PAGE  
21

Chapter for Neuroscience in Education: The good, the bad and the ugly
Edited by Sergio Della Sala and Mike Anderson. 
Genetics and Genomics: Good, bad and ugly

Yulia Kovas1,2 & Robert Plomin2
1Goldsmiths College, University of London, UK
2Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, UK
Correspondence to Yulia Kovas: y.kovas@gold.ac.uk
Key Terms: Genetic, Environment, DNA, Twin, Education.

  
Abstract

The chapter considers the importance and potential contributions of genetics to education and to neuroscience in education (good), the general view about genetics in education (bad), and attempts to date to identify specific genes throughout the genome responsible for ubiquitous genetic influence (ugly).  We will use as an example of research one topic of great importance to education – variation in mathematical ability and achievement -- to illustrate the main points.
Neuroscience is in fashion.  People at dinner parties talk about creative brains, language and spatial hemispheres, brain training, and brain areas for this and that.  It is likely that much of these conversations are like those inspired by phrenology of the 19th century.  Indeed, the word phrenology means ‘knowledge of mind’ in Greek.  Attempts to apply the knowledge of the mind to education are also not new.  Active attempts to use phrenological analysis to define an individual pedagogy were made by Paul Bouts (e.g., 1986) and his followers.  Two decades later, Bouts’ individual pedagogy remains a mirage.  Current attempts to integrate neuroscience into the classroom do not go much further than adding a brain-related qualifier to the name: brain-based, brain-compatible, brain-friendly, and brain-targeted instructional approaches are largely based on over-interpretation of existing data (Alferink and Farmer-Dougan, 2010).  Although today’s educationally relevant neuroscience has begun to offer the first tentative explanations for how existing educational practices might be supported by the developing brain (e.g., McCandliss, 2010), this is only the beginning of the long path towards a truly educationally relevant neuroscience.  In this chapter we argue that adding genetics to both neuroscientific and educational research will help to bridge neurosciences and education and lead to improved education.
In the first part of the chapter we consider the contributions that quantitative and molecular genetic research has already made to the field of learning abilities and disabilities.  We will argue that recent twin research provides many important insights into the origins of individual differences in learning ability and achievement.  We will also argue that although we used the word ‘ugly’ to describe attempts to date to find the actual DNA polymorphisms that are involved in genetically driven variation, we believe that greater progress will be achieved in the near future.  
In the second half we discuss the implications of these findings to educational and neuroscientific research.  In terms of education, one of the major goals of this chapter is to reverse the generally ‘bad’ view about genetics in education.  This view is reflected in apathy and even antipathy about genetics.  We believe that this view comes in part from misconceptions about genetics.  Education is pragmatic and education of the future will use methods that can be shown to work best for children with particular cognitive, perceptual, and motivational strengths and weaknesses. We are a long way away from such a personalised education, but, just as with personalised medicine (Collins, 2010), such education is possible, and genetic understanding will be a major part of it.  Future progress in identifying genetic polymorphisms associated with variation in cognitive skills and complex patterns of covariation among these skills might bring the tools for early screening to education.  Genetics might ultimately help with decisions on whether direct remediation of some impairments will be possible (such as reversing or even preventing the development of a particular perceptual or cognitive weakness), or whether providing compensatory approaches will be required (such as developing strategies that attenuate the negative effects of having a particular perceptual or cognitive weakness).  The need for such knowledge is well recognised in the field of education (Krasa, & Shunkwiler, 2009).  
In terms of neuroscience, we discuss how recent genetic findings are inconsistent with some of the current paradigms and views in neuroscientific research into cognition and learning.  We conclude the chapter with ways in which new insights from genetic research can inform and contribute to educationally-relevant neuroscience and education (’good’).  

Throughout this chapter we use research on individual differences in mathematics as an example.  The same issues apply to other areas of cognition and learning.  We chose to focus on mathematics because it is an area of great societal importance yet one that has only recently been studied from a genetic perspective.  Adequate mathematical skills are necessary in today’s technologically driven societies.  Moreover, high levels of mathematical achievement are required for continued technological advances, innovations and applications, and for all areas of sciences, technology, engineering and mathematics (STEM). STEM fields are considered core technological underpinnings of an advanced society, with the quality of STEM workforce viewed as an indicator of a nation’s ability to sustain economic vitality and to create a promising future for itself.  Despite the increasing demand for STEM expertise and the focus of the UK National School Curriculum in maths and science, for the past two decades, the number of students in Britain opting for maths and science careers has been in decline.  The latest report by the OECD's Programme for International Student Assessment (www.pisa.oecd.org), which plots the comparative academic progress of 400,000 15-year-olds in 57 countries that account for 87% of the world economy, ranks UK performance in maths and science well below average.  Moreover, the rates of mathematical underachievement remain consistently high.  Individual differences in mathematical abilities as well as in motivation and interest in STEM subjects develop through a complex process of gene-environment interplay.  Understanding the key determinants of variation in ability and achievement as well as interest, motivation, engagement in mathematics is necessary in order to take a crucial step towards successful interventions aimed at reversing the lack of interest in mathematics, improving mathematical achievement, and decreasing mathematical disability. We believe that genetic research can inform neuroscience, education -- and, crucially, the links between them -- to facilitate progress in learning and teaching maths. 
Insights from Twin Research

A general consensus in genetics exists today – that variation in all complex traits, including all psychological and behavioural traits, is partly explained by DNA differences (polymorphisms) among people,  that many DNA polymorphisms are involved in each trait, and that each DNA polymorphism explains very little of the variation in any given trait (Plomin, Haworth & Davis, 2009).  This Quantitative Trait Locus (QTL) model of genetic involvement in quantitative traits has also been applied to common disorders and disabilities (Plomin & Kovas, 2005).  In other words, learning disabilities such as dyslexia, dyscalculia, or ADHD have been conceptualised as quantitative cut-offs on one or several continuous dimensions.  Another consequence of the QTL model is that each individual is likely to have their own unique combination of genetic variants – contributing to their abilities and performance.  In parallel, a unique set of environmental experiences, each having only a small effect on a trait (Quantitative Trait Environment, QTE), is likely to explain the rest of the variation.  In addition, complex interactions between different QTLs and between different QTEs may be taking place, as well as interactions and correlations between QTLs and QTEs.  Finally, each QTL is likely to contribute to many different traits, a phenomenon known as pleiotropy, and the situation is likely to be the same for each QTE.  
Recent quantitative genetic research has already provided important insights into the origins of the individual differences in mathematical ability and achievement.  Using twin methodology, this research has led to the following important conclusions: 
(1) Individual variation in mathematics develops under the influence of both genetic and environmental factors.
Recent research into sources of individual differences in mathematical ability has led to the undisputed conclusion that both genes and environments shape people’s individual profiles of strengths and weaknesses in this trait.  In the school years, approximately 50% of the between-individual variation in mathematical ability is explained by genetic factors.  The rest of the variation is largely driven by individual-specific (rather than family-wide or school-wide) factors (Kovas, Haworth, Dale, & Plomin, 2007).  A particularly interesting finding is that studying mathematics in the same classroom does not increase the similarity between the two children beyond their genetic similarity (Kovas, Haworth, et al., 2007), at least in the UK where the curriculum is standardised.  This might mean that the child’s cognitive/motivational profile interacts with the learning situation, so that the same classroom, teacher, or teaching method has a significantly different effect on different individuals.  
(2)  Different aspects of mathematics are influenced by mostly the same QTLs.
Multivariate genetic analysis investigates not only the variance of traits considered one at a time but also the covariance among traits. It yields the genetic correlation which can be roughly interpreted as the likelihood that genes found to be associated with one trait will also be associated with the other trait.  Recent multivariate research has shown that different aspects of mathematics, such as computation, knowledge of mathematical procedures and operations, interpreting graphs and diagrams, problem solving, and non-numerical operations are largely influenced by the same set of genes, at least in the early school years (Kovas, Petrill, & Plomin, 2007; Plomin & Kovas, 2005; Kovas, Haworth, et al., 2007).  One major implication of this finding is that if a child underperforms selectively in some areas of mathematics, this discrepant performance is likely to stem from an environmental source.  These discrepancies in performance must also mean that the same person may perform at, below, or above their genetic propensities.  What follows is that not only different teaching methods will be required for different aspects of maths, but that any one way of teaching a particular aspect of maths is unlikely to be the best way for all students -  ‘teaching equally by teaching differently’ is necessary.  
(3) Many of the same QTLs are involved in mathematical and other learning abilities.
In a review of a dozen multivariate genetic studies of learning abilities and difficulties, the average genetic correlation was 0.70, between reading and mathematics, between language and mathematics, and between reading and language (Plomin and Kovas, 2005). A recent multivariate genetic analysis based on web-based testing yields even higher genetic correlations between mathematics, reading and language (Davis, Haworth & Plomin, 2009).  

