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Abstract

The genetic and environmental origins of individual differences in mathematical self-evaluation
over time and its association with later mathematics achievement were investigated in a UK
sample of 2138 twin pairs at ages 9 and 12. Self-evaluation indexed how good children think they
are at mathematical activities and how much they like those activities. Mathematics achievement
was assessed by teachers based on UK National Curriculum standards. At both ages self-
evaluation was approximately 40% heritable, with the rest of the variance explained by non-shared
environment. The results also suggested moderate reciprocal associations between self-evaluation
and mathematics achievement across time, with earlier self-evaluation predicting later
performance and earlier performance predicting later self-evaluation. These cross-lagged
relationships were genetically rather than environmentally mediated.
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1 Introduction

In the modern age of digital technology, adequate numeracy cannot be overestimated. The
increasing importance of numeracy is reflected in government and commercial initiatives,
such as Maths Year 2000 (http://www.mathsyear2000.org/) and Maths@Work Project
(http://www.ima.org.uk/), as well as reports on the importance of mathematics and
assessments of current levels of numeracy (e.g., Smith, 2004). Unfortunately, despite efforts
to date to improve mathematical performance and to reduce mathematical
underachievement, the situation remains highly unsatisfactory in many developed countries
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according to the latest report from the OECD Programme for International Student
Assessment (PISA, 2009). For example, a survey from the National Assessment of
Educational Progress (2009) reported that 61% of fourth-grade students (age 9 — 10) and
66% of eighth-grade students (age 13 — 14) in the US failed to demonstrate a “proficient”
level of required math skills.

For a complex trait like mathematics achievement, many factors are likely to drive variation.
In terms of psychological constructs, intelligence, motivation and social context have all
been shown to play a role (Winne & Nesbit, 2010). Although a general factor of intelligence
has been identified as the best predictor of academic achievement across a wide spectrum of
domains and criteria (e.g., Deary, Strand, Smith, & Fernandes, 2007), the correlation
between intelligence and mathematics achievement is no more than 0.5 for elementary
school children. Individual differences in intelligence therefore only account for one quarter
of the variance of mathematics achievement (Helmke, 1992; Spinath, Spinath, Harlaar, and
Plomin, 2006), implying that factors other than intelligence are important for mathematics
achievement. Moreover, approximately 6% of children of normal intelligence underachieve
by at least 2 years below grade level in arithmetic (GrossTsur, Manor, & Shalev, 1996),
suggesting the importance of factors other than intelligence. For instance, several studies
have demonstrated that self-evaluation of interest and ability explain unique variance in
academic achievement unexplained by intelligence (e.g., Gottfried, 1990;Schicke, 1994).

1.1 Self-evaluation

Self-evaluations of interest and ability, also known as self-concepts, are typically examined
by self-report questionnaires assessing how good individuals think they are and how
interested they are. Specifically for mathematics, self-perceived abilities and interest are
substantially correlated (r > .50) (Eccles & Wigfield, 1995; Gottfried, 1985), and both have
been shown to contribute incrementally to mathematics achievement beyond intelligence
(Wigfield & Eccles, 2000). The present study refers to self-perceived abilities and interest
that predict mathematics achievement as mathematical self-evaluation. Specifically for
mathematics, self-evaluation has been shown to be moderately correlated with mathematics
achievement when assessed at the same age (Spinath, Spinath, Harlaar, & Plomin, 2006).
The relationship between actual performance and self-perception of the performance may
play an important part in the development of both mathematical self-evaluation and
mathematics achievement.

However, the nature of this association remains poorly understood, although evidence
suggests that self-evaluation - especially self-perceived abilities - is likely to derive from
processes beyond simply internalizing feedback on one’s achievement (Marsh, 1986).
Besides external feedback, internal processes, such as the general academic self-concept,
possibly moderate the mathematical self-evaluation. Moreover, studies on the directionality
of the association between self-evaluation and academic achievement have suggested that
although self-evaluation is influenced by prior achievement, it also has independent
influences on later achievement, indicating a reciprocal developmental relation between
them (Guay, Marsh, & Boivin, 2003; Marsh, Byrne, & Yeung, 1999; Marsh & Yeung,
1997). To improve our understanding of the relationship between mathematics achievement
and self-evaluation, we need a cross-lagged design incorporating the two measures at two
time points within the same model.

