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ABSTRACT 

 
 

Typical aging is associated with declined cognitive functions and neural deterioration. This 

thesis investigates the effect of normal aging on social perception of facial emotion and facial 

identity. Firstly, this thesis examines older adults’ ability to perceive facial emotions and 

facial identities with subtle changes using behavioural investigations. It is revealed that 

normal aging is linked with declined ability to make fine-grained judgements in the 

perception of facial emotion (anger and happiness) and facial identity (upright- and inverted-), 

but not for facial traits judgement. In addition, the relationship between age and each face 

perceptual performance were explored using regression model fitting. Additionally, this 

thesis further examines whether typical aging is associated with the perception of subtle 

changes in facial emotion and facial identity with older adult faces, and whether the age-

related facial identity perceptual decline is a face-specific decline or it extends to non-social 

perception. I developed novel tasks that permitted the ability to assess facial emotion 

(happiness perception), facial identity, and non-social perception (object perception) across 

similar task parameters. It is observed that older adults have decreased ability to make fine-

grained judgements in the perception of happiness and facial identity (from older adult faces), 

but not for non-social object perception. These behavioural findings are discussed with 

theories within the current literature. This thesis also explored the neural mechanisms 

underlying social perception in older adults using non-invasive high-frequency transcranial 

random-noise stimulation (tRNS) and electroencephalogram (EEG). The results revealed that 

stimulating inferior frontal cortex facilitates older adults’ anger perception, especially low-

performing older adults. The event-related potentials (ERPs) results have shown that older 

participants exhibited neural overactivation in the left frontal and centromedial region (100-

200ms stimuli onset) and frontal region (250-850ms stimuli onset) during emotion perception. 
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These findings are discussed in the context of existing literature on normal aging and social 

perception.  
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CHAPTER 1: INTRODUCTION 

 

Our ability to correctly perceive and interpret social cues (social perception) is a critical 

component of human life. One important source of social signals is the face. For instance, 

from a face we are able to judge if someone we meet is a friend or a stranger (i.e. their 

identity), whether that person is pleased or upset to see us (e.g. if they are happy, angry, or 

sad), and make trait judgments about that person’s character (e.g. judging if they look 

trustworthy or aggressive). While these processes are relatively rapid, they can have 

profound effects on our behaviour. 

 

Two main aspects of social perception of faces are perception of facial identity and facial 

emotional expressions, which corresponding to the abilities to identify facial features, 

perceive and understand the emotional content and cues present in the environment. This 

chapter introduces the background of the research and presents the motivation to investigate 

the effect of normal aging on social perception.  An overview of recent psychological and 

neurobiological studies is provided which reveals insights into the neurocognitive 

mechanisms of social perception in normal aged brain.  

 

Cognitive and neural mechanisms involved in face perception 

 
1.1.1 Face identity and face emotion perception  
 

We live in a complex world where we see countless items at one time. The brain must 

evaluate these external visual signals and devote more cognitive resources to process 

important external items. Faces are the most “biologically and socially significant” visual 

stimuli in the human environment, therefore people devote enhanced cognitive resources for 

processing human faces (Palermo and Rhodes, 2007). Faces contain a lot of information, 

which require us to categorise faces in order to identify individuals (face identity perception) 

and to encode different types of facial expressions (face emotion perception).  
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The face-specificity and expertise views 

Extensive evidence ranging from behavioural, brain lesion and brain imaging studies suggest 

that domain-specific cognitive and neural mechanisms are involved in face processing  (e.g. 

Bentin et al., 1996; Kanwisher, 2000; Moscovitch et al., 1997), which is dissociable from the 

processing of non-face objects. The ‘face-specificity’ view was first suggested by the 

observation of brain lesion patients who were selectively impaired to discriminate faces, but 

retained relatively intact abilities to recognise other objects (McNeil and Warrington, 1993; 

Hecaen and Angelergues, 1962). This condition has been referred as ‘prosopagnosia’, or 

‘face blindness’. This face-specific disorder is associated with selective brain damage to 

ventral occipito-temporal cortex, involving the lingual and fusiform gyri (Schiltz, Sorger, & 

Caldara et al., 2006; Haxby et al, 2000). Brain imaging studies have found a specialised brain 

area called ‘face fusiform area’ in the ventral visual cortex which exhibits increased activity 

to faces but not non-face stimuli (Kanwisher, McDermott, & Chun, 1997, Haxby et al., 1999). 

Furthermore, the face-specific event-related potential (ERP) N170 component was first 

proposed by Bentin et al. in 1996, who measured ERPs from participants during presentation 

of faces and other objects, and found that human faces elicited robust negative ERP 

amplitudes between 160 and 180ms at occipito-temporal sites compared to other object 

categories (Bentin et al., 1996; George, Evans, Fiori, Davidoff, & Renault, 1996). 

Behavioural studies have shown that the facial identity perception relies on more holistic 

processing that encodes individual features in a global manner, as it has been found that the 

perception of faces is more impaired when faces are presented inverted, as compared to other 

non-face stimuli (‘face inversion effect’, Yin 1969; Diamond and Carey 1986; Bruce & 

Humphreys, 1994; Farah, Wilson, Drain, & Tanaka, 1998).  
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However, the view of domain-specificity for faces has been challenged by the expertise view, 

which proposed that the identification of fine-detailed, subordinate objects shares the same 

mechanism as facial identity perception. They found people with expertise with objects 

showed large activations in the face fusiform areas during such subordination object 

perception (Gauthier et al., 1999; Bukach, Gauthier, & Tarr, 2006).  

 

Functional specialization in the face perception system 

Current literature on face perception propose that the processing of faces starts with an initial 

stage of encoding, followed by independent processing of changeable aspects of faces (i.e 

facial emotion and gaze) and processing of invariant aspects of faces (facial identity and 

gender) (Bruce & Young, 1986; Haxby, Hoffman, & Gobbini, 2000, 2002; Fisher, Towler & 

Eimer, 2016). Neurologically, this model is divided into a core system for the visual analysis 

of faces, which comprises three occipital/temporal regions (fusiform face area – FFA, 

occipital face area – OFA, superior temporal sulcus - STS); and an extended system that 

includes neural systems that are involved in other cognitive functions. It has been proposed 

that the processing of face-invariant information is associated with a neural pathway linking 

OFA to FFA, whereas processing of changeable face information (e.g. facial expression, eye 

gaze) is associated with the neural pathway linking OFA and STS. This view has been 

confirmed by numerous behavioural studies (Young & Bruce, 1991), neuropsychological 

studies (e.g., Bruyer et al., 1983; Schweich & Bruyer, 1993), and brain imaging studies (e.g., 

Sergent, Ohta, MacDonald, & Zuck, 1994; Vuilleumier, Armony, Driver, and Dolan, 2003). 

For example, the distinction between the neural processing of invariant aspect of faces and 

changeable aspect of faces were found in a functional brain imaging study (Winston, Henson, 

Fine-Goulden, & Dolan, 2004). It was found that viewing or matching of invariant aspect of 

faces (identity, gender) elicited responses in the FFA region; however, attending to a 
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changeable aspect of the face (eye gaze, facial emotion) reduced the magnitude of the 

response in the FFA region. This finding suggests that the FFA region plays a role in 

processing invariant features of faces, but not changeable aspect of faces. 

Neuropsychological studies of patients with brain lesions and nonhuman primates indicate 

that the perception of face identity is anatomically dissociated from the perception of facial 

expression and eye gaze (Fox, Hanif, Iraria, & Duchaine et al., 2011; Campbell et al., 1990; 

Young, et al., 1995). Fox et al. (2011) used structural and functional MRI to correlate four 

patients’ face perceptual deficits with damage to the core regions of the face-processing 

network using morphed face identity and face emotion discrimination tests. They found 

patients who were selectively impaired at recognising face identity were associated with 

damage to fusiform and occipital face areas, and medial occipitotemporal structures; whereas 

the patients with impaired expression perception were associated with damage to posterior 

superior temporal sulcus.  Using single-cell recording approach (Hasselmo, Rolls and Baylis, 

1989), researchers found that neurons in the superior temporal sulcus (STS) were responsive 

to facial expressions, while neurons in the inferior temporal gyrus were responsive to facial 

identity. It should be noted that, additional neural regions also contribute to the accurate 

recognition of the signals gathered from faces. For instance, the perception of facial emotion 

activates limbic regions that are associated with processing emotion (Morris et al., 1996; 

Phillips et al., 1997, 1998), and the perception of eye gaze direction activates parietal regions 

that are associated with spatial attention (Hoffman and Haxby, 2000). 

 

As stated above, there is good evidence to suggest that the perception of face identity and 

face emotion are neurologically dissociable from each other. Chapter one of this thesis will 

summarise and review studies in current literature investigating the effect of typical aging on 

face emotion perception and face identity perception in different sections.  
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Spatial frequencies in face processing 

Images we see from external world consist in complex luminance arrays. These variation of 

luminance intensities were filtered by human early visual cortex and decoded into different 

neural signals representing “luminance over spatial regions of different size” (Goffaux and 

Rossion, 2006). High spatial frequencies (HSFs) correspond to small-scale variations of 

luminance - features such as sharp edges and fine details; whereas low spatial frequencies 

(LSFs) correspond to large-scale variations of luminance - features such as global shape and 

coarse visual information. Human faces are complex stimuli, which contain multiple internal 

(e.g. eyes, nose, mouth) and external (e.g. hair, moustache) facial features. Researchers have 

explored the roles of different types of spatial frequencies play in face perception. 

 

Goffaux, Hault, Michel, & Vuongô (2005) explored the respective roles of low and high 

spatial frequencies in supporting encoding of faces. The encoding of faces involves extracting 

and processing both “first-order relations” and “second-order relations” of faces (Chaby, 

Naeme & George, 2011). The first-order relation of faces refers to the overall configural 

information of faces, or the spatial relations between facial components (i.e. two eyes above a 

nose and a mouth). The second-order relation of faces refers to the distance between features, 

such as the distance between two eyes, or the distance between mouth and nose. In Goffaux 

et al.’s study, it was found that low spatial frequencies (LSFs, below 8 cycles per face width) 

played a dominant role in configural processing of faces, whereas high spatial frequencies 

(HSFs, above 32 cycles per face width) were more important for featural processing of faces. 

In the study, participants were presented with triplets of faces that were filtered to preserve 

either LSFs, HSFs, or the full frequency spectrum and they were required to match one of 

two testing faces to a target face. The distractor testing face differed from the target either 

configurally, featurally, or both featurally and configurally. They found participants’ 
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performance were better with LSF faces than with HSF faces when the difference was at the 

configural level, whereas their performance were better with HSF faces than with LSF when 

the difference was at the featural level. These results support the dominant role that LSFs 

play in the configural processing of faces, whereas featural processing is largely dependent 

on HSFs. 

 

Recently, some researchers proposed that the processing of face identity and face emotion 

may rely on different spatial frequencies. Using event-related functional magnetic resonance 

imaging (fMRI), Vuilleumier, Armony, Driver, & Dolan (2003) found repeating the same 

face identity with high spatial frequency elicited greater neural responses in fusiform cortex 

than face stimuli with low spatial frequency, regardless of emotion expression. In contrast, 

amygdala, pulvinar and superior colliculus exhibited greater neural responses for fearful 

faces with low-frequency than for fearful faces with high-frequency. This finding suggests 

that recognising facial identities might rely on high frequencies of information, whereas the 

recognition of facial emotion (fear) relies on low spatial frequencies of information. This 

finding has been confirmed by Bar and colleagues (Bar, Neta, & Linz, 2006). They found that 

people’s perception of threat from faces was fast (within the first 39ms of exposure), and the 

detection of threat from faces mainly rely on low spatial frequencies.  However, these studies 

only used the facial stimuli of fear and ignored other types of facial emotions (e.g. happiness, 

anger). It is not certain whether LSFs play a more important role than HSFs in processing 

other facial emotions. 

 
1.1.2 Proposal of face trait model  
 
According to the face trait model proposed by Oosterhof and Todorov (2008), faces can be 

sufficiently evaluated on two primary dimensions: trustworthiness and dominance. They also 

tested whether the dimensions of trustworthiness and dominance are sensitive to different 
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types of facial information by exaggerating the features specific to an evaluative dimension. 

For example, it was found that moving from the negative to the positive extreme of the 

trustworthiness dimension, faces seemed to change from expressing anger to expressing 

happiness. Whereas moving from the negative to the positive extreme of the dominance 

dimension, faces seemed to change from feminine and baby-faced to masculine and mature-

faced. In other words, the judgement of trustworthiness seems associated with facial 

emotional expressions whereas judgement of dominance correlates more with certain facial 

features. 

 

Some neural findings also seem to support this model where the perception of trustworthiness 

shares or partially shares the neural regions of emotion processing. Functional brain imaging 

studies showed that the subcortical brain region amygdala is not only critical for decoding 

emotions of fear and consolidating emotional memories, but also plays a key role in the 

judgement of face trustworthiness (Engell, Haxby, & Todorov, 2007; Winston, Strange, 

O’Doherty, & Dolan, 2002). Furthermore, Adolphs, Tranel, and Damasio (1998) found that 

patients with bilateral amygdala damage perceived untrustworthy-looking faces as 

trustworthy. The neural mechanism for perception of trustworthiness dissociate from the 

neural route of facial identity processing. Developmental prosopagnosics who are severely 

impaired in processing facial identity can still make normal trustworthiness judgements from 

faces (Todorov and Duchaine, 2008).  

 

Collectively these studies indicate that the judgement of trustworthiness is more sensitive to 

information of facial expressions rather than identity or certain features of faces, and the key 

mechanism underlying the judgement of trustworthiness involves the amygdala which is also 

involved in decoding the facial expressions (Engell, Haxby & Todorov, 2007; Todorov and 
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Engell, 2008; Todorov, Said, Engell & Oosterhof, 2008). It seems that the judgement of 

trustworthiness from faces is both neurologically and behaviourally closely related to the 

perception of facial expressions. Prior facial trait studies found that older and younger adults’ 

perceptual ratings on trustworthy faces were similar, but older adults perceived untrustworthy 

faces to be more trustworthy than younger adults (Castle, Eisenberger, & Seeman et al. 2012; 

Bailey, Szczap, McLennan et al. 2015). The pattern of results was discussed with older 

people’s ‘positivity bias’ - they are less sensitive to cues that are related to negative 

experience (Castle, Eisenberger, & Seeman et al. 2012, Bailey, Szczap, McLennan et al. 

2015). In addition, the neural imaging results found that younger adults showed greater 

anterior insula activation to untrustworthy versus trustworthy faces, older adults showed little 

activation of the anterior insula to untrustworthy faces (Castle, Eisenberger, & Seeman et al. 

2012). Previous aging studies on facial trait perception have explored the older adults’ 

perception of facial trait of trustworthiness, but few studies have studies older adults’ 

perception of facial trait of dominance/aggressiveness, and whether the impairment of facial 

emotion or identity perception in older adults extends to such trait judgements remains 

unknown. Therefore, I would like to examine whether deficits in recognising emotions could 

extend to facial trait perceptual abilities (trustworthiness and aggressiveness). 
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Normal aging on facial expression perception 

 
1.2.1 Background 
 

Over the recent decades, population aging has become a global phenomenon. The proportion 

of older people (population aged 60+ years) has been increasing in both developing and 

developed countries (Shrestha, 2000). The number of people aged 60 years and above have 

tripled from its number in 1950 to 600 million in 2000, this number has surpassed 700 

million in 2006, and the current projection suggests that the aged population will reach 

around the 2 billion by 2050 (Chuks, 2010). Therefore, this change of social structure 

requires more research to focus on aged population to aid this increasing population areas of 

life quality and health, both physically and psychologically. 

 

Emotional facial expression perception plays an important role in interpersonal 

communication, with emotions often expressed through changes in facial expression, eye 

contact, body posture and movement (Ruffmana, Henryb, & Livingstonec et al., 2008; Ryan, 

Murray & Ruffman, 2009). Emotional expression can alter the meaning of speech and the 

ability to accurately identify emotional content is particularly important in social interaction 

(Ryan, Murray & Ruffman, 2009). Difficulties with emotion perception are associated with 

specific types of social impairment, including poor interpersonal interaction, reduced social 

competence and interest and inappropriate social behaviour (e.g., Spell and Frank, 2000). It is 

therefore unsurprising that considerable research interest has focused on establishing how 

capacity for emotion perception is affected as a function of normal adult aging, as well as the 

extent and implications of any observed difficulties.  
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1.2.2 Behavioural investigations 
 

The effect of aging on social perception has received considerable interest in recent years, 

particularly the effect of age on perceiving emotions in faces. The general pattern that 

emerges from literature is that older adults appear to have declined perception of some 

negative facial expressions of emotions such as anger, sadness, fear and surprise (e.g. 

McDowell et al., 1994; Phillips et al., 2002; Calder et al., 2003; Sullivan & Ruffman, 2004). 

In contrast, age related differences in the perception of happiness are less consistent, but this 

may reflect that in several studies happiness perception performance was at ceiling for at 

least one age group tested (e.g. Moreno et al., 1993; Orgeta & Phillips, 2007; McDowell et 

al., 1994; Brosgole & Weisman, 1995; Isaacowitz et al., 2007). Figure 1.1 summarises the 

relevant studies from recent years. Previous research on age differences on the perception of 

facial emotions has focused on perception of posed facial expressions with mid- and high- 

emotion intensities (Ekman & Friesen, 1976; Matsumoto & Ekman, 1988). MacPherson, 

Phillips, and Della Sala (2002) compared younger, middle-aged and older groups’ perceptual 

performance on Matsumoto & Ekman’s (1988) Japanese and Caucasian Facial Expression of 

Emotion (JACFEE) and found the older group only performed significantly worse than the 

younger group on the recognition of sadness. In the study, participants were presented with 

colour photographs of facial expressions and they were required to choose one emotion type 

that they perceived from what they saw from a series of emotion type labels: happy, sad, 

angry, disgusted, frightened, surprised, and contempt. Memory demands were minimal as 

each photograph remained on the computer screen until the participants replied. It should be 

noted here, the participants of the study were Caucasians, and the face stimuli of the original 

JACFEE task (Matsumoto & Ekman) contains both Japanese and Caucasion faces. Therefore 

the results of the study might be biased as some previous research have found ‘own-race bias’ 

in face processing and perceptual accuracy - people are better able to identify and recognise 
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faces of their own race than faces of another race (e.g. Brigham and Malpass, 1985; Stahl, 

Johanna, & Wiese, 2008). 

 

The facial expression stimuli of Ekman and Friesen’s set (1976) have been used extensively 

in prior studies. The stimuli set contains six basic facial expressions (happiness, sad, fear, 

anger, surprise, and disgust) and a neutral facial expression, which are posed by young and 

middle-age Caucasian females and males. All the stimuli images are in grayscale. Phillips et 

al. (2002) compared thirty young and thirty older participants’ facial emotion perceptual 

performance using the Ekman and Friesen’s set (1976). In the study, they presented 

participants with a sequence of twenty-four photographs from Ekman and Friesen (1976) set 

of faces. For each face image, participants had to choose which of the six emotion labels 

(anger, happiness, fear, disgust, sadness, and surprise) best matched the face. They found 

age-related perceptual decline on sadness and anger in the older group, and these age-related 

declined perceptual performance was not mediated by fluid and crystallised intelligence after 

including these variables in the multivariate analysis. These results were consistent with other 

prior studies suggesting that older people are associated with deficits in recognising negative 

emotions such as sadness and anger (McDowell et al., 1994; Moreno et al., 1993).  

 

In Isaacowitz et al. (2007)’s study, age differences on emotion perception were examined in a 

cross-sectional sample of adults aged between eighteen to eighty-five years. In the study, a 

total of thirty-five Ekman and Friesen’s set (1976) images were used, participants were asked 

to match the facial emotion exhibited by the facial stimuli they saw in each trial to one of the 

emotion labels (anger, disgust, fear, happiness, sadness, surprise, and neutral) and their 

responses were recorded. Before comparing the two groups’ performance difference, 

researchers measured age-related response bias in emotion recognition task and they found 
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older people were more likely to incorrectly label facial stimuli as disgust and fear. After 

controlling for these biases, the results showed that older group performed significantly 

worse than younger group in perceiving facial expressions of anger, disgust, fear, and 

happiness. 

 

One factor that contributes to age differences in emotion perception is age-related changes in 

the perceived intensity of emotional expressions (Phillips and Allen, 2004). Some researchers 

were not entirely happy with the original Ekman and Friesen’s set (1976) that only contained 

images of relatively high emotion intensities. They improved the facial expression stimuli by 

using morphing/blending techniques that generated new stimuli with different emotional 

intensities. For instance, Calder et al. (2003) examined young and older adults’ perceptual 

ability of six basic emotions using photographs of Ekman and Friesen (1976) set and the 

morphed continua of those facial emotions. In experiment 1, twenty-four young participants 

and twenty-four older participants were assessed on Ekman and Friesen’s (1976) multiple-

choice facial emotion labeling task. Consistent with most previous studies claiming that 

increasing age are associated with poorer perception of negative emotions (Phillips et al., 

2002, McDowell et al., 1994; Moreno et al., 1993), their results indicated that older 

participants showed significantly worse recognition of fear and sadness, however, their 

recognition of disgust was significantly better than younger participants. Calder et al. (2003) 

further investigated the effect of aging on the perception of emotion in a larger sample of 

participants (one hundred and twenty-five participants) whose ages spanned between 20 and 

75 years on the same task (experiment 2a) and another Emotion Hexagon task (experiment 

2b). The Emotion Hexagon task (experiment 2b) comprises “morphed continuum” ranging 

between the following six expression pairs (happiness–surprise, surprise–fear, fear–sadness, 

sadness–disgust, disgust–anger, anger–happiness) and each continuum contains five morphed 
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images in the same proportions (Calder, 2013). For example, happy–surprised continuum 

contains images of 90% happy–10% surprise, and then 70–30%, 50–50%, 30–70%, and 10–

90% of the same two expressions. A total of thirty morphed images were presented 

individually and randomly on a computer screen, and participants were asked to choose 

which of the six emotion labels (anger, happiness, fear, disgust, sadness, and surprise) best 

matched the face. Experiments 2a and 2b showed a linear reduction on the perception of fear 

with increasing age, which began at around 40 years of age; and the perception of disgust was 

preserved with increasing age rather than a improvement. Calder et al. (2003) proposed that 

the different patterns of effect of aging on perception of fear and disgust might be due to 

these two emotions being related with different neural regions and normal aging affects these 

emotion-related regions differently.  

 

Unlike Calder et al. (2003)’s study (experiment 2b) that used still images of morphed stimuli 

of expressions, Sullivan and Ruffman (2004a, study 1) used moving morphed emotional 

images that could change from one emotion to another (e.g. anger-happy) to investigate age 

differences in perceiving the changes of emotions. In the study, participants were told that 

they would be presented with a face expressing an emotion, then the emotion would change 

to another emotion. They were asked to press a key as soon as they detected the new emotion. 

They found that older adults were worse than younger adults in perceiving facial expressions 

of sadness and anger, whereas no differences were found between the two age groups in 

perceiving fear or happiness, or in a task requiring recognising non-emotion shapes (control 

task). In the study 2, older and young groups were shown two still images of those morphed 

expressions (from study 1) on each trial, and they were asked to match an image to a specific 

emotion label (e.g. anger). The results showed that older group were associated with declined 

performance on judging which of two faces showed a greater amount of anger, sadness, or 
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fear. Older group showed similar performance as the younger group when judging other 

emotions or when judging which of two containers had more fluid in it (control task). In 

study 2, Sullivan and Ruffman (2014) also included a gender matching task which used the 

similar experimental paradigm as the still morphed emotion perception task. The results 

showed that older people had no problem in matching gender from faces, which suggested 

that older adults’ deficits in recognizing some emotions (anger, sadness) did not extend to 

general facial processing skills. 

 

Orgeta et al. (2008) assessed the thresholds for accurately identifying emotions in young and 

older adults. The facial images used in the study were taken from the Facial Expressions of 

Emotion: Stimuli and Tests (FEEST) (Young, Perrett, Calder, Sprengelmeyer, & Ekman, 

2002). These grey-scale images comprise six basic emotions (happiness, surprise, disgust, 

fear, anger, and sadness) which were portrayed by three male and three female actors (each 

portraying the six emotions). Differing from the morphed images used previous studies 

(blending two different facial emotions with varying proportions), the facial stimuli used in 

Orgeta et al.’s (2008) study were generated by morphing only one emotion with neutral 

emotion with different proportions (25%, 50%, 75%, and 100%). The benefits of doing so is 

to reduce the ambiguity of the morphed facial expressions that where generated from two 

different emotions - which can be very difficult to categorise to one specific emotion. In 

Orgeta et al.’s (2008) task, participants were asked to identify 1) whether an emotion was 

present, 2) and label the facial emotion they saw from provided verbal labels. The accuracy 

of emotion perception at each of the four levels of intensity (25%, 50%, 75%, and 100%) for 

each emotion was calculated. Older people had difficulties in labeling fear, anger, and 

sadness from 50% to 100% intensity of emotions. The performance gap between younger and 

older groups were smaller at 25% emotion intensities. No age-difference was found for 
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perception of happiness, surprise and disgust, even in the lowest emotion intensity (25%), 

which might be due to ceiling performance by both age groups. 

 

All the face stimuli used in previous studies described above only contain young faces or 

middle-aged faces. Ebner et al. (2010) created a new face database which included older face 

stimuli (60 years +) with different types of emotions. These face stimuli have been validated 

and used in their studies (Eber and Johnson, 2009; Ebner et al., 2010). In Ebner et al’s (2010) 

study, they used one hundred and seventy-one colour naturalistic faces of young, middle-

aged, and older women and men. Each face is represented with six facial expressions 

(neutrality, sadness, disgust, fear, anger, and happiness). They asked young, middle-aged, and 

older male and female participants to label these faces in terms of perceived facial expression 

and perceived age. The two age groups did not differ on perception of fearful, happy, or 

neutral faces. However, the older group showed significantly more errors in correctly 

identifying angry, disgusted and sad faces. On the perception of age task, older participants 

made more errors on their perceptions of the age of young faces; however, they were more 

accurate in judging the age of older faces than young and middle-aged participants, which 

might reflect the ‘own-age’ bias in face perception. 
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Figure 1.1. Previous research on young-old behavioural performance on facial emotion 
perception. In the first row, A represents anger; D represents disgust; F represents fear; H 
represents happiness; Sa represents sadness; Su represents surprise; N represents neutral. 
In the findings cells, NT refers to not tested, = represents no significant differences, ￬ 
signifies that older adults performed worse, and ￪ signifies that older adults performed better. 
In answer format, MC represents multiple choice. c Ceiling effect in perception scores. (The 
format and partial contents of this table is adapted from Isaacowitz et al., 2007). 
 
 
Limitations within previous behavioural investigations 

 

Emotional intensity 

A general limitation involved in most previous research is that only high-intensity prototypes 

of facial expression images have been used. This is problematic for two reasons. Firstly, it is 

known that the ability to correctly perceive facial emotional expressions can vary across 

different prototypical emotions (i.e. they are not matched for difficulty; e.g. see Calder et al., 

2003), thus comparisons in performance differences across emotion types can be difficult. 

Study	 N	 Age	ranges	
by	group	

Stimuli	 Answer	format	 A	 D	 F	 H	 Sa	 Su	 N	

MacPherson	et	al.	
(2002)		

90		
	

20–38,	40–
59,	61–80		

	Still	posed	expressions	
(Matsumoto	&	Ekman,	1988)	

MC,	verbal	labels		
	

=	 =	 =	 =c	 ↓	 =	 NT	

	 	 	 	 	 	 	 	 	 	 	 	
Phillips	et	al.	(2002)		
	

60	 20–40,	60–
80		

Still	posed	expressions	
(Ekman	&	Friesen,	1976)		

MC,	verbal	labels		
	

↓	 =	 =	 =c	 ↓	 =	 NT	

Calder	et	al.	(2003,	
Study	1)		

48	 18–30,	58–
70	

Still	posed	expressions	
(Ekman	&	Friesen,	1976)		

MC,	verbal	labels		 =	 ↑	 ↓	 =c	 ↓	 =	 NT	

Calder	et	al.	(2003,	
Study	2a)	

227	 17–30,	31–
40,	41–50,	
51–60,	61–
70		

Still	posed	expressions	
(Ekman	&	Friesen,	1976)		
	

MC,	verbal	labels		
	

↓	 ↑	 ↓	 =c	 =	 =	 NT	

Calder	et	al.	(2003,	
Study	2b)	

125	 18–30,	31–
40,	41–50,	
51–60,	61–
75		

Morphs	of	posed	expressions	
(based	on	Ekman	&	Friesen,	
1976)	
	

MC,	verbal	labels		
	

↓	 ↑	 ↓	 =c	 =	 =	 NT	

Sullivan	&	Ruffman		
(2004,	Study	1)	

61	 20–38,	60–
84		
	

Moving	morphs	of	posed	
expressions	(based	on	
Ekman	&	Friesen,	1976)		

MC,	verbal	labels		 ↓	 NT	 =	 =	 ↓	 NT	 NT	

Sullivan	&	Ruffman		
(2004,	Study	2a)	

56	 18–29,	63–
79		
	

Still	posed	expressions	
(based	on	Ekman	&	Friesen,	
1976)		

MC,	two	images	to	
match	target	emotion		
	

↓	 =	 ↓	 =	 ↓	 =	 NT	

Isaacowitz	et	al.	
(2007)	

357	 18-39,	40-
59,	60-85	

Still	posed	expressions	
(Ekman	&	Friesen,	1976)	

MC,	verbal	labels		
	

↓	 ↓	 ↓	 ↓	 =	 =	 =	

	 	 	 	 	 	 	 	 	 	 	 	
Orgeta	et	al.	(2008)	 80	 17-37,	61-

81	
Still	posed	expressions	
(FEEST,	Young,	Perrett,	
Calder,	Sprengelmeyer,	&	
Ekman,	2002)		

MC,	verbal	labels		
	

↓	 =	 ↓	 =	 ↓	 =	 NT	

Eber	and	Johnson	
(2009)	

56	 18-22,	65-
84	

Still	posed	expressions	of	
young,	middle-aged,	and	
older	faces	(Ebner	et	al.,	
2010)	

MC,	verbal	labels		
	

↓	 NT	 NT	 =	 NT	 NT	 ↓	

Ebner	et	al.	(2010)	 154	 20–31,	44–
55,	70-81	
	
	

Still	posed	expressions	of	
young,	middle-aged,	and	
older	faces	(Ebner	et	al.,	
2010)	

MC,	verbal	labels		
	

↓	 ↓	 =	 ↓	 ↓	 NT	 ↓	
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Secondly, although the study of high intensity emotion has proved useful, more subtle facial 

expression that have lower intensities are common in daily social interactions (Orgeta and 

Phillips, 2007). For example, Pictures of Facial Affect (Ekman & Friesen, 1976) is a widely 

used emotion perception task (e.g. Moreno et al., 1993; Calder et al., 2003) consisting of 

photographs of six basic facial expressions happiness, sadness, anger, fear, disgust, and 

surprise and a neutral expression. Although this database has proved to be an invaluable 

resource, use of the database is limited to considerably high intensity of emotions.  

 

Face stimuli age  

The age of facial stimuli has been found to affect people’s emotion perception. There might 

be an ‘own-age’ bias involved in facial emotion perception. In an emotion perception study 

using fMRI, Ebner, Johnson, and Rieckmann et al. (2013) found older participants showed 

greater activations in medial prefrontal cortex, insula, and amygdala to own-age faces in 

neutral and happiness trials. However, the emotion perception of older faces was reported to 

be harder than young faces, as the wrinkles and folds of older faces can reduce the signal 

clarity of facial expressions (Hess, Adams Jr., Simard, Kleck, 2012; Courgeon et al., 2009). 

In a behavioural study, Ebner, He, & Johnson (2011) investigated both younger and older 

people’s emotion perception of young and old faces, and revealed that both age groups had 

better performance for young faces. 

 

In light of this, it is therefore possible that the facial identity perception results of most 

previous research suggesting that younger participants have superior face performance 

compared with older participants might be biased by the age of facial stimuli, as most 

previous face processing studies investigating young-old differences only used young faces 

(Verdichevski & Steeves, 2013).  
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Experimental paradigm 

Most face emotion perceptual tasks used in previous studies experimental paradigm might 

theoretically tap additional processes alongside perceptually driven performance factors. For 

example, labelling based measures of emotion processing require additional demands of 

assigning a verbal label to an emotion, thus placing additional constraints on performance 

related to variation in emotional vocabulary (Barrett, Lindquist, & Gendron, 2007). Further, 

labelling and same-different judgment tasks often require increased working memory 

demands, thus placing additional constraints on performance related to cognitive load 

(Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). 

 

1.2.3 Explanations of the age-related decline in facial expression perception                         
 

Socio-emotional selectivity theory (SST; Carstensen, Isaacowitz, Charles, 1999) has been 

used to interpret the older people’s decline in negative emotion perception. According to 

SST, older people perceive time as increasingly limited and thus become selective in 

investing resources to emotionally meaningful goals and activities. Therefore, aging is 

associated with a motivational shift towards positive information and avoidance of negative 

information, which was referred to ‘positivity effect’. Based on this theory, older people’s 

poorer performance in negative perception might be due to their avoidance to negative 

emotions (Ruffman et al., 2008). 

