1, . . . , sk in O(k) space. During parsing Goto et al. [8] maintain the dictionary of LZD phrases in a
compacted trie. The trie is of size O(z), but read-only random access to the input string is also required
in order to determine the actual values of the strings on the edge labels.

Initially the trie is empty, consisting of only the root. At a generic step during parsing, when we
go to compute the phrase pi = pi1pi2 starting at position j = |p1p2 . . . pi−1|+ 1, the trie contains nodes
representing the phrases p1, p2, . . . , pi−1 and all the distinct symbols occurring in s[1..j − 1], and all these
nodes (corresponding to phrases and symbols) are marked. Note that there may also be some nodes in
the trie that do not correspond to any phrase, i.e., branching nodes. Let s[j..k] be the longest prefix of
s[j..n] that can be found by traversing the trie from the root. If s[j..k] cannot be matched even for k = j,
then s[j] is the leftmost occurrence of symbol c = s[j] in s, and we add a child node of the root labelled
with c, mark the node, and set it as the first element of the new phrase, i.e., pi1 = c. Otherwise, the first
element of pi, pi1 , is the string written on the path connecting the root and the lowest marked node on
the path that spells s[j..k]. The second element, pi2 , of the phrase is computed in a similar manner, by
searching for s[j + |pi1 |+ 1..n] in the trie.

After computing pi we modify the trie by a standard procedure so that there is a marked node
representing pi: first, we traverse the trie from the root finding the longest prefix of pi present in the trie,
then, possibly, create one or two new nodes, and, finally, mark the node (which, probably, did not exist
before) corresponding to pi (the details can be found in any stringology textbook).

The time taken to compute a new phrase and update the trie afterwards is bounded by O(m +
min(z,m) log σ), where m = O(n) is the length of the longest phrase (and therefore an upper bound on
the length of the longest path in the trie), min(z,m) is an upper bound on the number of branching
nodes, and log σ is the time taken to find the appropriate outgoing edge at each branching node during
downward traversal. Over all z phrases the runtime is thus O(z(m+ min(z,m) log σ)).

The LZMW construction algorithm of Miller and Wegman [14] is analogous but, unlike the LZD
algorithm, when we go to compute the phrase pi, the trie contains the strings p1p2, p2p3, . . . , pi−2pi−1
and the nodes corresponding to these strings are marked. One can easily show that the running time of
this algorithm is O(z(m+ min(z,m) log σ)), where z and m are defined analogously as for LZD.

We call both these algorithms näıve.

Worst-case time of the näıve algorithms. Now let us investigate the worst-case time complexity
of the näıve LZD and LZMW construction algorithms.

Theorem 3.1. The näıve LZD and LZMW construction algorithms take time Ω(n
5
4) in the worst case.

Proof. Let k ≥ 8 be an integer that is a power of two. We will describe a string s of length n = Θ(k4) for

which the basic LZD construction algorithm (see the above discussion) spends Θ(n
5
4) time to process. The

string s is composed of pairwise distinct letters ai,j , for i, j ∈ [1..k], and “separator” letters, all of which
are denoted � and supposed to be distinct. We will first construct a prefix s′ of s that forces the algorithm
to fill the dictionary with a set of strings that are used as building blocks in further constructions. To
this end, denote (with parentheses used only for convenience):

wi = ai,1ai,2 · · · ai,k for i = 1, 2, . . . , k and w = w1w2 · · ·wk,
spre,i = wi[1..2]wi[1..3] · · ·wi[1..k] for i = 1, 2, . . . , k,
ssuf,i = wi[k−1..k]wi[k−2..k] · · ·wi[2..k] for i = 1, 2, . . . , k,
p = (spre,1spre,2 · · · spre,k)(ssuf,1ssuf,2 · · · ssuf,k),
q = (wk−2wk−1)(wk−3wk−2wk−1) · · · (w1w2· · ·wk−1)(w),

s′ = pq · w21w22 · · ·wk(wk[2..k]wk)(wk[3..k]wk) · · · (wk[k..k]wk).

Analyzing the prefix p of s′, it is clear that the LZD construction algorithm adds to the dictionary exactly
all prefixes and suffixes of the strings wi for i = 1, 2, . . . , k; parsing the string q, the algorithm adds the

1We concern ourselves here with LZD parsing, but it should be easy for the reader to see that the algorithms are trivially
adapted to instead compute LZMW.

5

strings wk−2wk−1, wk−3wk−2wk−1, . . . , w1w2 · · ·wk−1, and w1w2 · · ·wk = w; then, processing the string

w21w22 · · ·wk, the algorithm adds w21 , w22 , . . . , wk (we are interested only in wk); finally, the strings
wk[2..k]wk, wk[3..k]wk, . . . , wk[k..k]wk are added. So, the algorithm adds to the dictionary exactly the
following strings:

• all prefixes and suffixes of wi (including wi itself) for i = 1, 2, . . . , k;

• wk−2wk−1, wk−3wk−2wk−1, . . . , w1w2 · · ·wk−1, and w;

• wk along with wk/2, . . . , w22 , w2 (we use only wk in what follows);

• wk[2..k]wk, wk[3..k]wk, . . . , wk[k..k]wk.