An important aspect of the association between self-evaluation and achievement that has not
received sufficient attention is the possible genetic contribution to individual differences in

mathematical self-evaluation. The popular view is that self-evaluation is primarily shaped by
family and school environment, such as parents’ expectations and teachers’ feedback, which
are more likely to be shared by twins (Krapp, 2005; Wigfield & Eccles, 2000). We are aware
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of only one study that examined the possibility of genetic contributions specifically to
mathematical self-evaluation (Spinath, Spinath, & Plomin, 2008). The study, which is a
cross-sectional analysis at age 9 of the same sample used in the present study, finds
moderate genetic influence on mathematical self-evaluation (> 40%), without significant
contribution of the shared environment. Moreover, one recent study suggests that self-
evaluation of ability predicts general academic achievement even after accounting for
intelligence, and that this link is explained by genetic rather than environmental factors
(Greven, Harlaar, Kovas, Chamorro-Premuzic, & Plomin, 2009). These results suggest that
genetic contributions are not only important for mathematical self-evaluation per se, but also
for the association between mathematical self-evaluation and achievement. However, before
any general conclusions can be drawn, more research is needed to explore the mechanisms
underlying the association between self-evaluation and mathematics achievement, and in
particular, longitudinal research is needed to address the origins of the association.

1.2 The present study

2 Methods

To this end, the present study investigates the genetic and environmental origins of
mathematical self-evaluation longitudinally from middle childhood to early adolescence.
Based on the previous cross-sectional study of 9-year-old twins using the same sample
(Spinath et al., 2008), we predicted that the heritability of mathematical self-evaluation
would remain moderate at age 12, and environmental influences would be largely due to
factors not shared by siblings (e.g., different peer groups). In addition, we examine the
etiology of the cross-lagged associations between self-evaluation and mathematics
achievement, i.e. the cross-lag from earlier self-evaluation to later achievement (controlling
for earlier achievement) and that from earlier achievement to later self-evaluation
(controlling for earlier self-evaluation). Given the previous finding that genetic factors
explained the association between self-perceptions and general academic achievement at the
same age (Greven et al., 2009), we hypothesize that the cross-lagged association between
earlier self-evaluation and later mathematics achievement would be largely mediated by
genetic effects.

2.1 Participants and Procedure

The participants in this study were sampled from the Twins Early Development Study
(TEDS), a study of twins born in England and Wales between 1994 and 1996 (Oliver &
Plomin, 2007). TEDS is reasonably representative of the general UK population in terms of
ethnicity, parental education and employment status. UK census data for families with
children indicate that 93% of children are white and 32% of mothers have at least one A-
level (non-compulsory exam taken at age 18), while 49% of mothers and 89% of fathers are
employed. For the entire TEDS sample of more than 10,000 twin pairs who completed an
initial booklet when the children were two years old, the comparable percentages are 92%,
35%, 43% and 92% respectively. For the sample that participated at age 9, the respective
percentages are 94%, 41%, 46% and 93%; and at age 12, the comparable percentages are
93%, 41%, 47% and 93%. Zygosity was assessed through a parent questionnaire of physical
similarity, which is over 95% accurate when compared to DNA testing with accuracy over
99.9% (Price et al., 2000). For cases where zygosity was unclear from this questionnaire,
DNA testing was conducted. At age 9, TEDS families from the 1994 and 1995 cohorts were
invited to participate in the study. At age 12, twins born in 1994, 1995 and 1996 were
invited to participate. As described below, self-evaluation was reported by children
themselves and mathematics achievement was assessed by their teachers. At age 9, 6770
child booklets were returned complete (83%), and 5836 teacher rating forms were returned
complete (76%). At age 12, 11708 child booklets (69%) and 9905 teacher forms were
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returned complete (78%). For each assessment we obtained informed consent from the
parents of the twins.

To conduct the cross-lagged analyses, twin pairs were only included when at least one
sibling of the pair had completed both assessments at ages 9 and 12. Twin pairs with specific
medical syndromes present in one or both members were excluded. Our analyses indicated
some potential differences between same-sex and opposite-sex twin pairs for self-evaluation
measures, whereas our previous analyses (e.g., Kovas, Haworth, Dale, & Plomin, 2007)
suggest no such difference for mathematics measures. For this reason, and since our sample
size provided adequate power, we decided to focus the current analyses on same-sex pairs
only. In Table 1 we present the sample sizes for the measures at each age. Numbers of
complete twin pairs by zygosity are included in Table 3. At age 9, the mean age of twins
was 9.02 (SD = .29); and at age 12, the mean age was 11.76 (SD = .32).

2.2 Measures

2.2.1 Mathematical self-evaluation—At both age 9 and 12, children’s self-evaluation
was assessed using six items about aspects of mathematics based on UK National
Curriculum: (1) “How good do you think you are at solving number and money problems?”;
(2) “How good do you think you are at doing math in your head?”; (3) “How good do you
think you are at multiplying and dividing?”; (4) “How much do you like solving number and
money problems?”; (5) “How much do you like doing maths in your head?”; (6) “How
much do you like multiplying and dividing?” (Spinath et al., 2006). Participants were asked
to indicate on a 5-point Likert scale how good they think they are at and how much they
enjoy those activities. The twins completed the scale independently under the administration
of their parents at home.