 

However, neuropsychologists have argued that the young-old difference in emotion 

perception observed was largely due to structural, neurochemical and physiological changes 

in brain regions in aged people (D’Esposito, 1999; Esposito et al., 1999; Grady, 2000; Calder 

et al., 2003; Isaacowitz et al., 2007; Ruffman et al., 2008; Philllips et al., 2002; Sullivan and 

Ruffman, 2004). In particular, normal aging is associated with thinning of the cerebral cortex, 
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volumetric reductions of most subcortical structures, and decrease in dendritic synapses or 

loss of synaptic plasticity (Fjell, Walhovd, & Fennema-Notestine et al., 2009; Rosenzweig 

and Barnes, 2003). Frontal and parietal show greater decline compared to temporal and 

occipital lobes. Loss of dendritic synapses and volume appear to be serious in the prefrontal 

cortex, the striatum and the hippocampus (Raz, 2004, 2005). Gray matter loss is most 

pronounced for orbital and inferior frontal, cingulate, insular, inferior parietal (Resnick, Pham, 

& Kraut, 2003). The cerebrum loses 1–2% of its mass each year as well as white matter 

structural integrity (Raz et al., 1997; Fjell et al., 2009). The cerebrum weight starts decline at 

the age of 40, and the decline rate significantly increase over the age of 70 (Scahill et al., 

2003). 

 

This neural change has affected the facial emotion processing neural networks. For example, 

this network includes temporal regions such as amygdala and fusiform cortex, which were 

considered to play a general role in responding to all facial expressions (Adolphs et al., 1999; 

Davis and Whalen, 2001); the ventral striatum that responds to anger (Calder, Keane, 

Lawrence, & Manes, 2004). The linear reductions in amygdala volume with age (Tisserand et 

al., 2000; Grieve et al., 2005) may lead older adults to have difficulty recognising facial 

expressions of fear. Similarly, the volume reduction and metabolic decline in the anterior 

cingulate cortex could lead to older people’s reduced ability in recognising facial expression 

of sadness (e.g. Garraux et al., 1999; Pardo et al., 2007). In contrast, the relative sparing of 

some structures within the basal ganglia with age may result in preserved ability at 

identifying disgusted expressions in older adults (Calder et al., 2003; Williams et al., 2006). 
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1.2.4 Neuroimaging investigations  
 

Electroencephalography (EEG) has better temporal resolution than hemodynamic-dependent 

brain imaging techniques (such as fMRI) and enables inference about the time course of 

emotional facial expression processing in human brain. This is because event-related 

potentials (ERPs) originate as postsynaptic potentials (PSPs), which provide a “direct, 

instantaneous, millisecond-resolution” measure of neural activity, which contrasts with 

“delayed, secondary consequence” of the blood oxygen level-dependent (BOLD) signal in 

fMRI (Luck, 2014).  Up to date, few studies have investigated that whether the emotion-

related ERPs are affected by advancing age.  

 

Previous studies have explored the ERP components during facial emotion processing in 

younger adults (e.g. Eimer and Holmes, 2002; Eimer, Holmes, and McGlone, 2003; Balconi, 

Pozzoli, and Pozzoli, 2003; Kissler, Herbert, and Winkler et al., 2009). During passive 

viewing of displays of facial expressions, younger adults showed three major ERP 

components: firstly, an enhanced early frontocentral positivity was elicited in response to 

emotional as opposed to neutral faces within 120ms after stimulus presentation (Eimer and 

Holmes, 2002; Eimer, Holmes, and McGlone, 2003), followed by a broadly distributed 

sustained positivity beyond 250ms post-stimulus (Eimer and Holmes, 2002; Eimer, Holmes, 

and McGlone, 2003), and then followed by an enhanced negativity at lateral posterior sites 

(EPN) (Eimer, Holmes, and McGlone, 2003; Balconi, Pozzoli, and Possoli, 2003; Kisslerm 

Herbert, and Winkler et al., 2009). 

 

The early frontocentral positivity (within 120ms post-stimulus) and later broadly distributed 

positivity (beyond 250ms post-stimulus) were found very similar across different types of 

basic emotional expressions; in other words, these ERP positivities are not modulated by 
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emotion type (Eimer et al., 2003, 2007). In addition, these emotional positivities are 

modulated by attention, as it was found that these positivities disappeared when attention was 

directed away from the faces (Eimer et al., 2003). These early and late emotion-related 

cortical positivities reflect non-automatic and attentive processing of facial emotions, which 

is in contrast to the automatic and inattentive subcortical emotion processing (e.g. amygdala) 

(Eimer et al., 2003, 2007). Prior studies on negativity at lateral posterior sites (EPN) 

suggested that the amplitudes of the EPN were enhanced by emotional faces, as viewing 

threatening (Holmes et al., 2003; Schupp, Ohman, et al., 2004) and happy (Schacht & 

Sommer, 2009) faces elicited an enhanced EPN compared to neutral faces. However, the 

amplitudes of EPN did not vary between pleasant and unpleasant stimuli (Schupp et al., 

2003). In addition, the EPN component was not modulated by different levels of attentional 

demands, as EPN amplitudes remained consistent across a verity of viewing paradigms (e.g. 

passiving viewing, target detection). EPN only increases when the emotional intensity of 

facial stimuli increases (Schupp et al., 2003).  

 

Up to now, few studies have investigated the whether the emotion-related ERPs are affected 

by advancing age. A recent ERP study (Wieser, Mühlberger, Kenntner-Mabiala, & Pauli, 

2006) compared older and younger adults’ ERPs elicited by facial expressions (neutral, 

positive and negative) and revealed that early EPN (168–232ms) was reduced in older adults 

compared to younger adults, but the late EPN (232–296ms) was not affected. However, some 

questions remain to be answered, such as whether other ERP components are affected by 

normal aging (e.g. early and late emotion-related positivities); and what are the effects of task 

difficulty and stimuli age in modulating these emotion-related components. 
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Functional neuroimaging techniques, such as positron emission tomography (PET) and 

functional magnetic resonance imaging (fMRI) have a spatial resolution in the millimeter 

range, and this cannot be matched by scalp electrical recordings. These methods enable 

researchers to explore the precise neural activation patterns during emotion processing tasks. 

The processing of facial emotion is a complex psychological process, and it activates a broad 

range of neural networks. A recent meta-analysis review of fMRI studies (Fusar-Poli, 

Placentino and Carletti et al., 2009) on neural activations of basic facial emotions (i.e., fear, 

disgust, anger, happiness, sadness) revealed that the processings of facial emotions were 

associated with increased neural activations in “visual areas (fusiform gyrus, inferior and 

middle occipital gyri, lingual gyrus), limbic areas (amygdala and parahippocampal gyrus, 

posterior cingulate), temporal areas (middle/superior temporal gyrus), temporoparietal areas 

(parietal lobule, middle temporal gyrus, insula), prefrontal areas (medial frontal gyrus), 

subcortical areas (putamen) and the cerebellum (declive)”. The role played by the amygdala 

in processing facial emotion appears to be greatest for processing fear or potential threat 

(Adolphs, 2002; Calder et al., 2001; Haxby, Hoffman, & Gobbini, 2002). The amygdala, 

along with the STS, also plays a more general role in processing information that is critical 

for social cognition, such as judging the state of mind based on perception of the eye region 

(Baron-Cohen et al., 1999; Kawashima et al., 1999). The basal ganglia and insula are 

associated with processing expressions related to disgust (e.g., Haxby et al., 2002; Phan, 

Wager, Taylor, & Liberzon, 2002), the ventral striatum is associated with processing 

expressions related to anger (Calder, Keane, Lawrence, & Manes, 2004) (figure 1.2). Most 

neuroimaging research on the neurobiological basis of facial emotion processing have 

investigated young participants in their studies. Normal aging affects emotion processing 

related brain regions (Mu, Xie, & Wen, 1999; Chételat, G., Landeau, B., Salmon, 2013), 

however, few research have studied the neural processing patterns in aged population.  
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Figure 1.2. Anatomy of brain. The cerebrum is divided into four lobes: frontal, parietal, 
temporal, and occipital (left graph). Location of major limbic system structures (right graph) 
 

Evidence for two models of age-related hemispheric asymmetry in the emotion processing 

context have been summarised and reviewed. The two models are ‘right hemisphere aging’ 

model and ‘hemispheric asymmetry reduction in old adults (HAROLD)’ model. The right 

hemisphere aging model proposes that normal aging is associated with significant decline in 

right hemisphere, whereas the HAROLD model supports that older people tend to recruit 

more frontal cortical regions to compensate their less subcortical neural activations compared 

to younger people during emotion processing, especially for negative facial expressions. The 

right hemisphere aging model is supported by a mix of behavioural, neuropsychological and 

neuroimaging studies which utilised different approaches, and few results were replicated. In 

contrast, the HAROLD model is mainly evidenced by neuroimaging studies that used fMRI 

to record younger and older adults’ neural activation during presentation of emotional facial 

displays, and the results were quite consistent across a few studies (e.g. Iidaka, Okada, and 

Murata, 2002; Gunning-Dixon, Gur, & Perkins, 2003; Fischer, Sandblom, and Gavazzeni, 

2005). Some researchers suggested that it is possible that the two models are compatible with 

each other (Dolcos, Rice, and Cabeza, 2002). 
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Right hemisphere aging model 

Human lesion and neuropsychological studies have investigated the roles of right and left 

hemispheres played in emotion processing. A number of researchers agreed on the ‘right 

hemisphere dominance’ view, which postulated that the right hemisphere is dominant for 

emotion processing (Blonder et al., 1991; Adolphs et al., 1996; Borod et al., 1997). Another 

valence hypothesis suggested that right and left hemispheres play different roles in 

processing emotions – left hemisphere is in charge for processing positive emotions, whereas 

right hemisphere is responsible in processing negative emotions (Davidson, 1992; Derryberry 

and Tucker, 1992).   

 

A collection of of evidence suggested that the right cerebral hemisphere declines faster than 

the left cerebral hemisphere in normal aging processing (Prodan, Orbelo, & Ross, 2007; 

Goldstein and Shelly, 1981; Paradiso, Vaidya, & McCormick, 2008; McDowell et al., 1994). 

For example, Goldstein et al (1981) tested 1247 participants with age range from 20-70 years 

using a Halstead-Reitan battery, and the test scores were analysed with Russell, Neuringer, 

and Goldstein localisation key which has proven to be highly reliable in predicting 

neurological deteriorations for both normal and clinical population. The results provided 

neuropsychological evidence directly showing that normal aging leads to significant increase 

in right hemisphere deterioration, but a less pronounced effect for left hemisphere.  

 

Further studies have shown that the age-related right hemisphere deterioration is linked with 

declined perception of facial affective information. McDowell et al. (1994) compared 

younger and older adults’ facial emotion perception and age-related hemisphere asymmetry. 

In the study 1, participants were asked to identify stimuli of facial emotional expressions 

from five emotion labels – happy, neutral, angry and fearful. Older people showed 
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significantly more errors in recognising negative and neutral expression, but their perception 

of happiness was consistent with the younger group. In the study 2, the researchers 

investigated the effects of different visual field presentation and valence of the stimuli on 

participants’ response time for the recognition of the emotional stimuli. In each trial, 

participants were asked to look at a fixation cross (mid-line of the screen), and a happy or 

angry emotion stimuli selected from Ekman and Friesen’s (1978) was presented in either the 

right visual field (RVF) or the left visual field (LVF). Participants were asked to label the 

stimuli as ‘happy’ or ‘angry’ as soon as it was presented. Older people showed increased 

hemisphere asymmetry in processing of facial emotions. Specifically, the older adults 

responded faster to angry stimuli when they were presented to their right hemisphere (left 

visual field) than when they were presented to their left hemisphere (right visual field). In 

contrast, the visual field of presentation did not affect younger adults in processing facial 

emotions, as the younger group responded to the different facial emotions with similar speed, 

regardless of visual field. McDowell et al. thought older adults’ faster response time to angry 

stimuli presented to the right hemisphere does not support the right hemisphere aging 

hypothesis. However, the findings of study 1 favored the right hemisphere aging hypothesis 

since older adults showed similar performance as younger adults in recognising happiness 

whereas they showed greater difficulty with negative affect, which would suggest that right 

hemisphere mediated skills (processing negative emotion) are affected more than left 

hemisphere mediated skills (processing positive emotion) in the older adults. McDowell et al. 

concluded that their finding served as a partial support (study 1) to the right hemisphere aging 

hypothesis. Some researchers argued that if the results were interpreted in the context of the 

valence hypothesis of emotion processing which claims right hemisphere is responsible for 

processing negative emotions, then the results could fully support the right hemisphere aging 

hypothesis (Dolcos et al., 2002). Later, in Prodan, Orbelo, and Ross’s (2007) study, both 
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younger and older participants were tested by flashing randomised facial displays of emotion 

to the right and left visual fields. Older people showed significant decline in processing eye 

region information by the right hemisphere compared to the younger group.  

 

In addition, Paradiso, Vaidya, & McCormick (2008) found that normal aging is positively 

correlated with high overall alexithymia score and reduced bilateral rostral and right dorsal 

anterior cingulate cortex (ACC) grey matter volume, and higher alexithymia scores correlated 

with reduced right rostral ACC volume. Alexithymia score is an indication of ‘emotion 

blindness’- difficulty to perceive and describe emotions of others and themselves. Therefore, 

this result suggested that the age-related decline in emotion awareness and perception was 

associated with right hemisphere neural deterioration.  

 

The above summarised behavioural, neuroimaging and neuropsychological studies which 

supports the right hemisphere aging model in emotion processing.  However, the right 

hemisphere aging hypothesis still lacks direct neuroimaging evidence to confirm the proposal. 

Secondly, these studies used quite different approaches and their findings have not been 

replicated by other studies. Future research should further confirm these findings by 

combining brain imaging methods. 

 

Hemispheric asymmetry reduction in old adults (HAROLD) 

In 2002, Iidaka and colleagues investigated age-related differences in the neural substrates of 

facial emotion perception by comparing younger and older people’s neural activation patterns 

during presentation of positive, negative and neutral facial expressions. During the task, 

participants were asked to judge the gender of presented faces and their brain activations 

were recorded using fMRI.  The findings showed that compared to younger participants, 
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older participants showed significantly reduced activity in left amygdala during presentation 

of negative facial expressions (anger and disgust); whereas during presentation of positive 

facial expression, older participants showed significantly reduced neural activation in the 

right parahippocampal gyrus. They also found the overall activity in the right hippocampus 

during the task correlated negatively with age in older participants. This study revealed that 

normal aging is associated with decreased activity in temporo-limbic neural areas, including 

amygdala (processing negative emotion) and hippocampus and parahippocampal gyrus 

(processing positive emotions). However, no neural regions were found to have greater 

activations than younger participants during emotion processing tasks.   

 

The previous study only required participants to discriminate gender of facial displays but not 

facial expressions. Later studies revealed more interesting results by requiring participants to 

recognise type of emotions from displays of facial expressions. Concurrent with relative 

lower limbic regions responses, later studies found recruitment of additional cortical areas in 

older people during facial emotion processing. Gunning-Dixon, Gur, & Perkins (2003) 

examined age-related neural activations in cortical and limbic regions using fMRI by 

presenting facial displays of a mixture of mostly negative emotions (happiness, sadness, 

anger, fear, disgust) to both young and older adults. In emotion-discrimination task, relative 

to baseline neutral condition, younger adults activated the amygdala and surrounding 

temporo-limbic regions, whereas older adults activated left frontal regions. This results firstly 

suggested that normal aging might be associated with less amygdala activity but increased 

frontal activations during facial emotion processing.  

 

Later, some studies have further explored older people’s neural processing of negative 

emotions using fMRI and their results showed similar patterns. Fischer, Sandblom, and 
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Gavazzeni (2005) explored perception of anger in older people by using paradigm of ‘passive 

viewing of facial perception’, which reduced the mental effect of discrimination tasks. They 

presented facial displays of anger and participants’ ratings of emotional valence were 

collected. They compared the fMRI neural activation patterns and subjective ratings of 

emotional valence between younger and older participants. There was no significant age 

difference in the subjective ratings of degree of anger. Regarding the neural responses, in line 

with previous findings, the results confirmed that aging is associated with significantly lower 

subcortical activation but higher cortical activations. Specifically, they found that older 

participants showed significantly higher neural activations in right agranular insula cortex 

and lower activations in amygdala and hippocampus. In their later study (Fischer, Nyberg, & 

Backman, 2010), similar age-related neural activation patterns have been replicated by 

displaying facial images of fear.  

 

In Tessitore, Hariri, and Fera et al.’s (2005) study, they compared older and younger 

participants’ neural processing of fearful and threatening stimuli using fMRI. Direct group 

comparisons revealed that aged participants showed increased prefrontal cortical neural 

responses, including Broca’s area and left medial prefrontal cortex; and significantly lower 

neural responses in the amygdala and posterior fusiform gyrus. It should be noted that, 

different from other experiments, the control/baseline condition used in this experiment was a 

geometric shape matching task instead of a neutral emotion perception task. Therefore, after 

subtracting the baseline condition neural activation from emotion discrimination task, it still 

contains face-related processing neural regions. The fusiform gyrus has been extensively 

reported as a specialised area for processing facial features or high-class delicate object 

features (Kanwisher et al., 1997, 2000; Gauthier et al., 1997, 1999). The finding of additional 
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decreased posterior fusiform gyri neural activation might reflect a decline in processing facial 

shapes and features.  

 

These studies consistently showed a general age-related pattern in processing negative 

emotions, suggesting age-related higher frontal cortical activation might reflect ‘functional 

compensation’ in older adults due to their less efficient processing of emotional facial 

expressions in subcortical limbic regions, such as amygdala and hippocampus. Fischer et al. 

(2010) proposed that older and younger people might rely on different neural networks for 

processing emotions. Young people rely more on amygdala processing, which is an 

automatic, unconscious and effortless way of emotion processing; whereas older people rely 

more on neocortical processing, which relates to an attentional, conscious, effortful way of 

affect processing (e.g., Ochsner et al., 2004; Eimer and Holmes, 2007). Furthermore, this 

unique age-related neural activation pattern for negative emotion processing in older people 

seemed only restricted in facial expressions, and it does not extend to non-social objects. 

Kensinger and Schacter (2008) found both younger and older participants recruited right 

amygdala and orbito-frontal, and parietal cortices during encoding of both negative and 

positive objects, suggesting there is no age-related difference in processing emotional objects.  

 

Unlike other studies that only investigate negative emotion processing, Keightley et al. (2007) 

studied behavioural responses and neural activities of recognising different basic facial 

expressions (happiness, surprise, anger, disgust, fear, sad, neutral) in both younger and older 

adults. The behavioural results showed that older participants had significantly lower 

accuracy than younger participants in recognising negative emotions, whereas their 

perception of happiness did not differ from younger participants. They also found that the 

neural activity pattern for processing different emotions were age-specific. Consistent with 
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previous findings (e.g. Gunning-Dixon et al., 2003, Tessitore et al., 2005), older adults 

showed more widely and increased cortical responses for processing negative emotions, 

including bilateral frontal and temporal regions, and somatosensory cortex. Furthermore, this 

age-specific pattern was also exhibited during neutral emotion perception. For happiness 

perception, young adults additionally activated the amygdala, lateral PFC, posterior cingulate, 

temporal and parietal regions than older adults. The lack of reliable amygdala activity in 

happiness perception in older adults seemed in line with previous studies using negative 

emotions, which was explained as age-related reduced limbic neural activity. However, 

young adults surprisingly activated more cortical regions in happiness perception, this result 

is novel as none of other studies has compared happiness perception in both young and older 

groups. This result needs to be confirmed by more studies and the underlying mechanism 

needs to be explained.  

 

Implications  

Perception of facial emotion may contain two important mechanisms: 1) “construction of a 

simulation of the observed emotion in the perceiver” via the connection from the amygdala to 

motor structures, hypothalamus, and brainstem nuclei; and 2) “the modulation of sensory 

cortices via top-down influences”, where the amygdala can modulate perceptual attention via 

feedback. The second mechanism mostly contributes to fine-tuning the categorization of the 

facial expression (Adolphs, 2002). Thus, decline in the ability in perceiving facial 

expressions and decrease in activation in emotion processing areas in older adults might be 

directly related to the decrease in perceiving the observed emotion and physiological 

responding in various social situations that contain different emotional information, which 

would lead to poor interpersonal functioning and communication, reduced quality of life and 

inappropriate behaviours (Spell and France, 2002, Carton et al., 1999). Previous behavioural 
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and neuroimaging studies have attempted to understand the underlying reasons for older 

people’s poor perception of facial expressions and revealed some age-related changes within 

the emotion perception neurocognitive mechanisms. This would also help to boost current 

knowledge in general emotion processing. 

 

Previous findings suggest that older adults show impairments in the social perception of faces, 

including the perception of emotion and facial identity. The majority of this work has tended 

to examine performance on tasks involving young adult faces and prototypical emotions. 

While useful, this can influence performance differences between groups due to perceptual 

biases and limitations on task performance. Here I sought to examine how typical aging is 

associated with the perception of subtle changes in facial emotional and facial identity in 

older adult faces. I developed novel tasks that permitted the ability to assess facial emotion 

(happiness perception), facial identity, and non-social perception (object perception) across 

similar task parameters. This research would help to constrain our understanding of age-

related changes in social perception. Further, by introducing novel tests using older facial 

stimuli and non-face stimuli that assess performance under equivalent conditions I hope to 

provide the field with important measures that can be used in future research: our new tasks 

adapt the current gold standard measures (Cambridge Face Perception Tests; Duchaine et al. 

2007) that are used in young adults to identify face processing difficulties (e.g. prosopagnosia) 

to include older adult target stimuli and non-face stimuli. The development of these novel 

measures therefore has the potential for use in face perception studies examining a range of 

groups that extend beyond typical older / younger adults that are tested in our current study.  
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A caveat is that most neuroimaging studies only used facial displays of negative emotions in 

their studies (i.e. Tessitore, Hariri, and Fera et al., 2005; Fischer et al., 2010). However, some 

neural regions such as amygdala and hippocampus are related with general emotion 

processing, which were well established in previous emotion studies using young participants 

(Phan, Wager, & Taylor et al., 2002). Therefore, it is not entirely clear if the age-related 

compensation pattern reflects older people’s general emotion processing, or processing of 

negative emotions only (Fischer et al., 2005). Furthermore, in previous studies the facial 

emotion displays only contained high-intensity of anger, which cannot reflect real life social 

signals which contain both subtle and obvious facial emotions. Most previous brain imaging 

studies which recorded behavioural discrimination of emotion (Gunning-Dixon, Gur, & 

Perkins, 2003; Tessitore, Hariri, and Fera et al., 2005) or subjective rating of emotion valence 

(Fischer, Sandblom, and Gavazzeni et al., 2005) have shown that older people can achieve 

similar performance as younger people, but using significantly higher reaction times. In other 

words, older people’s compensation strategy enabled older people to recognise high-intensity 

negative emotions, but the processing takes significantly longer than young people. It is 

unknown if older people’s compensation strategy can efficiently process subtle/low-intensity 

facial expressions. Can they still achieve similar behavioural performance as younger people? 

Do older people exhibit the similar neural patterns to process low-intensity facial emotions? 

If not, what other neural areas might older people recruit additionally to process subtle facial 

expressions?  

 

1.2.5 Summary 
 

This section has summarised and reviewed the recent behavioural and neuroimaging studies 

that investigate facial emotion processing in normal aged population, and discussed two 

popular brain asymmetry aging models. The behavioural studies suggested that healthy older 



	 41	

population show declined facial expression perception of anger, sadness and fear, while the 

perception of happiness showed inconsistent results which requires further investigations. 

Neuroimaging studies have proposed two age-related brain activation models during facial 

emotion processing, both of which have suggested that older adults exhibited different brain 

activation patterns from younger adults. The general limitations of behavioural and 

neuroimaging studies were 1) they only investigated only one (mostly high-) emotion 

intensity, and 2) only young face stimuli were used in those studies, which could cause other-

age face perceptual bias. Furthermore, most neuroimaging studies only used facial displays of 

negative emotions, few studies have compared the young-old neural activations during 

perception of happiness. These limitations show that previous findings might not reflect a 

comprehensive account of older people’s facial emotion perception. To fill these research 

gaps and give a fuller account of this area, one of my research aim was to investigate the age-

related difference in recognising facial expressions of happiness and anger using images of 

low intensities ranges from 3%-40%. Another research aim is to clarify whether the observed 

age-related facial emotion perception decline was due to the use of young facial stimuli by 

using both young and old facial images in face emotion perception tasks.  
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Aging and facial identity perception 

 
1.3.1 Behavioural investigations 
 

People perceive thousands of faces during the whole life. Face identity perception, however, 

does not stay steady during life course. Older people do not exhibit higher expertise in facial 

identity perception due to more exposure to faces and experiences in perceiving facial 

identities. In contrast, previous behavioural studies have established that normal aging is 

associated with a decline in perceiving familiar and unfamiliar faces relative to younger 

adults (e.g. Bowles et al., 2009; Megreya & Bindermann, 2015; Owsley, Sekuler, & Boldt, 

1981; Searcy, Bartlett, & Memon, 1999; Habak, Wilkinson, & Wilson, 2008; Rousselet et al., 

2009, 2010). Older adults show similar hit rates but more false alarms compared with young 

adults in face identity perception (Searcy et al., 1999). This age-related decline is 

independent of loss of visual acuity and contrast sensitivity (Schretlen, Pearlson, Anthony, & 

Yates, 2001), age-related memory load decline (Lamont et al., 2005), or general cognitive 

decline (Hildebrandt et al., 2011). Further, the relationship between facial identity memory 

ability and aging has been shown to reflect an inverted parabola, with performance increasing 

during young to middle adulthood, before declining into and throughout older adulthood 

(Germine, Duchaine, & Nakayama, 2011). 

 

Face-matching is a popular approach for assessing people’s facial identity perception (e.g. 

Habak, Wilkinson, & Wilson, 2008; Megreya & Bindermann, 2015). Searcy and Bartlett 

(1999) showed age-related increased difficulties in perceiving unfamiliar facial identities 

using the Benton Face Recognition Test (BFRT) (see Benton, 1980). In the task, participants 

were shown an unfamiliar target face and a line of six unfamiliar faces, and their task was to 

choose one face from the several to match the target face. The BFRT task comprised two 
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conditions, the choice faces can either contain or not contain the target faces. Compared with 

the young adult participants, older adult participants exhibited lower accuracy and higher 

false choosing rates. Schretlen, Pearlson, Anthony, & Yates (2001) also used the BFRT test 

(Benton et al., 1983) to investigate the effect of normal aging on the perception of facial 

identities in one hundred and seventy-four healthy adults (age range 20 to 92 years). In each 

trial, a full frontal gray scale adult face image was presented, beneath each target face were 

six other choice faces, which were in full or partial light and in full frontal or three-quarter 

profile orientations. The results confirmed that the ability of discriminating unfamiliar faces 

under different light and exposure conditions declined with advancing age (Benton et al., 

1983; Mittenberg et al., 1989; Searcy and Bartlett, 1999). Schretlen et al. (2001) also 

explored the effect of other factors on participants’ face perceptual performance on the BFRT 

task, such as age, sex, education, perceptual comparison speed, and neuroanatomic variables 

[e.g. ventricle-to-brain ratio (VBR)] derived from magnetic resonance imaging. They found 

that the VBR and processing speed alone accounted for nearly 34% of the variance in facial 

perceptual performance. These findings suggest that both age-related neural changes and 

decreases in processing speed contribute to older people’s declined facial identity perception. 

 

Habak, Wilkinson, & Wilson (2008) further demonstrated older adults’ ability in matching 

facial identities at same-view and different-view conditions. In the study, there were nineteen 

healthy younger adult participants (age range 20–30 years) and twenty-one older adult 

participants (age range 58–72 years). In each trail, participants were shown a target face 

briefly, followed by a mask screen for 200ms, and two choice faces shown side-by-side. 

Participants were asked to match one of the two shown faces to the target face. The screen 

would not change until participants made a decision. They found that older adults’ ability in 

matching same-view (front-front or side-side) facial identities were preserved, however, older 
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adults showed deficits in matching facial identities that were shown in different views (e.g. 

front and turned 20° to the side). This results indicate that the mechanisms underlying same-

view facial identity discrimination were maintained with age. In contrast, the processing of 

facial identity across views was degraded. Megreya & Bindermann (2015) explored the 

development of face identity perception from childhood to late adulthood using the 1-in-10 

matching task for unfamiliar faces (Bruce et al., 1999). A total of 330 Egyptian participated 

in this experiment, which included children, adolescents, young, middle-aged, and older 

adults. In each trial of 1-in-10 matching task (Bruce et al., 1999), participants were shown a 

target face and a line of ten choice faces, in which the target face could be present or absent. 

Participants were asked to decide whether the target is present, then participants needed to 

choose which face matched the target face. There were fifty trials in total for each participant 

(twenty-five target present and twenty-five target absent), which were presented in a random 

order. The task was self-paced so the perceptual performance was not affected by motor or 

perceptual speed. It should be noted that, all face stimuli used in the task were young adult 

faces, which could potentially bias children, adolescents and older participants’ performance 

due to ‘own-age’ bias. The accuracy was calculated for each participant. The results suggest 

that that face identity matching accuracy increases between 7 and 10 years and also between 

13 and 16 years of age, and then remains steady during middle-age, and declines in 65 years. 

 

Most face identity task were face matching which required participants to choose a face from 

several to match the target face. Recent studies have adopted a new approach that requires 

participants to sort or arrange several randomly located morphed faces from most likeness to 

least likeness to the target face, which is more sensitive in measuring people’s ability in 

detecting facial identity differences (e.g. Cambridge Face Perception Task: Duchaine, 

Germine, & Nakayama, 2007a; Duchaine, Yovel, & Nakayama, 2007b).  
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1.3.2 Neuroimaging investigations 
 

In event-related potentials (ERPs), N170 refers to a component of the ERP that reflects the 

neural processing of faces. The face-specific N170 component was first proposed by Bentin 

et al. in 1996, who measured ERPs from participants during presentation of faces and other 

objects, and they found that human faces elicited robust negative deflection between 160 and 

180ms at occipito-temporal sites compared to other object categories (Bentin et al., 1996; 

George, Evans, Fiori, Davidoff, & Renault, 1996). The occipito-temporal sites are consistent 

with a source located at the fusiform and interior-temporal gyri (Allison, Puce, & Spencer et 

al., 1999; Ghuman, Brunet, & Li et al., 2014). A small collection of ERP studies have 

demonstrated the effect of normal aging on the N170. Previous studies have found older 

people also displayed N170 when seeing faces, but its amplitude was significantly higher 

than younger participants (Chaby, George, Renault, & Fiori, 2003). In addition, younger 

people showed a right-hemisphere dominant N170 distribution, whereas older people did not 

show the right-lateralised N170 pattern but exhibited a more symmetric distribution (Pfutze, 

Sommer, & Schweinberger, 2002; Chaby, George, Renault, & Fiori, 2003; Gao et al., 2009; 

Daniel and Bentin, 2012). Daniel and Bentin (2012) explained that older people’s additional 

recruitment of the left hemisphere compared to younger people lead to a reduction of 

hemispheric asymmetry in face identity perception. The additional recruitment of the left 

hemisphere might be due to age-related right hemisphere aging. In addition, they also found 

increased activation of frontal regions in older people.  

 

Grady, Maisog, and Horwitz et al. (1994) firstly investigated age-related neural changes 

associated with face identity perception using positron emission tomography (PET). 

Participants carried out face and spatial location matching tasks, in which the target and 

choice stimuli were presented simultaneously to eliminate any memory component. The task 
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difficulty is relatively low as each trial only require participants to choose one stimuli from 

two to match the target. In both tasks, older people exhibited significantly longer response 

time than younger people, but the accuracy of the two age groups did not significantly differ. 

The PET results showed that younger and older participants exhibited similar regional 

cerebral blood flow (rCBT) activation in ventral occipital and occipitotemporal area during 

face matching and dorsal occipital and parietal activation during location matching trials. 

However, older participants utilised more prefrontal and temporal cortex and showed less 

medial occipital activation in both tasks. 

 

Lee et al. (2011) used an fMRI adaptation paradigm to identify the age-related neural changes 

in face identity processing. This technique is based on the assumption that neuronal 

populations show reduced responses (neural adaptation) when specific stimuli to which they 

are sensitive are repeated (Grill-Spector & Malach, 2001). In the study, both younger and 

older participants were presented with successive face images that varied in identity and view 

points and participants were required to perform a head size detection task. It was found that 

older people did not show neural adaptation in right fusiform face area (FFA) when the same 

face was repeatedly presented in the same view, whereas the same stimuli condition elicited 

the most adaptation in young participants. The researchers also examined the correlation 

between whole-brain activation and participants’ behavioural performance. They found that 

high-performing older participants activated the same face-processing network as high-

performing younger participants across almost all conditions, whereas low-performing older 

adults used this network significantly less. However, higher-performing older adults recruited 

more neural regions such as left inferior occipital gyrus, frontal, and parietal regions 

additionally to aid better performance in all conditions. Based on these findings, Lee, Grady, 

Habak et al. (2011) suggested that core face-processing neural regions become less efficient 
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with aging and the recruitment of extra neural network was used to compensate for the 

deficiencies in the core face processing regions.  