Moreover, the general effects of genes appear to extend beyond specific learning abilities and disabilities such as reading and mathematics to other cognitive abilities such as verbal abilities (e.g. vocabulary and word fluency) and non-verbal abilities (e.g. spatial and memory). The average genetic correlation is about 0.60 between specific learning abilities and general cognitive ability (g), which encompasses these verbal and non-verbal cognitive abilities (Plomin and Kovas, 2005); the recent study mentioned above yielded genetic correlations greater than 0.85 between mathematics, reading and language versus general cognitive ability (Davis et al., 2009). 

This genetic overlap among traits has been referred to as the ‘generalist genes hypothesis’.  Figure 1 illustrates several models through which genetic pleiotropy may lead to the observed effects of the ‘generalist genes’ using learning disabilities as an example.  One possibility is that a generalist gene affects a single mechanism (for example, a brain area or function) that is pleiotropically involved in several cognitive processes (Figure 1 Mechanism 1).  In this case, the brain structures and functions are uncorrelated genetically because they are influenced by different genes, even though at the level of learning disabilities the effect of these mechanism-specific genes appears to be pleiotropic.  We believe that this possibility is unlikely because gene expression profiles in the brain suggest that any gene is likely to be expressed in more than one structure or function.  A second possibility is that multiple mechanisms are involved but each mechanism is influenced by its own independent set of genes (Figure 1 Mechanism 2).  The third possibility, which we favour, is that generalist genes affect multiple mechanisms and that each of these affect multiple learning disabilities (Figure 1 Mechanism 3).  This mechanism would lead to genetic correlations in the brain as well as in the mind.  

                                                                 Figure 1
The concept of generalist genes alone has far-reaching implications for understanding the genetic links between brain, mind and education (Plomin et al., 2007).  For mathematics, more quantitative genetic research is needed to characterise the contribution of generalist and specialist genes to different mathematically relevant abilities and skills.  Moreover, finding the actual DNA sequences responsible for these generalist genetic effects, as well specialist effects, will have important practical benefits, as discussed in the following section.
 (4) Genetic and environmental influences are not static, but change across age and across cultures. 
Recent research suggests that genes contribute to both change and continuity in mathematical performance (Kovas, Haworth, et al., 2007).  In other words, although some of the same genes continue to influence mathematics across development, new genetic effects also come on line at different ages.  This seemingly paradoxical finding is not that surprising.  What we call mathematics in the early school years is very different operationally and conceptually from the complex set of knowledge and procedures that we call mathematics in later school years.   

Another important finding is that genetic effects may be stronger or weaker depending on the environmental situation.  An area of research with huge potential that has only begun to be explored in relation to learning abilities and difficulties is the developmental interplay between genes and environment.  Several studies, conducted in different countries, have suggested that the effects of genes may be smaller in countries that do not use a centralised National Curriculum (e.g., Samuelsson, Byrne, Olson, et al., 2008; Samuelsson, Olson, Wadsworth, et al, 2007).  In other words, if the curriculum and teaching methods do not differ from school to school, most of the variation in mathematics stems from genetic and individual-specific environments.  Much more research involving cross-cultural comparisons is needed to help identify the relevant environments and their impact.
(5) Aetiological continuity exists between low, normal, and high performance in mathematics. 

The use of very large representative samples of twins in the community has made it possible to investigate the aetiology of development of difficulties in the context of the normal distribution (Kovas, Petrill, Haworth & Plomin, 2007; Kovas et al., 2007; Petrill et al., 2009). These twin studies show that what we call ‘learning difficulties’ are largely the quantitative extreme of the same genetic and environmental factors responsible for normal variation in learning abilities (Plomin and Kovas, 2005). Stated more provocatively, these results suggest that there are no aetiologically distinct difficulties, only the low end of the normal bell-shaped distribution of abilities. In other words, when genes are found ‘for’ maths difficulty, these genes will not be limited to maths difficulty. Rather they will be associated with maths ability throughout the distribution, including high maths ability (Plomin, Haworth & Davis, 2009).

This finding has profound implications for the diagnosis of learning abilities, because it suggests that we should think in terms of quantitative dimensions rather than qualitative diagnoses. As discussed in the later molecular genetics section, there are many chromosomal and single-gene causes of learning difficulties. However, these are rare and often severe forms of learning difficulties, whereas the quantitative genetic data are telling us that the vast majority of common learning difficulties are the quantitative extreme of the same genetic and environmental factors responsible for normal variation in these learning abilities. Properly understood, these results should help to avoid negative ‘us versus them’ stereotypes about learning difficulties.
Even before finding the genes, putting together the two genetic findings – that children with learning difficulties differ quantitatively not qualitatively and that genetic effects are general – suggests that genetic nosology differs from current diagnoses based on symptoms.  First, the genetic data suggest that common learning difficulties are only the low end of the normal bell-shaped distribution of abilities. Second, because genetic effects are largely general, they blur distinctions between ostensibly different problems such as reading and maths difficulties. That is, most of what is going on genetically has broad general effects rather than specific effects on just one difficulty.  
All of these implications will remain at a conceptual level until genes are found that are responsible for these genetic effects. When these genes are found, their implications for prediction and intervention may be even greater than their effect on diagnosis.
Insights from Molecular Genetics
Identifying the genes responsible for the genetic effects on variation in learning will provide the ultimate early diagnostic indicators of learning difficulties, because a DNA sequence does not change as the result of development, behaviour, or experience. (The expression of DNA, which involves transcription of the DNA code into RNA, does change, but this is another matter.) Finding these genes may facilitate matching the most suitable teaching methods and learning environments to individual cognitive and motivational profiles.  However, progress towards identifying the responsible genes has been slower than expected because, as is now widely recognised, genetic influence on common disorders like learning difficulties involves many genes of small effect.