Factor analysis (at 9: KMO measure = .78, Barlett’s test: p < .001; at 12: KMO measure = .
80, Barlett’s test: p < .001) of the six items clearly revealed one factor explaining most of
the variance (at 9: 65%; at 12: 69%) and each item loaded heavily on it (.78 ~ .86, see
Appendix A for more details) at both ages. Therefore we created two composite self-
evaluation scores using the mean of the six items for age 9 and age 12.

2.2.2 Mathematics achievement—The participants’ mathematics achievement at school
was assessed using teachers’ ratings based on UK National Curriculum (NC) criteria, which
are uniform assessment guidelines followed by all teachers within the UK state school
system. Teachers were contacted in the second half of the school year so that they would be
familiar with the children’s performance. Both members of a twin pair were rated by a
single teacher if they were in the same classroom; co-twins were rated by different teachers
if they were in different classrooms. The percentages of twins rated by the same teacher
were 59% at 9, and 33% at 12, which is the age when students leave elementary school and
move to middle school in the UK. Same-sex DZ twins were in the same class as frequently
as MZ twins were (at 9: DZ = 59.0%, MZ = 59.8%); at 12: DZ = 34.3%, MZ = 35.7%).
Consistent with previous findings indicating no effect of being taught by the same teacher
versus different teachers in terms of the genetic and environmental estimates (Kovas,
Haworth, et al., 2007; Kovas, Petrill, & Plomin, 2007), intraclass correlations (twin
similarity) were practically identical when the twins were taught by the same vs. different
teacher, both for MZ and for DZ pairs at both ages.

At age 9, the NC Teacher Assessments at Key Stage 2, which are designed for children aged
8to 11, were used. Teachers assessed three broad areas of mathematical performance: using
and applying mathematics; numbers and algebra; shape, space and measures. At age 12, the
NC Teacher Assessments at Key Stage 3, which are designed for children aged 11 to 14,

were used. Teachers assessed the same three broad areas of mathematical activities, with an
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addition of the fourth area: handling data. Teacher-rated achievement ranges from Levels 1
to 8. By the end of Key Stage 2 (age 11), children are expected to reach level 4; by the end
of Key Stage 3 (age 14), children are expected to reach level 5/6. These National Curriculum
assessments have been shown to be valid measures of academic achievement (Kovas,
Haworth, et al., 2007). Further information about the National Curriculum is available at
http://curriculum.qca.org.uk. Factor analyses of the items of the assessment of mathematics
achievement showed that these items loaded highly on a single factor: 91% of the variance
at age 9 and 96% of the variance at age 12. This justified using the composite to represent
the math achievement. Therefore, the mean of the items is used to create composite scores at
age 9 and age 12.

2.3 Statistical Analysis

2.3.1 Data Preparation—As both self-evaluation and mathematics achievement are
associated with 1Q (Ackerman & Wolman, 2007; Chamorro-Premuzic & Furnham, 2005;
Furnham & Chamorro-Premuzic, 2004), covariation with 1Q would inflate the correlation
between self-evaluation and achievement. 1Q at age 9 and age 12 were assessed respectively
using tests adapted from the multiple-choice version of the WISC-111-UK (Wechsler, 1992)
and Raven’s Standard Progressive Matrices (Raven, Court, & Raven, 1996).

Details of the assessment of 1Q in TEDS were reported elsewhere (Davis, Arden, & Plomin,
2008; Haworth et al., 2007). Contributions from 1Q to self-evaluation and to mathematics
achievement were removed by regression separately from the composite scores at each age.
Because twins are perfectly correlated for age and same-sex twins are perfectly correlated
for sex, variation associated with age or sex would inflate the correlation between twins. For
this reason, as is standard in twin analysis, all measures were corrected for age and sex
effects using a regression procedure (McGue & Bouchard, 1984).

2.3.2 The Twin Method—The twin method investigates genetic and environmental
influences on individual differences (variance) in observed traits (Plomin, DeFries,
McCleann, & McGuffin, 2008). By comparing twin intra-class correlations for monozygotic
(MZ) and dizygotic (DZ) twin pairs, it is possible to estimate genetic and environmental
effects to the variance of a trait. Heritability is the proportion of individual differences in an
observed trait explained by genetic variation which can be due to additive (A) or non-
additive (D) effects of genes. Shared environmental effects (C) contribute to the similarity of
twins growing up in the same family and non-shared environmental effects (E) do not
contribute to familial resemblance. MZ twins are 100% genetically similar, whereas DZ
twins are on average only 50% similar for additive genetic effects (A) and 25% similar for
non-additive genetic effects due to dominance. Any difference between the resemblance of
MZ twins and that of DZ twins is attributed to genetic influences. Non-shared environmental
influences (E) are the only influences deemed to make MZ twins different. E also includes
measurement error.