 

A limitation of this study described above is lack of non-face stimuli in the testing to 

demonstrate if the age-related neural changes is face-specific. Burianová et al. (2013) 

compared younger and older people’s whole-brain neural activity and neural connections 

using fMRI during same-different matching tasks of faces, houses and objects. In behavioural 

tasks, there was no significant difference in either accuracy or RT between younger and older 

adults. They proposed that age-related neural changes involve two critical phenomena: 

dedifferentiation and compensation. The proposal of age-related neural ‘dedifferentiation’ 

was supported by their whole-brain analysis. It showed that young adults recruit a network of 

neural regions that were specific for face processing during face discrimination task, 

including bilateral occipitotemporal gyrus, fusiform gyrus, inferior frontal gyrus, middle 

occipital gyrus, medial frontal gyrus, and precuneus (Haxby et al., 2000). In contrast, older 

people recruited face-specific neural regions not only in face discrimination task, but also in 

house and object discrimination tasks; suggesting a lack of specificity to different stimulus 

categories. This result is in line with other studies showing that older people’s ventral and 

dorsal visual pathways for faces and objects are less functionally segregated (i.e. Park et al., 

2004; Goh, Suzuki, & Park, 2010). Burianová et al.’s (2013) finding of age-related 

compensatory recruitment was seen in their functional connectivity analysis. Young adults 

showed functional connectivity between the right fusiform gyrus and its surrounding region 

during face processing, whereas older adults showed a functional connection between the 

right fusiform gyrus and left orbitofrontal cortex. In addition, the frontotemporal functional 

connection activity was found to positively correlated with face-matching behavioural 
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performance, suggesting increased involvement of this functional link for successful facial 

identity perception with increasing age (compensation).  

 

To sum up, recent neuroimaging studies have found age-related neural changes for perception 

of facial identities. Older people seem to have similar or reduced neural activation in the core 

face processing regions compared to younger adults, but their additional neural activation in 

prefrontal regions and reduction of hemispheric asymmetry activation patterns during facial 

identity perception reflect a compensation strategy (i.e. Grady, 1994; Lee, Grady, Habak et 

al., 2011; Burianová et al., 2013). In addition, older people’s use of face-specific neural 

regions for processing objects reflects their age-related neural dedifferentiation underlying 

their perception mechanism (Park et al., 2004; Goh, Suzuki, & Park, 2010; Burianová et al., 

2013). However, it is still not clear if the additional neural activations are functionally 

specialised for perception of faces, or whether they play a role in general cognitive execution. 

Secondly, in a few of the neuroimaging studies the facial identity perception tasks were 

relatively easy and older people showed similar or equivalent accuracy compared to younger 

participants. It is critical to clarify if older people can still achieve equivalent behavioural 

performance in harder situations (i.e. match the target face from several face stimuli instead 

of only two), and how does this affect their neural processing? Does their compensation 

strategy survive in such situations?  

 

1.3.3 Mechanism underlying the age-related decline in facial identity perception 
 

Age-related holistic- or feature- processing deficits  

The encoding of faces involves extracting and processing both “first-order relations” and 

“second-order relations” of faces (Chaby, Naeme & George, 2011). The first-order relation of 

faces refers to the overall configural information of faces, or the spatial relations between 
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facial components (i.e. two eyes above a nose and a mouth). The second-order relation of 

faces refers to the distance between features, such as the distance between two eyes, or the 

distance between mouth and nose. A number of previous studies have been carried out to 

explore possible age-related changes in the encoding of different types of facial information. 

Some researchers argued that these changes might be due to older people having difficulty in 

encoding facial features in a global manner (also referred to as ‘holistic processing’), which 

plays a critical role in facial identity perception (Murray, Halberstadt, Ruffman, 2010; Daniel 

& Bentin, 2012). Murray, Halberstadt, Ruffman (2010) found older people were less 

sensitive to configurally distorted faces than younger people, whereas there was no group 

difference in judging featurally distorted faces. They suggested that older people might have 

deficits in encoding configural information while their basic feature processing remains 

intact. Consistent with this finding, ERP face perceptual studies (Gao, Xu, Zhang & Zhao et 

al., 2009; Daniel & Bentin, 2012) found an absence of the typical face-inversion effect on 

N170 amplitude in older participants, which suggested their reduced sensitivity in integrating 

face features into global structures (holistic processing). This perceptual change might be the 

cause for poorer identification for facial identity perception.  

 

However, several other studies claimed that the age-related decline in facial identity 

perception might not be due to reduced holistic processing (Boutet and Faubert, 2006; Konar, 

Bennett, and Sekuler, 2010; Meinhardt-Injac, Persike & Meinhardt, 2014). Using a composite 

face effect measure – an index of configural processing ability, Konar et al. (2010) did not 

find a significant group difference in the composite face effect measure. However, the older 

group still exhibited a decline in facial identity perception. Boutet and Faubert (2006) 

compared both younger and older adults’ performance for upright-, inverted- faces and 

objects, and they found a significant group difference for perception with upright faces but 
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not upright objects. In addition, it was found that facial identity perception was more 

significantly affected by inversion than object perception in both young and older adults. This 

finding suggests that the mechanism involved in the face inversion effect is not influenced by 

age differences; in other words, holistic processing is not impaired in older adults.  

 

Spatial frequency hypothesis in face and object perception 
Recently, Meinhardt-Injac, Persike & Meinhardt (2014) proposed that older people did not 

show decline in processing faces holistically, but they have difficulty in handling precise 

internal facial features. In the study, they found the age-related perception decline in both 

face and object (watch) perception, while the decline in facial identity perception was 

stronger than object perception. Both groups showed inversion effect for faces but not 

objects. They compared both old and young participants’ performance in matching external 

and internal faces/watches. The results showed that older people only had poorer 

performance than younger participants in matching internal face features (e.g. eyes, nose), 

but not in external facial features (e.g. hairstyle, moustache), nor internal/external object 

features.  

 

They proposed that the main differences between faces and objects (watches) are the 

individual features and fine spatial relationships between these features. Different spatial 

frequencies encode different aspects of faces and objects, and visual cues used for face and 

object discrimination might be associated with distinct spatial frequencies (Morrison and 

Schyns, 2001). Gaspar et al. (2008) measured face identification thresholds for upright and 

inverted faces embedded in different types of noise and concluded that people use 

information conveyed by similar narrow bands of spatial frequencies to identify upright and 

inverted faces, which is roughly 1.5 octaves wide and centred on 7 cpf. Previous studies also 

found that older adults showed problems in discriminating internal facial features or judging 
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the fine spatial distances between eyes (Chaby et al., 2011; Slessor et al., 2012), whereas 

judging the broader spatial distance along the vertical axis (i.e. from eyes to mouth) was 

found to be maintained in older adults (Chaby et al., 2011). This dissociation pattern might 

reflect aging is associated with deficit in discriminating short-range spatial cues but intact at 

discriminating long-range spatial cues (Meinhardt-Injac, Persike & Meinhardt, 2014). 

 

1.3.4 Limitations in previous research 
 
Face stimuli age  

People are better at recognising faces of their own age (Bäckman, 1991; Anastasi & Rhodes, 

2005; Wright & Stroud, 2002; Wiese, Komes, & Schweinberger, 2012); in other words, 

people seems to have superior facial perception ability when face stimuli are congruent with 

their own age. This phenomenon has been referred to as ‘own age bias. For example, 

Bäckman (1991) found that young adults (Mean age = 23.8 years) showed better perception 

for young faces than for old faces, whereas older adults (Mean age = 68.5 years) showed 

better perception for old faces than for young faces. Although there are some inconsistent 

findings (e.g., Wallis et al., 2012; Wiese, Schweinberger, & Hansen, 2008), a recent meta-

analysis of facial identity perception studies has revealed that all age groups exhibited 

superior facial identity perception ability for same-age compared with other-age faces 

(Rhodes & Anastasi, 2012). Thus, the own age bias appears to be a robust effect that 

influences the accuracy of facial identity perception. The authors suggested that the ‘own age 

bias’ might be due to more exposure with one’s own age group relative to other-age groups. 

Furthermore, people tend to spend longer time looking at own age faces during facial identity 

perception tasks (He, Ebner, and Johnson, 2011), which might suggest an own-age preference 

during face processing. 
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In light of this, it is therefore possible that the facial identity perception results of previous 

research suggesting that younger participants have superior face performance compared with 

older participants might be biased by the age of facial stimuli, as most previous face 

perception studies investigating between younger and older participants’ differences only 

used young faces (Verdichevski & Steeves, 2013). Few studies have investigated how the 

effect of age interacts with the other variables of the stimuli faces. Therefore, it is very 

important to clarify whether age-related facial identity perception decline might be due to 

face stimuli age bias. 

 

Does the age-related facial identity perception decline extend to object 

perception 

Numerous studies have shown that normal aging is associated with declined facial identity 

perception. However, not many studies have investigated whether the age-related facial 

identity perception decline is specific or whether it also extends to object perception. For 

these reasons, it is important to include control conditions to examine whether deterioration 

in facial emotion perception would be independent of object perception. The results might 

also contribute to the knowledge of the face-specificity/expertise controversy and the 

underlying mechanisms.  

 

1.3.5 Summary  
 

Most behavioural investigations of aging and facial identity perception have agreed that older 

people have declined ability in perceiving face identities. Inconsistent with findings of 

behavioural studies, a few neuroimaging studies found that older people showed similar or 

equivalent accuracy compared to younger participants, which might be due to lower levels of 

task complexity. Neuroimaging studies suggested that older people have similar or reduced 
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neural activation in the core face processing regions compared to younger people, however, 

they adopt a wider spread of neural regions such as prefrontal cortex and bilateral hemisphere 

during facial identity perception tasks. However, it is still not certain what role the additional 

activated neural regions play during facial identity perception tasks. Do they compensate for 

the inefficacy of the core face processing neural regions? Or they just boost the general 

cognitive execution to let older people attend to facial identity perception tasks better? 

Furthermore, most neuroimaging studies only compared young-old behavioural performance 

on a single task that only comprises one level of task complexity and most of these 

complexity levels were relatively low. It is not clear if older people still show the same neural 

activation patterns in a different task complexity, and if older people can still show similar 

behavioural performance as younger adults.  

 

Some behavioural and ERP studies suggested that older people have difficulty in holistic 

processing of faces, but some evidence against this view. In recent years, some researchers 

raised the spatial frequency hypothesis, which suggests that face and object perception might 

be associated with distinct spatial frequencies and this might lead to an age-related 

dissociation pattern in face and objects perception. In my PhD research I will try to explore 

what underlying mechanisms contribute to the facial identity perception decline in older 

people, and whether the age-related facial identity perception decline extends to object 

perception. I will also use both younger and older face stimuli in facial identity perception 

tasks to investigate the effect of ‘own-age’ bias in both younger and older adults. 
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Compensation-related utilization of neural circuits hypothesis (CRUNCH) model 
 

 
1.4.1 Proposal of the CRUNCH model 
 

Previous two sections have summarised the latest findings of age-related neural changes in 

facial emotion and facial identity perception, and older people’s use of compensatory strategy 

in these facial perception tasks. Other studies have explored age-related declines in other 

mental abilities and the underling neural activations, which include attention (Johannsen, 

Jakobsen, & Bruhn, 1997; Madden, Turkington, & Provenzale, 1997; Anderson, Iidaka, & 

Cabeza, 2000), working memory (Hartley, Speer, & Jonides et al., 2001; Mitchell, Johnson, 

& Raye et al., 2000) and executive functioning (Smith, Geva, & Jonides, 2001). These 

studies have shown a general pattern that older people tend to recruit more cortical regions 

than younger people when performing an identical task, especially frontal regions when 

performing effortful tasks (Grady, 2000; Raz, 2000). Older people’s increased recruitment of 

additional neural areas might reflect an attempt to compensate for inefficiency in cortical 

networks (Gunning-Dixon, Gur, & Perkins, 2003).  

 

Reuter-Lorenz and Cappell (2008) reviewed neuroimaging studies of age-related functional 

brain organisation  and proposed the compensation-related utilization of neural circuits 

hypothesis (CRUNCH) model. The model illustrates younger and older people’s behavioural 

performance and neural activation patterns at low and high task demands and explained the 

possible underlying mechanisms. According to the CRUNCH model, at lower levels of task 

demand, older adults exhibit a region-specific neural overactivation pattern but they can 

achieve similar or equivalent behavioural performance as younger adults (successful neural 

compensation). However, beyond a certain level of task demand, the older people’s brain 

falls short of sufficient neural activation and their behavioural performance declines 
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compared to the young people (neural compensation failure). This model is based on the 

assumption that older people’s processing inefficiencies cause the aging brain to recruit 

additional neural resources to achieve the similar output as younger brain. This compensatory 

strategy is effective at lower level of task demand. However, as task demand increases, older 

people’s neural resourses ceiling is reached and this results in insufficient compensation and 

age-related behavioural performance decline. This aging compensation model has been well 

supported by studies of other cognitive functions, such as memory (Daselaar, Fleck, & 

Dobbins, 2006), language processing (Cappell, Gmeindl, & Reuter-Lorenz, 2006; Martin, 

Joanette, and Monchi, 2015) and executive functioning (Martin, Joanette, and Monchi, 2015). 

However, to date no one has demonstrated this model in the context of aging and face 

perception.  

 

1.4.2 Aging and neural plasticity 
 

The CRUNCH model suggests potential for neural plasticity that persists into the later years 

of the human lifespan. Normal aging, along with the neurological decline, gradually lower 

the neural resource ceiling which leads to inefficient compensation and worse behavioural 

performance. Reuter-Lorenz and Cappell (2008) further suggested that behavioural training, 

exercise, and other interventions applied in older adults might potentially increase their 

neural resources and compensatory potential. Using a non-invasive brain stimulation method, 

some studies supported this hypothesis and found older people’s cognitive ability can be 

enhanced by boosting neural excitability.  

 

Transcranial magnetic stimulation (TMS) is a non-invasive method that applies focally 

directed magnetic pulses to the scalp to stimulate the underlying neural tissue. It can 

temporarily excite or inhibit specific areas by applying an activating or deactivating mode. 
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Rossi et al. (2004) found that neural overactivation in older adults is essential for behavioural 

success. Older people normally exhibit bilateral prefrontal activation during perceptual 

memory. It was found that their perceptual memory was impaired when either side of 

hemisphere was temporarily inhibited by TMS, suggesting bilateral activation is necessary 

for their normal functioning of perception memory. In contrast, younger people normally 

show unilateral activation during perception memory, and their performance can only be 

affected by applying TMS deactivation to one side of hemisphere. Furthermore, using fMRI, 

Solé-Padullés et al. (2006) found repetitive transcranial magnetic stimulation (rTMS) can 

modulate low performing older adults’ neural activation pattern from unilateral to bilateral 

neural activation, and this change lead to their significantly improved their memory 

performance. 

 

1.4.3 Research aims 
 
Aging-related facial identity perception compensation pattern 

The CRUNCH model partially explains the inconsistent behavioural results in previous facial 

perception studies as almost all face identity and facial emotion perception studies only 

compared younger and older people’s behavioural accuracy and neural activation patterns on 

one task demand. The task demand of individual studies varies, which can be lower or higher 

than older people’s neural resource ceiling, and these variations lead to inconsistent results.  

 

It is already proven that normal aging affects other cognitive functions such as language 

processing and executive functioning, which is in line with the CRUNCH model. But, do face 

identity and facial expression perception rely on the same compensatory mechanisms to 

maintain performance as one gets older? Surprisingly, few studies have tried to answer this 

question. Therefore, one of my research aims is to demonstrate if older people rely on the 
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CRUNCH compensatory model for their facial emotion perception. I will address this 

question in my EEG study. 

 

Explanation of age-related overactivation 
Most face identity and face emotion perception studies showed an age-related frontal over-

activation neural pattern compared to younger people. The explanation for this additional 

neural recruitment also varies. Some researchers pointed out the additionally activated frontal 

neural areas played a role in the specific face-related processing, in other words, these 

additional neural regions were functionally adapted or reorganised into the specific facial 

perception tasks by normal aging (e.g. Gunning-Dixon et al., 2003; Keightley et al., 2007; 

Fischer et al., 2005). However, some researchers argued for an increased visual perceptual or 

executive functioning for these additional frontal activations (Tessitore et al., 2005). As it is 

well established that lateral and inferior prefrontal regions are critical regions for executive 

functions such as attention selection, inhibition and maintenance; in addition, prefrontal 

activation has been shown across different studies including working memory, language 

processing, and facial identity perception.  

 

It it still not very clear what exact roles these frontal overactivations compensate for. I will 

try to explain this question using EEG to observe and compare older and younger people’s 

brain activation pattern in response to facial perception tasks with different difficulty levels.  

 

The effect of brain stimulation on older people’s facial perception 

The CRUNCH model provides a theoretical foundation for the age-related neural 

compensation and neural plasticity. Several non-invasive brain stimulation studies on 

memory have proved the effectiveness of brain stimulation in enhancing older people’s 

behavioural performance by boosting their cortical activations. The evidence suggested that 
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the older people’s neural resource ceiling can be altered by boosting the cortical neural 

activation and recruiting additional neural regions. This type of study has not been done in 

facial perception studies in older population. Therefore one of my research aims is to use a 

non-invasive method to enhance older people’s facial emotional perception. This can help to 

understand the age-related neural changes and neural networks related to facial emotion 

perception. 

 

 

Aims of PhD research 

My PhD research seeks to examine the effect of aging on social perception, and to further 

explore the changes in the underlying neural mechanisms using brain stimulation and brain 

imaging techniques. During the start of my PhD I conducted behavioural studies, which 

forms the foundation for brain stimulation and brain imaging studies. This thesis sought to 

address the following questions: 

1. a) To investigate the age-related difference in perceiving low-intensity anger and 

happiness, b) whether the emotion perception deficits extend to facial traits judgement, 

and c) whether these face perception deficits observed with increasing age reflects an 

emotion-specific impairment rather than a general face perceptual decline. (Chapter 2) 

 

2. To assess social perception of subtle changes in facial emotion and facial identity 

shown by older adult actors using same experimental paradigm and levels of 

difficulty. Additionally, in order to ensure that any differences in performance were 

specific to social perception I sought to examine the extent to which age related 

differences in the perception of subtle visual cues extended to the perception of non-

social stimuli (object perception). (Chapter 3) 
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3. To investigate whether non-invasive brain stimulation (high-frequency tRNS) can 

modulate older adults’ abilities to perceive facial emotion (anger and happiness 

perception) and facial identity? I also assessed the extent to which any changes in 

performance following stimulation would be influenced by pre-stimulation (i.e. 

baseline) perceptual abilities. (Chapter 5) 

 

4. To investigate age-related neural activation patterns at neutral (baseline), easy and 

hard conditions for anger and happiness emotion perception in young and old adult 

participants. (Chapter 6) 
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CHAPTER 2: AGING AND PERCEPTION OF FACIAL EMOTIONAL 

EXPRESSIONS AND FACIAL IDENTITY  

 
In recent decades a variety of behavioural studies have investigated age differences in facial 

emotion perception. Older adults appear to have declined perception of negative facial 

expressions of emotions, whereas age related differences in the perception of happiness are 

less consistent. A general limitation involved in most previous research is that only high-

intensity prototypes of facial expression images have been used. In this chapter, I 

investigated the effect of normal aging on perception of lower-intensity facial emotional 

expressions and facial identity with subtle differences. Secondly, most face perception studies 

into the relationship between aging and social perception have only investigated one aspect 

of face processing at a time (i.e. emotion or identity in isolation) or used tasks that have 

paradigms involving different task complexities (e.g. working memory demands). In order to 

demonstrate whether there is a domain-specific deficit in emotion perception or a more 

domain-general shift in the ability to make fine-grained visual discrimination, I compared 

older and younger participants’ perceptual performance of facial emotional expressions and 

facial identities using the same experimental paradigm. Thirdly, behavioural and 

neuroimaging evidence has shown that facial trait perceptual abilities are closely related to 

the perception of facial expressions and facial identities. However, whether the facial 

emotion perception decline in older adults extends to such trait judgements remains unknown. 

In this chapter, I also examined two age groups’ perceptual performance on facial trait 

judgement and demonstrated the relationship between facial trait perceptual performance 

and two other facial perceptual performances (facial emotional expression and facial 

identity). The results have revealed that older people have a declined ability in facial identity 

perception, and facial expression perception of anger but a lesser extent in facial happiness 
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perception. No group difference was observed in the facial trait perception tasks. I also 

explored the pattern of change in different face perception abilities across the lifespan. These 

results are explained with prior studies and the potential underlying age-related face 

processing mechanisms are discussed.  

 

2.1 Introduction 
 

Chapter one has summarised the recent findings of older people’s perception of facial 

emotions and limitations involved in previous studies. The general pattern that has emerged 

is that older adults appear to have declined perception of negative facial expressions of 

emotions such as anger, sadness, fear and surprise (Phillips et al., 2002; Calder et al., 2003; 

MacPherson et al., 2006; Sullivan & Ruffman, 2004; Isaacowitz et al., 2007). However, a 

general limitation involved in most previous research is that only high-intensity prototypes of 

facial expression images have been used and low intensity emotion stimuli were largely 

ignored (Hess, Blairy, & Kleck, 1997, Orgeta and Phillips, 2007). A number of questions 

remain: e.g. a) are these differences a consequence of domain-specific deficits in subtle 

emotion perception or more domain-general shifts in the ability to make fine-grained visual 

discrimination, b) could the lack of age-related effects in certain emotions relate to task 

sensitivity (e.g. better performance on happiness perception relative to other emotion types).  

 

In addition to facial expression perception, there is also prior work suggesting that facial 

identity perception abilities may decline with age (Bowles et al., 2009; Megreya & 

Bindermann, 2015). Further, the relationship between facial identity memory ability and 

aging has been shown to reflect an inverted parabola, with performance increasing during 

young to middle adulthood, before declining into and throughout older adulthood (Germine, 

Duchaine, & Nakayama, 2011). Despite evidence that both facial identity and facial emotion 



	 62	

perception changes during typical adult aging, most face perception studies on the 

relationship between aging and social perception have only investigated one aspect of the 

face processing at a time (i.e. emotion or identity in isolation) or used tasks that have 

inconsistent paradigms involving different task complexities (e.g. working memory 

demands). In this regard, prior work struggles to give a clear picture about how normal aging 

is related to different aspects of face perception, meaning that the extent to which age 

influences face identity and face expression perception abilities in similar or different manner 

remains unclear. In addition, face inversion is commonly linked with reduced performance 

compared to upright facial perception. This is often thought to relate to configural processing 

being disrupted by facial inversion. By including inverted faces we were able to check 

whether differences in performance on the identity processing task were specific to 

perceptual processes associated with upright versus inverted face processing. 

 

The CFPT format requires participants to discriminate between visual stimuli on the basis of 

visual properties alone (Duchaine et al., 2007a, b; Bowles et al., 2009). This offers benefits to 

assess perceptual differences over other task formats (e.g. labelling tasks, same-different 

judgment tasks) that might theoretically tap additional processes alongside perceptually 

driven performance factors (Adolphs, 2002; Palermo, O’Connor, Davis, Irons, & McKone, 

2013). For example, labelling based measures of emotion processing require additional 

demands of assigning a verbal label to an emotion, thus placing additional constraints on 

performance related to variation in emotional vocabulary (Barrett, Lindquist, & Gendron, 

2007). Further, labelling and same-different judgment tasks often require increased working 

memory demands, thus placing additional constraints on performance related to cognitive 

load (Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). The face perception tasks 

that have been used in this study were validated and used in other published studies (e.g. 
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Janik et al., 2015; Romanska et al.,2015; Rezlescu et al., 2014), which used the same way of 

measuring performance.  

 

2.1.1 Exploration of aging and facial trait judgement 

As discussed in chapter one, Oosterhof and Todorov (2008) proposed that the judgement of 

trustworthiness is associated with facial emotional expressions whereas judgement of 

dominance correlates more with certain facial features. In addition, numerous evidences have 

shown that the judgement of trustworthiness from faces is both neurologically and 

behaviourally closely related to the perception of facial expressions.  

 

Prior facial trait studies found that older and younger adults’ perceptual ratings on 

trustworthy faces were similar, but older adults perceived untrustworthy faces to be more 

trustworthy than younger adults (Castle, Eisenberger, & Seeman et al. 2012; Bailey, Szczap, 

McLennan et al. 2015). The pattern of results was discussed with older people’s ‘positivity 

bias’ - they are less sensitive to cues that are related to negative experience (Castle, 

Eisenberger, & Seeman et al. 2012, Bailey, Szczap, McLennan et al. 2015). In addition, the 

neural imaging results found that younger adults showed greater anterior insula activation to 

untrustworthy versus trustworthy faces, older adults showed little activation of the anterior 

insula to untrustworthy faces (Castle, Eisenberger, & Seeman et al. 2012).  

 

Previous aging studies on facial trait perception have explored the older adults’ perception of 

facial trait of trustworthiness, but few studies have studies older adults’ perception of facial 

trait of dominance/aggressiveness, and whether the impairment of facial emotion or identity 

perception in older adults extends to such trait judgements remains unknown. Therefore, I 
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also examined whether deficits in recognising emotions could extend to facial trait perceptual 

abilities (trustworthiness and aggressiveness) in Experiment 1. 

  

2.1.2 Summary of Experiment 1 

The first aim of the experiment was to investigate the age-related difference in perceiving 

anger and happiness in low-intensity facial expression stimuli. Another important theoretical 

consideration relates to whether the emotion perception deficits observed with increasing age 

reflects an emotion-specific impairment rather than a more general face perceptual decline 

(face-identity task). Finally, according to Oosterhof and Todorov (2008)’s facial trait model, 

facial trait of trustworthiness correlates with facial information of emotional expressions 

whereas judgment of dominance correlates more with certain facial features. The third aim is 

to investigate if there is age-related difference in facial trait judgment.  

 

2.2 Methods 
 

Participants 

Participants consisted of twenty-three younger adults (seventeen female and six male; age 

range 18 – 40 years, mean age = 23 years, SD = 5 years) and twenty-two older adults (sixteen 

female and six male; age range 57 – 75, mean age = 65 years, SD = 6 years). All participants 

were native-English Caucasians, with no known history of neurological problems, dyslexia or 

other language-related problems, and with normal or corrected- to-normal vision. Younger 

participants were recruited through the university’s undergraduate participant pool, and older 

participants were recruited from local elderly community centres.  

 

Level of education, premorbid intelligence (NART), and handedness were recorded at the 

beginning of experiments; the two groups did not significantly differ in these factors (details 
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given in the Results section). The Mini-Mental State Examination (MMSE) was used as a 

screening evaluation to test older participants for possible dementia (Folstein, Folstein, & 

McHugh, 1975). The MMSE appears to be the most widely used measure to screen for 

cognitive status. A cut-off limit of < 24 was used, which has a good sensitivity for dementia 

in the older population (Chayer, 2002). No participants were excluded from the study on the 

basis of this criterion. All participants gave informed consent prior to beginning the 

experiment and were fully informed about the experimental procedure. The local ethics 

committee approved the study. 

 

Materials and procedure 

Three main tasks were carried out: CFPT, CFPT-Facial Expression, CFPT-Facial Trait. 

Participants completed all tasks in a counterbalanced order. These tasks are detailed below. 

 

Test of facial identity perception (CFPT) 

To investigate facial identity perception the Cambridge Face Perception test was used in the 

experiment (CFPT; Duchaine, Germine, & Nakayama, 2007a; Duchaine, Yovel, & 

Nakayama, 2007b). This test demonstrated participants’ ability to perceive differences 

between facial identities. During the task, participants were presented a target face (from a 

3⁄4 viewpoint) and six faces (from a frontal view) morphed between the target and distractor 

in varying proportions (88%, 76%, 64%, 52%, 40%, 28%) so that they vary systematically in 

their similarity to the target face [see Figure 2.1 (a) for examples]. In each trial, participants 

were asked to sort the six faces by similarity to the target face with a one-minute time limit. 

Participants sorted the faces by clicking on the face that they wished to move and then 

indicating where the face should be by clicking in the area between two faces. The desired 

face was then moved to the chosen location by the program. If participants completed the 
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trial before the time limit expired they were able to click an option on screen to begin the 

next trial ial (i.e. the task was self-paced). Memory demands are minimal because faces are 

presented simultaneously. The task involved eight upright and eight inverted trials that 

alternated in a fixed pseudo-random order. This allowed investigation of the inversion effect 

for face perception. Performance of each subject was measured using percentage of correct 

responses. Change performance is 36%.  

 

 

Figure 2.1. (a) Example trials of CFPT task. In CFPT trials, participants were displayed a 
target face and six faces (from a frontal view) morphed between the target and distractor in 
varying proportions (88%, 76%, 64%, 52%, 40%, 28%). Participants’ task is to sort the six 
faces according to the degree of similarity to the target (shown at the top in three-quarter 
view). Half of the trials contain upright faces (upper graph) and half inverted faces (lower 
graph). 
 

 

Most Like Least Like 

Most Like Least Like 

a. 
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CFPT – Facial Expression 

Two tasks were used to test perception of facial expression [happiness (Janik-McErlean et al. 

(Submitted) and anger (Janik et al., 2015)), which use the same experimental paradigm as the 

test of facial identity perception (Cambridge Face Perception Test), although no target face 

was presented. In this test, participants were asked to sort faces according to perceived 

happiness/anger. During the task, participants were presented six faces (from a frontal view) 

morphed between the expression of ‘happiness’/‘anger’ and a ‘neutral’ expression in varying 

proportions (Happy: 15%, 12%, 9%, 6%, 3%, 0%; Anger: 40%, 32%, 24%, 16%, 8%, 0%) 

[figure 2.1 (b)]. These six faces were presented on the screen in random order. Participants 

were required to sort them according to how happy/angry they appeared, from the face that 

looks least happy/angry on the left to the face that looks most happy/angry on the right. The 

time limit for each trial was 60 seconds. Performance was measured by an error score, which 

was calculated by summing the deviations from the correct position for each face, with one 

error reflecting each position that a face must be moved to be in the correct location. Error 

scores on the trials were summed to determine the total number of errors. 

 

 

Figure 2.1. (b) Example trials of CFPT-Facial Expression task (upper graph: CFPT- 
Happiness; lower graph: CFPT - Anger). Six faces (from a frontal view) morphed between 
the expression of ‘Happiness’/‘Anger’ and a ‘neutral’ expression in varying proportions 
(Happy: 15%, 12%, 9%, 6%, 3%, 0%; Anger: 40%, 32%, 24%, 16%, 8%, 0%;). These six 

b. 
Most Happy Least Happy 

Most Angry Least Angry 
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faces were presented on the screen in random order. Participants were required to sort them 
according to how happy/angry they appear from the face that looks least happy/angry to the 
face that looks most happy/angry. 
 

CFPT – Facial Trait 

Two tasks were used to test perception of personality traits from faces [trustworthiness 

(Rezlescu et al., 2014; Romanska et al., 2015) and aggressiveness], which use the same 

experimental paradigm as the test of facial identity perception (Cambridge Face Perception 

Test). I used ‘aggressiveness’ instead of ‘dominance’ as it represents a similar trait and 

people are more familiar with the trait ‘aggressiveness’. In this test, participants were asked 

to sort faces according to perceived trustworthiness/aggressiveness [figure 2.1(c)]. During the 

task, participants were shown six faces (from a frontal view) with different levels of 

trustworthiness/aggressiveness. The ‘correct’ sorting orders for traits trustworthiness 

and aggressiveness were determined based on average ratings obtained from 338 online 

participants (each average score included at least 48 data points). These six faces were 

presented on the screen in a random order. Participants were required to sort them according 

to how trustworthy/aggressive they appear, from the face that looks least 

trustworthy/aggressive on the left to the face that looks most trustworthy/aggressive on the 

right. The time limit for each trial is 60 seconds. Performance was measured by an error 

score, which was calculated by summing the deviations from the correct position for each 

face, with one error reflecting each position that a face must be moved to be in the correct 

location. Error scores on the trials were summed to determine the total number of errors. 
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Figure 2.1. (c) Example trials of CFPT-Facial Trait task (upper graph: CFPT-
Aggressiveness; lower graph: CFPT - Trustworthiness). Participants were shown six faces 
(from a frontal view) with different levels of aggressiveness/trustworthiness. These six faces 
were presented on the screen in random order. Participants were required to sort them 
according to how aggressive/trustworthy they appear from the face that looks least 
aggressive/trustworthy to the face that looks most aggressive/trustworthy. 
 

2.3 Analysis and Results 
 

Before further analysis, two younger and one older participants were withdrawn from the 

analysis due to them being identified as outliers in at least one task. More specifically, each 

participant that was withdrawn performed three standard deviations away from the group 

mean on either one or more tasks, and were verified as outliers using Grubb’s Test. 