The big questions are ‘How many?’ and ‘How small?’, because it will be extremely difficult to detect reliable effects if the influence of each gene is very weak. If a single gene were responsible, it would be easy to identify its chromosomal neighbourhood (linkage) and then its specific address (association), as has happened for thousands of single-gene disorders, which are typically severe and rare, often one in 10,000

rather than one in 10 or one in 20, as is the case for most learning difficulties. More than 250 single-gene disorders include cognitive difficulty among their symptoms (Inlow and Restifo, 2004) and many more are likely to be discovered (Raymond and Tarpey, 2006). However, together these single-gene disorders, as well as numerous chromosomal abnormalities, account for fewer than 1% of children with learning difficulties (Plomin, DeFries, McClearn, & McGuffin, 2008).  In contrast, the frequency of learning difficulties is often said to be as high as 5-10%. Although rare disorders are dramatically important for affected individuals, the vast majority of common learning difficulties are not explained by these and other known single-gene and chromosomal problems. It is possible theoretically that other, as yet unidentified, single-gene and chromosomal problems are responsible for some unexplained learning difficulties, but the quantitative genetic evidence reviewed earlier suggests that this is not the case.

As mentioned earlier, most geneticists have come around to the view that common disorders – medical as well as behavioural – are caused by multiple genes of small effect sizes. These genes are often called quantitative trait loci (QTLs) because, if a trait is influenced by many genes, the genetic effects will be distributed quantitatively as a normal bell-shaped distribution, regardless of whether we impose a diagnostic cut-off on the distribution (Plomin, Haworth & Davis, 2009). Although QTLs are genes like any others, the notion of QTLs is important conceptually. Single-gene disorders are deterministic. For example, if you have the gene for Huntington disease, you will die from the disease regardless of your other genes or your environments. In contrast, QTLs refer to probabilistic propensities rather than predetermined programming, and this warrants greater optimism for effective intervention.

New molecular genetic techniques have been developed to identify QTLs, and their first success was for reading difficulty – chromosomal linkages were identified in 1994 (Cardon et al., 1994). However, it has proved difficult to pinpoint the actual genes responsible for these linkages, although several genes involved in neuronal migration during development appear to be likely candidates (Scerri & Schulte-Koene, 2010). The latest development is called genome-wide association, which examines hundreds of thousands of DNA markers simultaneously for their association (correlation) with disorders (Hirschhorn and Daly, 2005). In the past three years, genome-wide association has transformed genetics research in the life sciences and has identified 779 significant (p<5x10-8) associations between common genetic variants and 148 traits (Hindorff et al., 2010). Combined with large samples (in the thousands), it is possible to identify many genes of small effect. Genome-wide association is made possible by DNA microarrays (often called ‘gene chips’) the size of a postage stamp, that can genotype as many as a million DNA markers inexpensively (Plomin and Schalkwyk, 2007). Moreover, rather than genotyping individuals for particular sets of DNA markers, we will soon be able to sequence each individual’s entire genome. The race is on to sequence all three billion bases of DNA of an individual for less than $1000 (Service, 2006), although the cost is currently about $10,000.

A genome-wide view of QTLs is necessary because there may be hundreds of DNA markers that predict different components or constellations of learning difficulties, at different ages, in different environments, and in response to different intervention programmes. With today’s microarray technology, thousands of such QTLs could easily be incorporated on an inexpensive ‘learning difficulties’ gene chip, even before

complete DNA sequencing is available for each individual.
The first association scan of this type for reading difficulty identified 10 DNA markers associated with reading (Meaburn et al., 2007), although replication in other independent studies is necessary. These DNA markers or loci, called single nucleotide polymorphisms (SNPs) are points in the DNA sequence where not all people have the same letter (as is the case with most of the DNA), but every individual has one of two possible letters– also called variants or polymorphisms.  If having one allele of a gene increases one’s ability and having the other allele decreases it, the frequency of the two variants will differ for low and high ability groups. Although each of the 10 DNA markers in this study had a very small effect, by aggregating dozens or hundreds of such markers in a cumulative genetic risk index, it will be possible in the future to predict genetic risk for reading difficulty.
Only one molecular genetic investigation into mathematical ability has been reported so far (Docherty, Davis, Kovas, Meaburn, Dale, Petrill, et al., 2010).   In this first large genome-wide association study, 10 single nucleotide polymorphisms (SNPs) were nominated as associated with mathematical variation in 10-year old children, participants in the Twins’ Early Development Study (TEDS). Consistent with the results from the twin studies which suggest genes work additively, when these 10 SNPs were combined into a set, they accounted for 2.9% (p = 7.277e-14) of the phenotypic variance in mathematics. The association was linear across the distribution; the third of children in the sample who harbor 10 or more of the 20 risk alleles identified are nearly twice as likely (p = 3.696e-07) to be in the lowest performing 15% of the distribution. These results correspond with the QTL model implying genetic effects across the entire spectrum of ability.  
It is important to note that attempts to replicate many of the first QTL associations of learning abilities have failed, as has been the case for all complex traits and common disorders (McCarthy, et al., 2008).  More highly powered studies will be needed to detect and replicate these QTL associations; other strategies are also under consideration (Manolio et al., 2009).  Moreover, we are a long way from understanding the path from each of these (and other) SNPs to mathematical differences.  One of the SNPs is in a NRCAM gene which encodes a neuronal cell adhesion molecule, potentially opening a window into one of the general brain mechanisms.  The mechanisms through which other SNPs are involved in mathematics are yet to be studied.  However, even before such mechanisms are understood, useful research can be carried out to further understand the role of these QTLs in mathematical learning.  
One such investigation used the 10 SNPs described above and the Twins Early Development Study’s longitudinal multivariate dataset to test the Generalist Genes Hypothesis which posits that many of the same genes influence diverse cognitive abilities and disabilities across age (Docherty, Kovas, Petrill, & Plomin, in press).   4927 children in this study were genotyped on these SNPs and had data available on measures of mathematical ability, as well as on other cognitive and learning abilities at 7, 9, 10, and 12 years of age.  Using these data, the authors assessed the association of the available measures of ability at age 10 and other ages with the composite ‘SNP-set’ scores.  The ‘SNP-set’ score is calculated by adding up a score for each of the 10 SNPs.  For each SNP, an individual can have a score of 0 (no maths-increasing variant, allele), 1 (one maths- increasing allele) or 2 (two maths-increasing alleles).  Because there are 10 SNPs, SNP-set scores can range from 0 (no maths-increasing alleles) to 20 (both alleles at all 10 loci are maths increasing).  The results of this study supported the findings from the quantitative genetic studies described above in several ways:  First, the SNP set associated with overall mathematics score at 10 was also similarly associated with each of the three mathematical components (mathematical computations, non-numerical knowledge, and understanding number) – supporting the generalist genes hypothesis.  Second, the SNP set yielded significant (although even smaller) associations with mathematical ability at ages 7, 9 and 12, suggesting that some of the same genetic effects contribute to mathematics throughout development, but that some new genetic effects might come on-line at each developmental stage.  Third, the same SNP set was also significantly (and to a similar magnitude) associated with reading and general cognitive ability at age 10, again supporting the generalist genes hypothesis.  Some genetic age or trait specificity was also found.  For example, the SNP set was significantly associated with spatial ability at age 12, but the magnitude of this association was very small.  With small effect sizes expected in such complex traits, future studies may be able to capitalise on power by searching for ‘generalist and specialist genes’ using longitudinal and multivariate approaches.