It is easy to verify that |w| = k2, |wk| = k3, and |s′| = Θ(k4). (The string wk[2..k]wkwk[3..k]-
wk · · ·wk[k..k]wk contributes the most to the length.)

We first provide an overview of our construction. The main load on the running time of the algorithm
is concentrated in the following strings zi:

zi = wi[2..k]wi+1 · · ·wkwk−2w1 · · ·wi for i = 1, 2, . . . , k − 2.

Put s = s′x1z1��x2z2�� · · ·xk−2zk−2��, where x1, . . . , xk are auxiliary strings defined below. Before
processing of zi, the algorithm processes xi and adds the strings wi[j..k]wi+1 · · ·wk−1wk[1..j−1] and
wk[j..k]w1 · · ·wi−1wi[1..j] for j ∈ [2..k] to the dictionary (see below). So, analyzing zi, the algo-
rithm consecutively “jumps”, for j = 2, 3, . . . , k, from the string wi[j..k]wi+1 · · ·wk−1wk[1..j−1] to
wk[j..k]w1 · · ·wi−1wi[1..j] and so on. The crucial point is that, while analyzing wk[j..k]w1 · · ·wi−1wi[1..j],
the algorithm does not know in advance that the string wk[j..k]wk from the dictionary does not oc-
cur at this position and, since the length of the longest common prefix of the strings wk[j..k]wk and
wk[j..k]wk−jw1 · · ·wi�� is Θ(k − j + 1 + |wk−j |), spends Θ(|wk−j |) = Θ((k − j)k2) time verifying this.

Therefore, the analysis of the string s takes Θ((k − 2)
∑k
j=2(k − j)k2) = Θ(k5) time overall. Since

|zi| = O(k3) and, as it is shown below, |xi| = O(k3), we have n = |s| = Θ(k4) and the processing time is

Θ(n
5
4) as required. We now describe this in more detail.

We prove by induction that the following invariant is maintained: when the algorithm starts the
processing of the suffix xizi�� · · ·xk−2zk−2�� of the string s (xi are defined below), the dictionary contains
the following set of strings:

• “building blocks” constructed during the processing of s′;

• pairs of separators �� (recall that all separators are distinct);

• for each i′ ∈ [1..i−1] and j ∈ [2..k]:

wi′ [j..k]wi′+1 · · ·wk−1wk[1..j−1] and wk[j..k]w1 · · ·wi′−1wi′ [1..j],
wi′ [j..k]wi′+1 · · ·wk−1 and wk[j..k]w1 · · ·wi′−1,

wi′ [j..k]wi′+1 · · ·wkw1 · · ·wi′−1wi′ [1..j].

The strings from the last two lines in the above list are not used and appear as byproducts. (But it is
still important to have them in mind to verify that the algorithm works as expected.) So, assume that,
by inductive hypothesis, the invariant holds for all i′ ∈ [1..i−1] (it is trivial for i = 1).

Define xi as follows (the parentheses are only for visual ease):

u′i,j = (wk[j..k]w1 · · ·wi−1wi[1..j]),
ui,j = (wk[j..k]w1 · · ·wi−2wi−1[1..j])(wi−1[j+1..k])u′i,j ,
vi,j = (wi[j..k]wi+1 · · ·wk−1)(wi[j..k]wi+1 · · ·wk−1wk[1..j−1]),
x1 = (u′1,2��u′1,3�� · · ·u′1,k−1��u′1,k��)(v1,2��v1,3�� · · · v1,k��),
xi = (ui,2��ui,3�� · · ·ui,k−1��u′i,k��)(vi,2��vi,3�� · · · vi,k��), for i 6= 1.

Observe that |xi| = O(k3). Using the inductive hypothesis, one can prove that the algorithm
adds the strings wk[j..k]w1 · · ·wi−1 (for j 6= k), wk[j..k]w1 · · ·wi−1wi[1..j], wi[j..k]wi+1 · · ·wk−1, and
wi[j..k]wi+1 · · ·wk−1wk[1..j−1] for j ∈ [2..k] to the dictionary after the processing of xi (plus several pairs

6

��). It remains to show that the algorithm adds exactly the strings wi[j..k]wi+1 · · ·wkw1 · · ·wi−1wi[1..j],
for j ∈ [2..k], to the dictionary when processing zi.