 

Demographic differences 

After excluding outliers, twenty-one young and twenty-one old participants’ experimental 

data were used for further analysis. The mean age of the young group was 23 years (SD = 5 

years) and the mean age of the old group was 65 years (SD = 6 years). The years of education 

(young group: mean = 16 years, SD = 2 years; old group: mean = 16 years, SD = 2 years) and 

NART scores (young group: mean = 115.89, SD = 7.38; old group: mean = 118.33, SD = 

8.62) of two age groups were compared and they were not significantly different. The gender 

Most  
Aggressive 

Least 
Aggressive 

Most 
Trustworthiness 

Least 
Trustworthiness 

c. 
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and handedness of two groups were matched. The younger group comprised of sixteen 

females and five males, with none left handed participants. The older group comprised of 

fifteen females and six males, with 1 left handed participant. 

 

Social perception performance differences 

Perceptual performance of two groups were analysed using 2 (group) × 6 (task type) mixed-

ANOVA with the between-participants factor of group (young and old) and within-

participants factor of task type (anger and happiness expression perception, upright and 

inverted identity perception, trustworthiness and dominance facial trait perception). 

Mauchly’s test indicated that the assumption of sphericity had been violated so the 

Greenhouse-Geisser correction was employed. The results revealed a significant effect of 

task type [F (3.833, 153.302) = 29.640, p < .001, η2 = .426]. Bonferroni corrected post-hoc 

comparisons revealed that this was because overall participants performed better on the facial 

expression (both happiness and anger conditions) and upright facial identity perception 

relative to inverted face perception and aggressiveness facial trait perception. There was also 

a significant main effect of group [F (1, 40) = 22.704, p < .001, η2 = .362], which was due 

to older adult participants performing worse overall compared to young adult participants. 

 

The results also revealed a significant interaction between group and task type [F (3.833, 

153.302) = 3.469, p = .011, η2 = .080]. Pairwise comparisons were performed between older 

and young group on the accuracies from the six face perception tasks (figure 2.2), with a 

significant difference found in anger (p < 0.001, d = 1.194, Bonferroni corrected), upright (p 

< 0.001, d = 1.243, Bonferroni corrected) and inverted (p = 0.018, d = .985, Bonferroni 

corrected) facial identity perception tasks. Although it is not significant, there is a trend 

showing age-related group difference in happiness facial expression task (p = 0.096, 
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Bonferroni corrected). No group differences were found in aggressiveness (p = .186, 

Bonferroni corrected) and trustworthiness (p = .804, Bonferroni uncorrected) facial trait 

perception tasks.  

 

Figure 2.2. Mean perceptual accuracies (± one S.E.) of two age groups on (a) Anger, (b) 
Happy, (c) Identity-Upright, (d) Identity-Invert, (e) Trait Aggressiveness and (f) Trait 
Trustworthiness. Significant differences were found between the performance of young and 
old participants on anger perception [p < 0.001, d = 1.194], upright facial identity perception 
[p < 0.001, d = 1.243] and inverted face perception [p = 0.018, d = .985] (Figure 2.2a, 2.2c, 
2.3d). Accuracy performance of happiness perception and facial trait perception did not differ 
significantly between the two age groups (Figure 2.2b, 2.2e, 2.2f). 
 

The trajectory of age-related changes 

In addition to comparing between groups, I also sought to examine the trajectory of age-

related changes in social perception. To do this I examined the correlation between age and 

performance accuracy on each perceptual task. This revealed significant negative correlations 

between age and performance on the CFPT-Facial Emotion Younger Adult [both Anger (r = 

-.516, p = <.001) and Happiness Trials (r = -.357, p = .020)], and the CFPT-Facial Identity 
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Younger Adult [both Upright (r = -.552, p = <.001) and Inverted Trials (r = -0.448, p = 

0.003)], and the Facial Trait Aggressiveness Trials (r = -.367, p = .017). There was no 

significant relationship between age and Facial Trait Trustworthiness Trials [r = -.052, p = 

.746]. With this in mind, then I next fitted the data to a quadratic function and examined this 

using polynominal regression. This revealed a significant quadratic relationship between age 

and performance on the CFPT-Happy task [β = -1.64, t = 1.35; F (2, 41) = 3.89, p =.029], 

with performance increasing in younger adult participants from 18 to 30 years but declining 

in older participants from 50 years and over (Figure 2.3a, right graph). In this regard, while 

aging does affect the perception of subtle facial cues related to happiness perception, it 

appears that performance continues to improve during young adulthood (potentially peaking 

in middle adulthood) before a decline during later life. In contrast, for anger expression 

perception and identity perception, age was a significant predictor of CFPT-Angry Younger 

trial performance [β = -.516, t = 3.81; F (1, 41) =14.51, p <.001], CFPT-Identity (Older) 

Upright trial performance [β = -.552, t = 4.19; F (1, 41) = 17.56, p <.001] and Inverted trial 

performance [β = -.448, t = 3.17; F (1, 41) = 10.07, p =.003] and CFPT-Facial Trait 

Aggressiveness [β = -.367, t = 2.50; F (1, 41) = 6.23, p =.017] in a linear way (figure 2.3). 

 

a.	
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Figure 2.3. The trajectory of age-related changes on perception of (a) anger and happy facial 
expressions, (b) upright- and inverted- facial identity, (c) facial trait of aggressiveness. 
Results revealed a significant quadratic relationship between age and performance on the 
CFPT-Happy task (p = .029), with performance increasing in younger adult participants from 
18 to 40 years but declining in older participants from 57 years and over (figure 2.3a, right 
graph). In contrast, for anger and identity perception, age was a significant predictor of 
CFPT-Anger (p <.001) (figure 2.3a, left graph), CFPT-Identity Upright trial performance (p 
<.001), Inverted trial performance (p = .003) and CFPT–Facial Trait Aggressiveness trial 
performance (p = .017) in a linear fashion (figure 2.3b, 2.3c) 
 
 
 
 
 
 
 
 
 

b.	

c.	
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2.4 Discussion 
 

Social perception performance differences 

The results revealed that older participants showed declined performance on the perception of 

subtle facial expressions of anger. Combining with previous literature, this finding adds 

strength in confirming that normal aging is associated with decay in perceiving anger, in both 

low- and high- emotional intensities. Older people’s perceptual performance of happiness did 

not show a significant difference from younger people at a group level. This finding agrees 

with prior findings claiming that there is no significant age-related decline in perception of 

happiness (Moreno et al., 1993; Calder et al., 2003; Orgeta and Philips, 2008). However, it 

should be noted that there is a trend that older people might have age-related difference in 

perception of happiness from low-intensity facial expressions (p = 0.096). Therefore, this 

finding awaits further confirmation from further studies.  

 

For facial identity perceptual performance, older people exhibited significantly lower 

accuracies in both upright- and inverted- facial identity tasks compared to younger adults. 

This result is in line with the prior finding (Boutet and Faubert, 2006; Meinhardt-Injac & 

Meinhardt, 2014) that there are reliable age-related differences for both upright- and inverted- 

face perception. With this in mind, there are at least two ways to interpret this pattern of 

results. First, it could be argued that my data fit with prior work suggesting that some 

common neurocognitive processes are recruited for upright and inverted face processing 

(e.g., Freiwald et al. 2009; Pitcher et al. 2011; Susilo et al. 2013), and normal aging affects 

this general face identity processing. The present pattern of results seems to challenge 

another prior view positing that the perception of upright and inverted face depend on 

qualitatively different neurocognitive processes (e.g. Tanaka and Farah, 1993; Moscovitch et 

al. 1997; Yovel and Kanwisher, 2004). Based on this proposal, it can also be argued that 
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normal aging might affect processing of perception of both upright- and inverted- faces and 

thus these two different neurocognitive process. In order to explore this question further and 

if this is a face-specific perceptual deficit, or whether this deficit also extends to object 

perception, an object perception task will be carried out in experiment two.  

 

For facial trait perception, no age-related group difference was found in either facial trait 

trustworthiness or aggressiveness perceptual performance. Given that this experiment has 

shown older adults’ significant age-related decline in both anger and facial identity 

perception, these facial trait perception results do not fit the model proposed by Oosterhof 

and Todorov (2008), which claims that the encoding of trait trustworthiness is associated 

with the encoding of facial expression, and the perception of trait aggressiveness/dominance 

is associated with perception of facial identity. This finding suggests that the age-related 

decline in anger and facial identity perception did not extend to facial trait perception.  

 

The trajectory of age-related differences in social perception 

The regression results have shown that normal aging affects facial identity perception, anger 

perception, and facial trait aggressiveness perception in a linear decline from 18 years to 75 

years. In contrast, the normal aging seems to affect perception of happiness in an inverted-U 

curve – younger adults’ performance starts to increase from 18 to middle adulthood and 

reaches a peak performance in middle adulthood (from 30 years to 50 years), followed by 

gradual performance decline from approximately 50 years. However, this finding needs 

further confirmation as the current data lacks middle aged participants.  
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2.5 Summary 
 

In experiment 1, older people have shown declined ability in perceiving subtle facial 

expression of anger but a lesser extent to subtle facial expression of happiness. Older 

people’s perceptual performance on both upright- and inverted-  facial identities were 

significantly lower than younger adults. No group difference was found in perception of 

facial trait trustworthiness or aggressiveness. Furthermore, polynominal regression revealed a 

significant quadratic relationship between age and performance on the CFPT-Happy task, 

suggesting that normal aging affects the perception of facial happiness in an inverted-U curve 

with a potential peak in middle age. In contrast, normal aging affects anger, facial identity 

and facial trait aggressiveness perception in a linear fashion.  
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CHAPTER 3: AGING AND FACE PERCEPTION (OLDER FACES) AND A 

FURTHER INVESTIGATION ON OBJECT PERCEPTION 

 

Previous findings suggest that older adults show impairments in the social perception of 

faces, including the perception of emotion and facial identity. The majority of this work has 

tended to examine performance on tasks involving young adult faces and prototypical 

emotions. While useful, this can influence performance differences between groups due to 

perceptual biases and limitations on task performance. In this chapter I sought to examine 

how typical aging is associated with the perception of subtle changes in facial emotional and 

facial identity in older adult faces. I developed novel tasks that permitted the ability to assess 

facial emotion (happiness perception), facial identity, and non-social perception (object 

perception) across similar task parameters. I observe that aging is linked with declines in the 

ability to make fine-grained judgements in the perception of facial happiness and facial 

identity (from older adult faces), but not for non-social perception. Interestingly, the pattern 

of change in social perception abilities across the lifespan differed for facial happiness and 

facial identity. Facial happiness was associated with increases in performance in young 

adulthood, but declines in old adulthood. Facial identity was associated with linear declines 

from young to old adulthood. This pattern of results is discussed in relation to mechanisms 

that may contribute to declines in facial perceptual processing in older adulthood.  
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3.1 Introduction 
 

In Chapter 2, it was shown that older adults have significantly declined performance in facial 

anger and facial identity perception compared to younger adults. It should be noted that all 

facial stimuli used in experiment 1 were depicting only younger faces. People are better at 

recognising faces of their own age (Anastasi & Rhodes, 2005; Mason, 1986; Wright & 

Stroud, 2002; Perfect & Harris, 2003; Wiese, Komes, & Schweinberger, 2012); in other 

words, people seems to have superior facial perception ability when the age of the presented 

face is congruent with their own age. This phenomenon has been referred to as ‘own age bias. 

A recent meta-analysis of face perception studies has revealed that all age groups exhibited 

superior face perception ability for same-age compared with other-age age faces (Rhodes & 

Anastasi, 2012). Thus, the own age bias appears to be a robust effect that influences the 

accuracy of face perception. 

 

The first aim of experiment two is to investigate to what extent these results hold when 

controlling for perceptual biases that may aid younger adults over older adults. Prior work 

examining low intensity emotion perception in older adult has tended to use young adult 

faces as target stimuli, in this regard one could argue that declines in performance displayed 

by older adults in previous research were related to the use of young adult actors in the task, 

which favours young adult participants. To investigate further if all observed face perceptual 

deterioration might be due to face stimuli age bias (all face stimuli were young faces), 

experiment two was carried out to see if the age-related difference still exists when all facial 

stimuli were changed into older faces. 

 

Extensive evidence ranging from behavioural, brain lesion and brain imaging studies has 

suggested that domain-specific mechanisms are involved in processing faces (e.g. Bentin et 



	 79	

al., 1996; Kanwisher, 2000; Moscovitch et al., 1997), which is dissociable from the 

processing of non-face objects. However, the view of domain-specificity for faces has been 

challenged by the expertise view, which proposed that the identification of fine-detailed, 

subordinate objects shares the same mechanism as face perception. It was found that people 

with expertise with objects showed large activations in the face fusiform areas during these 

subordination object perception (Gauthier et al., 1999; Bukach, Gauthier, & Tarr, 2006). 

Furthermore, it was found that prosopagnosia patients are also impaired in discriminating 

non-face stimuli at subordinate level (Lhermitte, Chain, & Escouroole, 1972). In Chapter 1, it 

was shown that older people exhibited lower accuracies than younger adults in both upright- 

and inverted- facial identity perception, which suggested that normal aging is also associated 

with declined facial perception abilities. However, not many prior studies have investigated 

whether the age-related face perception decline is specific or it also extends to object 

perception. For these reasons, it is important to include control conditions to examine if this 

is a face-specific perception deficit, or whether this deficit also extends to non-face stimuli, 

an object perception task will be carried out in experiment two. In addition, inverted face 

trials were included in the face identity task in the present study, this allowed investigation of 

the inversion effect for face perception (Yin, 1969). Moreover, face inversion is linked with 

reduced performance compared to upright facial perception, which is often thought to relate 

to configural processing being disrupted by facial inversion (Farah et al., 1995; Leder & 

Carbon, 2006). By including inverted faces enables me to check whether differences in 

performance on the identity-processing task were specific to perceptual processes associated 

with upright versus inverted face processing. 

 

In view of the above, the present study sought to assess social perception of subtle changes in 

facial emotion and facial identity shown by older adult actors using same experimental 
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paradigm and levels of difficultly. Additionally, in order to ensure that any differences in 

performance were specific to social perception I sought to examine the extent to which age 

related differences in the perception of subtle visual cues extended to the perception of non-

social stimuli (object perception).  This approach permits the ability to draw inference about 

how aging is related to differences in social perception when task demands remain similar.  If 

emotion perception is affected by normal aging, but facial identity and object perception 

remains intact, this would point to the possibility that age-related decline in social perception 

is emotion-specific; whereas if normal aging also affects facial identity perception, it may 

suggest that there is a general face processing decline. Finally, if aging affects all tasks 

(identity, emotion and object) it suggests a domain-general (i.e. non-social specific) decline 

may account for changes in subtle emotion perception associated with typical aging.   

 

To achieve these aims I developed a series of novel tests that built upon a well utilised 

paradigm for studying fine-grained visual discrimination of facial identity and facial emotion 

in younger adult participants - the Cambridge Face Perception Test (CFPT). The CFPT was 

originally developed to study subtle differences in the perception of facial identity perception 

(hereafter referred to as CFPT-Identity) under conditions in which working memory demands 

are minimal (Duchaine, Germine, & Nakayama, 2007a; Duchaine, Yovel, & Nakayama, 

2007b), and has since been adapted to examine subtle differences in the perception of 

happiness (CFPT-Happy), anger (CFPT-Anger), and facial traits (e.g. trustworthiness) (Janik, 

Rezlescu, & Banissy, 2015; Rezlescu, Susilo, Barton, & Duchaine, 2014). During CFPT-

Identity participants are presented with a target face and six faces morphed between the target 

and one of six distractor faces in varying proportions so that they vary systematically in their 

similarity to the target face. The participants task is to sort the six morphed faces from most 

to least like the target face. During CFPT-Happy, participants are presented with six faces 
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that show morphs between the expression of ‘happiness’ and a ‘neutral’ expression in varying 

proportions; the participants task is to sort the faces from most to least happy (in CFPT-

Happy). Each of these tasks has been used successfully to assess fine-grained social 

perception abilities in younger adult participants (e.g. Janik et al., 2015; Romanska, Rezlescu, 

Susilo, Duchaine, & Banissy, 2015), and to distinguish between groups (e.g. social 

perception in prosopagnosia – Duchaine et al., 2007a; Duchaine et al., 2007b; Rezlescu et al., 

2014; Shah, Guale, Sowden, Bird, & Cook, 2015). Due to task parameters and accuracy 

being similar across the CFPT tasks, and given that working memory demands are minimal, 

the CFPT format offers an ideal means to study fine-grained social perception changes in 

aging. To date, however, current CFPT tasks only use young adult target faces as stimuli. 

Given that this may bias performance in favour of younger adult participants (e.g. due to the 

other age-effect) I sought to develop modified versions of the CFPT-Identity and CFPT-

Happy using older adult faces as stimuli. In addition, to date the CFPT measures only assess 

the perception of faces, but to highlight specificity of any differences to face perception a 

comparison task assessing object perception is required. To date there exists no object-based 

CFPT measure, to address this gap I developed a novel version of the CFPT assessing 

perception of cars (CFPT-Car).  

  

3.1.1 Summary of Experiment 2 

To summarise, there is a good degree of evidence suggestive of age-related declines 

in social perception of faces, but several methodological issues limit the conclusions that can 

be drawn regarding the nature and factors contributing to these declines (e.g. own-age bias; 

use of high intensity emotions; lack of systematic comparison across stimuli type [e.g. 

identity versus emotion] using the same task parameters). This study sought to address this by 

developing novel measures that assess fine-grained changes in social and non-social 
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perception when task demands and difficultly remain similar. In addition, I sought to ensure 

that any differences between young and old adult participants were a consequence of own-

age biases favouring young adult performance, by using older adult stimuli as target faces. 

This permitted the ability to contrast social perception abilities for a range of social facial 

cues (emotion, identity) and non-social perceptual abilities (car perception) in the same 

participants using similar task parameters, and to assess the relationship between age-related 

performance differences across each type perceptual cue.  

 

3.2 Methods 
 

Participants 

Twenty-six younger adults (seven male and nineteen female; age range 18 – 36 years, mean 

age = 24 years, SD = 6 years) and twenty-seven older adults (twenty female and seven male; 

age range 60 – 77 years, mean age = 69 years, SD = 6 years) took part. All participants were 

native-English Caucasians, with no known history of neurological problems, dyslexia or 

other language-related problems, and with normal or corrected-to-normal vision. Younger 

participants were recruited through the university’s undergraduate participant pool, and older 

participants were recruited from the Goldsmiths Psychology Department participant pool.   

 

Level of education, premorbid intelligence (NART), and handedness were recorded at the 

beginning of experiments; the two groups did not significantly differ in these factors (details 

given in the Results section). The Mini-Mental State Examination (MMSE) was also used as 

a screening evaluation to test older participants for possible dementia (Folstein, Folstein, & 

McHugh, 1975). The MMSE is a commonly used measure to screen for cognitive status. A 

cut-off limit of < 24 was used, which has a good sensitivity for dementia in the older 

population (Chayer, 2002). No participants were excluded from the study on the basis of this 
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criterion. All participants gave informed consent prior to beginning the experiment and were 

fully informed about the experimental procedure. The local ethics committee approved the 

study. 

   

Materials and procedure 

Three main tasks were carried out: CFPT-Identity Older Adult, CFPT-Happy Older Adult, 

CFPT-Car. All tasks were developed specifically for this study using the same task 

parameters as used previously for younger adult versions of the CFPT (e.g. CFPT-Identity – 

Duchaine et al., 2007a, Duchaine et al., 2007b; CFPT Happy – Janik et al., 2015). The orders 

of the three tasks were counterbalanced across participants. Details of each task are provided 

below.  

 

CFPT-Identity Older Adult 

This task followed the same procedure as the standard CFPT-Identity (previously called 

CFPT, see Duchaine et al, 2007a; Duchaine et al, 2007b), but here I used older adult faces 

rather than younger adult faces. During the task, participants were displayed a target face and 

six faces (from a frontal view) morphed between the target and distractor in varying 

proportions (88%, 76%, 64%, 52%, 40%, 28%). In each trial, participants were asked to sort 

the six faces by similarity to the target face with a one-minute time limit. If participants 

completed the trial before the time limit expired they were able to click an option on screen to 

begin the next trial. The task involved eight upright and eight inverted trials that alternated in 

a fixed pseudo-random order. This allowed investigation of the inversion effect for face 

perception (Yin, 1969). 
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Stimuli were created using the software FantaMorph. All facial stimuli used were from Park 

Aging Mind laboratory face database (http://agingmind.cns.uiuc.edu/facedb/), which contain 

standardised pictures of male and female from different ages. In order to match the older 

facial stimuli to the young facial stimuli used in the original CFPT-Identity (Duchaine et al., 

2007a, 2007b), external facial features were removed from images and coloured images were 

transformed in to grey scale images (Figure 1a). Performance was measured using percentage 

of correct responses. Chance performance is 36%. 

 

Figure 3.1. (a) Example trials of CFPT-Identity Older Adult task. In CFPT-Identity Older 
Adult trials, participants were displayed a target face and six faces (from a frontal view) 
morphed between the target and distractor in varying proportions (88%, 76%, 64%, 52%, 
40%, 28%). Participants’ task is to sort the six faces according to the degree of similarity to 
the target. Half of the trials contain upright faces (upper graph) and half inverted faces (lower 
graph). 
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CFPT-Cars 

To test object perception I also developed another new version of the CFPT involving using 

car stimuli as oppose to faces. This test adapted the same experimental paradigm of the 

original CFPT-Identity (Duchaine et al., 2007a and 2007b) and the CFPT-Identity Older 

Adult Task described above. That is to say that during the task, participants were shown a 

target car and six cars (from a frontal view) morphed between the target and one of six 

distractor cars in varying proportions (88%, 76%, 64%, 52%, 40%, and 28% of the target car; 

Figure 1b). In each trial, participants were asked to sort the six cars by similarity to the target 

face with a one-minute time limit, and as per all tasks participants could click on an option to 

begin the next trial if they completed the trial before this time. As with the CFPT- Identity 

Older Adult task, the stimuli were created using the software FantaMorph; all car stimuli 

used were from laboratory stimuli database. The task involved eight upright and eight 

inverted trials that alternated in a fixed pseudo-random order. Performance was measured 

using percentage of correct responses. Chance performance is 36%. 
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Figure 3.1. (b) Example trials of CFPT-Car task. In CFPT-Car trials, participants were 
displayed a target car and six cars (from a frontal view) morphed between the target and 
distractor in varying proportions (88%, 76%, 64%, 52%, 40%, 28%). Participants’ task is to 
sort the six cars according to the degree of similarity to the target. Half of the trials contain 
upright cars (upper graph) and half inverted cars (lower graph). 
 

CFPT-Happy Older Adult 

This task followed the same procedure as the standard CFPT-Happy (Janik et al., 2015), but 

here I used older adult faces rather than younger adult faces.  During the task, participants 

were presented six faces (from a frontal view) morphed between the expression of 

‘happiness’ and a ‘neutral’ expression in varying proportions (25%, 20%, 15%, 10%, 5%, 

and 0% happiness). These proportions were used based on piloting to establish the most 

optimal parameters for sensitive task difficult (e.g. to avoid ceiling effects) and to permit 

comparability to the original young adult CFPT-Happy (note that the percentage morphs are 

slightly higher than the original young adult CFPT-Happy, but performance accuracy is 

comparable).  Participants were required to sort the faces according to how happy they 

appeared from the face that looks least happy to the face that looks most happy (note all 

images appeared in the same fixed random order as per young adult CFPT-Happy at the start 

of each trial). The time limit for each trial was 60 seconds, and as per all tasks participants 

could click on an option to begin the next trial if they completed the trial before this time. As 

with the CFPT-Identity Older Adult task, the stimuli were created using the software 

FantaMorph; all facial stimuli used were from Park Aging Mind laboratory face database 

(http://agingmind.cns.uiuc.edu/facedb/); and external facial features were removed from 

images and coloured images were transformed in to grey scale images (Figure 1c). 

Performance was measured using percentage of correct responses. Chance performance is 

36%. 
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Figure 3.1. (c) Example trials of CFPT-Happy Older Adult task. In the CFPT-Happy Older 
Adult trials, participants were presented six faces (from a frontal view) morphed between the 
expression of ‘happiness’ and a ‘neutral’ expression in varying proportions (25%, 20%, 15%, 
10%, 5%, 0%). Participants were required to sort the faces according to how happy they 
appeared from the face that looks least happy to the face that looks most happy. 
 

3.3 Results  
  

Prior to analysis, three younger adult participants were withdrawn from analysis due to them 

being identified as outliers in at least one task. More specifically, each participant that was 

withdrawn performed three standard deviations away from the group mean on either one or 

more task, and was verified as an outlier using Grubb’s Test. 

 

Demographic differences 

 Following outlier removal, the mean age of young group was 25 years (SD = 6 years) 

and the mean age of old group was 69 years (SD = 6 years). The years of education (young 

group: mean = 15 years, SD = 3 years; old group: mean = 16 years, SD = 3 years) and NART 

scores of the two age groups were compared and they were not significantly different (young 

group: mean = 118.71, SD = 6.92; old group: mean = 120.67, SD = 7.79). The younger group 

comprised of 16 females and 7 males, with 2 left handed participants. The older group 

comprised of 20 females and 7 males, with one left handed participant.  

 

Social perception performance differences 

Perceptual performance of the two groups were analysed using a 2 (group) × 5 (task type) 

mixed-ANOVA with the between-participants factor of group (young and old) and within-
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participants factor of trial type (happiness, upright identity, inverted identity, upright car and 

inverted car). Mauchly’s test indicated that the assumption of sphericity had been violated so 

the Greenhouse-Geisser correction was employed. The results revealed a significant effect of 

task type [F (3.048, 146.311) = 32.84, p < .001, η2 = .406]. Bonferroni corrected post-hoc 

comparisons revealed that this was because overall participants performed better on the 

happiness perception relative to inverted face perception and car perception (for both Upright 

and Inverted conditions), and because overall participants were more accurate on Upright 

Facial Identity trials relative to inverted face perception and car perception (for both Upright 

and Inverted conditions). There was also a significant main effect of group [F (1, 48) = 

20.54, p < .001, η2 = .300], which was due to older adult participants performing worse 

overall compared to young adult participants.  

 

Importantly, the ANOVA also revealed a significant interaction between group and task type 

[F (3.048, 146.311) =11.103, p < .001, η2 = .188]. In view of this, pairwise comparisons 

with Bonferroni correction were performed between the older and young group on the five 

face perception tasks. This revealed a significant difference found in happiness perception [p 

= .001, d = 1.031] (figure 3.2a), upright facial identity perception, [p < .001, d = 1.437] 

(figure 3.2b) and inverted face perception [p < .001, d = 1.316] (Figure 3.2c). Accuracy 

performance of upright and inverted car perception did not differ significantly between the 

two age groups (Figure 3.2d and 3.2e). Therefore, older participants showed reduced 

performance relative to young old adults in their ability to make fine-grained perceptual 

judgments of faces (emotion and identity), but not objects. 
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Figure 3.2. Mean perceptual accuracies (± one S.E.) of two age groups on (a) Happy, (b) 
Identity-Upright, (c) Identity-Invert, (d) Car-Upright and (e) Car-Invert. Results revealed a 
significant difference in happiness perception [p = 0.001, d = 1.031], upright facial identity 
perception [p < 0.001, d = 1.437] and inverted face perception [p < 0.001, d = 1.316] (Figure 
3.2 a-c). Accuracy performance of upright and inverted car perception did not differ 
significantly between the two age groups (Figure 3.2 d, 3.2 e).  
 

Given the moderate differences in gender between the groups I also ran the above analyses 

when controlling for gender; a similar pattern of data was found, indicating that the 

differences described above were not due to any gender differences between older and 

younger participants.  

 

The trajectory of age-related changes differences in social perception 

I also examined the trajectory of age-related changes in social perception in experiment 2. 

Firstly, the correlation between age and performance accuracy on each perceptual task 

revealed significant negative correlations between age and performance on the CFPT-Identity 
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Older Adult (both Upright [R = -.585, p = <.001, and Inverted Trials [R = -.528, p = <.001] 

and the CFPT-Happy Older Adult [R = -.488, p = <.001], but no significant relationship 

between CFPT-Car performance and age was observed (Upright trials [R = -.149, p = .302]; 

Inverted Trials R = -.025, p = .865]). Whilst negatively correlated overall, plotting the data 

for the relationship between performances on each perceptual task and age revealed evidence 

towards an inverted parabola for CFPT-Happy Older Adult performance. With this in mind, I 

next fitted the data to a quadratic function and examined this using polynominal regression. 

This revealed a significant quadratic relationship between age and performance on the CFPT-

Happy Older Adult task [β = -3.05, t = 2.99; F (2, 47) = 13.22, p <.001], with performance 

increasing in younger participants from 18 to 36 years but declining in older participants 

from 60 years and over (Figure 3.3a). In this regard, while aging does affect the perception of 

subtle facial cues related to happiness perception, it appears that performance continues to 

improve during young adulthood (potentially peaking in middle adulthood) before a decline 

during later life. In contrast, for identity perception, age was a significant predictor of CFPT-

Identity (Older) Upright trial performance [β = -.585, t = 5.00; F (1, 48) = 13.22, p <.001] 

and Inverted trial performance [β = -.528, t = 4.31; F (1, 48) = 18.59, p <.001] in a linear 

fashion (Figures 3.3b and 3.3c). This suggests that, contrary to facial emotion, the ability to 

perceive subtle cues to facial identity steadily declines with from young to older adulthood.  

 

Figure 3.3. The trajectory of age-related changes on perception of (a) facial happiness, (b) 
upright- and (c) inverted- facial identity. Results revealed a significant quadratic relationship 

a.	 b.	 c.	
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between age and performance on the CFPT-Happy Older Adult task (p <.001), with 
performance increasing in younger adult participants from 18 to 36 years but declining in 
older participants from 60 years and over (figure 3.3 a). In contrast, for identity perception, 
age was a significant predictor of CFPT-Identity (Older) Upright trial performance (p <.001) 
and Inverted trial performance (p <.001) in a linear fashion (figure 3.3 b and 3.3 c). 
 
 
3.4 Discussion 
  

This study sought to investigate the relationship between normal aging and the perception of 

subtle changes in facial emotional and facial identity in older adult faces. I found that aging is 

related to linear declines in the ability to make fine-grained visual discriminations regarding 

the perception of facial identity (for both upright and inverted faces). In contrast for the 

perception of subtle changes in facial emotion, I found evidence suggestive of an inverted 

parabola, whereby the perception of happiness from subtle facial cues improved during 

young adulthood (up to 40 years in the present study), but declined in old adulthood (from 60 

years and up in the present study). Importantly, no differences were observed between young 

and old adults for the perception of subtle changes in non-face stimuli, indicating that age-

related differences in the perception of facial emotional and facial identity in older adult faces 

are specific to social perception and do not reflect domain-general changes in fine-grained 

visual discrimination with age.  

 

Perception of facial happiness (older faces) 

The general pattern of change in facial emotion and identity perception associated with aging 

that I observe is consistent with prior work that has typically tested these abilities in isolation. 

That being said, there are a number of studies that have suggested that the perception of 

happiness remains stable during aging (Moreno et al., 1993; Calder et al., 2003; Orgeta and 

Philips, 2007); our findings conflict with this conclusion. The reasons for the difference 

between our findings related to declined happiness perception in older adults and prior work 
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may be due to the use of more subtle low intensity emotion stimuli used in the current study. 

Moreover, a number of prior studies have tended to use more prototypical exemplars of 

happiness that use high intensity emotion. While helpful to study emotion perception, 

arguably high intensity emotions are less commonly encountered in daily life interactions 

(i.e. we tend to encounter more subtle facial expression that have lower intensities on a daily 

basis) and often have led to ceiling effects in past research, thus potentially may masking a 

perceptual deficit (e.g. Moreno et al., 1993; Orgeta & Phillips, 2007; McDowell et al., 1994; 

Brosgole & Weisman, 1995; Isaacowitz et al., 2007). By testing the perception of low-to-

medium intensity expressions of happiness I was able to a) test happiness perception in 

conditions that were not at ceiling and b) examine older adult’s perceptual abilities to 

determine subtle emotional expressions that may be important in everyday life (Hess, Blairy, 

& Kleck, 1997). In addition by ensuring similar task demands for our identity, happiness, and 

non-face perceptual tasks I was able to ensure that differences in the pattern of relationship 

between aging and performance is not due to not specific task demands (e.g. working 

memory).  

 

The trajectory of age-related changes 

That facial happiness and facial identity perception follow different development trajectories 

is interesting, and suggests that while both processes are linked with declines in older 

adulthood the trajectory and mechanisms by which this occurs may to some extent be 

independent. This is consistent with models of face processing that suggest some degree of 

independence in the mechanisms involved (e.g. Bruce & Young, 1986; Haxby, Hoffman, & 

Gobbini., 2000; Calder & Young, 2005). I note, however, that a general caveat of our study is 

that I lack data from participants in the middle adulthood range (from 40 years to 60 years), 

thus while our data are indicative that subtle facial happiness perception peaks in middle 
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adulthood before declining in older adulthood, further work is required to test this explicit 

prediction. In addition it will be important to examine the extent to which age-related 

differences in facial emotion perception that I observe here for happiness perception hold for 

other emotion types. What is clear, however, is that there is a steady increase in the ability to 

perceive subtle expressions of happiness in young adults (from 18 to 36 years in the current 

study), followed by a decline in older adults (from 60 years upwards in the current study). In 

contrast, the perception of facial identity shows evidence of more linear declines in both 

young and old adult participants.  