Discovery of the generalist and specialist genes involved in mathematical variation together with a list of candidate environments hypothesised as important for mathematical development open a new opportunity to study potential gene-environment interface.  The first study to look at the maths QTL by QTE interactions has recently been reported (Doherty, Kovas, & Plomin, et al., in press), examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children.  Two significant GE interactions were found for environmental measures in the home: The associations between the 10-SNP set and mathematical ability differed as a function of level of chaos in their home and of their parents’ negativity.  Both QTL by QTE interactions were in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative. 
These quantitative genetic (quantifying the genetic and environmental influences), molecular genetic (finding the relevant DNA polymorphisms) and molecular genomic (understanding each gene-behaviour mechanism) investigations of mathematical ability are just the beginning of a long path towards adequate explanations of individual variation in this trait.  However, some important implications for neuroscience and education can already be identified based on these early findings.  
Implications for Neuroscience and Education
Despite the universal ability to comprehend numerical information, learning mathematics is different for different people.  Some develop a strong interest in the subject, comprehend mathematical concepts with ease, and learn mathematical skills to the highest proficiency level.  Others dislike mathematics, are afraid of it, or struggle with understanding and applying mathematical concepts.  As reviewed above, genetics is a major part of the explanation of these differences.  
Educational research shys away from genetic explanations of individual variation.  Even when complex multi-level models of development are proposed, incorporating different levels of research and theory (e.g., Tommerdahl, 2010) -- the basic pervasive level of genetics is strangely ignored.  One reason is that genetics in education is mistakenly associated with inequality (Pinker, 2002).  Moreover, much of the educational research on mathematics is devoted to finding the best methods for teaching mathematics for all children, a one-size-fits-all approach.  This seems paradoxical because teachers, more than anyone, know that each child has a unique cognitive profile and even students who perform adequately may learn in diverse ways.   No matter what instructional material a school has chosen, the teacher on the front line must adapt it to the needs of specific students (Krasa & Shunkwiler, 2009).  Teachers are expected to obtain a ‘portrait’ of a student’s reasoning, perceptual, cognitive, and executive functioning to facilitate successful teaching.  Indeed, in the US, the Principles and Standards for School Mathematics of the National Council of Teachers of Mathematics (NCTM, 2008; in Krasa & Shunkwiler, 2009) requires that teachers have the knowledge and ability to analyse students’ thinking and to be knowledgeable about both, internal factors (the child’s developmental readiness, cognitive strengths and weaknesses, and interests) and external factors (the subject matter and teaching methods), affecting learning experiences (Krasa & Shunkwiler, 2009).  
The existence of large individual differences in learning means that determining the appropriate pedagogical approaches for each maths skill will not be enough to optimise education for each learner (Krasa & Shunkwiler, 2009).  Many examples demonstrate how the same method can be good for some and completely unsuitable for others.  For example, one area of lively debate is whether the use of concrete story problems might facilitate mathematical learning better for some children rather than using abstract equations (Krasa & Shunkwiler, 2009).  However, questions remain as to whether these different methods are suitable for different aspect of maths learning, as well as for children with different mathematics abilities, or different cognitive or perceptual impairments or styles.  In the future, we might be able to identify children with aetiological weaknesses in imagination or abstraction– for them the use of analogies, suppositions and reflection on their own assumptions would not be the best method of learning maths.  Students with potential to develop other perceptual or cognitive weaknesses might also benefit from different learning formats.  For example, the much ‘discredited’ drilling of mathematical facts might be re-instated for some learners.  Yet another group of students will benefit from allowing them to develop their own learning strategies.