Observe that, for j ∈ [2..k], wi[j..k]wi+1 · · ·wk−1wk[1..j−1] is the longest string from the dictionary
that has prefix wi[j..k], and wk[j..k]w1 · · ·wi−1wi[1..j] is the longest string from the dictionary that has
prefix wk[j..k] and does not coincide with wk[j..k]wk. Hence, the algorithm consecutively “jumps” over the
substrings w of the string zi adding after each such “jump” the string wi[j..k]wi+1 · · ·wkw1 · · ·wi−1wi[1..j]
to the dictionary (for j = 2, 3, . . . , k). No other strings are added.

Each time the algorithm processes a substring wk[j..k]w1 · · ·wi−1wi[1..j], it also verifies in Θ(ki +
|wk−j |) time whether the string wk[j..k]wk occurs at this position. Therefore, by the above analysis,

processing takes Θ(|s| 54) time.
An analogous troublesome string for the näıve LZMW construction algorithm is as follows (again, all

separators � are assumed to be distinct letters):

wi = ai,1ai,2 · · · ai,k and w = w1w2 · · ·wk,
spre,i = wi[1..2]�wi[1..3]� · · · �wi[1..k]�,
ssuf,i = wi[k−1..k]�wi[k−2..k]� · · · �wi[2..k]�,
p = spre,1spre,2 · · · spre,kssuf,1ssuf,2 · · · ssuf,k,
q = wk−2wk−1�wk−3wk−2wk−1� · · · �w1w2· · ·wk−1�w�,
s′ = pqw21�w22� · · · �wk�wk[2..k]wk�wk[3..k]wk� · · · �wk[k..k]wk�,
yj = wk[j..k]w1�wk[j..k]w1w2[1..j]�,
ti,j = wi−2[j+1..k]wi−1[1..j]�wi−1[j+1..k]wi[1..j],
ui,j = (wk[j..k]w1 · · ·wi−3wi−2[1..j])(wi−2[j+1..k]wi−1[1..j]),
vi,j = wi[j..k]wi+1 · · ·wk−1�wi[j..k]wi+1 · · ·wk−1wk[1..j−1],
xi = ti,2�ti,3� · · · �ti,k−1�ui,2�ui,3� · · · �ui,k�vi,2�vi,3� · · · �vi,k�,
zi = wi[2..k]wi+1 · · ·wkwk−2w1 · · ·wi�,
s = s′y2y3 · · · ykx4z4x6z6 · · ·x2jz2j · · ·xk−2zk−2.

Let us explain on a high level why the LZMW algorithm works slowly on s. While analyzing the
prefix s′y2y3 · · · yk, the algorithm adds a number of “building block” strings into the LZMW dictionary,
including the strings w[j..k]wk for j = 2, 3, . . . , k (recall that, unlike the LZD dictionary containing phrases,
the LZMW dictionary contains pairs of adjacent phrases). Before the processing of zi, the algorithm
processes xi and adds the strings wi[j..k]wi+1 · · ·wk−1wk[1..j−1] (from vi,j), wk[j..k]w1 · · ·wi−2wi−1[1..j]
(from ui,j), and wi−1[j+1..k]wi[1..j] (from ti,j) to the dictionary. The concatenation of these three
strings is wi[j..k]wi+1 · · ·wkw1 · · ·wi−1wi[1..j], so, analyzing zi, the algorithm consecutively “jumps”, for
j = 2, 3, . . . , k, from the string wi[j..k]wi+1 · · ·wk−1wk[1..j−1] to wk[j..k]w1 · · ·wi−2wi−1[1..j] and then
to wi−1[j+1..k]wi[1..j], thus producing three new phrases (and then moves on to j+1). The point is
that, while analyzing the string wk[j..k]w1 · · ·wi−2wi−1[1..j], the algorithm does not know in advance
that the string wk[j..k]wk from the dictionary does not occur at this position and, since the length of
the longest common prefix of the strings wk[j..k]wk and wk[j..k]wk−jw1 · · ·wi�� is Θ(k− j + 1 + |wk−j |),
spends Θ(|wk−j |) = Θ((k − j)k2) time verifying this. Therefore, the analysis of the string s takes

Θ((k/2)
∑k
j=2(k − j)k2) = Θ(k5) time overall. Since n = |s| = Θ(k4), the processing time is Θ(n

5
4) as

required. We omit the detailed proof since it is very similar to the LZD case.
To additionally verify the correctness of both constructed examples, we performed the näıve LZD

and LZMW algorithms (with some diagnostics to track their execution) on the examples for small k and,
indeed, observed the expected “bad” behavior in the special positions described above. Our verifying
code (it can be found in [1]) thoroughly checks the correspondence of the behavior of the parsers in the
special positions to the behavior discussed in the above text. Thus, we hope that the correctness of both
our constructions is well supported.

We now explain how to decrease the alphabet size in the examples of Theorem 3.1. The construction
for both parsing schemes relies on the following reduction.