 

Perception of non-facial objects 

The finding that older adults do not differ from younger adults in their perception of objects 

is also consistent with previous findings reporting that aging is associated with declined face 

perception, while object perception remains intact (Boutet and Faubert, 2006) or is less 

affected by aging (Meinhardt-Injac, Persike & Meinhardt, 2014). By assessing the perception 

of subtle changes in object stimuli under similar conditions to facial identity and facial 

emotion I am able to ensure that the age-related differences are not due to differing task 

demands that might influence performance (e.g. working memory).  Our object control 

stimuli, namely cars, were carefully chosen since this class of stimuli includes configural 

relations between individual features (as with faces). The main difference between faces and 

cars are the individual features and fine spatial relationships between these features. Different 

spatial frequencies encode different aspects of faces and objects, and visual cues used for face 

and object discrimination might be associated with distinct spatial frequencies (Morrison and 

Schyns, 2001). Gaspar et al. (2008) measured face identification thresholds for upright and 

inverted faces embedded in different types of noise and concluded that people use 

information conveyed by similar narrow bands of spatial frequencies to identify upright and 
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inverted faces. Older people’s relatively intact performance on object perception, but 

significantly declined face perception for upright and inverted facial stimuli might be due to 

their deficits in handling fine internal features that involve perception of fine spatial 

frequencies (e.g. Meinhardt-Injac, Persike & Meinhardt, 2014). This will be an interesting 

avenue to explore with future work. 

 

Age-related face perception decline and own-age bias 

A further important addition of our study is the development and inclusion of comparable 

tests for facial identity and facial emotion perception that involve the use of older adult 

stimuli. Moreover, a common caveat of past work on aging and social perception is the use of 

young adult faces as task stimuli, which may weight performance in favour of young adult 

participants due to own-age biases (e.g. own-age effect whereby we are better at perceiving 

faces of a similar age to ourselves, Anastasi & Rhodes, 2005; Wright & Stroud, 2002). In 

developing new versions of the CFPT specifically involving older face stimuli and non-face 

stimuli I hope that my study provides the research community with novel tasks that will be 

useful for future work.  For example, by overcoming the potential for own-age biases the 

tasks may be helpful for other researchers examining social perception in aging, and in 

atypical groups where age appropriate task stimuli may be useful (e.g. in prosopagnosia 

research where the original CFPT-Identity involving young adult stimuli is commonly used 

as part of diagnostic batteries). Further, by using these tasks, it was found that declined face 

perception of subtle facial emotion and facial identity in older adults is evident for older face 

stimuli, implying that declines in social perception associated with aging are not fully 

accounted for due to an own-age bias. One might suggest that the steady increase in facial 

happiness perception in young adults could to some extent be to do with own-age bias 

because as the gap between the younger adult participant’s age and the target face decreases 
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(i.e. as they get older) the participant’s performance increases.  However, if this was the case 

then one would expect a similar pattern of performance in the facial identity perception 

(where linear declines with age were found) and it would seem unlikely that we find a decline 

in facial emotion perception in the older adult group for whom target faces were more 

optimally matched in terms of the age of participant (i.e. the participant and target face were 

of a similar age group). It is also important to put our findings in the context of prior work 

that has sought to examine facial identity processing differences associated with aging. For 

instance, Bowles et al. (2009) found younger and middle-aged adults did not differ in 

perceiving different facial identities with minor changes whereas older adults (50+ years) 

showed significantly poorer performance than the younger group in the CFPT (young faces). 

The face identity results of present study are line in with this previous finding, which suggest 

that older people’s deficits in discriminating facial identity is not dependent on the age of 

faces. 

 

3.5 Summary 
 

In summary, here I assessed how aging is associated with changes in the perception of subtle 

cues related to facial identity of older adults and facial emotion (happiness) displayed by 

older adults. I also examined how aging is linked to object identity (cars) perception. I found 

that both facial identity and facial emotion are associated with declines in older adulthood, 

indicative of declines in the ability to process social facial cues in aging. Interestingly, the 

trajectory of the age-related differences in the perception of facial identity of older adults and 

facial emotion of older adults differed; with emotion perception being associated with 

increases in perceptual abilities in young adulthood followed by declines in older adulthood, 

while identity perception was linked to linear declines in perception across the lifespan.  
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CHAPTER 4: METHODOLOGICAL INTRODUCTION TO TRANSCRANIAL 

CURRENT STIMULATION 

 

This chapter will give an overview of the methodological principles of transcranial current 

stimulation (tCS) with a particular emphasis on transcranial random noise (tRNS) as this is 

the method used in my brain stimulation study. In this chapter, neurophysiological 

mechanisms underlying each transcranial current stimulation (tCS) method will be 

introduced and the effectiveness of each stimulation on improving perceptual and cognitive 

functions in healthy populations will be discussed with examples of related studies. In 

addition, factors that can influence efficiency of stimulation and ethical considerations will 

be demonstrated. Chapter 5 of this thesis will present the brain stimulation study where high-

frequency tRNS was employed to demonstrate whether the cortical excitability of inferior 

frontal gyrus can be enhanced in older people and the cortical overactivation within this 

particular region can lead to improved ability in recognising facial emotional expressions.  

 

4.1 Background 
 

Traditional neuroimaging tools, such as electroencephalogram (EEG) and functional 

magnetic resonance imaging (fMRI), have contributed in exploring human neural 

mechanisms during cognitive tasks.  Although these methods provide excellent spatial (i.e. 

fMRI) and temporal (i.e. EEG) resolutions, one important limitation within them is that they 

can only reveal correlations between neural regions and cognitive behavioural performance 

but cannot account for causality (Lavidor, 2016). As they are either based on measuring 

indirect activation (positron emission tomography, PET; functional magnetic resonance 

imaging, fMRI); or recording electrical activity (event-related potential, ERP; 
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electroencephalogram, EEG; and magnetoencephalography, MEG) during cognitive tasks.  

An alternative way to study perceptual and cognitive neural mechanisms is to use transcranial 

magnetic stimulation (TMS), first used in the mid-80s and attracted lots of interest in the field 

(Stewart, Battelli, Walsh & Cowey, 1999). Over the last decade there is a fast growth in the 

use of transcranial current stimulation (tCS) for both cognitive neuroscience research and 

clinical applications (Ruffini, Wendling & Merlet, 2012) (see figure 4.1). Using tCS, brain 

functions can be modified by generating electric fields (can modulate neural activity) through 

the delivery of weak electrical currents transcranially over the scalp. The idea behind tCS is 

that the stimulation (anodal or cathodal mode) of a specific brain region can cause 

enhancement or inhibition of certain cognitive or perceptual performance, and thus establish 

a causal link between the stimulated brain regions and the cognitive function (Lavidor, 2016). 

There are different versions of tCS, including transcranial alternating current (tACS), 

transcranial direct current (tDCS), transcranial random noise current stimulation (tRNS). This 

chapter will give an overview of different tCS methods with an emphasis on tRNS.    

                    

Figure 4.1. Basic characteristics of transcranial direct current (tDCS), transcranial random 
noise current stimulation (tRNS), and transcranial alternating current (tACS).  

 

4.2 Transcranial direct current stimulation (tDCS) 
 

To date, the most studied tCS is tDCS, which is able to induce long-lasting changes in 
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cortical excitability in a reversible, relatively selective and non-invasive manner (Ambrus, 

Paulus and Antal, 2010). In tDCS, an “active” or stimulating electrode is placed over the 

target region to be affected where the weak current (typically 1–2 mA) is consistently 

delivered, at the same time, a “reference” electrode is placed over a brain region where the 

effect of the current is minimal. The mechanism underlying tDCS is to manipulate brain 

excitability via resting membrane polarisation: cathodal stimulation causes hyperpolarisation 

hence decreased cortical excitability, whereas anodal stimulation depolarises the resting 

membrane potential and leads to improved cortical excitability (Paulus, 2011; Lavidor, 2016). 

At the cellular and molecular level, the tDCS after effect reflects the mechanism of synaptic 

plasticity such as long-term potentiation and long-term depression (Fritsch et al., 2010), and 

it was found anodal tDCS causes locally reduced inhibitory GABA neurotranmitters while 

cathodal stimulation causes reduced excitatory glutamatergic neurotransmitters (Stagg et al., 

2009). The consequence of this is that the stimulated brain region becomes more responsive 

to the signals that it normally processes, thus if the brain area is involved in a particular task 

then performance on that task can be improved. This tDCS induced cortical excitability 

enhancements or reductions emerge during stimulation and can last after stimulation (Nitsche 

et al., 2003). Repetitive sessions of tDCS within specific time windows (within 24 hours at 

least) have shown long-lasting effects (Cohen Kadosh, Soskic, Iuculano, Kanai, & Walsh, 

2010; Vestito, Rosellini, Mantero, & Bandini, 2014; Monte-Silva, Kuo, & Hessenthaler et al., 

2013).  

Studies have claimed that tDCS induces persisting activity changes in the human motor 

cortex (Nitsche and Paulus, 2000), memory (Javadi and Cheng, 2012; Javadi and Walsh, 

2012), and attention (Moos, Vossel, & Weidner et al., 2011). The induced stimulation after-

effects depend on “polarity, duration and intensity of the stimulation” (Paulus, 2011). For 

example, polarity determines the direction of the field relative to the stimulated neurons 
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(Ruffini, Wendling & Merlet, 2013), in general terms, anodal stimulation (current is injected 

into the brain) increases cortical excitability (Nitsche and Paulus, 2000; Boggio et al., 2009) 

whereas cathodal stimulation (current is collected from the brain) decreases it (Nitsche and 

Paulus, 2000; Berryhill, Wencil, Coslett, & Olson, 2010). However, cathodal tDCS effects on 

cognition have been questioned (Jacobson, Koslowsky, & Lavidor, 2012) as it showed a null 

effect (Fregni et al., 2005) or even enhancement (i.e. Weiss & Lavidor, 2012). The ‘anodal-

excitation and cathodal-inhibition effects (AeCi)’ might not be consistent for different brain 

regions. Jacobson, Koslowsky & Lavidor (2012) investigated the effect sizes of ‘anodal-

excitation and cathodal-inhibition effects (AeCi)’ in both motor and cognitive functions in a 

meta-analysis study. The AeCi effect was found to occur quite consistently in motor 

investigations and less commonly in cognitive studies. Specifically, anode electrode applied 

over a non-motor area normally cause an excitation effect, whereas the cathode electrode 

rarely causes an inhibition.  In addition, Batsikadze, Moliadze and Paulus (2013) suggested 

an increase of cathodal tDCS intensity might not enhance the inhabitation effect, but might 

cause a shift of the stimulation direction. In the study, application of 2 mA cathodal tDCS for 

20 min resulted in cortical excitability enhancement instead of inhibition. 

4.3 Transcranial altering current stimulation (tACS) 

tACS is a non-invasive brain stimulation and it has been less intensively studied than tDCS 

(Hamid, Gall, & Speck, 2015). It can be achieved via the same device as tDCS, but uses 

different current wave forms and modulate cortical activity in a frequency dependent manner 

(Antal and Paulus, 2013). During tACS, a specific frequency is applied at a target brain 

region, and the targeted neurons mirror or synchronise frequencies induced from the cortex 

by the stimulation, thereby interacting with specific functions of the stimulated region 

(Lavidor, 2016). It also helps to explore the functional roles of neural oscillations across 

different cognitive tasks by stimulating the brain with specific frequencies during cognitive 
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tasks. Previous studies suggested the causality of phase-coupling of distant cortical areas for 

cognitive performance in healthy humans, as it was found that tACS induced neural 

oscillation synchronization significantly enhanced cognitive performances (Polanía, Nitsche 

and Korma et al., 2012; Helfrich, Schneider, and Rach et al., 2014). In contrast, tACS 

induced neural oscillation desynchronization deteriorates performance (Polania, Nitsche and 

Korma et al., 2012). 

Although this technique is still largely unexplored and the underlying stimulation 

neurophysiology mechanism is not fully understood (Lavidor, M., 2016), some preliminary 

studies have shown that tACS has observable effects on modulating cortex excitability. For 

example, Kanai et al. (2010) applied tACS to the visual cortex at different frequencies which 

varied from 5–40 Hz, and they found that tACS at 20 Hz increased the excitability of the 

visual cortex during the stimulation, whereas other frequencies did not affect it. Several 

studies have also shown that tACS can be used to modulate cognitive or perceptual abilities, 

such as fluid intelligence (Santarnecchi et al., 2013), visual memory (Polanía, Nitsche, & 

Korman et al., 2012), decision making (Sela, Kilim, and Lavidor; 2012), working memory 

(Jaušovec and Jaušovec, 2014) and facial expression perception (Janik, Rezlescu, and 

Banissy, 2015). For instance, in Janik et al.’s (2015) study, it was found that modulating 

occipital gamma with 40 Hz tACS enhances facial anger perception but not other face 

identity tasks. This finding implicates an important role of occipital gamma oscillations in 

facial emotion perception. 

4.4 Transcranial random noise stimulation (tRNS) 

Another form alternating current stimulation is tRNS (transcranial Random Noise 

Stimulation). This approach has been recently begun to be used to study cognitive and 

perceptual function. It is therefore a relatively novel type of tCS in the context of studies of 
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human cognition.  During tRNS a random electrical oscillation spectrum is passed between 

the two electrodes (Ruffini, Wendling & Merlet, 2012). Unlike transcranial direct current 

stimulation (tDCS) that consisted of an active stimulation electrode and a reference electrode, 

tRNS stimulation is absent of directionality and both electrodes are considered to have 

excitatory stimulation effect (Pirulli, Fertonani, & Miniussi, 2016). That is to say that 

increased cortical excitability can be found under both stimulating electrodes. 

4.4.1 Mechanisms of tRNS 

During tRNS, a random electrical oscillation spectrum is delivered by a battery-driven 

electrical stimulator (DC-Stimulator-Plus, neuroConn) through a pair of conductive rubber 

electrodes which are covered in saline-soaked sponges or conductive gels. In the random 

“noise” stimulation mode, random level of current was generated for every sample (sampling 

rate 1280 samples/s), the random numbers are normally distributed and the probability 

density function follows a bell-shaped curve; in the frequency spectrum all coefficients have 

a similar size (“white noise”) (Chaieb, Paulus and Antal, 2011). The frequency spectrum was 

separated into a low (0.1–100 Hz)- and high (101– 640 Hz)-frequency spectrum (Terney, 

2008).  The main effect of tRNS is an increase in cortical excitability under both electrodes 

placed on the scalp (Terney et al. 2008; Chaieb et al., 2011), although recently it was found 

that lower intensities at around 0.4 mA tRNS lead to inhibitory aftereffects (Moliadze et al., 

2012). tRNS has been proven to have successfully modulated the motor cortex (Terney et al., 

2008; Moliadze et al., 2010, 2012; Chaieb et al., 2011), arithmetic learning (Snowball et al., 

2013), perception of numerosity (Cappelletti et al., 2013), and facial identity perception 

(Romanska, Duchaine, & Banissy et al., 2015).  

Previous studies suggested that the tRNS induced cortical excitability was due to 

strengthening of synapses and inducing long-term potentiation (LTP), which is similar to the 
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effect of anodal tDCS (Rioult-Pedotti et al., 2000; Antal, Chaieb, & Moliadze, 2010; Terney 

et al., 2008). However, the underlying neurophysiology mechanism between tDCS and tRNS 

are different; tDCS modifies the resting membrane potential directly thus changing the firing 

rate of individual neurons, whereas the tRNS does not possess a direct current component 

(Terney et al., 2008). The physiological mechanism underlying tRNS is not fully confirmed, 

there are several explanations. One explanation is “stochastic resonance” (Wiesenfeld & 

Moss, 1995), which claimed that the fine-tuned noise from tRNS can sensitize targeted 

neurons and lower their threshold to detect signals, in other words, the random-noise 

enhances weak neuronal signal detection in the sensory system (Lavidor, 2016; Terney, 2008; 

Moss et al., 2004). Another possibility is tRNS might work like tACS, it can possibly interact 

with ongoing neural oscillations in the brain and thus result in increased cortical excitability 

(Terney et al., 2008). At the neurophysiological level, during tRNS, repeated activations of 

sodium channels by higher frequencies (100 – 640 Hz) can lead to neuron membrane 

depolarization, as observed in both animal and physiological studies (Schoen and Fromherz, 

2008; Chaieb, Antal, & Paulus, 2014).  

4.4.2 Frequency range of stimulation 

Frequency range (Hz) and intensity (amplitude) are the major factors determining 

intervention outcome (Paulus, Antal, & Nitsche, 2012). High-frequency (100- 640 HZ) was 

most commonly used in tRNS studies and it showed similar excitatory effect as anodal tDCS. 

For example, Terney et al. (2008) used 10min tRNS with the frequency between 0.1 and 640 

Hz and showed that tRNS was also able to increase the excitability of the motor cortex with 

the similar effect as tDCS, higher frequencies (100 – 640 Hz) appeared to be responsible for 

generating this effect, which might be attributed to the repeated opening of Na+ channels. 

Furthermore, Fertonani, Pirulli, & Miniussi (2011) compared the effect of different types of 
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tCS [high-frequency tRNS (100 – 640 Hz), low-frequency tRNS ( 0.1–100 Hz), anodal-tDCS, 

cathodal- tDCS, and sham stimulation] on perceptual learning and the results showed that 

high-frequency tRNS had a significantly superior simulating effect compared to others tCS, 

which was possibly due to the stimulating mechanism of tRNS to “prevent homeostasis of the 

system and potentiate task-related neural activity”. In addition, Romanska, Duchaine, & 

Banissy (2015) showed that single-session high-frequency tRNS targeted at the lateral 

occipitotemporal cortex significantly improved facial identity perception. This evidence 

suggests that high-frequency tRNS is an effective brain stimulating method, which has 

similar or even better after-effect results as tDCS. There are inconsistent findings (Saiote, 

Paulus, Antal et al., 2013; Mulquiney et al., 2011), for instance, Mulquiney et al. (2011) 

found high-frequency tRNS cannot enhance working memory in the way tDCS does after 

comparing the effect of tDCS and high-frequncy tRNS on working memory following 

stimulation over the DLPFC.  

4.4.3 Spatial resolution  

Quite a few studies have shown that tRNS can selectively stimulate a specific neural region 

and enhance its cortical excitability. For instance, Terney (2008) showed that tRNS can 

selectively modulate the excitability of the motor cortex. Specifically, it was found that 

delivering 10 minutes high-frequency (101-640 Hz) tRNS to primary motor cortex induced 

increased excitability by 20-50% (lasts for up to 90 minutes), as revealed by measuring 

motor-evoked potentials (MEPs) using single-pulse transcranial magnetic stimulation (TMS). 

Using the same method, Chaieb, Antal and Paulus (2014) also found that application of 

transcranial random noise stimulation (tRNS) between 0.1 and 640 Hz over the primary 

motor cortex (M1) for 10 minutes induces a persistent excitability increase lasting for at least 

60 minutes.  
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Earlier studies have suggested that the spatial resolution or the focality of tDCS can be 

improved by reducing stimulation electrode size, but keeping current density constant 

(Nitsche et al., 2007). However, this approach has not been tested in tRNS and related 

demonstration is required. In addition, some tDCS studies have found that the stimulation 

effect might not be restricted to the targeted neural region, but rather spread into neural tissue 

between electrodes (Opitz, Paulus, & Will, 2015). No tRNS studies thus far have 

demonstrated this issue, and not many tCS studies have investigated this in depth. In future 

studies, combining tRNS and with neuroimaging methods and connectivity analysis can help 

to reveal a more comprehensive picture of the stimulation effect on neural cortex and neural 

network. 

4.4.4 Temporal resolution  

Understanding of the time course of both online (during stimulation) and offline (after 

stimulation) tRNS effect is important, as it can help to identify how it interacts with the 

underlying neural system, and be useful for developing interventions to help people with 

impaired or declined cognitive abilities. Most studies that have explored the temporal 

resolution of tRNS are related to the motor cortex, which might be due to the accessibility of 

measuring motor cortical excitability. For example, In Terney et al.’s (2008) study using 

motor-evoked potential (MEP) recordings and psychophysical measurements, it was shown 

that a 10-minute application of transcranial random noise stimulation (tRNS) can enhance 

cortical excitability for up to 90 minutes (Terney et al. 2008). Chaieb, Antal and Paulus (2015) 

applied transcranial random noise stimulation (tRNS) between 0.1 and 640 Hz over the 

primary motor cortex (M1) for 10 minutes and it induced a cortical excitability which lasted 

for at least 60 minutes.  

Some prior studies have found that online- and offline- stimulation can produce different 
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stimulation aftereffect (Barbieri, Negrini, Nitsche, & Rivolta, 2016). For example, Barbieri 

and colleagues (2016) delivered online (a-tDCS during task execution) and offline (a-tDCS 

before task execution) targeted at the right lateral occipital cortex. The results showed that 

only offline a-tDCS improved the perceptual and memory performance of both faces and 

objects. However, online a-tDCS did not help to improve either perceptual or memory 

performance. In another study, Prichard and his colleagues (2014) have directly compared the 

time course of the effect of tDCS and tRNS in modulating cognitive or perceptual abilities 

(Prichard, Weiller, Fritsch & Reis, 2014). They (2014) investigated whether tRNS and tDCS 

have different online (within session) and offline (between session) effects in modulating 

motor skill learning over three consecutive days. It was found that both tRNS and tDCS have 

online effect and short offline effect in enhancing motor skill learning, but the offline effect 

cannot persist overnight. The main differences between tDCS and tRNS on temporal aspect 

was tDCS enhanced perceptual learning immediately following the onset of stimulation, 

whereas tRNS exerted more gradual effects. In another study, Pirulli, Fertonani, & Miniussi 

(2013) applied high-frequency tRNS, anodal tDCS and sham tDCS on V1 before or during 

the execution of an orientation discrimination task. They found that tRNS enhanced task 

performance only when it was applied during task execution, whereas anodal tDCS can 

improve the performance if it was applied before task execution. These findings suggested 

that timing of identical tES protocols can yield different effects on performance and each tCS 

have temporally distinct interactions with the neurological process of motor skill learning.  

4.4.5 Intensity of stimulation  

Most tRNS studies only use one intensity parameter, therefore this aspect of tRNS is not well 

addressed in the current field of research. Previous studies have shown that application of 

1mA high-frequency tRNS is sufficient to modulate motor cortical excitability (Terney et al., 
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2008; Chaieb, Antal and Paulus, 2015), or improving cognitive (Snowball et al., 2013) or 

perceptual (Romanska, Duchaine, & Banissy, 2015) abilities. Moliadze, Atalay, and Antal et 

al. (2012) applied different stimulation intensities (0.2, 0.4, 0.6, 0.8 and 1mA, respectively) 

tRNS in order to determine what is the lowest intensity capable of inducing observable 

cortical excitability for tRNS. In the study, 14 participants received sham stimulation and 

tRNS using different intensities and 11 participants received sham stimulation and tACS 

using different intensities in a randomized order. Stimulation sessions were delivered on 

separate days with at least 3 days apart to avoid a “carry-over effect”. Cortical excitability 

was measured immediately after each simulation using single test-pulse MEPs at 0-minute, 5-

minute and 10-minute post stimulation, and then every 10 minutes up to 60 minutes and then 

again at 90 minutes. The results showed that 1 mA tRNS significantly increased MEPs at the 

immediately after the stimulation and the aftereffect persisted for 90 minutes compared to the 

sham stimulation. Surprisingly, it was found that 0.4 mA stimulation significantly decreased 

MEPs between 20-minute and 90-minute post stimulation compared to sham stimulation. 

tRNS with 0.2, 0.6 and 0.8 mA did not exhibit any aftereffect. This finding suggests that 

aftereffect of tRNS is intensity dependent, and the threshold for producing cortical 

excitability is 1mA, at least for motor cortex modulation. Further studies are needed to test if 

the threshold also applies to other parts of cortex that are responsible for other cognitive 

domains.  

4.4.6 Duration of stimulation  

The effect of tRNS duration on modulating cortical excitability has not been extensively 

studied. Studies involving modulating motor cortex have established that a 10-minute 

application of transcranial random noise stimulation (tRNS) over the primary motor cortex 

(M1) increases the cortical excitability, which lasts around 60-90 minutes (Terney et al., 2008; 
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Chaieb, Antal and Paulus, 2015). Chaieb and her colleagues (2009) firstly demonstrated the 

aftereffect of a shorter duration of tRNS. In the study, they found that a 4-minute application 

of 1mA tRNS over the sensorimotor cortex induces a transient reduction in BOLD response 

during the performance of a simple finger-tapping task. However, this study only tested nine 

participants therefore the power of the study is questioned. Later, Chaieb, Paulus and Antal 

(2011) further investigated whether there is a “threshold stimulation duration” that is 

necessary to modulate cortex excitability and generate noticeable and lasting aftereffect. In 

the study, they demonstrated the applications of 4-, 5-, 6- minute tRNS using single-pulse 

monophasic transcranial magnetic stimulation (TMS) to measure cortical excitability before 

and after tRNS. It was found that 5- and 6-minute tRNS induced significant enhanced cortical 

excitability, whereas 4-minute tRNS produced no significant aftereffect on cortical 

excitability. These studies suggest that tRNS induced cortical excitability require a minimal 

stimulation duration of 5 minutes. This finding is awaiting confirmation from more studies, 

and the underlying mechanism for this phenomenon is not well understood, future studies 

should try to clarify the question. 

4.4.7 Ethical considerations 

Generally speaking, tCS including tRNS are safe brain stimulation techniques, and the 

induced effect is reversible, relatively selective and non-invasive if stimulation parameters 

are controlled by related safety guidelines (Ambrus, Paulus and Antal, 2010; Davis, 2015). 

There are some safety protocol guidelines for tDCS (i.e. Bikson, Datta and Elwassif, 2009), 

however, specific safety guidelines and related ethical considerations for tRNS are currently 

lacking. Safety stimulation parameters and stimulation time which were defined in papers 

mentioned above were strictly followed in my stimulation study.  

Poreisz et al. (2007) investigated potential risks associated with tDCS by summarising the 
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partially adverse effects of 567 tDCS sessions over motor and non-motor cortical areas. They 

concluded the most reported adverse effect associated with tDCS is a mild tingling skin 

sensation during the stimulation. It should be noted that the reported minor adverse effects of 

tDCS on skin are not necessarily linked with brain tissues and should be considered 

independently (Bikson et al., 2009). tRNS possesses advantages over tDCS regarding skin 

sensation. Specifically, tRNS delivers oscillatory current and thus does not have the polarity 

constraints as tDCS which might cause perceptible skin sensations when applied (Chaieb et 

al., 2009). Therefor tRNS is a possible alternative to tDCS with a better blinding control as it 

has similar excitability effect as anodal tDCS but it is not as noticeable as tDCS regarding 

skin perception (Ambrus, Paulus and Antal, 2010).  

The occurrence of seizures has not reported in tCS studies, but rare cases were reported in 

rTMS studies with epileptic patients under treatment with drugs which potentially lower the 

seizure threshold (Rossi, Hallett and Rossini et al., 2009). Therefore, it is very important to 

screen participants for any contradictions to tRNS in order to eliminate any potential hazards 

of stimulations. In tCS brain stimulation study, participants are not permitted to receive 

stimulation if they have a heart pacemaker, cochlear implant, aneurysm clip or any other 

metallic object or electronic device within their bodies; if they have a personal or family 

history of epilepsy or any other medical, psychiatric or neurological disorders; female 

participants who are pregnant or anyone who has taken part in a brain stimulation study 

within 24 hours prior to the experiment which uses tCS. The study reported in Chapter 6 of 

this thesis only used healthy younger and older participants and the screening process 

mentioned above was followed. The stimulation parameters were carefully controlled 

according to the safety guidelines and the brain stimulation study was approved by the local 

ethics committee at Goldsmiths college.  
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TCS studies have been suggested as a promising tool for enhancing various cognitive and 

perceptual abilities, such as mathematical skills (Snowball et al., 2013), facial perception 

(Romanska et al., 2015), and depression (Nitsche et al., 2009). However, there is a potential 

risk with DIY users who wish to explore the use of brain stimulation, as they might be lacked 

of proper safety training and sufficient neuroscience knowledge (Danis et al., 2013). In 

addition, it should be cautious to apply tCS to children whose brain are still developing and 

they might have different safety stimulation thresholds, there is still a large amount to be 

done in establishing safety protocols for children (Davis, 2014). Furthermore, tCS induced 

stimulation has shown spreading from targeted neural regions to surrounding tissues and 

might cause unplanned effects (Miranda et al., 2006). It is important to leave at least 24 hours 

between stimulations to reduce build-up effect on untargeted neural regions (Danis et al., 

2013).  
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CHAPTER 5: ENHANCING EMOTION PERCEPTION USING NON-INVASIVE 

BRAIN STIMULATION 

 
Extensive behavioural evidence has shown that older people have declined ability in facial 

emotion perception. Recent work has begun to examine the neural mechanism that contribute 

to this, and potential tools to support emotion perception during aging. The aim of this study 

was to investigate whether high frequency tRNS applied to the inferior frontal cortex would 

enhance facial expression perception in older adults. Healthy aged adults (60+ years) were 

randomly assigned to receive active high-frequency or sham tRNS targeted at bilateral 

inferior frontal cortices. Each group completed tests of facial identity perception, facial 

happiness perception and facial anger perception. These tasks were completed before and 

after stimulation. The results showed that, compared to the sham group, the active tRNS 

group showed greater gains in performance after stimulation in anger perception (relative to 

performance before stimulation). The same tRNS stimulation did not significantly change 

performance on the two other face perception tasks assessing facial identity and facial 

happiness perception. Examination of how inter-individual variability related to changes in 

anger perception following tRNS indicated that the degree of performance change in anger 

perception following active tRNS to inferior frontal cortex was predicted by baseline ability 

and gender of older adult participants. The findings suggest that high frequency tRNS may be 

a potential tool to aid anger perception in typical aging, but flag that performance variability 

and gender may interact with stimulation leading to different outcomes. 

 

5.1 Introduction 
 

Emotional facial expression perception plays an important role in interpersonal 

communication. Difficulties with emotion perception are associated with specific types of 
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social impairment, including poor interpersonal interaction, reduced social competence, 

loneliness, and inappropriate social behaviours (e.g., Spell & Frank, 2000; Kanai et al. 2012). 

Numerous studies have focused on establishing how emotion perception is affected as a 

function of normal adult aging, as well as the extent and implications of any observed 

difficulties (e.g. Sullivan and Ruffman, 2004; Isaacowitz et al., 2007; Ebner et al., 2013; 

Ebner & Fischer, 2014). The overall pattern of results regarding age group differences in 

facial expression perception is quite consistent: a recent meta-analysis reviewed papers 

examining age differences in emotion perception and concluded that older adults (60+) have 

increased difficulty in perceiving at least some basic emotions (particularly anger, sadness, 

and fear) from faces, but that others remain spared (e.g. disgust perception; Ruffman et al. 

2008).  

 

Although many studies have investigated the cognitive and neural basis of decline in emotion 

perception during typical aging, little attention has been directed towards improving face 

emotion processing in these individuals. In other areas of research one tool that has proved to 

be useful in aiding social perception is transcranial current stimulation (tCS). TCS is a safe 

and noninvasive technique for brain stimulation that can be used to increase or decrease brain 

activity under a targeted brain region. It refers to a range of techniques, including transcranial 

direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), and 

transcranial alternating current stimulation (tACS), which involve passing a weak current 

between electrodes placed on the scalp (Miniussi, Harris, & Ruzzoli, 2013). For instance, in 

high-frequency tRNS, an alternating current ranging randomly between 100-640Hz is passed 

between electrodes leading to bilateral increases in cortical excitability under two stimulating 

electrodes (Terney et al., 2008).  
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Prior work has shown that tCS can be effective in improving performance on several tasks in 

young adults, including memory, perception, social cognition, social perception, learning and 

motor abilities (e.g. Cohen Kadosh et al., 2010; Snowball et al., 2013; Fertonani et al., 2011; 

Sellaro et al., 2016; Romanska et al., 2015). While tCS has been employed to study young 

adults, it has been used less frequently to study older adult participants (see Tatti et al., 2016 

for review). This is surprising given a) the psychosocial consequences of reduced emotion 

perception ability (Spell & Frank, 2000), b) the consistent pattern of age-related decline in 

emotion perception ability (e.g. Ruffman et al., 2008), and c) prior work showing that social 

processing (including emotion perception) can be improved following tCS in young adult 

participants (e.g. Santiesteban et al., 2012, 2015; Hogeveen et al., 2014, 2016; Janik et al., 

2015; Romanska et al., 2015; Barbieri et al., 2016; Liepelt et al., 2016; Sellaro et al., 2016), 

implying that tCS may have potential efficacy as a tool to enhance facial processing skills in 

older adults. Indeed, in other domains (e.g. memory, motor performance) non-invasive brain 

stimulation techniques have been shown to offer promise in enhancing performance of 

healthy older adults. For instance, Hsu et al. (2015) investigated the effect of non-invasive 

brain stimulation on healthy older adults by conducting a meta-analysis of fourteen studies 

with a total of 331 healthy older adults. The meta-analysis revealed that applying a single 

session of non-invasive brain stimulation typically positively influenced older adults’ 

performance. With this in mind, assessing the effect of using non-invasive brain stimulation 

as a tool to improve older adults emotion perception seems an important avenue of 

investigation.  