Many other alternative learning and teaching paths may be available to different individuals and for different aspects of learning mathematics.  Future education, using the power of computers to personalise learning, as well as differentiated teaching methods and learning paths, may achieve previously unimaginably optimised outcomes.  This might sound far-fetched and even frightening for some people.  However, we contend that such individually-tailored leaning is already the goal of education.  Despite this, mathematical pedagogy informed by research is in its infancy.  In the US, with the absence of the UK’s National Curriculum, schools and districts try to adopt the best curricula for their students, but, with current lack of deeper understanding of the origins of the individual variation, the mathematics curriculum remains ‘in chaos’ (Krasa & Shunkwiler, 2009, p185).  In countries like the UK with a centralised curriculum, the ‘chaos’ remains in the effect of the centralised curriculum – because one method cannot be suitable for all.  In 2008, the US National Mathematics Advisory Panel (NMAP) reviewed a large number of educationally relevant studies, and concluded that there is no one ideal approach that is appropriate for all students (Krasa & Shunkwiler, 2009).  The panel also recommended that the students’ background, abilities and effort; the teachers’ background and strengths; and the instructional context, approach and curriculum should all factor into pedagogy.    However, before this can happen, much research -- going beyond crude categories of aptitudes by intervention studies-- is needed to predict which instructional materials and methods are effective for which particular teachers, students, topics, and learning conditions.   
To summarise, educationalists have been aware of the need to adapt to individual differences of the learners for a long time.  Indeed, it has been proposed that many characteristics of arithmetic learning reflect the nature of the ‘system doing the learning’ rather than the instruction per se.  In other words, the most effective instruction will adapt to each individual, particularly with struggling students (Krasa & Shunkwiler, 2009).  However, we are a long way from understanding individual variation and from being able to adapt to it successfully.  We believe that an important step towards understanding individual differences and utilising this understanding for pedagogy is incorporating genetics into the explanation and the research.  Currently, when individual-specific variation is considered, the word ‘genetic’ is generally avoided and reference is made to child characteristics, internal factors, innate cognitive capacities, abilities, cognitive strengths and weaknesses, motivations, interests, attitudes, and personality.  Educationalists and educational researchers should not shy away from acknowledging that genetics plays a large part in shaping these child-specific factors. 
Even when these ‘child characteristics’ are rightfully understood in terms of genetic and environmental aetiology,  they are usually hypothesised to have causal influence on mathematical learning and achievement.  For example, a concept of ‘cognitive readiness’ is often discussed in terms of competence in early cognitive skills that children require for successful acquisition of later skills.  For mathematics, it is assumed that good numerosity discrimination abilities (approximate number system), working memory, intact phonological functions, receptive and expressive language, body (particularly finger) and other spatial awareness, and the ability to integrate all of these might be necessary.  In addition, ‘school readiness’ for mathematics has been hypothesised to include some basic early number skills, such as symbolic number knowledge, counting, and understanding of cardinality principle.  Different interventions for mathematical problems have been suggested and are currently the target of many investigations that attempt to improve the level of mathematical achievement by raising the level of one or more of these cognitive abilities or early skills.  However, quantitative genetic research suggests that the link between different cognitive skills might be pleiotropic, in that many of the same genes affect diverse learning skills.  This means that improving one ability or skill (e.g., numerosity awareness) might not necessarily lead to an improvement in a correlated ability or skill (e.g., counting) because the common aetiology that contributes to their correlation is genetic in origin.  In this sense, improving one skill could be expected to lead to an environmentally induced discrepancy between the two skills
We believe that research into what skills and skill levels are required for successful early math learning will progress faster by incorporating the findings from recent twin research.  For example, quantitative genetic research can explore the extent to which the link between early number sense and later maths achievement (Halberda, Mazzocco & Feigenson, 2008) is due to common genetic or common environmental aetiology.  Although this issue is still under investigation, such findings already exist for different traits, documenting the extent to which genes and different types of environments contribute to co-variation between different skills at different ages.  As discussed in an earlier section, this research (e.g., Plomin & Kovas, 2005) suggests that much of the co-variation among different cognitive traits stems from pleiotropic effects of genes.  For this reason, we hypothesise that much of the covariation between early number sense and later mathematics achievement will also be genetic in origin; the discrepancies (lack of covariation) will be mediated environmentally.  This might mean that a useful future direction is understanding the processes through which resilience operates –understanding the sources of high maths performance, despite poor performance on early ‘predictor’ abilities.  Previous research suggests that non-shared environments play a large role in discrepancies in an individual’s abilities.  For example, if one’s mathematical ability is greater than one’s reading ability – this is largely explained by the fact that different non-shared environments are important to the development of the two traits (e.g., Plomin, Kovas, & Haworth, 2007).
Many of the mechanisms through which individual differences in learning emerge may be unexpected and even counter-intuitive.  An example of such an unexpected mechanism, is a recent finding that the prediction of maths achievement from self-evaluation of mathematics (self-perceived ability and ‘liking’ of math), after accounting for any association with IQ, is genetic rather than environmental (Luo, Kovas, Haworth, & Plomin, in press).  This finding is not unique to mathematics; other studies have demonstrated that variation in motivation and self-perceived abilities are partly genetic and the link between these traits and achievement is explained by shared genes rather than environmental links (e.g., Greven, Harlaar, Kovas, Chamorro-Premuzic, & Plomin, 2009).   This might mean that improving self-perceived ability will actually not lead to higher levels of mathematical performance, but rather to an environmentally influenced discrepancy between the two traits.  Having higher self-perceived ability might have other positive psychological effects, however, other factors will need to be influenced upon in order to raise the level of mathematics performance.  
Initial genetic differences might interact with environments, so that the same educational input leads to drastically different outcomes for different children.  Behavioural genomic research will ultimately indicate exactly which genes and which environments are involved.  Accounting for, evaluating, and interpreting these genetic findings by educationalists is necessary to develop new, complex explanations of individual variation and associated teaching and learning methods.  Research exploring the aetiology of the hypothesised links among different abilities and between early and later abilities, guided by questions from educationalists and psychologists, will help to avoid erroneous conclusions and policies and might ultimately help with decisions on whether direct remediation of some impairments will be possible or whether providing compensatory approaches will be required.  

Another, related, important interface of genetics and education is the issue of screening and prediction of problems.  Although most students are remarkably adaptable and do well with common teaching practices, many students do not.  These students miss out on some or all of the mathematics curriculum, with enormous cost to their education, self-confidence, and job prospects, as well as to the nations’ standing in the global economy (Krasa & Shunkwiler, 2009).  Researchers have begun to devise ways to identify young children who may be at risk for math difficulties, in the hope that very early intervention can prevent problems later (Krasa & Shunkwiler, 2009).  In the area of mathematics, several early screening tests have been devised to predict future performance.  For example, early competence in number knowledge and number sense is the most powerful predictor for later learning in math.  However, research has also shown that even very early maths skill is composed of many partially independent abilities, where almost no component is an absolute prerequisite for any other.  As discussed above, any prediction of one competence from another may actually reflect the shared genetic aetiology, and the dissociations among competencies may be environmental in origin.  The prediction is further complicated by the fact that different cognitive skills may come into play later in the curriculum.  For example, block building play at school has been shown to strongly predict math performance and engagement in high school, but not at all in elementary school (Wolfgang, Stannard, & Jones, 2001).  Clearly, a complex pattern of cognitive strength and weakness needs to be taken into account to predict later maths performance.  One problem is that by the time such strengths and weaknesses become apparent or testable the child might already be well on the way along a deviant developmental path.  In the future, it is possible that an individual’s DNA sequence can be easily examined for educationally-relevant variation in order to suggest the best methods, compensatory strategies, and learning approaches for each individual, as has been proposed in relation to personalized medicine (Collins, 2010).   One can imagine a future where for example, a child might be identified as having poor spatial but stronger linguistic and logical potential.  A curriculum that utilises this alternative path to successful mathematical learning might be suggested for this learner.  
Research in educationally relevant neuroscience also needs to consider the genetic contribution to variation.  As discussed below, most neuroscientific research is focusing on establishing the universal brain correlates of different traits in humans, rather than focusing on individual variation. However, it is the variation that is of particular interest to education.  The complexity of genetic and environmental aetiologies of individual differences in learning means that to the extent that normal variation in learning is driven by genetic factors, many neural processes of small effect mediate the effects of genes on cognition (Kovas & Plomin, 2006).  Figure 1 could be used to illustrate these complex gene-brain-cognition links, by substituting ‘genes’ with ‘QTLs’ to reflect the polygenicity; ‘mechanisms’ with ‘QTNs’ to refer to the Quantitative Trait Neural Processes; and ‘LD’ (learning disabilities) with different quantitative cognitive traits.  These QTNs of small effect are reflected in the widely distributed brain-behaviour associations consistently found in neuroimaging studies (Kovas & Plomin, 2006).  
Currently, neuroimaging research focuses on group analyses, rather than individual differences analyses.  For example, several brain regions show increased brain activation on average during numerical tasks when compared to control tasks.  These areas of increased activation include intraparietal sulcus, inferior and superior frontal gyri, as well as other co-ordinates within the precentral, dorsolateral and superior prefrontal regions (e.g. Stanescu-Cosson et al., 2000; Venkatraman, Ansari, & Chee, 2005).  According to one influential hypothesis, these regions, and in particular the horizontal segment of the intraparietal sulcus (hIPS), are the loci of a dedicated, domain-specific number system, subserving operations with both symbolic and nonsymbolic stimuli (e.g., Dehaene, Piazza, Pinel, & Cohen, 2003; Piazza, Pinel, LeBihan, & Dehaene, 2007; Cantlon et al., 2006).  It is important to remember that we must be careful with interpretation of these findings in causal ways to avoid slipping into neo-phrenology.  For example, a common extension of these findings is the hypothesis that low mathematical ability stems from some damage or dysfunction in these brain areas.  However, any ‘abnormal’ brain activation in these areas may be the result rather than the cause of the low mathematical ability.  Such inappropriate interpretations and oversimplification of complex neuroscience research is widespread, and much of today’s attempts at brain-based curricula and teaching approaches rely on these inappropriate interpretations (see Alferink & Farmer-Dougan, 2010 for examples of such bad practices).  If the aim of neuroscientific research is to uncover the brain mechanisms causally involved in mathematical variation, the research needs to move towards individual differences as well as to incorporating genetics.  