Lemma 3.2. Consider the parsing scheme LZD or LZMW and a string s ∈ Σ∗. There exists a string
t ∈ {0, 1}∗ of length Θ(|Σ| log |Σ|) and a morphism φ with φ(Σ) ⊆ {0, 1}` for ` = Θ(log |Σ|) such that the
parsing of t · φ(s) consists of the parsing of t followed by the image with respect to φ of the parsing of s.

Proof. We analyze the two parsing schemes separately. For LZD, we recursively define AL ⊆ {0, 1}2
L

,
setting A0 = {0, 1} and AL = {xy : x, y ∈ AL−1 ∧ x ≤ y} for L > 0. Let (αi)

∞
i=1 be the infinite sequence

7

of all elements of AL, for all L ≥ 1, with members of each set AL listed in the lexicographic order; e.g.,
α1, . . . , α12 = 00, 01, 11, 0000, 0001, 0011, 0101, 0111, 1111, 00000000, 00000001, 00000011. We will define
t = α1 · · ·αm for some m. Let us characterize parsings of such strings.

Claim. For any non-negative integer m and any string w ∈ {0, 1}∗, the first m phrases of the LZD
parsing of the binary string α1 · · ·αm · w are α1, . . . , αm.

Proof. We proceed by induction on m; the base case of m = 0 is trivial.
For m > 0, the inductive assumption implies that the first m−1 phrases are α1, . . . , αm−1. Our goal is

to prove that the mth phrase is αm. Before processing αm, the LZD dictionary is D = {0, 1, α1, . . . , αm−1}.
Suppose that αm = xy ∈ AL with x, y ∈ AL−1. Recall that x ≤ y; consequently, D ∩ (y · {0, 1}∗) = {y}
and

D ∩ (x · {0, 1}∗) = {x} ∪ {xy′ : y′ ∈ AL−1 ∧ x ≤ y′ < y}.

Thus, the longest prefix of αm · w contained in D is x, and the longest prefix of y · w contained in D is y.
This means that the mth phrase is indeed αm = xy.

Consider a string s ∈ Σn. We choose the smallest L with |AL| ≥ |Σ| and define t = α1 · · ·αm so that
t is shortest possible and the LZD dictionary after processing t contains at least |Σ| elements of AL. The
morphism φ is then defined by injectively mapping Σ to these dictionary strings from AL.

Note that |AL−1| ≤ |Σ| and m ≤ |Σ|+
∑L−1
`=1 |A`|, so we have m = Θ(|Σ|), ` = 2L = Θ(log |Σ|), and

|t| = Θ(|Σ| log |Σ|), as desired.
We are to prove that the LZD parsing of t ·φ(s) is α1, . . . , αm, φ(p1), . . . , φ(pz), where p1, . . . , pz is the

LZD parsing of s. For this, we inductively prove that the LZD dictionary D after parsing p1 · · · pi is related
to the LZD dictionary D̂ after parsing t·φ(p1 · · · pi) by the following invariant: D̂∩(φ(Σ) · {0, 1}∗) = φ(D).
The base case follows from the claim (D̂ ∩ (φ(Σ) · {0, 1}∗) = φ(Σ) = φ(D)), and the inductive step is
straightforward. This completes the proof for the LZD scheme.

The construction for LZMW is more involved, but the idea is the same. We recursively define

BL ⊆ {0, 1}2
L

, setting B0 = {0, 1} and BL = {xy : x, y ∈ BL−1∧xy 6= 12
L−1

02
L−1} for L > 0. Let (βi)

∞
i=1

be the infinite sequence that lists all elements of BL consecutively for all L ≥ 0, with members of each
BL listed in the lexicographic order (i.e., (βi)

∞
i=1 is defined by analogy with (αi)

∞
i=1 for LZD but starting

with L = 0). For βm ∈ BL, define b(βm) = βMβm · βM+1βm · · ·βm−1βm · βm, where βM = 02
L

is the first
element of BL in (βi)

∞
i=1. For example, b(β1) · · · b(β6) = 0 · 0 1 1 · 00 · 00 01 01 · 00 11 01 11 11 · 0000.

Claim. For m ≥ 1, consider a binary string b(β1) · · · b(βm) · 0|βm| ·w for w ∈ {0, 1}∗. The LZMW parsing
decomposes its fragments b(βi) into phrases of length |βi|.

Proof. We proceed by induction on m. The base case m = 1 is straightforward: it suffices to note that
the first phrase of 0 · 0 · w is 0. Below, we consider m > 1.