 

One form of tCS that might be particularly useful in the context of aging is the use of high-

frequency tRNS, which can induce bilateral changes in cortical excitability. This is important 

because age-related neural functions are often associated with shifts from unilateral 
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functional brain activation to bilateral activation. For instance, the compensation-related 

utilisation of neural circuits hypothesis (CRUNCH) suggests that older people shift from 

unilateral functional brain activation to bilateral activation to achieve similar performance 

output as younger people who might only use unilateral neural activation (Reuter-Lorenz & 

Cappell, 2008). Similarly, aging has been linked with hemispheric asymmetry reductions and 

the recruitment of compensatory mechanisms (e.g. the hemispheric asymmetry reduction in 

older adults model [HAROLD], Cabeza, 2002). In this context high frequency tRNS may be 

useful to increase compensatory potential by inducing greater bilateral functional brain 

activation.  

 

Prior work also suggests that age-related declines in emotion perception are related to 

changes in perceptual strategies employed by old relative to young adults; for example, older 

adults tend to use perceptual information from upper parts of the face (e.g. eye region) less 

often and less efficiently (i.e. they are worse at detecting changes in this region) than young 

adult participants (Circelli et al., 2013; Murphy & Isaacowitz, 2010; Sullivan et al., 2007; 

Slessor et al., 2012; Chaby et al., 2011; Wong et al., 2005). This perceptual strategy of 

privileging information from lower parts of the face appears to predict patterns of change in 

older adult emotion perception (Wong et al., 2005; Mather, 2016). In this regard, it has been 

argued that older adults have weaker perceptual representations of emotions that typically 

rely more heavily on information from the top half of the face (e.g. fear, sadness, and anger; 

Mather, 2016).   One way in which high frequency tRNS is thought to aid performance is via 

mechanisms of stochastic resonance, with random noise amplifying weak neural signals (e.g. 

Moss et al., 2004). With this in mind, tRNS may offer a useful intervention to amplify weak 

signals in brain regions associated with emotion processing in older adults. 
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One brain region commonly linked with emotion perception is the inferior frontal cortex. For 

instance, a number of meta-analyses point to the involvement of inferior frontal cortex during 

expressive face perception (e.g. Sabatinelli et al., 2011; Fusar-Poli et al., 2009). Of particular 

interest in the context of aging is that activation within inferior frontal cortex has commonly 

been linked with the perception of facial emotions that older adults show impairments in 

perceiving (e.g. fear, sadness, and anger; Fusar-Poli et al., 2009; Fischer et al., 2010). Indeed 

in the meta-analysis by Fusar-Poli and colleagues (2009) it was found that bilateral inferior 

frontal cortex activity was most prominently associated with processing anger perception 

(typically impaired in aging). With this in mind, the inferior frontal cortex is a particularly 

interesting target region to assess whether high frequency tRNS could improve the emotion 

perception. 

 

When investigating the utility of non-invasive brain stimulation for improvement, it is also 

important to consider individual variation within the target cohort and how this might interact 

with stimulation effects. One key feature that can interact with the effects of brain stimulation 

is baseline performance (e.g. Feurra et al., 2013; Hsu et al., 2015; Tseng et al., 2012). This is 

particularly important in aging research, since a number of studies point to differences in the 

functional brain networks recruited between high and low performing older adults (Cabeza et 

al., 2002, Reuter-Lorenz & Cappell, 2008). For example, in the context of face processing it 

has been shown that high performing older adults show activation in compensatory brain 

networks (i.e. different brain networks) when compared to young adults and when compared 

to low-performing older adults  (Lee et al., 2011). These findings are often interpreted with 

the suggestion that low-performing older adults recruit similar brain networks as young 

adults but in an inefficient manner, whereas high-performing older adults show greater plastic 

reorganization of neurocognitive networks (and therefore compensate for deficiencies 
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associated with typical aging; Cabeza et al., 2002, Reuter-Lorenz & Cappell, 2008). This 

highlights an important consideration for non-invasive brain stimulation studies since 

identifying a target brain region based on young adult or low-performing older adult brain 

networks may lead to differential patterns of behavioural change in low-performing versus 

high-performing older adults (i.e. low performing older adults may benefit from stimulating 

brain regions that younger adults use, but high performing older adults may benefit from 

stimulating a compensatory brain network). 

 

5.1.1 Summary of Experiment 3 

To my knowledge no studies to date have examined a) if high-frequency tRNS can modulate 

emotion perception or b) if any effect can differ across older adults depending on baseline 

performance (i.e. high versus low performing older adults). With this in mind, this study 

sought to examine whether high-frequency tRNS targeted at the inferior frontal cortex could 

modluate older adults’ abilities to perceive facial emotion (anger and happiness perception) 

and facial identity. I also assessed the extent to which any changes in performance following 

stimulation would be influenced by pre-stimulation (i.e. baseline) perceptual abilities. Based 

on prior work highlighting the involvement of bilateral inferior frontal cortex activity in 

anger perception (Fusar-Poli et al., 2009) and work suggesting that low-performing older 

adults tend to recruit similar brain networks as young adult participants (but high performing 

older adults tend to recruit compensatory brain networks) I predicted a specific improvement 

in low-performing older adults in anger perception.  
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5.2 Methods 
 

Participants 

Thirty-two healthy older adult volunteers (mean age = 70 years, SE = 3 years; fourteen 

males) participated in this study. Participants were randomly assigned to the active high 

frequency tRNS (n = 16, mean age = 69 years, SE = 2 years; eight males) or sham stimulation 

(n = 16, mean age = 71 years, SE = 2 years; six males) groups. 

 

Participants were recruited from the community using fliers in, for example, retirement 

communities or senior citizen centers. All participants were native-English Caucasians, with 

normal or corrected-to-normal vision, with no known history of neurological problems, 

dyslexia or other language-related problems. Information on handedness, education level, and 

National Adult Reading Test (NART) score (Nelson and Willison, 1991) were obtained and 

recorded from each subject. All participants were asked to complete mini-mental state 

examination (MMSE) (Folstein et al., 1975) to evaluate mental states, and none of them 

scored lower than 24. Informed consent from all participants were obtained prior to 

beginning the experiment who were fully informed about the experimental procedure.  The 

experimental protocol was approved by the Ethics Committee of Goldsmiths (University of 

London).  

 

Equipment and procedure 

Participants completed three tests before and after tRNS. The tests were the Cambridge Face 

Perception Angry (CFPT-Angry; Janik et al., 2015), Cambridge Face Perception Happy 

(CFPT-Happy) and the Cambridge Face Perception Identity (CFPT-Identity; Duchaine et al., 

2007a, 2007b) tests (Figure 1). All participants completed the tasks before stimulation to 

measure their baseline performance and after stimulation to measure post-stimulation 
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performance change. The order of the tasks (both pre- and post- stimulation) was randomised 

and counterbalanced for each subject. The approximate completion time for all tests was 30 

minutes, after which they received 20 minutes of brain stimulation (see details below), 

followed by the post-stimulation tests. Details of each test and the brain stimulation 

parameters can be found below. 

 

CFPT-Angry 

In the CFPT-Angry participants were presented six faces (from a frontal view) morphed 

between the expression of ‘anger’ and a ‘neutral’ expression in varying proportions (40%, 

32%, 24%, 16%, 8%, 0%). All faces were of young adult participants and were adapted from 

the Radbound Facial Database (Langer et al., 2010). These six faces were presented 

simultaneously on the screen in fixed pseudo-random order. Memory demands are minimal in 

this task because faces are presented simultaneously; it is therefore an ideal measure to assess 

facial identity perceptual abilities. Participants were required to sort the faces according to 

how angry they appeared, from the face that looks least angry on the left to the face that looks 

most angry on the right. The time limit for each trial was 60 seconds, but participants could 

move on to the next trial earlier if they completed the trial before the time limit expired. 

Participants completed ten trials in total. Performance was measured using percentage of 

correct responses. Chance performance is 36%. 

 

CFPT-Happy 

In the CFPT-Happy task participants were presented six faces (from a frontal view) morphed 

between the expression of ‘happiness’ and a ‘neutral’ expression in varying proportions 

(15%, 12%, 9%, 6%, 3%, 0%; lower morphs were used than CFPT-Angry in order to avoid 

ceiling effects that commonly occur with happiness perception tasks). All faces were of 
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young adult participants and were adapted from the Radbound Facial Database (Langer et al., 

2010). The six faces were presented simultaneously on the screen in a fixed pseudo-random 

order. Memory demands are minimal in this task because faces are presented simultaneously; 

it is therefore an ideal measure to assess facial identity perceptual abilities. Participants were 

required to sort the faces according to how happy they appeared, from the face that looks 

least happy on the left to the face that looks most happy on the right. The time limit for each 

trial was 60 seconds, but participants could move on to the next trial earlier if they completed 

the trial before the time limit expired. Participants completed ten trials in total. Performance 

was measured using percentage of correct responses. Chance performance is 36%. 

 

CFPT-Identity  

To investigate facial identity perception the CFPT-Identity was used in the experiment 

(previously called CFPT; Duchaine et al., 2007a, 2007b). This test assessed participants’ 

ability to perceive differences between facial identities. During the task, participants were 

shown a target face (from a 3⁄4 viewpoint) and six faces (from a frontal view) morphed 

between the target and a distractor face (six unique distractors per target) in varying 

proportions (88%, 76%, 64%, 52%, 40%, 28%) so that they vary systematically in their 

similarity to the target face. All faces stimuli used were young adults.  In each trial, 

participants were asked to sort the six faces by similarity to the target face within 60 seconds. 

If the participant completed the trial before the end of the one-minute time window they had 

the option to click on a button to begin the next trial (i.e. the task was self-paced). Memory 

demands are minimal in this task because faces are presented simultaneously; it is therefore 

an ideal measure to assess facial identity perceptual abilities. Normally, the CFPT contains, 

eight upright and eight inverted trials that alternated in a fixed pseudo-random order 

(Duchaine at al., 2007a, 2007b), but for the purpose the present study eight upright trials were 
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completed (i.e. there were no inverted trials). Performance was measured using percentage of 

correct responses. Chance performance is 36%. 

 

 

 

Figure 5.1. (a) Example trial of the CFPT-Angry. Participants were displayed six faces 
containing varying levels of anger ranging from 0 to 40% on the screen in a random order. 
Participants were required to sort them from most angry to least angry.  
 

 

 

Figure 5.1. (b) Example trial of the CFPT-Happy. Participants were displayed six faces 
containing varying levels of happiness ranging from 0 to 15% on the screen in a random 
order. Participants were required to sort them from most happy to least happy.  
 

 

Figure 5.1. (c) Example trial of the CFPT-Identity. Participants were displayed a target face 
and six faces (from a frontal view) morphed between the target and distractor in varying 
proportions (88%, 76%, 64%, 52%, 40%, 28%). Participants were required to sort the six 
faces according to the degree of similarity to the target. 
 

Most Angry Least Angry 

a. 

Most Happy Least Happy 

b. 

Most Like Least Like 

c. 



	 120	

Brain stimulation parameters 

Participants were randomly assigned to two groups for different stimulation conditions: 

active high frequency tRNS or sham stimulation. For each group, participants were seated in 

a comfortable chair, in front of a computer screen and a keyboard. In the active high 

frequency tRNS group 20-minute of brain stimulation was administered using a pair of 

saline-soaked surface sponge electrodes and a battery- driven, programmable, constant 

current DC-Stimulator (neuroConn). The stimulation electrodes were placed over both sides 

of the inferior frontal cortex, which has been previously identified as F7 and F8 (international 

10–20 system for electrode placement sites; Towle et al., 1993). The size of both stimulation 

electrodes were 5 × 5 cm and they were fixed by rubber straps. High frequency tRNS (100-

640 Hz) was applied for 20-minutes with a current strength of 1000 μA, 15s fade in/out. For 

sham stimulation the current was applied for 5s with a 15s fade in/out. This length of 

stimulation does not lead to changes in cortical excitability beyond the period of stimulation. 

It has been shown that participants cannot distinguish between active and sham stimulation 

(Ambrus et al., 2011). During the 20-minute brain stimulation, all participants were shown a 

neutral video to ensure consistency of personal activity during stimulation and to reduce 

boredom before continuing to the next stage of the experiment. Participants were blind to the 

stimulation group that they were assigned to. 
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Figure 5.2. Experimental procedures. All participants were required to complete all three 
behavioural tasks (CFPT-Anger, CFPT-Happiness, and CFPT-Identity) in a randomised and 
counterbalanced order, then participants received 20 min of active or sham high-frequency 
tRNS targeted at F7 and F8 prior to completing the same tasks (CFPT-Anger, CFPT-
Happiness, and CFPT-Identity) in a randomised and counterbalanced order. 
 
 
5.3 Analysis and Results  
 

Preliminary analyses and baseline characteristics 

Prior to the statistical analysis, two participants (one from the Sham Group and one from the 

Active tRNS Group) were identified as outliers (using a criteria of > 3 standard deviations 

from the mean on any individual variable of interest; and significance using Grubb’s Test). 

Following removal of these outliers the mean age of Sham and Active tRNS Groups still did 

not significantly differ from each other (Active-tRNS: mean = 68 years, SE = 2 years; Sham: 

mean = 71 years, SE = 2 years). Handedness, level of education (Active-tRNS: mean = 14 

years, SE = 1 year; Sham: mean = 15 years, SE = 1 year), and NART scores (Active-tRNS: 

mean = 118, SE = 3.80; Sham: mean =121, SE =1.56) of two groups were matched between 

two groups. Baseline performance on the three face perception tasks (happiness, anger and 

facial identity perception) also did not significantly differ between two groups [happiness 

baseline t = .465 p = .645; anger baseline t = .013, p = .990; identity baseline t = 1.18 p = 

.250]. 

 

Performance differences following tRNS 

To examine the extent to which performance on each task was modulated by active or sham 

tRNS a performance change score was calculated by subtracting performance following 

Ac#ve	tRNS	or	Sham	tRNS		
at	F7	and	F8	
(20	minutes)	

Behavioural	tasks	
(Post-s#mula#on	performance)	

	
	

Behavioural	tasks	
(Pre-s#mula#on	performance)	
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tRNS (active or sham) from baseline performance (i.e. performance before stimulation).  This 

provides a measure of the degree of change in performance following stimulation with 

positive values indicating an improvement in performance and negative values indicating a 

reduction in performance. To compare whether the degree of change following stimulation 

differed between Active and Sham tRNS groups across each task (happy, anger, identity) a 

series of planned Bonferroni corrected paired comparisons were conducted. This revealed 

that for anger perception participants in the Active tRNS group showed larger gains in 

performance than participants in the Sham tRNS group [t(28) = 3.18, p =  .012 (Bonferroni 

corrected)]. This pattern of results was not found for happiness perception [t(28) = .181, p = 

.858] or identity perception [t(28) = 1.95, p = .183 (Bonferroni corrected)] where no 

significant differences were observed (Figure 5.3).  

 

Figure 5.3. Comparison of degree of change following Active (bars in white) and Sham (bars 
in grey) tRNS across each task (happy, anger, identity). 
 

Given that prior work has linked the efficacy of brain stimulation effects to baseline 

performance I next sought to examine the extent to which performance in the pre stimulation 
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test was related to performance change following stimulation on the anger perception task. 

To do so I correlated pre-tests scores with performance change for the Active tRNS and 

Sham tRNS groups separately. This revealed that for the Active tRNS Group there was a 

significant negative relationship between pre-test performance and performance change 

following stimulation [r = - .572, p = .026], indicative of lower performance in the pre-test 

being associated with larger performance gains following active tRNS (Figure 5.4a). This 

pattern was not observed for the Sham tRNS group, where no significant relationship was 

found between pre-test performance and performance change scores [r = -.052, p = .854] 

(Figure 5.4b). Similarly, no significant relationship was observed between pre-test 

performance and performance change scores for either the active tRNS or sham stimulation 

group on the CFPT-Happy or CFPT-Identity (i.e. happiness pre-test performance did not 

significantly relate to performance change in happiness perception [Active tRNS Group – r = 

-.085, p = .764; Sham Group – r = -.297, p = .282]; identity pre-test performance did not 

significantly relate to performance change in identity perception [Active tRNS Group – r = -

.282, p = .309; Sham Group – r = -.034, p = .906]).   

 

Simple linear regression indicated that pre-test performance was a significant predictor of 

performance change following stimulation in the Active tRNS Group [β = -.572, t = 2.51; F 

(1, 14) = 6.31, p =.026; Adjusted R Square = .275]. In addition to baseline performance, 

prior work has suggested that brain stimulation effects may be influenced by gender (e.g. 

Chaieb et al., 2008; Lapenta et al., 2012; Russell et al., 2014). Adding gender (male = 0, 

female = 1) as secondary predictor in a hierarchical regression model alongside pre-test 

performance significantly improved the model [F (1, 12) = 9.30, p = .013; Adjusted R Square 

= .542]], with both pre-test performance [β = -.674, t = 3.66, p = .003] and gender [β = 

.540, t = 2.93, p = .013] acting as significant predictors of performance change in anger 
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perception following stimulation in the Active tRNS Group only. Participants’ predicted 

Improvement in Performance (Anger) is equal to 23.2% - 35.5% × [Baseline Performance 

(Anger)] + 7.9% × [Gender of Participants], where Gender of Participants is coded or 

measured as female =1 and male =0.  

 
 
 
Figure 5.4. Relationship between baseline performance and performance change following 
stimulation in Anger task. (a) For the Active tRNS Group there was a significant negative 
relationship between pre-test performance and performance change following stimulation. (b) 
This pattern was not observed for the Sham tRNS group. 
 
5.4 Discussion 
 

The aim of the present study was to investigate whether high-frequency tRNS targeted at the 

inferior frontal cortex would enhance older adults’ ability to process facial emotion, and in 

doing so explore the importance of the inferior frontal cortex in older adults’ emotion 

perception.  Facial emotion perception (happiness and anger perception) and facial identity 

perception were assessed before and after active or sham tRNS targeted at the inferior frontal 

cortex. The results showed that there was a significant improvement for anger perception 

following high-frequency tRNS relative to sham stimulation. In contrast, the same tRNS 

paramters did not significantly change the ability to perceive facial identity or happiness. 

These results indicate that tRNS targeted at inferior frontal cortex enhanced older adults’ 
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ability to detect fine grained changes in the expression of anger, and add strength to previous 

proposals suggesting that the inferior frontal cortex is particularly sensitive to processing 

anger rather than positive (happiness) emotions (Fusar-Poli et al., 2009).  

 

By providing evidence confirming a link between inferior frontal cortex activity and anger 

perception in older adult participants, the neuromodulatory approach adopted in the current 

study could provide avenues for the development of novel approaches to intervention aimed 

at overcoming age-related declines in anger perception. In this context it important to be 

aware of factors that might interact with stimulation efficacy. In addition to showing group 

level differences between active and sham tRNS targeted at inferior frontal cortex on anger 

perception, the results also showed that the degree of improvement in anger perception 

displayed by older adults receiving active tRNS to inferior frontal cortex was influenced by 

both baseline ability (i.e. pretest score) and gender. This pattern was not observed in the sham 

stimulation group. It was also not found for facial happiness or facial identity perception. 

Recent findings show that the effects of noninvasive brain stimulation are to some degree 

dependent on individual differences in susceptibility (e.g. modulation by gender - Chaieb et 

al., 2008; Lapenta et al., 2012; Russell et al., 2014; modulation by performance variability – 

Hsu et al., 2015; Krause & Cohen-Kadosh, 2014; Sarkar et al., 2014; Tseng et al., 2012).  In 

line with this, the present pattern of results show that baseline ability was related to degree of 

change in anger perception following active tRNS; with decreased baseline ability being 

linked to increased gain following active tRNS.  Models of the interaction between aging and 

performance suggest that low-performing older adults recruit similar brain networks as young 

adults but in an inefficient manner, whereas high-performing older adults show greater 

reorganization of neurocognitive networks leading greater compensation (Cabeza et al., 2002; 

Reuter-Lorenz and Cappell, 2008). In the context of the findings reported here one might 
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speculate that high-performing older adults have successfully applied compensatory 

strategies and recruited additional neural regions, leading to stimulation being less likely to 

induce additional benefits. In contrast, low-performing older adults (i.e. those that are 

inefficient in recruiting additional neural regions) have a greater capacity for stimulation to 

induce additional benefits.  

 

To our knowledge, no studies have examined the relationship between inter-individual 

variability in baseline ability and performance change in emotion perception following tRNS 

in older adult participants. In other domains, there is some evidence for a similar pattern of 

data to our own. For example, using fMRI in conjunction with transcranial magnetic 

stimulation (TMS; a different type of non-invasive brain stimulation) to study memory, Solé-

Padullés et al. (2006) found that TMS modulates low performing older adults’ neural 

activation patterns (from unilateral to bilateral neural activation), and this change coincides 

with significant improvements in memory performance.  The present finding (and findings of 

prior work in other domains using other forms of brain stimuation, e.g. TMS; Solé-Padullés 

et al. 2006; Hsu et al., 2015) suggests that future brain stimulation studies with older adult 

participants should measure and examine the impact of baseline performance on stimulation 

efficacy. An additional broader implication of this is that prior studies that found little or 

small brain stimulation effects in older adults might have been related to the possible 

recruitment of high performing older adults who have a relatively small capacity for 

cognitive improvement, which could potentially mask the effect of noninvasive stimulation 

on lower performing individuals. In future studies there is a need to further clarify the 

relationship between the effect of brain stimulation and different levels of ability, and the 

underlying neural compensation mechanisms. 
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The relationship between gender and change performance in anger perception following 

active tRNS is consistent with prior work that has shown that gender can influence 

performance change following tCS (Chaieb et al., 2008; Lapenta et al., 2012; Russell et al., 

2014). This has commonly been interpreted in two ways: 1) hormonal differences (Chaieb et 

al., 2008; Lapenta et al., 2012) or 2) differences in brain structure (cranial bone density 

differences between males and females; Russell et al., 2014). To date work assessing how 

gender influences the efficacy of tCS has been focused on young / middle-aged adults1, 

therefore future studies will need to assess whether and how gender is likely to act as a 

moderator of performance change following non-invasive brain stimulation in older adults. 

 

While our findings highlight the importance of stimulation targeted at the inferior frontal 

cortex in anger perception, it is important to note that it cannot be fully concluded that the 

improvement on anger perception was only due to the after-effect of stimulating this region, 

as there is evidence showing that noninvasive transcranial brain stimulation can spread to 

surrounding neural regions of the targeted stimulation regions (Zheng et al., 2011; Summers 

et al., 2016). The role of the inferior frontal cortex in processing negative emotions and its 

inter-connection with other brain regions involved in emotion perception (e.g. amygdala, 

Nomura et al., 2004; Nakamura et al., 1999; Narumoto et al., 2000) during aging is not clear. 

To investigate these questions, future studies will need to combine brain stimulation with 

brain imaging techniques (e.g. EEG, fMRI) to reveal more about network dynamics 

underlying changes in emotion processing following stimulation of inferior frontal cortex. 

This will help to discover principles of connectivity between other emotion-related regions 

and the effect of normal aging on neural connectivity. This would also permit a better 

                                                
1 The mean age from Russell et al. (2014) was 53 years for males [range 34-68 years] and 
50.5 years  [range 21-75 years] for females, however this was tested on 12 males and 12 
females thus testing on a larger sample of older adult participants is required. 
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understanding of the interaction between brain stimulation and neural networks involved in 

emotion processing (see Luft et al., 2014 for a similar discussion). Further, it will be 

important for future work to assess the extent to which performance change in emotion 

perception following stimulation to inferior frontal cortex extends to other emotions that were 

not tested in the current study (e.g. fear, sadness), and to other emotion processing tasks (e.g. 

emotion discrimination; tasks involving the older adult rather than younger adult target 

faces). In addition, one limitation involved in the present study is the lack of control 

stimulation site. It is not fully confirmed that the aftereffect is purely due to the stimulation 

targeted on the IFG site, or whether it is a general stimulation effect. Therefore, it would be 

beneficial to have a follow-up study that includes a control stimulation site (e.g. motor 

cortex).  

 

As only tested older adult participants were tested in the current investigation it remains 

important for future work to consider whether the pattern of effects is specific to older adults 

or evident across different age groups. Prior brain imaging work suggests that the IFC plays a 

role in younger and older adult emotion perception (Sabatinelli et al., 2011; Fusar-Poli et al., 

2009). In this regard, one may expect a similar pattern of results, but whether the effects 

would be specific to anger versus other emotional cues and perceptual abilities remains 

unclear. Younger adults tend to outperform older adults in emotion perception, but this can 

vary according to the emotion type. Anger, sadness, and fear emotions are regularly found to 

be impaired but that others remain spared (e.g. disgust perception; Ruffman et al. 2008). The 

reasons for why these emotions are impaired, but the others tend to be spared are unclear. 

Commonly functions that are spared from decline in aging can be related to activity in 

different neural correlates to younger adults (Cabeza et al., 2002; Reuter-Lorenz and Cappell, 

2008). Given that the responsiveness to brain stimulation can vary according to a number of 
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these effects (e.g. targeted brain region, age, baseline ability) then one may expect some 

degree of difference in the pattern of results depending on age group. This remains an 

important question for future investigation. 

5.5 Summary 
 

In experiment 3, I assessed the impact of high-frequency tRNS targeted at the inferior frontal 

cortex on older adults’ facial emotion and facial identity perception abilities. I find that high-

frequency tRNS targeted at the inferior frontal cortex improved anger perception in older 

adults, but that the degree of improvement was influenced by baseline ability and gender. In 

contrast, the same tRNS stimulation did not significantly change the performance on 

happiness perception or identity perception. The finding highlights high frequency tRNS as a 

potential tool to aid facial emotion perception in typical aging, but that there are gender and 

performance specific moderators of this effect that should be considered prior to application. 
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CHAPTER 6: INVESTIGATION OF EVENT-RELATED POTENTIALS (ERPS) 

DURING EMOTION PROCESSING 

 

Chapter 2 and chapter 3 have shown that older participants have significantly declined 

behavioural performance in recognising low intensity happiness (only with older faces) and 

anger facial emotions. However, the underlying neural correlates of emotion processing in 

older participants are still unclear from these behavioural investigations. This chapter will 

record and compare event-related potentials (ERPs) from older and younger participants to 

investigate age-related neural activation patterns during emotion processing of neutral, 

anger and happiness facial emotions. In doing so, this chapter will try to provide a novel 

insights into age-related changes in emotion recognition by using behavioural and EEG 

measures, and investigating how ‘face stimuli age’ and different ‘emotional intensities’ affect 

both younger and older participants’ behavioural performance and neural activations.  

 

6.1 Introduction 
 
Previous functional brain imaging studies have found that older participants exhibit a 

different neural activation pattern from younger participants during emotion recognition (e.g. 

Gunning-Dixon, Gur, & Perkins, 2003; Tessitore, Hariri, and Fera et al., 2005). Generally, 

older people tend to recruit more frontal cortical regions to compensate their lower 

subcortical neural activations when compared to younger people during emotion processing. 

For example, Gunning-Dixon, Gur, & Perkins (2003) investigated age-related neural 

activations in cortical and limbic regions using fMRI by presenting facial displays of a 

mixture of mostly negative emotions to both young and older participants. In the emotion-

discrimination task, younger participants activated the amygdala and surrounding temporo-

limbic regions, whereas older participants activated left frontal regions. Tessitore, Hariri, and 
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Fera et al.’s (2005) compared older and younger subject’s neural processing of fearful and 

threatening stimuli using fMRI and found older participants were associated with increased 

prefrontal cortical neural responses, including Broca’s area and left medial prefrontal cortex; 

and significantly lower neural responses in the amygdala and posterior fusiform gyri. In 

addition, my brain stimulation study illustrated in chapter 5 has shown that high-frequency 

transcranial random noise stimulation (tRNS) targeted at bilateral inferior frontal gyrus 

significantly enhanced older adults’ perception of anger.  

 

These previous studies have uncovered some important points of age-related neural 

mechanism of emotion processing. However, several limitations apply to these neuroimaging 

studies. Firstly, most neuroimaging studies only investigated facial displays of negative 

emotions in their studies (i.e. Tessitore, Hariri, and Fera et al., 2005; Fischer et al., 2010), few 

studies have compared the young-old neural activations during recognition of neutral and 

happiness emotions. Therefore, it is not entirely clear whether the age-related compensation 

pattern reflects older people’s general emotion processing, or processing of negative 

emotions only (Fischer et al., 2005). Secondly, most previous neuroimaging studies have 

used fMRI to demonstrate the age-related neural activations during emotion perception tasks.  

 

What are ERPs and what do they measure? 

Although fMRI has excellent spatial resolution, the temporal resolution is relatively poor. 

Electroencephalography (EEG) has much better temporal resolution than fMRI and enables 

inference about the time course of emotional facial expression processing in human brain. 

ERP is a measurement of the postsynaptic potentials (PSPs) of neurons. PSP occur when 

“neurotransmitter bind the receptors, changing the flow of ions across the cell membrane” 

(Luck, 2014). When a PSP occurs within a single neuron, it creates a small electrical dipole. 
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Measurable ERPs can only be recorded when the dipole from many thousands of similarly 

oriented neurons sum together (Luck, 2014). Therefore, ERPs provide a direct and high 

temporal resolution measure of neurotransmission-mediated neural activity. The 

measurement of event-related brain potentials (ERPs) is most suitable for investigating the 

time course of the cortical responses during the encoding of affective pictures (Schupp et al., 

2003). However, few studies have assessed healthy aged older adult participants’ neuronal 

correlates of emotion processing using EEG (Wieser, 2006). The present study investigates 

age-related neutral activations during emotion processing by comparing healthy older and 

younger participants’ ERPs.  

 

ERP components involved in facial emotion processing  

As discussed in chapter one, younger adults showed three major ERP components: firstly, an 

enhanced early frontocentral positivity was elicited in response to emotional as opposed to 

neutral faces within 120ms after stimulus presentation (Eimer and Holmes, 2002; Eimer, 

Holmes, and McGlone, 2003), followed by a broadly distributed sustained positivity beyond 

250ms post-stimulus (Eimer and Holmes, 2002; Eimer, Holmes, and McGlone, 2003), and 

then followed by an enhanced negativity at lateral posterior sites (EPN) (Eimer, Holmes, and 

McGlone, 2003; Balconi, Pozzoli, and Possoli, 2003; Kisslerm Herbert, and Winkler et al., 

2009). The early frontocentral positivity (within 120ms post-stimulus) and later broadly 

distributed positivity (beyond 250ms post-stimulus) were found very similar across different 

types of basic emotional expressions; in other words, these ERP positivities are not 

modulated by emotion type (Eimer et al., 2003, 2007). In addition, these emotional 

positivities are modulated by attention, as it was found that these positivities disappeared 

when attention was directed away from the faces (Eimer et al., 2003). These early and late 

emotion-related cortical positivities are not modulated by emotion type, and they reflect non-
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automatic and attentive processing of facial emotions, which is in contrast to the automatic 

and inattentive subcortical emotion processing (e.g. amygdala) (Eimer et al., 2003, 2007). 

Prior studies on negativity at lateral posterior sites (EPN) suggested that the amplitudes of the 

EPN were enhanced by emotional faces, as viewing threatening (Holmes et al., 2003; Schupp, 

Ohman, et al., 2004) and happy (Schacht & Sommer, 2009) faces elicited an enhanced EPN 

compared to neutral faces. However, the amplitudes of EPN did not vary between pleasant 

and unpleasant stimuli (Schupp et al., 2003). In addition, the EPN component was not 

modulated by different levels of attentional demands, as it was found that the EPN 

amplitudes remained consistent across a verity of viewing paradigms (e.g. passiving viewing, 

target detection). EPN only increases when the emotional intensity of facial stimuli increases 

(Schupp et al., 2003).  

 

Up to now, few studies have investigated the whether the emotion-related ERPs are affected 

by advancing age. A recent ERP study (Wieser, Mühlberger, Kenntner-Mabiala, & Pauli, 

2006) compared older and younger adults’ ERPs during displaying facial expressions (neutral, 

positive and negative) and revealed that early EPN (168–232ms) was reduced in older adults 

compared to younger adults, but the late EPN (232–296ms) was not affected. However, some 

questions remain to be answered, such as whether other ERP components are affected by 

normal aging (e.g. early and late emotion-related positivities); and what are the effects of task 

difficulty and stimuli age in modulating these emotion-related components.  

 

The effects of ‘face stimuli age’ and ‘task difficulty’ in facial emotion perception 

In addition, perceptual biases may have influenced previous brain imaging results since most 

previous neuroimaging studies only used younger faces (Bäckman, 1991; Lamont, Stewart-

Williams, & Podd, 2005). This may lead to the other-age effect influencing performance 



	 134	

(Chapter 1; Reuter-Lorenz and Cappell, 2008).  Furthermore, another set of issues that have 

largely been ignored in most previous studies is the variation of emotional intensity, or task 

difficulty. In most neuroimaging studies, the facial emotion displays only contained high-

intensity of emotions that are typically linked with high performance (i.e. ceiling levels of 

performance) have been used (this can potential mask differences in performance, as 

discussed and demonstrated in Chapters 2 and 3). This leads to two issues: 1) it is unknown 

how older people’s perception of subtle/low-intensity facial expressions is linked with brain 

activity and 2) it is unclear how task difficulty interacts with age-related changes in brain 

function when completing emotion perception tasks.   