Narrow-sense heritability is the proportion of variation in the phenotype explained by
additive genetic factors, and broad-sense heritability refers to the proportion of variation
explained by additive and non-additive genetic effects together. In a classic twin design (i.e.
a design including only MZ and DZ twins reared together), it is impossible to assess non-
additive genetic effects and shared environmental effects simultaneously (Plomin et al.,
2008). Non-additive genetic effects are suggested when the DZ twin correlation is less than
half the MZ twin correlation, which is the case for self-evaluation; whereas shared
environmental effects are indicated when the DZ twin correlation is more than half the MZ
twin correlation, as is the case for mathematics achievement.
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A more comprehensive way of estimating these genetic and environmental parameters is
maximume-likelihood model-fitting (Rijsdijk & Sham, 2002), which provides estimates of
genetic and environmental effect sizes that make the assumptions about the degree of
genetic and environmental influences on behavioral variation explicit, tests the fit of the
entire model to the data, tests the relative fit of alternative models, and provides confidence
intervals for the parameter estimates. Details of the use of maximum-likelihood model-
fitting analyses can be found elsewhere (Neale, Boker, Xie, & Maes, 2006). Mx software for
structural equation modeling was used to perform model-fitting analyses using raw data
(Neale et al., 2006).

2.3.3 Cross-lagged Analysis—Genetic and environmental influences on cross-lagged
associations were examined using multivariate genetic model-fitting methods. The approach,
called the genetic cross-lagged model, is an extension of the work of Neiderhiser, Reiss,
Hetherington and Plomin (1999). The model is based on a standard Cholesky
decomposition, which was fit to raw data to test for common and independent genetic and
environmental effects on variance in mathematics and self-evaluation at ages 9 and 12. The
Cholesky procedure is similar to hierarchical regression analyses in non-genetic studies,
where the independent contribution of a predictor variable is assessed after accounting for its
shared variance with other predictor variables (Loehlin, 1996; Neale & Cardon, 1992). The
left side of Figure 1 (a, b, c) represents the model that focuses on the cross-lagged
association between self-evaluation at 9 and mathematics achievement at 12. The right side
of Figure 1 (d, e, f) focuses on the cross-lagged association between mathematics
achievement at 9 and self-evaluation at 12.

The genetic cross-lagged model has three components: a multivariate analysis between the
two variables at each age, a longitudinal analysis between each variable across the two ages,
and a cross-lagged analysis between one variable at time 1 and the other variable at time 2.
Before assessing the cross-lag, possible confounding influences from the stability of each
variable, the contemporaneous association between the two traits at the first time point, and
the reverse cross-lag must be removed. This can be done by the Cholesky decomposition,
which not only decomposes variance within each variable and covariance between variables
into genetic and environmental factors, but also controls confounders by attributing their
influences to latent factors before decomposing the target variance or covariance. By
appropriately ordering self-evaluation at 9, achievement at 9, self-evaluation at 12 and
achievement at 12 in the standard Cholesky decomposition, the cross-lagged influence
between self-evaluation at 9 and mathematics achievement at 12 is estimated after
controlling for self-evaluation and achievement at 9 and their longitudinal stabilities. The
reverse cross-lag between mathematics achievement at 9 and self-evaluation at 12 is
assessed similarly by changing the order of variables. In this way, the genetic and
environmental analysis of the target cross-lag is independent of the stabilities, the earlier
contemporaneous association and the reverse cross-lagged association.

To study the cross-lagged association between self-evaluation at 9 and mathematics
achievement at 12, we used the model illustrated in Figure 1 (a, b, ) (each panel represents
one part of the same model but are depicted separately to ease presentation), which includes
12 latent factors. A, C1 and E; represent genetic, shared environmental and non-shared
environmental factors affecting the contemporaneous association between self-evaluation
and mathematics achievement at 9 (aj1xajp+C11XC1o+e11%€12), the correlation between
mathematics achievement at 9 and self-evaluation at 12 (a;1xaj3+C11XC13+e11%€13), and the
stability of mathematics achievement (aj1Xaj4+C11XC14+€11%€14). Ag, Co and E, represent
contributions to the stability of self-evaluation (appxaz3+CooxCoz+e22X€23), and the cross-
lagged association between self-evaluation at 9 and mathematics achievement at 12

(appXxa o4t+CopXCostenoxeny). Az, Cz and Ej represent contributions to the contemporaneous
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association between self-evaluation and mathematics achievement at 12
(ag3xaggtCazxcaytesgxesy). Finally, any genetic and environmental contributions specific to
mathematics achievement at 12 are represented by A4, C4 and E4.