First, suppose that βm = 02L , i.e., βm−1 = 12L−1 ∈ BL−1. Note that b(βm) starts with 02L−1

, so
the inductive hypothesis yields that the prefix b(β1) · · · b(βm−1) is parsed as desired. Observe that after

parsing this prefix, the LZMW dictionary is D = {12`−1

02` : 0 < ` < L} ∪
⋃L
`=0B`. Consequently, we

obtain D ∩ (BL · {0, 1}∗) = BL and, therefore, b(βm) = βm is parsed as claimed.

Finally, suppose that βm ∈ BL \ {02L}. In this case, βm−1 ∈ BL and βM = 02L for some M < m.

Since b(βm) starts with βM = 02
L

, the inductive hypothesis lets us assume that the prefix b(β1) · · · b(βm−1)

is parsed as desired. Due to 12
L−1

02
L−1 /∈ BL, after parsing this prefix, the LZMW dictionary D satisfies:

D ∩ (BL · {0, 1}∗) = BL ∪ {βkβk′ : M ≤ k, k′ < m ∧ (k, k′) 6= (m−1,M)}.

Let us consider the parsing of b(βm)02
L

w = βMβm ·βM+1βm · · ·βm−1βm ·βm · 02
L

w. One can inductively
prove that before parsing βkβm · βk+1 · · · , for M ≤ k < m, we have D ∩ (βk · {0, 1}∗) = {βk} ∪ {βkβk′ :
M ≤ k′ < m}, so the subsequent phrase is βk. Next, before parsing βm · βk+1 · · · , for M ≤ k < m, we
have D ∩ (βm · {0, 1}∗) = {βm} ∪ {βmβk′ : M < k′ ≤ k}, so the subsequent phrase is βm. Finally, before

parsing βm · 02
L

w, we have D ∩ (βm · {0, 1}∗) = {βm} ∪ {βmβk′ : M < k′ < m}, so the last phrase is also
βm. Thus, b(βm) is parsed as claimed.

8

Consider a string s ∈ Σn. We choose the smallest L with |BL| ≥ |Σ| and define t = b(β1) · · · b(βm) so
that t is shortest possible and the LZMW dictionary after processing t contains at least |Σ| members
of BL (note that βm ∈ BL−1 in this case). The morphism φ is then defined by injectively mapping Σ

to these dictionary strings from BL. Moreover, we put φ(s[1]) = 02
L

so that the claim is applicable for
t · φ(s). The remaining proof is analogous to the LZD counterpart. We only need to observe that the

LZMW dictionary additionally contains βm02
L

, but βm02
L−1

/∈ φ(Σ) and, hence, this does not affect the
parsing of t · φ(s).

The hard binary examples are now straightforward to derive.

Theorem 3.3. The näıve LZD and LZMW parsing algorithms take time Ω(n5/4/ log1/4 n) in the worst
case even on a binary alphabet.

Proof. We apply Lemma 3.2 for a string s ∈ Σ∗ of length n constructed in the proof of Theorem 3.1 for
the appropriate parsing algorithm, which results in a binary string ŝ := t ·φ(s). Without loss of generality,
we may assume |Σ| ≤ n, so n̂ := |ŝ| = Θ(|Σ| log |Σ| + n log |Σ|) = Θ(n log |Σ|). Recall that the näıve
parsing algorithm traverses at least Ω(n5/4) trie edges while parsing s. Since the parsing of the suffix
φ(s) of ŝ is the φ-image of the parsing of s, this algorithm traverses at least Ω(n5/4 log |Σ|) trie edges

while parsing ŝ. In terms of n̂, the running time is at least Ω(n̂5/4/ log1/4 |Σ|), which is Ω(n̂5/4/ log1/4 n̂)
due to |Σ| ≤ n < n̂.

4 Faster Small-Space Computation

In this section we describe a new parsing algorithm that works in O(n + z log2 n) time (randomized,
in expectation) and uses O(z log n) working space to parse the input string over the integer alphabet
{0, 1, . . . , nO(1)}. Before getting to the algorithm itself, we review four tools that are essential for it:
Karp–Rabin hashing [11], AVL-grammars of Rytter [15], the dynamic z-fast trie of Belazzougui et al. [2],
and the dynamic marked ancestor data structure of Westbrook [17].

Karp–Rabin hashing. A Karp–Rabin [11] hash function φ has the form φ(s[1..n]) =
∑n
i=1 s[i]δ

i−1 mod
p, where p is a fixed prime and δ is a randomly chosen integer from the range [0..p−1] (this is a more
popular version of the original hash proposed in [11]). The value φ(s) is called s’s Karp–Rabin hash. It is
well-known that, for any c > 3, if p > nc, then the probability that two distinct substrings of the given
input string of length n have the same hash is less than 1

nc−3 .
We extensively use the property that the hash of the concatenation s1s2 of two strings s1 and s2

can be computed as (φ(s1) + δ|s1|φ(s2)) mod p. Therefore, if the values φ(s1) and φ(s2) are known and
p ≤ nO(1), then φ(s1s2) can be calculated in O(1) time provided the number (δ|s1| mod p) is known.