To date, limited research has addressed the issue of individual variation in relation to mathematical ability and associated brain activity.  Most of this research involves case-control comparisons rather than individual differences throughout the distribution.  For example, fMRI studies with patients with developmental dyscalculia (DD) have shown decreased or abnormally modulated activity or decreases in the grey matter density in parietal cortices in people with dyscalculia as compared to a control group (reviewed in Kucian et al., 2006).  Other brain areas have also been implicated in the differences between typically developing children and children with DD (Kucian et al., 2006).  One recent study explored the extent to which variation in fMRI response as a function of number task difficulty relates to high versus low mathematical ability (Kovas, Viding, Ng, Giampietro, Brammer, Happé, & Plomin, 2009).  This study found that high versus low numerosity skills in 10-year-old children were subserved by a widely distributed brain network. Some parts of this network appear to support numerical judgments in general (as shown by activation in both low and high ability group), whereas others may subserve individual differences in numerical ability, as manifested by magnitude differences in brain activation between low and high mathematical ability children. The causal direction of the association, as is the case for all non-genetically sensitive neuroimaging studies, remains unknown. Either small differences across a wide brain network lead to the individual differences in mathematical performance or differences in mathematical performance (caused by multiple genetic and environmental factors) cause the observed differences in activation during the approximate judgment task.  The results of this study also suggest that different neural mechanisms may be involved in approximation per se and in individual differences in mathematical ability.  This is suggested by the non-overlapping brain areas active in approximation vs. baseline and low vs. high ability comparisons.  This finding could reflect a dissociation between the brain processes subserving invariable (species universal) ability to use approximate judgment, and the brain processes involved in individual variation  in this ability.  

Clearly, the complexity of the aetiology of the variation in complex traits calls for new neuroscientific approaches that view the brain as a functional system, rather than independent pieces of the puzzle.  New methods and analyses of this type have begun to emerge.  For example, network analysis of structural and functional connectivity aims to characterize the organization of brain networks – path lengths, clustering, hierarchy and regional inter-connectivity.  One very recent study (Rykhlevskais, Uddin, Kondos, & Menon, 2009) combined morphometry and tractography analyses of the whole brain to look at the structural network differences between typical and low mathematical performance groups of 7 to 9 year-old children, matched for gender, IQ, reading, and working memory.  The results of this study showed highly distributed differences between the two groups, involving both white and gray matter in many brain areas.  The results suggest that multiple functional circuits in the brain are involved in mathematical ability.  The authors hypothesized that a core white matter deficit might be involved that leads to a disconnection among different circuits.  An alternative explanation is that individuals possess unique patterns of activation and connectivity among all of the circuits involved in a given complex trait.  However, the mechanisms underlying individual differences are currently described in the literature are poorly understood, with only very general mechanisms being discussed.  This is not surprising as most current research is based on groups, or, at best, compares ability groups.

It is likely that in 50 years current neuroscientific explanations will look naively crude, talking about large chunks of the brain (e.g., the prefrontal cortex) working ‘in concert’ with another (e.g., medial temporal lobe) as well as other ‘systems’ (e.g., dorsal basal ganglia memory systems’ (Menon, 2010).  The picture is likely to be infinitely more complex.  For example, for mathematical reasoning, it is already clear that integration across a distributed brain network is involved in higher-order visuospatial processing, memory, and cognitive control, as well as more specific numerical networks (Menon, 2010).  The complexity of these interrelationships as well as the degree of individual differences in these networks is yet to be described and understood.     
Although all educational and genetic research suggests complex aetiology of individual variation that is likely to be reflected in complex representation in the brain, neuroscience continues to ignore individual differences. We believe that the future of neuroscience lies in moving away from group comparisons to applying new exciting methods to tracing unique neural profiles of individuals.  Until neuroscience can fully embrace individual variation, the hypothesised brain mechanisms underlying cognition and learning will remain unknown and neuroscience will continue to have limited impact on education.  Much more research is needed that involves large samples in order to gain enough statistical power to detect processes of small effects in multiple brain areas at the whole brain level of analysis, and to identify and replicate the complex neural networks suggested (but not established) by the existing literature.  
Not surprisingly, although educationalists have initially embraced neuroscience, with calls for ‘brain-based’ educational programmes, the initial hype has now subsided.  The US NMAP has recently cautioned that attempts to connect research in the brain sciences to classroom teaching and student learning in mathematics are premature and that instructional programmes that claim to be based on brain sciences research remain to be validated.  In a recent book about mathematical learning, written by a clinical psychologicst and mathematical educationalist the authors state: ‘One looks forward to the day when brain research can inform pedagogy in the trenches.  In the meantime, educators should interpret all ‘brain-based claims with scepticism’ (Krasa & Shunkwiler, 2009, p. 185).
Teachers want more studies that focus on individual differences -- studies that explore how different methods, teaching and learning styles are reflected in the brain, and what it means for education. To be relevant to education, neuroscience will need to conduct research into appropriate pedagogical approaches for each maths skill as well as methods that work best for any given set of cognitive and perceptual strengths and weaknesses.  Indeed, understanding of the complex patterns of connectivity among different brain circuits involved in mathematics may in the future contribute to the development of remediation training programmes to strengthen particular connections.  One recent example of such research has shown that specialised reading instruction can normalize the reading circuit, demonstrating that experience can alter brain functions (Meyler et al, 2008; Shaywitz et al., 2004).  More research into interventions and into differential impact of interventions on different people is required to inform scientifically based pedagogy.  Do different people code arithmetic facts differently – for example phonologically vs. visual (but also many other ways, beyond this crude dichotomy)?   Do children with particular cognitive styles or impairments show different pattern of mathematical representations? How does explicit instruction, exposure, drill, practice change brain function and brain structure?  Do children in different educational cultures differ in their mathematical representations?  Research comparing brain function across modalities and strategies as well as focusing on maths task-related brain functioning of students across the ability spectrum in language, reading, and maths will have significant implications for the classroom (Krasa & Shunkwiler, 2009).  When genes involved in variation in these traits are found, a field of educational imaging genomics will emerge that explores these issues focusing on children with different genetic profiles.  
Conclusion
It is not yet possible to predict the strength of any direct impact that identifying sets of genes associated with learning difficulties will have on teachers in the classroom confronted with a particular child with a learning difficulty.  However, the capability of predicting genetic risk from DNA is likely to have far-reaching implications in terms of diagnosis, treatment and intervention (Plomin and Walker, 2003).  Gene-based diagnoses of learning difficulties are likely to be very different from current diagnoses. For example, many of the same genes (the ‘generalist genes’ mentioned earlier) that predict reading difficulty will also predict maths difficulty, although some genes will be specific. That is, a learning difficulties gene chip in the future would mostly contain genes that can predict which children are likely to have general problems with reading and maths, but it would also contain some genes that can predict specific problems with reading or maths. Moreover, genes on the learning difficulties gene chip that predict learning difficulties will also predict normal variation in learning abilities as well as high ability, which means that these genes will be useful for predicting the educational progress of all children, not just children at the low end of the normal distribution. Identifying these genes will lead to dimensional rather than diagnostic

systems of classification of learning abilities and difficulties, based on aetiology rather than symptomatology. It will also lead to research on the brain and mind pathways between genes and behaviour that can account for these general as well as specific effects (Kovas and Plomin, 2006).