The second model, i.e. Figure 1 (d, e, f), examines the cross-lagged association between
mathematics achievement at 9 and self-evaluation at 12. The model operates in the same
way as above, except the order of the variables in the Cholesky decomposition is changed to
control for other measures.

The fit of the genetic cross-lagged model is examined by comparing the —2-log likelihood
(—2I1) of the submodel of the Cholesky model, with equality constraints for means of twin 1
and twin 2 across MZ and DZ twins, to a saturated model which estimates variances,
covariances and means free of constraints. The differences between the fit of the two models
are distributed as a chi-square. The degrees of freedom represent the differences between the
number of estimated parameters in the saturated model and that in the cross-lagged model.
Akaike’s information criterion (Akaike, 1987) was also computed, with lower values
indicating better fit.

3.1 Descriptive Statistics

Table 1 shows the means and standard deviations for the measures at ages 9 and 12 along
with the results of a 2x2 (Zygosity x Sex) ANOVA. Significant results were observed for
main effects of sex on self-evaluation at ages 9 and 12 (boys > girls) and on mathematics
achievement at age 9 (boys > girls). Despite the large sample size, these effects accounted
for less than 1% of the variances, except for self-evaluation at 9 or which 2.8% of its
variance is due to sex differences. The mean mathematical performance at ages 9 and 12
were consistent with the expected levels of achievement for these ages. For further analysis,
as mentioned earlier, self-evaluation and achievement were corrected for 1Q, age and sex by
means of regression (McGue & Bouchard, 1984) and standardized residual scores were
created.

3.2 Phenotypic Correlations

As shown in Table 2, after the adjustment for 1Q, the phenotypic correlation between self-
evaluation at 9 and achievement at 12 was modest (r = .18), as was the correlation between
achievement at 9 and self-evaluation at 12 (r = .20). Mathematics achievement at each age
could be moderately predicted by self-evaluation at the same age (at 9: r = .26; at 12: r =.
29). Both self-evaluation and achievement were relatively stable from 9 to 12 years (self-
evaluation: r = .47; achievement: r = .32). Given all the correlations decreased after 1Q was
controlled, this indicated the importance of 1Q for both self-evaluation and achievement and
justified our strategy of controlling for 1Q in our attempts to understand the developmental
relationship between self-evaluation and achievement.

3.3 Genetic and Environmental Influences on Mathematical Self-evaluation

The twin intraclass correlations for all measures are shown in Table 3 by zygosity. In every
case, the MZ twin correlation exceeded that of DZ twins, indicating genetic influence. For

self-evaluation at ages 9 and 12, non-additive genetic effects were indicated as the DZ twin
correlations were less than half the MZ twin correlations. However, for math achievement,

the influence of shared environments was suggested as the DZ twin correlations were more
than half the MZ twin correlations.
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Genetic, shared and non-shared environmental influences on each measure were obtained
from univariate maximume-likelihood model-fitting (Plomin et al., 2008). The variance of
each measure was decomposed into latent factors, i.e. AC(D)E. For math self-evaluation,
ADE models were adopted, and fitted the data well as compared to saturated models (age 9:
Ayp =4.38,df =6, p = .63, AIC = —7.62; age 12: Ay, = 3.13,df = 6, p =.79, AIC = —8.87);
for math achievement, ACE models were used and fitted the data well (age 9: Ay, = 4.25, df
=6, p =.64, AIC =—7.75; age 12: Ay, = 6.52, df =6, p = .37, AIC = —5.48). The
heritability (A, D), shared environment (C) and non-shared environment (E) estimates from
the univariate model-fitting are included in Table 3. Heritability of self-evaluation, estimated
as the total of additive and non-additive genetics, was 40% at 9 (a2 = 2%, d? = 38%). The
heritability remained almost the same at 12 (43%), except that the proportions of additive
and non-additive genetic effects changed (a2 = 29%, d2 = 14%). Non-shared environmental
influences explained the rest of the variance and were substantial for self-evaluation at ages
9 and 12 (age 9: e2 = 59%; age 12: €2 = 57%). Mathematics achievement at age 9 was
mainly influenced by additive genetic effects (56%), with moderate environmental
influences (c2 = 12%, e2 = 32%). For achievement at age 12, additive genetic effects, shared
environment effects and non-shared environment effects each contributed moderately (a2 =
36%, c2 = 17%, e2 = 46%).