AVL-grammars. Consider a context-free grammar G that generates a string s (and only s). Denote
by Tree(G) the derivation tree of s. We say that G is an AVL-grammar (see [15]) if G is in the Chomsky
normal form and, for every internal node v of Tree(G), the heights of the trees rooted at the left and
right children of v differ by at most 1. The following result straightforwardly follows from the algorithm
of Rytter described in [15].

Lemma 4.1 (see [15, Th. 2]). Let G be an AVL-grammar generating a prefix s[1..i−1] of a string s.
Suppose that the string s[i..k] occurs in s[1..i−1]; then one can construct an AVL-grammar generating
the string s[1..k] in O(log i) time modifying at most O(log i) rules in G.

Let G be an AVL-grammar generating a string s. It is well-known that, for any substring s[i..j],
one can find in O(log n) time O(log n) non-terminals A1, . . . , Ak such that s[i..j] is equal to the string
generated by A1 · · ·Ak. Hence, if each non-terminal A of G is augmented with the Karp–Rabin hash φ(t)
of the string t generated by A and with the number δ|t| mod p, then we can compute φ(s[i..j]) in O(log n)
time. One can show that, during the reconstruction of the AVL-grammar in Lemma 4.1, it is easy to
maintain the described integers augmenting the non-terminals (see [15]).

9

Z-fast tries. Let x be a string such that one can compute the Karp–Rabin hash of any prefix of x in
O(tx) time. The z-fast trie [2] is a compacted trie containing a dynamic set of variable-length strings that
supports the following operations:

• we can find (w.h.p.) in O(tx log |x|) time the highest explicit node v such that the longest prefix of
x present in the trie is written on the root-v path;

• we can insert x into the trie in O(|x|+ tx log |x|) randomized time.

The space occupied by the z-fast trie is Θ(k), where k is the number of strings inserted in the trie.

Dynamic marked ancestor. Let T be a dynamic compacted trie (or just tree) with k nodes. The
dynamic marked ancestor data structure of [17] supports the following two operations on T (both in
O(log k) time): for a given node v, (1) mark v, (2) find the nearest marked ancestor of v (if any).

Algorithm. Our faster parsing algorithm computes the LZD phrases from left to right one by one,
spending O(logO(1) n) time on each phrase. We maintain an AVL-grammar G for the prefix s[1..i−1]
of s we have already parsed, and a z-fast trie T containing the first phrases p1, p2, . . . , pr of the LZD
parsing of s such that s[1..i−1] = p1p2 · · · pr. We augment T with the dynamic marked ancestor data
structure and mark all nodes corresponding to phrases (i.e., all nodes v such that the string written on
the path from the root to v is equal to t ∈ {p1, . . . , pr}). We augment each non-terminal of G with the
Karp–Rabin hash φ(t) of this non-terminal’s expansion t and with the number δ|t| mod p, so that the
hash of any substring of s[1..i−1] can by calculated in O(log n) time.

Suppose we are looking for the first part of the next phrase and that, in addition to having parsed
s[1..i−1], we have already read s[i..j−1] without parsing it — but we have found the endpoints of an
occurrence of s[i..j−1] in s[1..i−1]. (Notice s[i..j−1] can be empty, i.e., i = j.) Denote by x the longest
prefix of s[i..j−1] that is also a prefix of some of the phrases p1, . . . , pr. Since we can compute quickly
with G the hash of any prefix of s[i..j−1], we can use the z-fast search to find in O(log2 n) time a node v
of T such that x is written on the path connecting the root and v. Let s[`v..rv] be a substring of s[1..i−1]
corresponding to v (the numbers `v and rv are stored with the node v). Using hashes and the binary
search, we find the longest common prefix of the strings s[i..j−1] and s[`v..rv] (with high probability) in
O(log2 n) time; this prefix must be x.

If s[i..j−1] 6= x, then we perform a marked-ancestor query on the vertex corresponding to x (which
can be found in O(log2 n) time in the same way as v) and thus find the longest phrase that is a prefix of
s[i..j−1]. We take that phrase as the first part of the next phrase and start over, looking for the second
part, with the remainder of s[i..j−1] now being what we have read but not parsed (of which we know
an occurrence in s[1..i−1]). On the other hand, if s[i..j−1] = x, then we read s[j..n] in blocks of length
log2 n, stopping when we encounter an index k such that s[i..k] is not a prefix of a phrase p1, . . . , pr; the
details follow.