 

In other domains, the relationship between task difficulty and age-related neural 

compensation has been described via the compensation-related utilization of neural circuits 

hypothesis (CRUNCH) model (Reuter-Lorenz and Cappell, 2008), which attempts to explain 

younger and older people’s behavioural performance and neural activation patterns at low 

and high task demands and explained the possible underlying mechanisms. This model is 

based on the assumption that older people’s processing inefficiencies cause the aging brain to 

recruit additional neural resources to achieve the similar output as younger brain. This 

compensatory strategy is effective at lower level of task demand. However, as task demand 

increases, when older people’s neural resource ceiling is reached, it results in insufficient 

compensation and age-related behavioural performance decline. This aging compensation 

model has been supported by studies investigating other cognitive function, such as memory 

(Daselaar, Fleck, Dobbins, Mad- den, & Cabeza, 2006), language processing (Mattay et al., 

2006; Cappell, Gmeindl, & Reuter-Lorenz, 2006; Martin, Joanette, and Monchi, 2015) and 

executive functioning (Martin, Joanette, and Monchi, 2015). However, to date no one has 

demonstrated this model in facial emotion perception in aged participants.  
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The aim of this study was to provide insights into older and young adults’ ERPs and 

behavioral response during perceiving anger and happiness facial emotions with low- and 

high- emotional intensities. The present study will demonstrate the neural compensation 

hypothesis by comparing older and young people’s neutral activation patterns at neutral 

(baseline), easy and hard conditions for anger and happiness emotion perception. 

 

6.2 Methods 
 

Participants 

Participants consisted of sixteen younger participants (12 female and 4 male; mean age = 24 

years, SD = 6 years) and fifteen older participants (12 female and 3 male; mean age = 69 

years, SD = 9 years). All participants were native English speakers, with no known history of 

neurological problems, dyslexia or other language-related problems, and with normal or 

corrected- to-normal vision. Younger participants were recruited through the university’s 

undergraduate participant pool, and older participants were recruited from local elderly 

community centres. All participants provided informed consent prior to beginning the 

experiment and were fully informed about the experimental procedure. The local ethics 

committee approved the study.  

 

Level of education, premorbid intelligence (NART) (Nelson, 1991), handedness, Screening 

tests of working memory (digit span) (Turner & Ridsdale, 2004), Toronto Alexithymia Scale 

(TAS-20) (Bagby, Parker, & Taylor, 1994) were recorded at the beginning of experiments; 

the two groups did not significantly differ in these factors (details given in the Results 

section). The Mini-Mental State Examination (MMSE) was used as a screening evaluation to 

test older participants for possible dementia (Folstein, Folstein, & McHugh, 1975). The 
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MMSE appears to be the most widely used measure to screen for cognitive status. A cut-off 

limit of < 24 was used, which has a good sensitivity for dementia in the older population 

(Chayer, 2002). No participants were excluded from the study on the basis of this criterion. 

All participants gave informed consent prior to beginning the experiment and were fully 

informed about the experimental procedure. The local ethics committee approved the study. 

Demographic characteristics of the two samples can be seen in Table 6.1.  

 

Table 6.1. Basic demographic and descriptive characteristics of the two study groups.  

 Old 

(n = 15) 

Young 

(n = 16) 

Gender (male/female) 3/12 4/12 

Age (years) 69 (9) 24 (6) 

Education (years) 15 (3) 16 (2) 

Handedness (right/left) 14/1 15/1 

Premorbid IQ (NART) 120.07 (8.430) 115.44 (10.295) 

Working memory (digit-

span) 

105.27 (16.867) 106.63 (12.209) 

TAS-20 score 43.00 (7.329) 44.75 (9.692) 

 

Experiment task 

Participants were seated in a dimly lit, sound-attenuated room. A computer screen was placed 

at a viewing distance of approximately 50 cm. The task was presented on a PC using the 

MATLAB (The MathWorks, Inc., Natick, MA)-based toolbox Cogent 2000 

(www.vislab.ucl.ac.uk/cogent.php). The faces were approximately 5 × 8 cm when displayed 

on a 17-in. monitor (screen size, 1,024 × 768 pixels) on a Dell computer.  
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The facial stimuli used in the experiment were created from FaceGen modeler software 

(www.facegen.com/products.htm) with no hair or facial hair to avoid gender cues other than 

facial structure and features. All images were three-dimensional, grey scale, front profile 

Caucasian faces. Thirty young (18 – 40 years; 15 male and 15 female) and thirty old (15 male 

and 15 female; 65+ years) faces were used in the task. Each identity displayed anger and 

happiness in low (30%, 15%), high (60%, 75%), and neutral (0%) intensities (see figure 6.1). 

Trials with low and high intensities correspond to hard and easy difficulty recognition levels. 

There were ten stimulus conditions in total, each condition comprised of 60 trials (neutral 

condition has 30 trials): old face stimuli-anger-easy, old face stimuli-anger-hard, old face 

stimuli-happy-easy, old face stimuli-happy-hard, old face stimuli-neutral, young face stimuli-

anger-easy, young face stimuli-anger-hard, young face stimuli-happy-easy, young face 

stimuli-happy-hard, young face stimuli-neutral. 

           

Figure 6.1. Example emotional facial stimuli of anger (a., upper graphs) and happiness (b., 
lower graphs) used in the experiment. Hard task conditions contain facial stimuli with lower 
emotional intensities (15% and 30%), and easy task conditions contain facial stimuli with 
higher emotional intensities (60% and 75%).  
 
 
In each trial, facial stimuli were presented for 500ms, followed by a blank screen with a 
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fixation cross for 500ms. A screen appeared to ask participants to provide a response, and the 

screen would not change until the participant's behavioral response. The interval between the 

response and presentation of subsequent stimulus was 1500ms (see figure 6.2). Participants 

were shown one facial stimuli at a time, in a randomized order on a black background. 

Participants were instructed to judge the facial expression they were presented in each trial 

and to respond as quickly and accurately as possible by pressing one of three buttons (neutral, 

anger, and happiness) on the response box. They were reminded that some facial expressions 

were quite subtle. Accuracy and reaction times (RTs) were recorded. Resting state EEG (3 

minutes with eyes-open and eyes-closed) was recorded for each participant before the 

experiment was carried out. The resting state EEG was not analysed.  

 

 
 
 
 
 
 
 
 
 
 
Figure 6.2. An example trial of the emotion perception task. In each trial, a facial stimulus 
was presented for 500 ms, followed by a blank screen with a fixation cross for 500ms, then 
followed by a screen that requires participants to provide a response (the screen would not 
change until the participant's behavioral response). The interval between the response and 
presentation of subsequent stimulus was 1500ms. 
 

EEG Recording and Analysis 

EEG was recorded with a sampling frequency of 512 Hz, band-pass filtered between 0.16 and 

100 Hz by 64 active electrodes placed according to the extended 10–20 system of electrode 

placement and amplified by a BioSemi ActiveTwo amplifier (www.biosemi.com). The 

vertical and horizontal EOGs were recorded using four additional electrodes to monitor eye 

blinks and horizontal eye movements, where one pair of electrodes (see figure 6.3, positions 
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C and D) were used to record horizontal eye movements (HEOG) and a second pair of 

electrodes (see figure 6.3, positions A and B) were used to record vertical eye movements 

(VEOG). The EEG data were processed and analyzed using the following MATLAB- based 

toolboxes: EEGLAB (Delorme & Makeig, 2004) for data preprocessing and FieldTrip 

(Oostenveld, Fries, Maris, & Schoffelen, 2011) for data analysis and statistical comparisons. 

 

Figure 6.3. Electrode placement for recording horizontal (C and D) and vertical (A and B) 
EOG, respectively 
 

Preprocessing 

The EEG data were re-referenced to a common average reference for ERP analyses. The use 

of a common average reference has been recommended for ERPs (Picton et al., 2000; 

Pfurtscheller & Lopes da Silva, 1999) because it is a less biased method for comparing across 

scalp topographies. The data were high-pass filtered at 0.5 Hz and epoched from −1500ms 

before and 1500ms after the onset of stimuli. The artifacts were treated in a semi-automated 

fashion: visual inspection was initially done to remove large muscle artifacts, followed by an 

independent component analysis for correcting the eye blink-related artifacts. Subsequent to 

the eye blink correction, epochs containing amplitudes exceeding ±75μV were discarded for 

future analysis. 

A

B

C D
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After artifact rejection, for the young group an average of 42 trials (SD = 8.04) and 43 trials 

(SD = 7.93) remained in the easy and hard anger conditions of older face stimuli; 43.19 trials 

(SD = 8.550) and 42.81 trials (SD = 6.26) remained in the easy and hard happy conditions of 

older face stimuli. In conditions of using young face as stimuli, the young group remained an 

average of 43.44 trials (SD = 7.60) and 42.25 trials (SD = 7.91) in the easy and hard anger 

conditions; 41.69 trials (SD = 9.25) and 41.31 trials (SD = 8.80) remained in the easy and 

hard happy conditions. For older group the analogous numbers were the following: 41.93 

trials (SD = 11.93) and 41.80 trials (SD = 11.18) for easy and hard anger conditions of older 

face stimuli, respectively; 41.53 trials (SD = 12.40) and 41.53 trials (SD = 12.40) remained in 

the easy and hard happy conditions of older face stimuli. In conditions of using young face as 

stimuli, the old group remained an average of 40.47 trials (SD = 11.83) and 40.60 trials (SD 

= 11.62) in the easy and hard anger conditions; 42.20 trials (SD = 12.36) and 40.80 trials (SD 

= 12.39) remained in the easy and hard happy conditions.  

 

ERP Analysis 

For the ERP analysis, a low-pass filter at 35 Hz was applied, and the filtered epoch of 200ms 

before the onset of stimuli and 1 sec after the onset of stimuli were averaged over trials to 

obtain the ERP signals. The ERPs were baseline (−200 to 0 ms) subtracted. 

 

Statistical Analysis 

ERP experiments provide extremely rich data sets, to avoid the multiple comparison 

problems and to be able to effectively control the type I error rate, a non-parametric cluster-

based permutation test was used for establishing the significance of the ERPs difference 

between group comparisons. Non-parametric cluster-based permutation test has been popular 
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in analysing EEG/MEG multidimentional data and it has been successfully applied in EEG 

studies (Lindsen, Jones, Shimojo, & Bhattacharya, 2010; Sandkuhler & Bhattacharya, 2008; 

Luft, Takase, & Bhattacharya, 2014). It has the strength of combining “statistical significance 

with biological/cognitive significance”; the logic is as follows: “for an effect to be both 

statistically and biologically significant, it needs to be found over a cluster of data points in 

all analysed dimensions such as time and space (electrodes). An isolated significant 

difference found at a nonspecific data point would not be considered biologically relevant, 

therefore would not yield a significant cluster, even if it is highly significant statistically (i.e., 

p < .00001)” (Luft, Takase and Bhattacharya, 2014). 

 

The method consists of finding clusters and then calculating the cluster statistics (Maris & 

Oostenveld, 2007). First, the multidimensional (time, amplitude and electrode) clusters were 

detected by grouping neighbouring data points that show a significant effect (p < 0.05) of 

condition in (paired or independent) t-tests, and a cluster-level statistic was calculated by 

summing the values of t statistics over the cluster (Luft, Takase and Bhattacharya, 2014; 

Lindsen, Jones, Shimojo & Bhattacharya, 2010).  In the present study, electrodes with a 

distance of less than 5 cm are considered as neighbors, yielding on that significant data points 

were considered to be part of a cluster if at least four of its neighbours were also found to be 

significant. Second, Monte Carlo randomisation was used to identity the exact probability 

that a cluster with the maximum cluster-level statistic was observed under the assumption 

that the the EEG neural responses for the two compared conditions were not significantly 

different (Maris & Oostenveld, 2007). A histogram of maximum cluster-level statistics was 

collected by calculating the cluster-level statistic a great number of times (500 times in the 

present analysis) on random permutation of the pooled data of the two conditions; this 

histogram was subsequently used to calculate the p-value for that cluster, and these 
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procedures were then carried out for the lower ranking cluster-level statistics (Lindsen, Jones, 

Shimojo & Bhattacharya, 2010).  

 

In the present study, the cluster-based permutation to was used to find the main differences 

between the younger and older groups and to define the ROIs on the multidimensional space 

(time, electrode), which were subsequently analysed by standard ANOVA as appropriate. 

 

6.3 Results 
 

6.3.1 Behavioral Results 

Prior to data analysis, accuracy and RT outliers were withdrawn from further analysis due to 

them being identified as outliers using Grubb’s rule2. Participants’ anger and happiness 

perceptual performance (accuracy and RTs) were analysed using 2 (emotion type) × 2 (task 

difficulty) × 2 (face stimuli age) × 2 (group) mixed ANOVAs with the between-participants 

factor of group (young and old), within-participants factor of emotion type (anger and 

happiness), face stimuli age (young and old) and another within-participants factor of task 

difficulty (easy and hard). Participants’ neutral emotion perceptual performance (accuracy 

and RTs were analysed using 2 (face stimuli age) × 2 (group) mixed ANOVA with the 

between-participants factor of group (young and old) and within-participants factor of face 

stimuli age (young and old) was used to analyse the group performance difference on neutral 

recognition tasks. 

 

Accuracy  

                                                
2 (accuracy: two outliers from older face_neutral condition, one outlier from older 
face_anger_easy condition, one outlier from younger face_neutral condition, one outlier 
from younger face_anger_easy condition, two outliers from younger face_happy_easy 
condition; no RT outliers were found).  
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Perception of neutral facial expression 

For the recognition of neutral emotion tasks, the results revealed a trend for a group 

difference on the performance accuracy [F (1, 26) = 4.195, p = .051, η2 = .139], which was 

due to older participants’ higher accuracy on neutral trials compared to younger participants. 

No other significant main effect or interaction was found. 

 

Perception of anger and happiness facial expressions  

A 2 (emotion type) × 2 (task difficulty) × 2 (face stimuli age) × 2 (group) mixed ANOVAs on 

the accuracy rate of anger and happiness perception tasks revealed a main effect of group [F 

(1, 26) = 30.357, p < .001, η2 = .539], which was due to younger adults’ overall performance 

was significantly better than older adults. Main effect of task difficulty was also significant 

[F (1, 26) = 381.512, p < .001, η2 = .936], which was due to the overall accuracy for easy 

tasks were significantly higher than hard tasks.  Main effects of emotion type and face stimuli 

age were not significant. 

 

The interaction of emotion × stimuli age was significant [F (1, 26) = 24.495, p < .001, η2 

= .485], which was due to in anger perceptual tasks, the overall accuracy for older face 

stimuli was significantly higher than younger face stimuli (anger: p < .001; d = 1.699); 

whereas in happiness perceptual tasks, the overall accuracy for younger face stimuli was 

significantly higher than older face stimuli (happiness: p = .008, d = 1.441, Bonferroni 

corrected).  

 

The interaction of emotion × stimuli age × task difficulty was significant [F (1, 26) = 15.085, 

p = .001, η2 = .367], which was due to in hard level of anger perceptual tasks, the overall 

accuracy for older face stimuli was significantly higher than younger face stimuli (p < .001, d 
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= 1.744); whereas in hard level of happiness perceptual tasks, the overall accuracy for 

younger face stimuli was significantly higher than older face stimuli (p < .001, d = 1.538).  

 

Interestingly, the interaction of emotion × stimuli age × task difficulty × group was 

significant [F (1, 26) = 4.893, p =.036, η2 = .158]. Pairwise comparison (with Bonferroni 

correction) revealed that older group performed significantly poorer than younger group in 

both easy (old face stimuli condition: p < .001, d =1.608; young face stimuli condition: p 

< .001, d = 1.865) and hard (old face stimuli condition: p = .032, d = 1.203; young face 

stimuli condition: p = .008, d = 1.463) anger conditions (figure 6.4). Older adults also 

performed significantly poorer in hard condition of happiness perception using younger face 

stimuli (p = .008, d= 1.443), but not in other conditions (figure 6.4). In addition, within-

group comparison revealed that younger participants’ performance on young and old face 

stimuli were significantly different in only hard level of anger and happiness perception tasks 

(anger: p = .008, d =1.438; happiness: p < .001, d = 1.512), with superior performance on 

younger face stimuli in happiness perceptual tasks and superior performance on older face 

stimuli in anger perceptual tasks. In contrast, older participants’ performances on younger 

and older face stimuli were not significantly different in both easy and hard levels of anger 

and happiness perception tasks.  
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 Figure 6.4. Older (lines in blue) and younger (lines in red) participants’ perceptual 
performance (accuracy) in anger (left graph) and happiness (right graph) experimental trials 
at different task difficulties [neutral (baseline), easy and hard]. Straight lines represent trials 
with younger face stimuli, dotted lines represent trials with older face stimuli. Error bars 
represents S.E. 
 

Reaction Times (RTs) 

Perception of neutral facial expression 

No significant group difference was found for the RTs on neutral perception trials, and there 

was no other significant main effects or interaction.  

 

Perception of anger and happiness facial expressions  

A 2 (emotion type) × 2 (task difficulty) × 2 (face stimuli age) × 2 (group) mixed ANOVAs on 

the RTs of anger and happiness perception tasks revealed significant main effect of difficulty 

[F (1, 29) = 12.308, p = .001, η2 = .298], which was due to participants performing 

significantly faster in easy tasks compared to hard tasks (figure 6.5). Main effects of group, 

emotion type and stimuli age were not significant. 

 

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Baseline	(Neutral)	 Easy	 Hard	

Pe
rc
en

ta
ge
	C
or
re
ct
	(%

)	

Task	Difficulty	

Older	Adults	Older	Faces	

Older	Adults	Younger	Faces	

Younger	Adults	Older	Faces	

Younger	Adults	Younger	Faces	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Baseline	(Neutral)	 Easy	 Hard	

Pe
rc
en

ta
ge
	C
or
re
ct
	(%

)	

Task	Difficulty	

Older	Adults	Older	Faces	

Older	Adults	Younger	Faces	

Younger	Adults	Older	Faces	

Younger	Adults	Younger	Faces	



	 146	

The interaction of stimuli age and difficulty was significant, which was due the RT of easy 

and hard conditions were significantly different in older face stimuli condition (p < .001, d = 

1.490), but not in younger face stimuli condition.  

Figure 6.5. Older (lines in blue) and younger (lines in red) participants’ RTs in anger (left 
graph) and happiness (right graph) experimental trials at different task difficulties [neutral 
(baseline), easy and hard]. Straight lines represent trials with younger face stimuli, dotted 
lines represent trials with older face stimuli. Error bars represents S.E. 
 

Age-related emotion perceptual bias (from behavioural response results) 

Given that older people showed significantly higher accuracy in the neutral emotion 

perceptual task, it is not certain if this reflects older people’s actual ability to recognise 

‘neutral’ facial emotions, or whether it could be due to age-related behavioual response 

preference in choosing ‘neutral’ emotion across all emotion perceptual tasks. To investigate 

this question, further analysis was performed to clarify the group difference in perceiving 

low- and high- intensities of emotions. Firstly, each participant’s proportion of choosing 

‘neural’ emotion for each type of emotion stimuli (anger and happiness with 15%, 30%, 60%, 

75% intensities) were calculated, regardless of age of face stimuli. Then, a series of separate 

independent t-tests were performed between younger and older groups to investigate if there 
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was a group difference in making ‘neutral’ responses across different emotion stimuli. 

 

The results (see figure 6.6, left graph) showed that in low emotional intensity (15% and 30%) 

anger conditions, there was a trend that older adult participants were more likely to rate the 

emotion stimuli as neutral emotion compared to younger adult participants. In other words, 

older adult participants’ mean proportion of making ‘neutral’ emotion response was higher 

than younger adult participants in both 15% and 30% anger conditions. [15% anger: older 

group: mean = 61.78%, SE = 4.31%; younger group: mean = 51.56%, SE = 4.46%; t = 1.64, 

p = 0.111; 30% anger: older group: mean = 41.56%, SE = 4.57%; younger group: mean = 

32.11%, SE = 4.30%; t = 1.50, p = 0.144]. In high emotional intensity (60%) anger condition, 

older adult participants showed significantly higher overall mean proportion (mean = 17.05%, 

SE = 3.91%) of making ‘neutral’ emotion responses compared to younger adult participants 

(mean = 5.45%, SE = 1.17%) (t = 2.63, p = .015). In another high emotional intensity (75%) 

anger condition, older adult participants (mean = 10.59%, SE = 2.52%) also showed greater 

overall mean proportion of choosing ‘neutral’ emotion than younger adult participants (mean 

= 5.57%, SE = 1.76%), the group difference was close to significance (t = 1.87, p = .075). 

 

For happiness emotion (figure 6.6, right graph), older adult participants showed significantly 

higher overall mean proportion (mean = 56.43%, SE = 4.53%) in making ‘neutral’ emotion 

responses compared to younger adult participants in 30% emotion intensity condition (mean 

= 42.14%, SE = 4.55%) (t = 2.22, p = .035). For 75% and 15% happiness trials, older people 

(15% happiness: mean = 71.07%, SE =4.32%; 75% happiness: mean = 16.34%, SE =3.66%) 

had higher chance of perceiving the stimuli as ‘neutral’ condition compared to younger adult 

participants (15% happiness: mean = 60.51%, SE = 4.03%; 75% happiness: mean = 8.33%, 

SE =1.42%) (15% happiness: t = 1.79, p = .086; 75% happiness: t = 1.98, p = .061). However, 
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for happiness trials with 60% emotion intensity, no group difference was found in making 

‘neutral’ responses.  

 

Figure 6.6. Older (lines in blue) and younger (lines in red) groups’ overall mean proportion of 
making neutral emotion responses (%) on anger (left graph) and happiness (right graph) 
emotion trials with different emotional intensities (15%, 30%, 60%, and 75%). 
 

6.3.2 ERP Analysis 

Old-young group ERP cluster difference on each emotion condition 

Firstly, older and younger participants’ mean grand averaged ERPs on neutral task were used 

to define significant age-related ERP difference clusters (time windows and electrodes) by 

using the nonparametric cluster permutation tests (see figure 6.7 for results). Figure 6.7 (a) 

shows the topographies of the young-old ERPs differences over time on neutral emotion 

condition. For neutral condition, two clusters were found, the first cluster was a frontal 

cluster between 250–850ms and the second cluster was a left-frontal and centromedial cluster 

between 100-200ms [figure 6.7 (b)].  

 

The neutral condition clusters (the electrodes and time windows) were chosen to extract the 

mean ERP amplitudes from other emotion conditions (all anger and happiness conditions) to 

permit further statistical analysis to test the effect of emotion type, task difficulty and facial 
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stimuli age in modulating participants’ ERPs. The neutral condition clusters were chosen as 

one important goal of the present study is to explore older adults’ neural activity patterns 

from baseline to easy and hard emotion tasks in comparison to younger adults.  The neutral 

condition can represent the baseline of each emotion type (anger, happiness) and therefore 

they are treated as default clusters3. 

Figure 6.7. (a) shows the topographies of the young-old ERPs differences over time (on 
neutral condition).  
 

  

 

                                                
3 Using group difference clusters (time window and electrode) on baseline condition (neutral 
emotion) to extract and analyse the ERPs of other emotion conditions can help to reveal the 
age-related compensatory neural pattern. However, this method has an important caveat as 
the emotion-specific neural differences between groups might be ignored. See Discussion for 
more details.  
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Figure 6.7. (b) Significant clusters of the nonparametric cluster randomization test comparing 
the two groups on neutral condition. First cluster: 100 – 200ms, left-frontal and centromedial 
area (F1, F3, F5, F7, Fc5, Fc5, C1, C3, Cp1, Pz, Cpz, Fc4, Cz, C2, C4); second cluster - time 
window: 250 – 850ms; frontal area (AF3 F1, F3, F5, Fc1, Fz, F2, F4, Fcz).  
The effect of emotion, face stimuli age and task difficulty in modulating ERPs 
 
Participants mean ERP amplitudes of two clusters (neutral emotion condition) were extracted 

from anger and happiness recognitions, separately. Then participants’ mean ERP amplitudes 

for anger and happiness were analysed using 2 (emotion type) × 2 (task difficulty) × 2 (face 

stimuli age) × 2 (group) mixed ANOVAs with the between-participants factor of group 

(young and old), within-participants factor of emotion type (anger and happiness), face 

stimuli age (young and old) and another within-participants factor of task difficulty (easy and 

hard). 

 

Cluster one 

A 2 (emotion type) × 2 (task difficulty) × 2 (face stimuli age) × 2 (group) mixed ANOVAs on 

the left frontal and centromedial mean ERP amplitudes (100-200ms) of anger and happiness 

perception tasks revealed significant main effect of group [F (1, 26) =20.273, p < .001, η2 

= .438], which was due to older participants exhibiting significantly higher overall mean ERP 

amplitudes than younger group (see figure 6.8 and figure 6.9). The main effect of task 

difficulty was also significant [F (1, 26) =4.974, p = .035, η2 = .161], which was due to easy 

condition (high-intensity facial expressions) eliciting significantly higher overall mean ERP 

amplitudes in left frontal and centromedial regions (100-200ms) than hard condition (low-

intensity facial expression). Main effects of emotion and stimuli age were not significant.  

 

The interaction of stimuli age × group was significant [F (1, 26) = 5.775, p = .024, η2 = .182], 

pairwise comparison (with Bonferroni correction) revealed that older participants exhibited 

significantly higher mean ERP amplitudes in left frontal and centromedial regions (100-
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200ms) than younger participants in both older and younger face stimuli conditions (older 

face stimuli, p < .001, d = 1.764; younger face stimuli, p < .001, d = 1.583) (see figure 6.8). 

The interaction of emotion type × difficulty was significant [F (1, 26) = 6.632, p = .017, η2 

= .201], pairwise comparison revealed that the mean left-frontal and centromedial ERP 

amplitude (100-200ms) of easy condition was significantly higher than hard condition in 

anger task (p < .001, d = 1.537) (see figure 6.8). 

 

 

 

Figure 6.8. Older (lines in blue) and younger (lines in red) participants’ cluster one mean 
ERP amplitude for anger (left graph) and happiness (right graph) experimental trials at 
different task difficulties [neutral (baseline), easy and hard]. Straight lines represent trials 
with younger face stimuli, dotted lines represent trials with older face stimuli. Error bars 
represents S.E. 
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Figure 6.9. Younger (lines in blue) and older (lines in red) participants’ cluster one mean 
ERP waveforms (100-200ms) during anger (a) and happiness (b) perceptual tasks. The time 
window (100-200ms) used for subsequent statistical analysis are highlighted in grey. 
 
 
Cluster two 

A 2 (emotion type) × 2 (task difficulty) × 2 (face stimuli age) × 2 (group) mixed ANOVAs on 

the frontal mean ERP amplitudes (250-850ms) of anger and happiness perception tasks 

revealed significant main effect of group [F (1, 26) =17.051, p < .001, η2 = .396], which was 

due to older participants exhibiting significantly higher overall mean ERP amplitudes than 

younger group (see figure 6.10 and figure 6.11). The main effect of difficulty was significant 

[F (1, 26) =6.813, p = .015, η2 = .208], which was due to the easy condition (high-intensity 

																																Happy,	Easy																																																																																																													Happy,	Hard	
																																																																																																	Younger	Faces	

																																Happy,	Easy																																																																																																													Happy,	Hard	
																																																																																																	Older	Faces	

b.	
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facial expressions) eliciting significantly higher overall mean ERP amplitudes in frontal 

regions (250-850ms) than the hard condition (low-intensity facial expression) (figure 6.10). 

Main effects of emotion and stimuli age were not significant.  

 

The interaction of stimuli age × group was significant, F (1, 26) =5.468, p = .027, η2 = .174, 

which was due to older adults exhibiting significantly higher ERPs than younger adults in 

both older (p < .001, d = 1.641) and younger (p = .008, d =1.428, Bonferroni corrected) face 

stimuli tasks (see figure 6.10 and figure 6.11).  

 

The interaction of emotion type × task difficulty × group was significant [F (1, 26) =5.781, p 

= .024, η2 = .182], pairwise comparison (with Bonferroni correction) revealed that older 

participants exhibited significantly higher frontal ERP amplitudes (250-850ms) in both easy 

and hard levels of anger (easy: p = .048, d = 1.367; hard: p < .001, d = 1.766) and happiness 

(easy: p < .001, d = 1.540; hard: p < .001, d = 1.511) perceptual tasks (see figure 6.10).  In 

addition, the within-group comparison revealed that younger participants’ mean frontal ERP 

amplitudes (250-850ms) for the easy condition was significantly higher than the hard 

condition in anger perception (p = .008, d = 1.487), but not significantly different in the 

happiness perceptual tasks; whereas older participants did not show significant different 

ERPs across easy and hard task conditions in both the happiness and anger perceptual tasks 

(figure 6.10).  
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Figure 6.10. Older (lines in blue) and younger (lines in red) participants’ cluster two mean 
ERP amplitude for anger (left graph) and happiness (right graph) experimental trials at 
different task difficulties [neutral (baseline), easy and hard]. Straight lines represent trials 
with younger face stimuli, dotted lines represent trials with older face stimuli. Error bars 
represents S.E. 
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Figure 6.11. Younger (lines in blue) and older (lines in red) participants’ mean cluster two 
ERP waveforms (250-850ms) during anger (a) and happiness (b) perceptual tasks. The time 
window (250-850ms) used for subsequent statistical analysis are highlighted in grey. 
 

6.4 Discussion 

 

The aim of the present study was to study age-related changes in emotion recognition by 

using behavioural and EEG measures. I also investigated how ‘emotion type’, ‘age of face 

stimuli’ and ‘emotion intensity’ would affect both younger and older participants’ emotion 

perception by using both younger and older faces displaying happiness and anger emotions 

with both high- and low- emotion intensities.  
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6.4.1 Age-related behavioural perceptual performance differences 

For perception of anger, older participants’ mean accuracy was significantly lower than 

younger group in both hard condition and easy conditions. This finding confirmed that older 

people have declined perceptual performance on both low- and high- intensities of anger 

facial expressions. This finding is consistent with my finding from chapter 1, and therefore 

adds strength to confirm older participants’ declined perceptual ability in perceiving both 

subtle and expressive anger from faces. For perception of happiness, older participants 

showed significantly poorer performance than younger participants in recognising happiness 

from younger faces in hard condition, but not in easy condition. This finding suggested that 

older participants have intact perception of expressive (high-intensity) happiness, but they 

have declined ability in perceiving subtle happiness facial expression from younger faces. 

This pattern was not found in the neutral (baseline) condition, where no significant group 

differences were found.  

 

That older adults show impaired happiness perception for low intensity expression challenges 

most prior studies proposing that older people have intact perception of happiness, and 

suggests that the incomplete conclusion proposed by previous researchers was drawn from 

studies where only young face stimuli with considerably high emotional intensities were used. 

This finding also confirmed my results from experiment 1 where older participants exhibited 

significantly poorer performance in perception of low-intensity happiness.  

 

Age-related emotion perception response bias 

The behavioural accuracy results revealed that the older group showed significantly higher 

accuracy in the neutral emotion perceptual task compared to younger adult participants. This 

result is quite novel as few previous studies have investigated young-old group difference in 
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perceiving neutral emotion. Given that older adult participants in this study only showed 

superior performance in the neutral emotion condition but not on other emotion types, it is 

not clear whether the results could reflect older people’s actual ability in recognising ‘neutral’ 

facial emotions, or it is due to older people’s behavioural response bias in choosing ‘neutral’ 

emotion across all emotion perceptual tasks. The results of the response bias analysis showed 

that older adult participants’ mean proportion (%) of making ‘neutral’ emotion response was 

higher than younger adult participants in 15%, 30% and 75% anger conditions. In 60% anger 

condition, older adult participants showed significantly higher overall mean proportion (%) 

of making ‘neutral’ emotion responses compared to younger adult participants. In sum, these 

results revealed a general pattern that older adult participants showed a preference in labeling 

anger facial expression stimuli as neutral emotion. As mentioned in chapter one, older people 

have ‘positivity bias’ in perceiving facial emotions – they tend to shift towards positive 

information and avoid negative information, which might help them to maintain their 

emotional balance and wellbeing. The present finding is in line with the age-related 

‘positivity bias’ proposal as older people might have ignoreed the negative emotional signals 

exhibited by angry face stimuli to facilitate their attentional shift from negative facial 

emotion to neutral facial emotion.  

 

For the perception of happiness, older people had higher chance (%) of perceiving the happy 

facial stimuli as ‘neutral’ facial expression compared to younger adult participants on 75% 

and 15% happiness trials. Furthermore, on the 30% happiness trials, older adult participants 

exhibited significantly higher overall mean proportion (%) of making ‘neutral’ emotion 

responses compared to younger adult participants. The overall pattern of happiness trials 

indicates that older people also have a higher tendency in perceiving happiness as neutral 

emotion compared to younger people (except the 60% happiness trials). However, this 
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finding does not agree with the age-related ‘positivity bias’ in perceiving facial emotions, 

which is contradictory to the anger perception results described above. The overall anger and 

happiness trials might indicate that older people are more likely to perceive anger and 

happiness facial expressions as neutral compared to younger adults, which reflects their 

insensitivity of detecting positive and negative facial emotional cues. 