3.4 Genetic and Environmental Mediation of Cross-lagged Associations

3.4.1 Results from the genetic cross-lagged models—In addition to the non-shared
environment, self-evaluation was influenced by additive and non-additive genetic effects,
while achievement was influenced by additive genetic effects and shared environment.
Therefore, a comprehensive analysis should incorporate additive and non-additive genetic
factors, as well as shared and non-shared environmental factors. However, as mentioned
earlier, it is not possible to identify all ACDE factors simultaneously in one model with the
classic twin design. On one hand, if non-additive genetic effect is presented but D is not
included in the model, most variance due to non-additive genetic effect is likely to be
accounted for by A; technically, a2 will be over-estimated comparable to the size of a2+d?
(maybe somewhat conservatively). On the other hand, if shared environment is presented
but C is not included in the model, most variance due to shared environment would not be
accounted for by non-shared environment given the opposite hypotheses about them in the
modelling; this would possibly inflate (a2+d?) largely to the extent of ¢ — leading to biased
estimates of genetic and environmental contributions to the cross-lags. On the contrary,
using A to represent additive and non-additive genetic effects will not bias the etiological
pattern, except that the two genetic effects cannot be decoupled. Therefore, we adopted the
ACE model to estimate the genetic, shared and non-shared environmental influences on the
cross-lags.

The cross-lagged association between self-evaluation at age 9 and mathematics achievement
at age 12 was estimated using the model on the left side of Figure 1 (a, b, ¢). The full model,
i.e. the submodel of the Cholesky model with the equality constrains over means of twin 1
and twin 2 across MZ and DZ twins, was compared to the saturated model and fitted the
data well (Ay, = 55.06, df = 57, p = .55, AIC = —58.94). As most estimates of shared
environmental factors were nonsignificant, we dropped C to test the AE model which fitted
the data no worse than the full model (Ay, = 18.65, df = 10, p = .05, AIC = —1.35).

The genetic and environmental mediation of cross-lagged association between self-
evaluation at 9 and mathematics achievement at 12 is presented as the percentage of AE
contributions to the model-estimated phenotypic correlations (Neiderhiser et al., 1999).
These values were derived from the path estimates shown on the left side of Figure 1. The
phenotypic cross-lag controlling for their contemporaneous correlations at age 9, their
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stabilities from 9 to 12 years, and the reverse cross-lag can be estimated within the model by
adding the AE paths that link self-evaluation at 9 and achievement at 12, using the formula
AppXaps+eroXeoy, i.6. v.34%.03+/.60x/.00=.11 (95% confidence interval (Cl): .05-.16).
Genetic and environmental contributions to this phenotypic cross-lag can be estimated by
dividing the product of related path estimates by the phenotypic cross-lag. For example, the
genetic contribution is ayyXasa/(agoxa sa+enoxeny), i.e. (V.34xy.03)/.11. Genetic factors
accounted for 98% of the moderate phenotypic cross-lag (CI: .45-.1.00). The non-shared
environment accounted for the remainder (2%, Cl: .00-.55).

The ‘reverse’ cross-lagged association between achievement at 9 and self-evaluation at 12
was analyzed using the model on the right side of Figure 1 (d, e, f). The goodness-of-fit was
examined and an AE model fitted best (Ay, = 18.65, df = 10, p = .05, AIC = —1.35). The
phenotypic cross-lagged correlation was modest, estimated as .05 (Cl: .01-. 10). This cross-
lag was also primarily explained by genetics (62%, Cl: .00-1.00), with moderate influences
from non-shared environment (38%, CI: .00-1.00). It should be noted that these estimates of
the AE contributions were based on model-fitting results and may not be exactly equal to
values derived from Figure 1 where squared path estimates were rounded up. In addition, the
magnitudes of the 95% confidence intervals of these ACE estimates were large because it
was difficult to obtain robust estimates given such limited phenotypic correlations.

3.4.2 Results from a different cross-lagged model—The etiology of the cross-
lagged associations can also be studied using another, theoretically different, approach
which does not directly assess the etiological accounts of the phenotypic cross-lags (Burt,
McGue, Krueger, & lacono, 2005). By assuming that genetic and environmental
contributions to cross-lagged associations are transmitted phenotypically, phenotypic cross-
lagged correlations are merely weighted by the ACE estimates at the previous age rather
than being decomposed into their ACE components of covariance (Burt, et al., 2005;
Larsson, Viding, Rijsdijk, & Plomin, 2008). In other words, the cross-lag from self-
evaluation at 9 to achievement at 12 is assumed to be affected genetically to the extent that
self-evaluation at 9 is heritable. Using this approach, the decomposition of the phenotypic
cross-lag from self-evaluation at 9 to achievement at 12 (r = .09) showed almost the same
estimates as the univariate model-fitting of self-evaluation at 9: a2 = 38%, ¢2 = 1% and e2 =
62%. Similarly, for the reverse cross-lag (r = .10) from achievement at 9 to self-evaluation at
12, the decompositions were highly similar to ACE estimates for achievement at 9: a2 =
52%, c2 = 17% and €2 = 32%.