Suppose that we have read q blocks and the concatenation s[i..j + q log2 n− 1] of s[i..j−1] and the q
previous blocks is a prefix of a phrase t ∈ {p1, . . . , pr}. We compute in O(log2 n) time the hashes of all
the prefixes of the block s[j + q log2 n..j + (q + 1) log2 n − 1], which allows us to compute the hash of
any prefix of s[i..j + (q + 1) log2 n− 1] in O(log n) time. Therefore, again using z-fast search and binary
search, we can check in O(log2 n) time if the block s[j + q log2 n..j + (q + 1) log2 n− 1] contains such a
k — and, if so, find it. If k is not found, then using information from the search, we can find a phrase
t′ ∈ {p1, . . . , pr} — which may or may not be equal to t — such that s[i..j + (q + 1) log2 n− 1] is a prefix
of t′; we then proceed to the (q+2)nd block.

Once we have found such a k, we conceptually undo reading the characters from s[k] onwards (which
causes us to re-read later those O(log2 n) characters), then perform a search and marked-ancestor query
in T , which returns the longest phrase that is a prefix of s[i..k−1]. We take that longest phrase as the
first part of the next phrase and start over, looking for the second part, with the remainder of s[i..k−1]
now being what we have read but not parsed (of which we know an occurrence in s[1..i−1]).

Once we have found both the first and second parts of the next phrase — say, p′1 and p′2 — we add the
next phrase pr+1 = p′1p

′
2 to G (by Lemma 4.1) and to T , which takes O(|pr+1|+ log2 n) time. In total,

since processing each block takes O(log2 n) time and the algorithm processes at most z + n
log2 n

blocks,

we parse s in O(n + z log2 n) time. Our space usage is dominated by G, which takes O(z log n) space.

10

Finally, we verify in a straightforward manner in O(n) time whether the constructed parsing indeed
encodes the input string. If not (which can happen with probability 1

nc−3 , where p > nc), we choose a
different random δ ∈ [0..p−1] for the Karp–Rabin hash and execute the whole algorithm again.

The computation of the LZMW parsing in O(n + z log2 n) expected time and O(z log n) space is
similar: the z-fast trie stores pairs p1p2, p2p3, . . . , pz−1pz of adjacent phrases in this case and the nodes
corresponding to these pairs are marked. We omit the details as they are straightforward.

5 Concluding Remarks

We believe that our new parsing algorithms can be implemented efficiently, and we leave this as future
work. Perhaps a more interesting question is whether there exists an LZD/LZMW parsing algorithm
with better working space and the same (or better) runtime. We note that the algorithmic techniques
we have developed here can also be applied to, e.g., develop more space-efficient parsing algorithms for
LZ-End [13], a variant of LZ77 [18] with which each phrase s[i..j] is the longest prefix of s[i..n] such
that an occurrence of s[i..j−1] in s[1..i−1] ends at a phrase boundary. Kempa and Kosolobov [12] very
recently gave an LZ-End parsing algorithm that runs in O(n log `) expected time and O(z + `) space,
where ` is the length of the longest phrase and z is the number of phrases.

To reduce Kempa and Kosolobov’s space bound, we keep an AVL-grammar (again augmented with
the non-terminals’ Karp–Rabin hashes, meaning our algorithm Monte-Carlo) of the prefix of s we have
processed so far; a list of the endpoints of the phrases so far, in the right-to-left lexicographic order of the
prefixes ending at the phrases’ endpoints; and an undo stack of the phrases so far. For each character s[k]

in turn, for 1 ≤ k ≤ n, in O(logO(1) n) time we use the grammar and the list to find the longest suffix
s[j..k] of s[1..k] such that an occurrence of s[j..k−1] in s[1..j−1] ends at a phrase boundary. We use the
undo stack to remove from the grammar, the list, and the stack itself, all the complete phrases lying
in the substring s[j..k−1], and then add the phrase consisting of the concatenation of those removed
phrases and s[k]. By [12, Lemma 3], we remove at most two phrases while processing s[k], so we still use

a total of O(logO(1) n) worst-case time for each character of s. Again, the space bound is dominated by
the grammar, which takes O(z log n) words. We leave the details for the full version of this paper.

Regarding compression performance, we have shown that like their ancestor, LZ78, both LZD and
LZMW sometimes approximate the smallest grammar poorly. This, of course, does not necessarily detract
from their usefulness in real compression tools; now however, practitioners have a much clearer picture of
these algorithms’ possible behavior. The future work includes closing the gap between the lower bound
Ω(n

1
3) and the upper bound O((n/ log n)

2
3) for the approximation ratio and designing parsing algorithms

with better guarantees.

Acknowledgements

We thank H. Bannai, P. Cording, K. Dabrowski, D. Hücke, D. Kempa, L. Salmela for interesting discussions
on LZD at the 2016 StringMasters and Dagstuhl meetings. Thanks also go to D. Belazzougui for advice
about the z-fast trie and to the anonymous referees.

References

[1] Supplementary materials for the present paper: C++ code for described experiments. https:

//bitbucket.org/dkosolobov/lzd-lzmw.