A learning difficulties gene chip could be even more important for treatment and intervention than for diagnosis. In terms of treatment, an untapped opportunity for genetic research is to identify genes that predict, not disorders themselves, but response to treatment. This goal is part of a ‘personalised treatment’ movement rather than imposing one-size-fits-all treatments.

However, the most important benefit of identifying genes associated with learning difficulties is the power to predict problems very early in life, which will not only serve as the earliest possible warning system but also facilitate research on interventions that prevent learning difficulties from developing, rather than waiting until problems are so severe that they can no longer be ignored. Genetic prediction will complement any prediction that might in the future be available from neural data (e.g., the hypothesised link between the differential organisation of white matter – and later variation in reading; Gabrieli, 2009).  In addition, genetic prediction will avoid the problem of disentangling the direction of effect associated with many brain measurements, and may offer more precision than behavioural measures.  The goal of early intervention fits with a general trend toward preventative medicine which is much more cost-effective for children as well as for society. Because vulnerability to learning difficulties involves many genes of small effect size, genetic engineering is unimaginable for learning difficulties; interventions will rely on environmental engineering, not genetic engineering.

It could be argued that genetics is unimportant because we need to provide resources to prevent children from falling off the low end of the bell curve, regardless of the causes of their poor performance. However, genetics is likely to facilitate the development of successful preventative interventions that can focus on diagnoses based on aetiology rather than symptomatology. Genetics can also help to target children most likely to profit from interventions. Targeting is likely to be important because successful prevention programmes usually require extensive and intensive, and thus expensive, interventions (Alexander and Slinger-Constant, 2004; Hindson et al., 2005; Horowitz, 2004). 

What about the ethical issues raised by finding genes associated with learning abilities and difficulties? For example, will gene chips justify social inequality? Knowledge alone does not account for societal and political decisions. Values are just as important in the decision-making process. Decisions both good and bad can be made with or without knowledge. Finding genetic influence on mathematics ability does not mean that we ought to put all our resources into educating the best mathematicians and forgetting the rest. Depending on our values, genetics could be used to argue for devoting more resources to help disadvantaged children. Indeed, genetics makes this view more palatable because it avoids assigning blame for poor performance solely to environmental failures of the school and family. 
We are a long way away from identifying and understanding the mechanisms through which QTLs, QTNs, and QTEs are involved in shaping individual differences in learning and achievement.  However, the new understanding of the complexity of these mechanisms highlights the importance of genetics to neuroscience in education (good) and cautions against the simplistic and deterministic bad view about genetics in education.  Continuous technological and conceptual advances offer promise of changing the ‘ugly’ state of knowledge to date, through further progress in attempts to identify specific genes throughout the genome responsible for ubiquitous genetic influence.  We believe that only with better integration between educational, genetic, and neuroscience research we will achieve the optimised education of the future.   
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Three models of effects of genes on learning disabilities as mediated by brain or cognitive mechanisms. 

REFERENCES
Alexander, A. W. & Slinger-Constant, A. M. (2004). Current status of treatments for dyslexia: critical review. Journal of Child Neurology, 19,  744-758. doi: 10.1177/08830738040190100401
Alferink, L.A. & Farmer-Dougan, V. (2010). Brain-(not) based education: Dangers of misunderstanding and misapplication of neuroscience research. Exceptionality, 18, 42-52. doi:10.1080/09362830903462573
Bouts, P. (1986). La Psychognomie. Paris: Dervy-Livres.

Cantlon, J. F., Brannon, E. M., Cater, E. J., & Pelphrey, K. A. (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4, 844-854. doi:10.1371/journal.pbio.0040125
Cardon, L. R. & Fulker, D. W. (1994). The power of interval mapping of quantitative trait loci using selected sib pairs. American Journal of Human Genetics, 55,  825-833.

Collins, F. (2010). The Language of Life. New York: Harper Collins.
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. doi:10.1080/02643290244000239
Docherty, S. J., Davis, O. S. P., Kovas, Y., Meaburn, E. L., Dale, P. S., Petrill, S. A., Schalkwyk, L.C., & Plomin, R. (2010). A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes, Brain, and Behavior, 9, 234-247. doi:10.1111/j.1601-183X.2009.00553.x
Docherty, S. J., Kovas, Y., Petrill, S. A., & Plomin, R. (2010). Generalist genes analysis of DNA markers associated with mathematical ability and disability. BMC Genetics. Advanced online publication. doi: 10.1186/1471-2156-11-61
Docherty, S. J., Kovas, Y., & Plomin, R. (in press) Gene-environment interaction in the etiology of mathematical ability using SNP-sets.  Behavioral Genetics. 
Fisher, S. E. and Francks, C. (2006). Genes, cognition and dyslexia: learning to read the genome. Trends in Cognitive Science, 10, 250-257. doi:10.1016/j.tics.2006.04.003
Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325, 280-283. doi:10.1126/science.1171999
Greven, C. U., Harlaar, N., Kovas, Y., Chamorro-Premuzic, T., & Plomin, R. (2009). More than just IQ: School achievement is predicted by self-perceived abilities for genetic reasons.  Psychological Science, 20, 753-762. doi:10.1111/j.1467-9280.2009.02366.x
Halberda, J.,  Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665-668. doi:10.1038/nature07246
Hindorff, L.A., Junkins, H.A., Hall, P.N., Mehta, J.P., & Manolio, T.A. (2010).  A Catalog of Published Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies.

Hindson, B., Byrne, B., Fielding-Barnsley, R., Newman, C., Hine, D. W., & Shankweiler, D. (2005). Assessment and early instruction of preschool children at risk for reading disability. Journal of Educational Psychology, 97, 687-704. doi:10.1037/0022-0663.97.4.687
Hirschhorn, J. N. & Daly, M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nature Review Genetics, 6, 95-108. doi:10.1038/nrg1521
Horowitz, S. H. (2004). From research to policy to practice: prescription for success for students with learning disabilities. Journal of Child Neurology, 19, 836-839.