4 Discussion

4.1 The heritability of math self-evaluation

According to the commonly held view (Wigfield & Eccles, 2000; Krapp, 2005), individual
differences in mathematical self-evaluation are driven by environments, such as parental or
teacher influence, rather than genes. But we found significant genetic effects on
mathematical self-evaluation. Self-evaluation of mathematical abilities and interest was
moderately heritable at ages 9 and 12 (40% and 43% respectively). Moreover, the rest of the
variance was explained by non-shared, rather than family- or school-wide environments.
This suggests that any parental or teacher influence on mathematical self-evaluation is
individual-specific, potentially interacting with genetically-driven dispositions. In other
words, understanding individual differences in mathematical self-evaluation requires
acknowledging the role of genes. In addition, as genetic influence on mathematical self-
evaluation is largely stable in magnitude from middle childhood to early adolescence,
mathematical self-evaluation is likely to stay constant over time, to a large extent for genetic
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reasons. Thus, genetic effects should be included in theoretical models related to self-
concept of mathematics.

We found no significant influence of the shared environment, but considerable non-shared
environmental influence on mathematical self-evaluation at both 9 and 12 (59% and 57%
respectively). This means that the covariation between siblings' mathematical self-evaluation
is a result of genetic similarity, rather than the environmental factors shared by them, such as
parents’ beliefs, attitudes and behaviors. In other words, having the same parents, having the
same socioeconomic status, and going to the same school did not contribute to the similarity
between the two children beyond the similarity in their genetic make-up. On the other hand,
our data, at a group level, indicate that differences in self-evaluation between family
members largely come from differences in environmental experience. These non-shared
experiences or perceptions are, in this case, unknown and require further investigation.
Potential candidates include peer pressure, childhood illnesses, and differential expectations
and treatment by parents and teachers(Kovas, Harlaar, Petrill, & Plomin, 2005). Another
possible source of non-shared environment is that siblings from the same family experience
their environment in different ways (Plomin & Daniels, 1987).

4.2 Genetic mediation of the cross-lags

The main findings of this study come from the cross-lagged analyses of the links between
self-evaluation and achievement. We found reciprocal influences over time, in that earlier
self-evaluation predicted later achievement and earlier achievement also predicted later self-
evaluation. The most novel finding was that both cross-lagged relationships were genetically
mediated. In this discussion, we focus on the cross-lagged relationship between self-
evaluation at age 9 and achievement at age 12 for two reasons. First, this cross-lag is more
interesting in that the reverse cross-lag seems obvious: Doing better at mathematics makes
children say that they are better at mathematics and like it more. Second, the cross-lag from
self-evaluation to achievement is twice as strong as the converse cross-lag even though both
are significant.

Although limited in phenotypic magnitude, the cross-lagged contribution of mathematical
self-evaluation at age 9 to mathematics achievement at age 12 is almost entirely attributed to
genetic effects (98%). In the typical multivariate genetic analysis, finding genetic overlap
would imply pleiotropy — the same genes influencing both traits. For example, pleiotropy is
likely to explain the results of the only previous multivariate genetic analysis of the
association between self-perceived abilities and general school achievement in middle
childhood, which found that genetic effects largely mediated the contemporaneous
relationship (Greven et al., 2009). However, in the case of cross-lagged analysis, genetic
mediation means that genetic influences on self-evaluation at age 9 are associated with
genetic influences on mathematics achievement at age 12, independent of genetic influences
on mathematics achievement at age 9. In other words, if we were able to identify the genes
responsible for the heritability of self-evaluation at age 9, some of these genes would not be
associated with mathematics achievement at age 9 but they would be associated with
mathematics achievement at age 12. Although there is considerable genetic stability for
mathematics achievement from age 9 to age 12, some new genetic effects on mathematics
achievement emerges at age 12, and the cross-lagged genetic effects from self-evaluation at
age 9 contribute to this new genetic variance. We are far away from understanding the
mechanism of such pleiotropic associations, but our results help to clarify at least one
important issue: They show that no environmentally determined causal link exists between
earlier self-evaluation and later mathematics achievement, at least in the UK.

Nevertheless, we cannot overlook the divergence of results from different methods, which
more or less reflect different theories about cross-lagged associations. As described in the
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results, estimates obtained from a different model (Burt et al., 2005) suggested that genetic
factors contribute moderately to the cross-lagged association between self-evaluation at 9
and achievement at 12 (38%), whereas the genetic cross-lagged model suggested
predominant genetic contributions (98%). The source of these discrepancies lies with
dissimilar approaches to the etiology of a cross-lagged association. The Burt et al. (2005)
model assumes that genetic and environmental influences on a cross-lag entirely reflect
those on the previous behavior. In other words, there is no genetic analysis of the cross-lag.
However, in the genetic cross-lagged model, the focus is on the genetic analysis of the cross-
lag itself and no assumption is made except that variables are ordered according to time
course (Luo, Haworth, & Plomin, 2010). The ultimate test of direction of effects for cross-
lag models will come when these quantitative genetic models are replaced by measured
genes that account for the heritability of both variables at both ages. Our genetic cross-
lagged analysis predicts that genes can be found that are associated with self-evaluation at
age 9 and mathematics achievement at age 12 independent of genetic influences on
mathematics achievement at age 9.