[2] Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Proc. 17th
International Symposium on String Processing and Information Retrieval (SPIRE), volume 6393 of
LNCS, pages 159–172. Springer, 2010. doi:10.1007/978-3-642-16321-0_15.

[3] Djamal Belazzougui, Patrick Hagge Cording, Simon J. Puglisi, and Yasuo Tabei. Access, rank, and
select in grammar-compressed strings. In Proc. 23rd Annual European Symposium on Algorithms
(ESA), volume 9294 of LNCS, pages 142–154. Springer, 2015. doi:10.1007/978-3-662-48350-3_13.

11

https://bitbucket.org/dkosolobov/lzd-lzmw
https://bitbucket.org/dkosolobov/lzd-lzmw
http://dx.doi.org/10.1007/978-3-642-16321-0_15
http://dx.doi.org/10.1007/978-3-662-48350-3_13

[4] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and Oren
Weimann. Random access to grammar-compressed strings and trees. SIAM Journal on Computing,
44(3):513–539, 2015. doi:10.1137/130936889.

[5] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and abhi
shelat. The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576,
2005. doi:10.1109/TIT.2005.850116.

[6] Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Fundamenta
Informaticae, 111(3):313–337, 2011. doi:10.3233/FI-2011-565.

[7] Travis Gagie, Pawe l Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi. A
faster grammar-based self-index. In Proc. 6th International Conference on Language and Automata
Theory and Applications (LATA), volume 7183 of LNCS, pages 240–251. Springer, 2012. doi:

10.1007/978-3-642-28332-1_21.

[8] Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. LZD factorization: simple
and practical online grammar compression with variable-to-fixed encoding. In Proc. 25th Annual
Symposium on Combinatorial Pattern Matching (CPM), volume 9133 of LNCS, pages 219–230.
Springer, 2015. doi:10.1007/978-3-319-19929-0_19.

[9] Danny Hücke, Markus Lohrey, and Carl Philipp Reh. The smallest grammar problem revisited.
In Proc. 23rd International Symposium on String Processing and Information Retrieval (SPIRE),
volume 9954 of LNCS, pages 35–49. Springer, 2016. doi:10.1007/978-3-319-46049-9_4.

[10] Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Efficient
Lyndon factorization of grammar compressed text. In Proc. 24th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 7922 of LNCS, pages 153–164. Springer, 2013. doi:10.1007/

978-3-642-38905-4_16.

[11] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms. IBM
Journal of Reseach and Development, 31(2):249–260, 1987. doi:10.1147/rd.312.0249.

[12] Dominik Kempa and Dmitry Kosolobov. LZ-End parsing in compressed space. In Proc. Data
Compression Conference (DCC), pages 350–359. IEEE, 2017. doi:10.1109/DCC.2017.73.

[13] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences. Theoretical
Computer Science, 483:115–133, 2013. doi:10.1016/j.tcs.2012.02.006.

[14] Victor S. Miller and Mark N. Wegman. Variations on a theme by Ziv and Lempel. In Proc. NATO
Advanced Research Workshop on Combinatorial Algorithms on Words, volume 12 of NATO ASI,
pages 131–140. Springer, 1985. doi:10.1007/978-3-642-82456-2_9.

[15] Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theoretical Computer Science, 302(1-3):211–222, 2003. doi:10.1016/S0304-3975(02)
00777-6.

[16] Toshiya Tanaka, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Computing
convolution on grammar-compressed text. In Proc. Data Compression Conference (DCC), pages
451–460. IEEE, 2013. doi:10.1109/DCC.2013.53.

[17] Jeffery Westbrook. Fast incremental planarity testing. In Proc. 19th International Colloquium on
Automata, Languages and Programming (ICALP), volume 623 of LNCS, pages 342–353. Springer,
1992. doi:10.1007/3-540-55719-9_86.

[18] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337–343, 1977. doi:10.1109/TIT.1977.1055714.

[19] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.1055934.

12

http://dx.doi.org/10.1137/130936889
http://dx.doi.org/10.1109/TIT.2005.850116
http://dx.doi.org/10.3233/FI-2011-565
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-319-19929-0_19
http://dx.doi.org/10.1007/978-3-319-46049-9_4
http://dx.doi.org/10.1007/978-3-642-38905-4_16
http://dx.doi.org/10.1007/978-3-642-38905-4_16
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1109/DCC.2017.73
http://dx.doi.org/10.1016/j.tcs.2012.02.006
http://dx.doi.org/10.1007/978-3-642-82456-2_9
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1109/DCC.2013.53
http://dx.doi.org/10.1007/3-540-55719-9_86
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934

	Introduction
	Preliminaries.

	Approximating the Smallest Grammar
	Small-Space Computation
	Faster Small-Space Computation
	Concluding Remarks