 

In summary, the overall pattern of results suggests that older groups have a tendency to 

perceive both happiness and anger facial emotions as neutral emotion. Therefore, older 

group’s higher accuracy on the neutral emotion condition might not reflect their real superior 

ability in correctly labeling neutral facial expressions compared to younger group. As older 

people showed a tendency or preference in choosing ‘neutral emotion’ as their perceived 

emotion in both anger and happiness emotion trials. Therefore, this age-related response bias 

may systematically distort assessments of age differences on neutral emotion perceptual 

ability. 

 

6.4.2 Effect of stimuli age on behavioural perceptual performance 

For recognition of anger, younger participants’ accuracy of recognising anger from old face 

stimuli was significantly higher than from younger faces in hard condition. In other words, 

subtle facial expression of anger was easier to detect from older faces than from younger 

faces. It might suggest that some facial features (e.g. winkles around eyes and mouths) of 

older faces may exaggerate fine and subtle anger. However, the superior performance in 

perceiving subtle anger from older faces was not found in older participants, as their 

performances on younger and older face stimuli were not significantly different in neither 

easy or hard levels of anger.  
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For happiness, within-group comparison revealed that the younger participants’ accuracy on 

younger faces was significantly better than older faces in hard condition; whereas older 

participants’ accuracy on younger and older faces did not significantly differ in either hard or 

easy conditions. Younger participants’ superior performance on younger faces (in hard 

condition) might reflect ‘own-age bias’ where people are better at perceiving faces of their 

own ages (Bäckman, 1991; Lamont, Stewart-Williams, & Podd, 2005). However, this ‘own-

age bias’ was not shown in older participants, which is consistent with my findings from 

Chapter 3 where older adults showed impairment relative to young adults in the perception of 

subtle emotional expressions displayed by old adult actors. Younger participants’ superior 

performance in perceiving subtle happiness from younger faces might partially account for 

the perceptual performance gap between younger and older participants. In other words, older 

participants’ poorer performance might not be entirely due to their perception decline, but 

younger participants’ superior perception of their own age faces.  

 

6.4.3   Facial emotion perception and neural compensation in older people 

Prior ERP studies on younger adults have revealed three major facial emotion-related 

components, which are early frontocentral positivity (around 120ms stimulus onset), later 

broadly distributed sustained positivity beyond 250ms post-stimulus, and an enhanced 

negativity at lateral posterior sites (EPN) (Eimer and Holmes, 2002; Eimer, Holmes, and 

McGlone, 2003, Balconi, Pozzoli, and Possoli, 2003). The present results have revealed that 

older participants showed significantly higher early frontal and centromedial ERP positivity 

(100-200ms) and later sustained positivity beyond 250ms post stimulus across all facial 

emotions types including neutral emotion. However, older participants did not show 

significantly ERP amplitudes difference in negativity at lateral posterior sites (EPN), which is 

different from the finding of Wieser et al. (2006).  
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Based on prior studies of Eimer et al. (2003, 2007), the early and late frontal and 

centromedial positivity can be interpreted to reflect non-automatic and attentive approach of 

emotion processing, and they are not modulated by emotion type. Older people’s 

significantly higher early (100-200ms) and late (250-850ms) frontal and centromedial 

positivities compared to younger participants during emotion processing might suggest that 

they input more attention regulated cortical neural resources than younger people in all types 

of emotion perception, this could reflect their compensation for their less activations in 

subcortical regions (e.g. amygdala) (Fischer, Sandblom, and Gavazzeni, 2005). This 

additional recruitment of frontal regions during processing facial emotional expression is in 

parallel with previous fMRI studies which also found that older people showed significantly 

higher frontal neural activations compared to younger adults during emotion perception tasks 

(e.g. Tessitore, Hariri, and Fera et al., 2005; Fischer et al., 2010).  

 

However, most previous studies have only used negative facial emotion tasks (e.g. Tessitore, 

Hariri, and Fera et al., 2005; Fischer, Sandblom, and Gavazzeni, 2005; Iidaka, Okada, & 

Murata, 2002). In contrast, the present study has used additional happiness and neutral facial 

expression in the perception task. Consistent with Keightley et al. (2007)’s finding, older 

adults also showed significantly higher frontal cortical neural activations while processing 

neutral facial expressions. The finding showing older adults also rely on higher frontal 

centromedial cortical processing for perceiving happiness awaits confirmation from future 

studies.  

 

One aim of the present study was to examine the relationship between emotion task difficulty 

(emotional intensity) and older participants’ neural compensation. One interesting pattern of 
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results exhibited in this study is that older people showed similar level of ERP activations 

across different task difficulty [neutral (baseline), easy and hard] whereas their behavioural 

performance varied on these tasks. According to the CRUNCH model (Reuter-Lorenz and 

Cappell (2008), at lower level of task demand, older participants exhibit a region-specific 

neural overactivation pattern but they can achieve similar or equivalent behavioural as 

younger participants (successful neural compensation). However, beyond a certain level of 

task demand, older people’s brain falls short of sufficient neural activation and their 

behavioural performance declines compared to the young people (neural compensation 

failure). The findings of the present study fit with the CRUNCH model, during anger 

perception tasks, older participants exhibited similar degrees of ERP amplitudes for three task 

difficulty [Neutral (baseline), easy and hard] conditions. Older people showed similar 

performance as younger participants in baseline condition (neutral), but they had significantly 

poorer performance than younger participants in both easy and hard anger perception trials. It 

seems that at neutral (baseline) level, the neural overactivation of older participants enable 

them to compensate neural inefficiency and provide enough neural recourses in processing 

neutral emotion, however, the similar level of neural overactivation was not enough for older 

participants to process easy and hard level of anger emotions.  

 

For happiness perception, older participants also displayed significant neutral overactivation 

in left frontal and centromedial (100-200ms stimuli onset) and frontomedial region (250-

850ms stimuli onset) compared to younger participants, and ERP amplitude of three task 

difficulty conditions (baseline, easy and hard) of older groups were also similar. However, 

older people showed intact performance in both the baseline and easy conditions, but 

exhibited significantly declined performance in hard condition (young face stimuli). It seems 

that older people’s overactivation in happiness perception successfully compensate in easy 
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condition, but not enough for them to process subtle happiness facial expression.  

 

It should be noted that the neural overactivation in left frontal and central regions (100-

200ms stimuli onset) and frontal region (250-850ms stimuli onset) might not reflect emotion-

specific neural compensation, as the neural overactivation patterns was not only shown in 

anger and happiness trials, but also in neutral (baseline) trials. In addition, other aging studies 

have also shown that older people tend to recruit more frontal cortical regions than younger 

people when performing identical cognitive tasks, especially when performing effortful tasks 

(Grady, 2000; Raz, 2000), it has been proved in other brain imaging studies of attention 

(Johannsen, Jakobsen, & Bruhn, 1997; Madden, Turkington, & Provenzale, 1997; Anderson, 

Iidaka, & Cabeza, 2000), working memory (Hartley, Speer, & Jonides et al., 2001; Mitchell, 

Johnson, & Raye et al., 2000) and executive functioning (Smith, Geva, & Jonides, 2001). 

Therefore, the neural overactivation in frontal-centro regions might reflect a general neural 

compensation for different cognitive functions.  

 

6.4.4 Effect of ‘emotion type’, ‘task difficulty’ and ‘face stimuli age’ on ERPs 

The results showed that the effect of emotion type (happiness and anger) and face stimuli age 

(young and old) did not significantly modulate younger and older participants’ early (100-

200ms) or late (250-850ms) positivities during facial emotion perceptual tasks. This finding 

confirmed previous studies that claimed the early and late positivities are not modulated by 

emotion type (Eimer, 2003, 2007; Schupp, Cuthbert, & Bradley, 2000).  

 

In contrast, the effect of task difficulty (or facial emotional intensities) significantly 

modulated the overall ERP amplitudes of both early (100-200ms) frontal and centromedial 

and late (250-850ms) frontal brain regions in anger tasks, but not in happiness tasks. 
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Specifically, the overall mean left-frontal and centromedial ERP amplitudes (100-200ms) of 

easy condition (high emotion intensity) was significantly higher than hard condition (low 

emotion intensity) in anger task, regardless of group and face stimuli age. In other words, 

higher intensities of anger elicited significantly higher early (100-200ms) frontal and 

centromedial positivities in participants, regardless of group and face stimuli age. 

Furthermore, younger participants’ mean frontal ERP amplitudes (250-850ms) for the easy 

condition was significantly higher than the hard condition (low emotion intensity) in anger 

perception, but this pattern was not shown in the happiness condition; whereas older 

participants did not show significant different ERPs across easy and hard conditions in both 

happiness and anger perceptual tasks. In other words, higher intensities of anger elicited 

significantly higher late (250-850ms) frontal positivities in only younger participants. These 

findings suggest that higher intensities of anger can trigger higher early (100-200ms) frontal 

and centromedial positivities and late (250-850ms, only in younger participants) frontal 

positivities. These findings seem consistent with Eimer et al.’s (2003, 2007) interpretation of 

these two positivity components as attention-regulated emotional processing, as higher 

intensities of anger signal potential threat and they are normally associated with higher level 

devotion of attention (Phelps, Ling, & Carrasco, 2006). Furthermore, this finding partially 

agrees a previous proposal suggesting high intensities of emotional images elicited larger late 

positive potentials than lower intensities of emotional images (Schupp, Cuthbert, & Bradley, 

2000), as it is not the case for happiness perception in present study.  

 

6.4.5 Methodology issues  

In the present study, the group difference clusters (time window and electrode) on neutral 

condition were to used to extract the ERPs of other emotion conditions as the neutral emotion 

condition was treated as the baseline condition. This method can help to investigate the role 
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of emotion type, task difficulty and face stimuli age in modulating the same neural regions. 

Specifically, it can help to reveal the participants’ neural changes from baseline to easy and 

hard emotion conditions, which provides the evidence to demonstrate the age-related neural 

compensation hypothesis. However, this method might have ignored the group ERP 

differences on specific emotions, as prior studies have suggested that neutral, anger and 

happiness facial emotions are processed by different neural regions (e.g. Fusar-Poli, 

Placentino, & Carletti et al., 2009; Kesler, Andersen, & Smiths, 2001).  

 
6.6 Summary 
 
In summary, the older group showed declined ability in recognising anger in both hard and 

easy conditions. For happiness recognition, the older group only showed degeneration in 

perceiving low-intensity happiness from younger faces. In addition, the overall pattern of 

results suggests that older groups have a to perceive both happiness and anger facial emotions 

as neutral emotion, which reflects older adults’ insensitivity to detecting positive and 

negative facial emotional cues. 

 

Stimuli age plays an important role in modulating younger participants’ performance in low-

intensity emotion perception. In low-intensity anger recognition, their accuracy of perceiving 

anger from older stimuli faces was significantly higher than accuracy of perceiving anger 

from younger stimuli faces.  Whereas in low-intensity happiness perceptual task, younger 

participants’ accuracy of perceiving happiness from younger stimuli face were significantly 

higher than from old stimuli faces, which reflects ‘own-age bias’ in face perception. The 

effect of ‘face stimuli age’ did not significantly modulate older participants’ performance.  

 

In terms of ERPs, older participants showed neural overactivation in the left frontal and 

centromedial region (100-200ms stimuli onset) and frontal region (250-850ms stimuli onset) 
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at neutral condition, which suggests that older people’s neural compensation starts at the 

neutral (baseline) condition. Older participants also exhibited similar neural overactivations 

during anger and happiness emotion perception tasks to compensate their inefficiency in 

cortical processing. However, older people’s neural compensation was efficient in neutral 

emotion perception as they exhibited similar performance as younger participants, but the 

similar level of neural resources was not enough for them to apply the compensation strategy 

in perception of anger (both easy and hard conditions) and happiness (hard condition).  
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CHAPTER 7: CONCLUSIONS 

 

This chapter provides a summary of the empirical findings reported in this thesis. It discusses 

findings from behavioural, brain stimulation (high-frequency tRNS) and brain imaging (EEG) 

research approaches, and provides an overview of the effect of normal aging on facial 

identity and facial emotion perceptual abilities from both behavioural and neurological 

perspectives. In addition, it will discuss the limitations involved in my PhD research and 

possible future research directions of this research field.  

 
 
7.1 Introduction 
 

As mentioned in chapter 1, prior behavioural studies suggested that normal aging is 

associated with declined perception of anger, sadness and fear, while the perception of 

happiness showed inconsistent results. The general limitations involved in both behavioural 

and neuroimaging studies were that 1) only one (mostly high-) emotion intensity, and 2) only 

young face stimuli were used in those studies. Therefore, previous findings might not reflect 

a comprehensive account of older people’s facial emotion perception, and own-age bias may 

have been involved in previous research. In addition, most behavioural investigations on 

aging and face perception have agreed that older people have a declined ability in face 

identity perception. General limitations of most previous studies were that they contained 

only comparisons of young-old behavioural performance on a single task that only had one 

level of task complexity (mostly low task difficulty).  In addition, these studies only used 

young facial stimuli in facial identity perceptual tasks, which might bias the performance 

results due to ‘other-age bias’. In addition, the underlying mechanism of the age-related 

decline in facial identity are still in debate. In my PhD research both younger (chapter 2) and 
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older (chapter 3) face stimuli were used in face perception tasks to clarify the effect of 

normal aging on facial perception. I also explored what underlying mechanisms contribute to 

the face identity decline in older people, and whether the age-related face perception decline 

extends to non-social object perception (chapter 3). 

 

Several non-invasive brain stimulation studies on memory have proved the effectiveness of 

brain stimulation in enhancing older people’s behavioural performance by boosting their 

cortical activations. The evidence suggested that the older people’s neural resource ceiling 

can be altered by boosting the cortical neural activation and recruiting additional neural 

regions. This type of study has not been done in face perception studies with the older 

population. One of my research aims is to use non-invasive method to enhance older people’s 

facial emotional perception (chapter 5). This can help to understand the age-related neural 

changes in facial emotion perception. 

 

In chapter 1, neuroimaging studies proposed two age-related brain activation models for face 

perception, both of which have suggested that older adults exhibited different brain activation 

patterns from younger adults. The general limitations in previous neuroimaging studies 

supporting these accounts are that 1) they only used facial displays of negative emotions, 

while few have compared the young-old neural activations during the perception of happiness 

and neutral emotions, 2) only one (mostly high-) emotion intensity and 3) only young face 

stimuli were used in those studies. Therefore, one of my research aims was to demonstrate 

whether older people rely on any compensatory strategies in their face emotion perception by 

comparing younger and older adults’ perceptual performance and ERPs on tasks that 

comprise different emotion types (anger, happiness and neutral) with both low- and high- 

emotional intensities. I addressed this question in my EEG study (chapter 6). 
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7.2. Conclusions of Chapter 2 
 
As discussed in chapter 1, a general limitation involved in most previous research is that only 

high-intensity prototypes of facial expression images have been used. In chapter 2, I 

compared younger and older participants’ perceptual performance on lower-intensity facial 

emotional expressions and facial identity with subtle differences. Secondly, in order to 

demonstrate whether older adults have a domain-specific deficit in emotion perception or 

more domain-general declines in the ability to make fine-grained visual discrimination, I 

compared older and younger subjects’ perception of facial emotions and identities using same 

experimental paradigm. Thirdly, behavioural and neuroimaging evidence has shown that 

facial trait perceptual abilities are closely related to the perception of facial expressions and 

facial identities. However, whether the facial emotion and identity perceptual decline in older 

adults extend to such trait judgements remains unknown. Therefore, I also examined two age 

group’s perceptual performance on facial traits judgement and demonstrated the relationship 

between facial trait perceptual performance and other two facial perceptual performances 

(facial emotional expression and facial identity).  

 

The results showed that older participants showed declined performance in the perception of 

subtle facial expressions of anger. Combining with previous literature, this finding adds 

strength in confirming that normal aging is associated with decay in perceiving anger, in both 

low- and high- emotional intensities. Older people’s perceptual performance of happiness did 

not show a significant difference from younger people at a group level, however, it should be 

noted that there is a trend that older people might have age-related difference in perception of 

happiness from low-intensity facial expressions. Older adult participants’ perceptual 

performance on both upright- and inverted-  facial identities were significantly lower than 

younger adult participants. This result is in line with prior findings (Boutet and Faubert, 2006; 
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Meinhardt-Injac & Meinhardt, 2014) that there are reliable age-related differences for both 

upright- and inverted- face perception. No group difference was found in perception of facial 

trait trustworthiness or aggressiveness. Given that this experiment has shown older adults’ 

significant age-related decline in both anger and facial identity perception, this facial trait 

perception result does not fit the model proposed by Oosterhof and Todorov (2008). This 

finding suggests that the age-related decline in anger and facial identity perception did not 

extend to facial trait perception.  

 

In addition, the relationship between age and each face perceptual performance were 

explored using regression model fitting. Polynomial regression revealed a significant 

quadratic relationship between age and performance on the CFPT-Happy task, suggesting 

that normal aging affects the perception of facial happiness in an inverted-U curve with a 

potential peak in middle age. In contrast, normal aging affects anger, facial identity and facial 

trait aggressiveness perception in a linear fashion.  

 
7.3. Conclusions of Chapter 3 
 

In chapter 3 I sought to examine how typical aging is associated with the perception of subtle 

changes in facial emotional and facial identity with older adult faces, and whether the age-

related facial identity perceptual decline is a face-specific decline or extended to the 

perception of complex objects. I developed novel tasks that permitted the ability to assess 

facial emotion (happiness perception), facial identity, and non-social perception (object 

perception) across similar task parameters. I observed that normal aging is linked with 

decreased ability to make fine-grained judgements in the perception of facial happiness and 

facial identity (from older adult faces), but not for non-social perception. This pattern agreed 

with some previous findings claiming that aging is associated with declined face identity 
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perception, while non-social object perception remains intact (Boutet and Faubert, 2006) or is 

less affected by aging (Meinhardt-Injac, Persike & Meinhardt, 2014). 

 

The object control (cars) has very similar configurations of individual features as with faces, 

and the main difference between faces and cars are the individual features and fine spatial 

relationships between these features. In addition, previous studies proposed that visual cues 

used for face and object discrimination might be associated with distinct spatial frequencies 

(Morrison and Schyns, 2001). It seems that older people’s intact performance on object 

perception but significantly declined perceptual performance for both upright and inverted 

faces might be due to their deficits in handling fine internal features that involve perception 

of fine spatial frequencies (e.g. Meinhardt-Injac, Persike & Meinhardt, 2014). This finding 

will be an interesting avenue to explore with future work. 

 

In addition, I observed that declined face perception of subtle facial emotion and facial 

identity in older adults is evident for older face stimuli, implying that declines in social 

perception associated with aging are not fully accounted for by an other-age bias. 

Furthermore, the pattern of change in social perception abilities across the lifespan differed 

for facial happiness and facial identity. Facial happiness was associated with increases in 

performance in young adulthood, but declines in older adulthood. Facial identity was 

associated with linear declines from young to old adulthood. These findings seem consistent 

from the findings reported in chapter 1. However, due to the lack of middle aged participants 

in both experiments illustrated in chapter 2 and chapter 3, these findings need to be 

confirmed by further investigations. 
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7.4. Behavioural investigations: Implications and future research avenues  
 

There are implications of my findings in relation to prior work comparing older and younger 

adults in the ability to perceive facial emotion displayed by younger and older adult faces. In 

addition by ensuring similar task demands for identity, happiness, and non-face perceptual 

tasks I am able to ensure that differences in the pattern of relationship between aging and 

performance is not due to specific task demands (e.g. working memory, emotional 

vocabulary). This is an important addition to prior work that has compared older and younger 

adults in the ability to perceive facial emotion displayed by younger and older adult actors 

because much of that work has used prototypical emotions in labelling based tasks. 

Theoretically these measures might tap additional processes alongside perceptually driven 

performance factors (Phillips, Channon, Tunstall, Hedenstrom, & Lyons, 2008). My findings 

suggest that older adults display difficulties in social perception even when additional 

constraints on performance (e.g. emotional vocabulary, cognitive load, working memory) are 

low. 

 

The reasons for reductions in social perception throughout aging remain a topic of debate. 

Explanations include socio-emotional selectivity theory (SST; Carstensen & Charles, 1998), 

which suggests that older adults may show deficits compared to younger adults in the 

perception of negative emotions due a preference to engage / encode signals that promote 

positivity, emotional balance, and well-being. My findings conflict with this account since I 

observe declines in the perception of positive emotions in older compared to younger adults. 

This is in line with criticisms of SST arguing that prior work indicating that older adults show 

deficits in the perception of negative, but not positive, emotions may relate to the ease of 

tasks involving positive emotions in past research (Isaacowitz & Stanley, 2011).   
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Alternative explanations of age-related changes in social perception include accounts based 

on perceptual strategies employed by older compared to younger adults. Prior work has 

suggested that older adults tend to use perceptual information from upper parts of the face 

(e.g. eye region) less often and less efficiently (i.e. they are worse at detecting changes in this 

region) than young adult participants (Circelli et al., 2013; Murphy and Isaacowitz, 2010; 

Sullivan et al., 2007; Slessor et al., 2013; Chaby et al., 2011; Wong et al., 2005). This has 

been used to explain why older adults tend to show more consistent impairment in the 

perception of some negative emotions (anger, sadness, and fear) than positive emotion since 

the upper part of the face plays a more important role in the expression of anger, fear and 

sadness (Calder et al., 2000). Based on prior work one would expect that happiness 

perception should rely more heavily on the lower part of the face (Calder et al., 2000), thus to 

some degree our findings of impaired happiness may be considered to conflict with this 

account. However, it is worth noting that there are other reasons why visual scan patterns 

may not fully account for age-related declines in social perception. For example, these 

declines also exist for the perception of vocal cues (Ruffman, Halberstadt, & Murray, 2009; 

Paulmann, Pell, & Kotz, 2008) and data on differences in eye-movements between younger 

and older adults when perceiving emotional faces is also mixed (e.g. see Ebner et al., 2011). 

With that being said, it is possible, however, that the use of subtle shifts in facial emotion in 

the current investigation may require additional perceptual information to be used (e.g. use of 

upper as opposed to lower parts of the face), which may contribute to the age-related 

impairments that we observe. As I did not measure eye-movement in my investigation I 

cannot be sure whether my findings of impaired happiness and identity perception are related 

to inefficient eye-movement patterns. Moving forward, investigating eye-movements in the 

perception of subtle differences in social cues in younger and older adults will be an 

important extension of the current work. 
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Another important consideration for future work is to address a caveat of our study - namely 

that the behavioural investigations lack data from participants in the middle adulthood range 

(from 40 years to 60 years). While my results are indicative that subtle facial happiness and 

facial identity perception change throughout adulthood, examining the trajectory of this 

change requires future work. There is some evidence to suggest that facial identity processing 

(particular face recognition memory) peaks in middle adulthood, before declining into and 

throughout older adulthood (Germine, Duchaine, & Nakayama, 2011). Whether a similar 

pattern holds for facial identity and emotion perception remains an important question for 

future studies. In addition it will be important to examine the extent to which age-related 

differences in facial emotion perception that we observe here for happiness perception hold 

for other emotion types.  

 

7.4. Brain stimulation (tRNS) study and its implications, limitations and future avenues  
 
Chapter 1 and 2 have shown that older adults are associated with declined abilities in 

perceiving subtle facial expressions of anger and happiness. Previous findings suggest that 

older people show impairments in facial emotion perception. High-frequency transcranial 

random noise stimulation (tRNS) is a neuromodulation technique that has previously been 

shown to improve cognitive and perceptual performance. However, few researches have 

focused on the effects of high-frequency tRNS as a tool to modulate emotion perception in 

older adults. Here I assessed whether high frequency tRNS applied to the inferior frontal 

cortex would enhance facial expression perception in older adults, given that normal aging is 

associated with decline in frontal lobe and inferior frontal gyrus (involved in emotion 

processing, especially anger). The results showed that active tRNS enhanced anger 

perception but the same tRNS stimulation did not significantly change the performance on 

two other face perception tasks assessing facial identity and facial happiness perception. 
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Examination of how inter-individual variability related to changes in anger perception 

following tRNS indicating that the degree of performance change in anger perception 

following active tRNS to inferior frontal cortex was predicted by baseline ability and gender 

of older adult participants. 

 

These findings are important as they help to increase our understanding of the neural 

plasticity in older people and the underlying neural mechanism of emotion perception, and 

highlights high frequency tRNS as a potential tool to aid anger perception in typical aging. It 

also showed the importance to consider individual baseline performance in brain stimulation 

studies with older subjects, as the efficiency of brain stimulation may vary between high- and 

low- performing older adults. In addition, gender is also a significant predictor stimulation 

efficacy, future studies will need to assess whether and how gender is likely to act as a 

moderator of performance change following non-invasive brain stimulation in older adults. 

These factors are relatively ignored in current field of brain stimulation research that use 

older adults as target cohorts and future studies should consider these factors prior to 

application. In addition, as I only tested older adult participants in the current investigation it 

remains important for future work to consider whether the pattern of effects is specific to 

older adults or evident across different age groups.  

 
 
7.5 Brain imaging study (ERPs) and its implications, limitations and future avenues 
 
In chapter 6, behavioural results showed that the older group showed declined ability in 

perceiving both low- and high- intensities of anger, and low-intensity happiness (only with 

younger faces). This older people’s deficits in perceiving subtle anger and happiness facial 

expression are consistent with my findings of other behavioural studies (chapter 2 and 

chapter 3). Stimuli age plays an important role in modulating younger participants’ 
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performance in low-intensity emotion perception. Specifically, their accuracy of perceiving 

anger from older stimuli faces was significantly higher than perceiving anger from younger 

stimuli faces; whereas their accuracy of perceiving happiness from younger stimuli faces 

were significantly higher than perceiving happiness from old stimuli faces, which reflects 

‘own-age bias’ in face perception. However, the effect of ‘face stimuli age’ did not 

significantly modulate older participants’ behavioural performance. 

 

7.5.1. Older people’s emotion perceptual bias 

The results showed that older people consistently showed higher mean proportions of making 

neutral emotion response in anger and happiness trials. It is interesting to see that older 

people had higher chances in making neutral emotion response on happiness trials compared 

to younger adults, which is contradictory to the ‘positivity bias’ proposal. In sum, older 

group’s higher accuracy on the neutral emotion condition might not reflect their actual 

superior ability in encoding neutral facial expressions compared to younger group. This 

finding suggests that older people have declined ability in perceiving both anger and 

happiness facial clues therefore they persistently perceived angry and happy facial 

expressions as neutral facial expression.  

 

7.5.2.  Effect of ‘emotion type’, ‘task difficulty’ and ‘face stimuli age’ on ERPs 

 
The results showed that the effect of emotion type (happiness and anger) and face stimuli age 

(young and old) did not significantly modulate younger and older participants’ early (100-

200ms) or late (250-850ms) positivities during facial emotion perceptual tasks. This finding 

confirmed previous studies that claimed the early and late positivities are not modulated by 

emotion type (Eimer, 2003, 2007; Schupp, Cuthbert, & Bradley, 2000).  
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The effect of task difficulty (or facial emotional intensities) significantly modulated the 

overall ERP amplitudes of both early (100-200ms) frontal and centromedial regions and late 

(250-850ms) frontal brain regions in anger tasks, but not in happiness tasks. Specifically, 

higher intensities of anger elicited significantly higher early (100-200ms) frontal and 

centromedial positivities in participants, regardless of group and face stimuli age; and it also 

elicited significantly higher later (250-850ms) frontal positivities in younger participants. 

These findings seem consistent with Eimer et al.’s (2003, 2007) interpretation of these two 

positivity components as attention-regulated emotional processing, as higher intensities of 

anger signal potential threat and they are normally associated with higher level devotion of 

attention (Phelps, Ling, & Carrasco, 2006). Furthermore, this finding partially agrees with a 

previous proposal suggesting high intensities of emotional images elicited larger late positive 

potentials than lower intensities of emotional images (Schupp, Cuthbert, & Bradley, 2000), as 

it is not the case for happiness perception in the present study. 

 

7.5.3.  Older people’s neural activity pattern and their neural compensation strategy 

In terms of ERPs, older participants showed neural overactivation in the left frontal and 

centromedial region (100-200ms stimuli onset) and frontal region (250-850ms stimuli onset) 

at neutral condition, which suggests that older people’s neural compensation starts at the 

neutral (baseline) condition. Older participants also exhibited similar neural overactivations 

during anger and happiness emotion perception tasks to compensate for their inefficiency in 

cortical processing. However, older people’s neural compensation was efficient in neutral 

emotion perception as they exhibited similar performance as younger participants, but the 

similar level of neural resources was not enough for them to apply the compensation strategy 

in perception of anger (both easy and hard conditions) and happiness (hard condition). 
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Based on prior studies of Eimer et al. (2003, 2007), the early and late frontal and 

centromedial positivity reflects non-automatic and attentive approach of emotion processing,  

therefore older people’s significantly higher early (100-200ms) and late (250-850ms) frontal 

and centromedial positivities compared to younger participants during emotion processing 

might suggest that they input more attention regulated cortical neural resources than younger 

people in all types of emotion perception, this reflects their compensation for their less 

activations in subcortical regions (e.g. amygdala) (Fischer, Sandblom, and Gavazzeni, 2005). 

This additional recruitment of frontal regions during emotion processing is in parallel with 

previous fMRI studies which also found that older people showed significantly higher frontal 

neural activations compared to younger adults during emotion perception tasks (e.g. Tessitore, 

Hariri, and Fera et al., 2005; Fischer et al., 2010).  

  

It is worthy noting that the neutral overactivation in left frontal and centromedial regions 

(100-200ms stimuli onset) and frontal region (250-850ms stimuli onset) might not reflect 

emotion-specific neural compensation, as the neural overactivation patterns was not only 

shown in anger and happiness trials, but also in neutral (baseline) trials. Other aging studies 

have also shown that older people tend to recruit more frontal cortical regions than younger 

people when performing identical cognitive tasks, especially when performing effortful tasks 

(e.g. Grady, 2000; Raz, 2000), as proven in other brain imaging studies of attention 

(Johannsen, Jakobsen, & Bruhn, 1997; Madden, Turkington, & Provenzale, 1997; Anderson, 

Iidaka, & Cabeza, 2000), working memory (Hartley, Speer, & Jonides et al., 2001; Mitchell, 

Johnson, & Raye et al., 2000) and executive functioning (Smith, Geva, & Jonides, 2001). 

Therefore, the neural overactivation in frontal-centro regions might reflect older people’s 

general neural compensation for different cognitive functions and inputting more attentional 

load across different cognitive tasks in order to achieve better behavioural performance. 
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This ERP study shows an attempt in demonstrating the age-related Compensation-Related 

Utilization of Neural Circuits Hypothesis (Reuter-Lorenz and Cappell, 2008) by comparing 

older and young adults’ behavioural performance and ERPs, and the results have revealed 

some important findings. However, a methodology limitation involved in the ERP analysis is 

that the default clusters are defined by comparing young-old group ERP differences on 

neutral condition, then the anger and happiness ERPs are extracted from these clusters for 

further analysis. This method might fail to capture certain emotion-specific neutral activation 

differences between young and older adults as the processing of anger and happiness rely on 

different regions of the brain.  

 

7.6 General Summary 
 
In summary, this thesis investigated the effect of advancing age on social perception, and 

explored the underlying neural mechanism of facial emotion perception in older adults. 

Current findings show that healthy aged adults have declined perception of facial emotion 

and facial identity. Specifically, older adults have declined ability in perceiving both upright- 

and inverted- facial identities, but they have intact ability in perceiving fine-detailed non-face 

objects. This might be due their deficits in handling fine internal features that involve 

perception of fine spatial frequencies (e.g. Meinhardt-Injac, Persike & Meinhardt, 2014). For 

facial emotion perception, older adults have deficits in encoding both low- and high- 

intensities of anger, and low-intensities of happiness. Using non-invasive brain stimulation, 

high frequency tRNS targeted to older adults’ inferior frontal cortex enhanced their 

perception of anger, especially with low-performing older adults. This finding seems 

compatible with the CRUNCH model, in which low-performing older adults (i.e. those that 

are inefficient in recruiting additional/bilateral neural regions) have more available neural 
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resources for stimulation to induce additional benefits. In terms of ERPs, older participants 

showed neural overactivation in the left frontal and centromedial regions (100-200ms stimuli 

onset) and frontal region (250-850ms stimuli onset) not only in anger and happiness 

perception, but also in neutral emotion perception. This suggested that older people’s neural 

compensation starts at the neutral (baseline) condition. Combining with their behavioural 

performance on each face perception task, the results might suggest that older people’s neural 

compensation was efficient in neutral emotion perception as they exhibited similar 

performance as younger participants, but the similar level of neural resources was not enough 

for them to apply the compensation strategy in perception of anger (both easy and hard 

conditions) and happiness (hard condition) and lead to their declined perceptual performance 

compared to younger participants. The findings of ERP study suggest that older people’s 

neural overactivation in frontal-centro regions reflects older people’s neutral compensation 

strategy: inputting increased attention and mental effect across different cognitive tasks in 

order to achieve better behavioural performance. 
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