Inlow, J. K. & Restifo, L. L. (2004). Molecular and comparative genetics of mental retardation. Genetics, 166, 835-881. doi:10.1534/genetics.166.2.835
Kovas, Y., Haworth, C. M. A., Dale, P. S., & Plomin, R. (2007). The genetic and environmental origins of learning abilities and disabilities in the early school years. Monographs of the Society for Research in Child Development, 72, 1-144. doi: 10.1111/j.1540-5834.2007.00453.x
Kovas, Y., Petrill, S. A., Haworth, C., & Plomin, R. (2007). Mathematical Ability of 10-year-old boys and girls: Genetic and environmental etiology of typical and low performance.  Journal of Learning Disabilities, 40, 554-567. doi:10.1177/00222194070400060601
Kovas, Y., Petrill, S. A., & Plomin, R. (2007). The origins of diverse domains of mathematics: Generalist genes but specialist environments. Journal of Educational Psychology, 99, 128-139. doi:10.1037/0022-0663.99.1.128
Kovas, Y. & Plomin, R. (2006). Generalist genes: Implications for cognitive sciences. Trends in Cognitive Science, 10, 198-203. doi:10.1016/j.tics.2006.03.001
Kovas, Y., Viding, E., Ng, V., Giampietro, V., Brammer, M., Barker, G.J., Happé, F. G. E., & Plomin, R. (2009).  Brain correlates of non-symbolic numerosity estimation in low and high mathematical ability children.  PloS One, 4, e4587. doi:10.1371/journal.pone.0004587
Krasa, N. & Shunkwiler, S. (2009). Number sense and number nonsense. Understanding the challenges of learning math.  Baltimore, MD: Paul H Brookes Publishing Co.

Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study.  Behavioral and Brain Functions, 2, 1-17. doi:10.1186/1744-9081-2-31
Luo, Y., Kovas, Y., Haworth, C., & Plomin, R. (in press). Cross-lagged analyses of mathematical achievement and mathematical self-evaluation in children at 9 and 12 years of age. Child Development.
Manolio, T.A., Collins, F.S., Cox, N.J., et al.  (2009).  Finding the missing heritability of complex diseases.  Nature, 461(7265),   747-753.

McCandliss, B. D. (2010).  Educational neuroscience: The early years. Proceedings of the National Academy of Sciences, 107, 8049-8050. doi:10.1073/pnas.1003431107
McCarthy, M.I., Abecasis, G.R., Cardon, L.R., et al.  (2008).  Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics, 9, 5, 356-369.    
Meaburn, E. L., Harlaar, N., Craig, I. W., Schalkwyk, L. C., & Plomin, R. (2007). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100K SNP microarrays in a sample of 5760 children. Molecular Psychiatry, 13, 729-740. doi:10.1038/sj.mp.4002063
Menon, V. (2010). Developmental cognitive neuroscience of arithmetic: implications for learning and education.  ZDM: The Internationa Journal on Mathematics Education. Advanced online publication. doi:10.1007/s11858-010-0242-0.

Meyler, A., Keller, T. A., Cherkassky, V. L., Gabrieli, J. D. E., & Just, M. A. (2008).  Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46, 2580-2592. doi:10.1016/j.neuropsychologia.2008.03.012 

OECD. (2008). The PISA 2006 Assessment Framework for Science, Reading and Mathematics. Paris: OECD. doi:10.1146/annurev.genom.8.080706.092312
Paracchini, S., Scerri, T., & Monaco, A. P. The genetic lexicon of dyslexia. Annual Review of Genomics and Human Genetics, 8, 57-79. doi:10.1146/annurev.genom.8.080706.092312
Petrill, S.A., Kovas, Y., Hart, S.A., Thompson, L.A., & Plomin, R. (2009). The genetic and environmental etiology of high math performance in 10 year old twins. Behavioral Genetics, 39, 371-379. doi:10.1007/s10519-009-9258-z
Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293-305. doi:10.1016/j.neuron.2006.11.022
Pinker, S. (2002). The blank slate: The modern denial of human nature. New York: Penguin.

Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008). Behavioural Genetics (5th ed). New York: Worth.

Plomin R, Haworth C. M. A., & Davis, O. S. P. (2009). Common disorders are quantitative traits.  Nature Reviews Genetics, 10, 872-878. doi:10.1038/nrg2715
Plomin, R. & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131, 592-617. doi:10.1037/0033-2909.131.4.592
Plomin, R., Kovas, Y., & Haworth, C. M. A. (2007). Generalist genes: Genetic links between brain, mind and education. Mind, Brain and Education, 1, 11-19. doi:10.1111/j.1751-228X.2007.00002.x
Plomin, R., Owen, M. J., & McGuffin, P. (1994). The genetic basis of complex human behaviors. Science, 264, 1733-1739. doi:10.1126/science.8209254
Plomin, R. & Schalkwyk, L. C. (2007). Microarrays. Developmental Science, 10, 19-23. doi:10.1111/j.1467-7687.2007.00558.x
Plomin, R. & Walker, S. O. (2003). Genetics and educational psychology. British Journal of Educational Psychology, 73, 3-14. doi:10.1348/000709903762869888
Raymond, F. L. & Tarpey, P. (2006). The genetics of mental retardation. Human Molecular Genetics,  15, R110-R116. doi:10.1093/hmg/ddl189
Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 1-13. doi:10.3389/neuro.09.051.2009
Samuelsson, S., Byrne, B., Olson, R. K., Hulslander, J., Wadsworth, S., Corley, R., Willcutt, E. G., & DeFries, J. C. (2008). Response to early literacy instruction in the United States, Australia, and Scandinavia: A behavioral-genetic analysis. Learning and Individual Differences, 18, 289-295. [image: image1.png]


doi:10.1016/j.lindif.2008.03.004

Samuelsson, S., Olson, R. K., Wadsworth, S., Corley, R., DeFries, J. C., Willcutt, E. G., Hulslander, J., & Byrne, B. (2007). Genetic and environmental influences on prereading skills and early reading and spelling development in the United States, Australia, and Scandinavia. Reading and Writing 20, 51-75.  doi: 10.1007/s11145-006-9018-x
Scerri, T.S., & Schulte-Koene, G. (2010).  Genetics of developmental dyslexia.  European Child & Adolescent Psychiatry, 19, 3, 179-197.
Service, R. F. (2006). Gene sequencing. The race for the $1000 genome. Science,  311, 1544-1546. doi: 10.1126/science.311.5767.1544
Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., Holahan, J. M., Marchione, K. E., Fletcher, J. M., Lyon, G. R., & Gore, J. C. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55, 926-933. [image: image2.png]


doi:10.1016/j.biopsych.2003.12.019

Stanesku-Cosson, R., Pinel, P., van de Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia.  A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain, 123, 2240-2255. doi:10.1093/brain/123.11.2240
Tommerdahl, J. (2010). A model for bridging the gap between neuroscience and education.  Oxford Review of Education, 36, 97-109. doi: 10.1080/03054980903518936
Venkatraman, V., Ansari, D., & Chee, M. W. (2005). Neural correlates of symbolic and nonsymbolic arithmetic. Neuropsychologia, 43, 744-753. doi:10.1016/j.neuropsychologia.2004.08.005
Wolfgang, C., Stannard, L., & Jones, I. (2001). Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education, 15, 173-181. doi:10.1016/j.biopsych.2003.12.019
PAGE  
21