In spite of methodological divergence, both methods indicate that genetic influences are
essential for the cross-lagged associations between mathematical self-evaluation and
achievement. Any attempt at targeting mathematical underachievement through influencing
self-evaluation needs to take into account the findings that self-perception of mathematical
abilities and interest is shaped by genetic and non-shared environmental influences, and the
cross-lagged association between self-perception and actual performance is mostly
explained by genetic effects.

It is important to note that the findings of the present study are sample-specific. In other
words, the results could be different in a different educational set-up, or with different
societal and cultural norms. More research, including conducting genetically-sensitive
studies in a cross-cultural context, is needed to identify the exact mechanisms through which
mathematical self-evaluation, mathematical achievement, and the links between them
develop.

Understanding the genetic and environmental causes can help to direct policy investigations.
Instead of thinking about education as a way of countering genetic differences among
children, the field of education might profit from accepting that children differ genetically in
how and how much they learn (Haworth, Asbury, Dale, & Plomin, 2011). This way of
thinking is compatible with the current trend towards personalizing education by optimizing
children’s learning (DfES, 2004), which is increasingly possible through the use of
interactive information technology.

4.3 Limitations

The current findings must be interpreted in light of several shortcomings. Although it is an
interesting finding that the phenotypic cross-lagged correlations were only small, this is also
a limitation of the study because this may deflate the reliability of the genetic and
environmental estimates and result in large confidence intervals: the cross-lag from self-
evaluation at 9 to achievement at 12 and the reverse cross-lag were only 0.11 and 0.05
respectively. However, it should be noted that severe constraints have been placed on those
phenotypic cross-lags: They must be controlled for 1Q at ages 9 and 12, the
contemporaneous correlation at 9 and the stability from 9 to 12.

Another limitation is that the present study could only be conducted from age 9 to age 12
because these are the only ages so far in TEDS in which self-evaluation and mathematics
achievement were assessed simultaneously. Incorporating prior performance and self-
evaluation in future research will lead to better understanding of causal mechanisms of the
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observed longitudinal associations among mathematics achievement and self-evaluation. In
addition, though a composite score was used to represent the performances of different
mathematics areas at each age, mathematics at different ages involves to some extent
different cognitive processes and procedures. Further study is necessary to include a more
nuanced treatment of similarities and differences in mathematical content across ages. Our
previous work indicates that a high degree of genetic and environmental stability exists
across the early school years in terms of effects on mathematical performance (Haworth,
Kovas, Petrill, & Plomin, 2007).

Limitations specific to the genetic cross-lagged approach are discussed elsewhere in detail
(Luo, et al., 2010). Despite the adjustment in the structural equation model adopted in this
study, one path (i.e., ayp/Cooleps in Figure 1) remains shared - leading to potential mild
inflation of the cross-lagged correlation between self-evaluation at 9 and achievement at 12
due to the stability of self-evaluation.. Similarly, the cross-lagged association between
achievement at 9 and self-evaluation at 12 could be inflated by the stability of achievement.
To address this problem, we examined several other methods. For instance, to analyse the
cross-lag from self-evaluation at 9 to achievement at 12, the contemporaneous covariance
between self-evaluation and achievement at 12 was removed from achievement at 12 by
regression to prevent influences from any variance related to self-evaluation at 12 including
the stability of self-evaluation. Then in a tri-variate model, i.e. a standard Cholesky
decomposition of three variables (achievement at 9, self-evaluation at 9 and achievement 12,
which are ordered so as to adjust achievement at 9), we decomposed the cross-lag into
genetic and environmental factors. Results from this method and others suggested similar
results to those presented in this paper: The cross-lagged association between earlier self-
evaluation and later achievement, as well as the reverse cross-lag, were largely genetically
driven. (Details of these analyses are available from the first author.)

5 Conclusion

For mathematical self-evaluation during middle childhood and early adolescence, individual
differences are attributed to moderate genetic influences and considerable non-shared
environmental influences, without any significant influence from shared environment. The
association between mathematical self-evaluation in middle childhood and mathematics
achievement in early adolescence, as well as the reverse association, are primarily
genetically driven. Importantly, the cross-lagged analysis indicates that genetic influences
on self-evaluation at age 9 predict achievement at age 12 independent of genetic influence
on achievement at age 9. A better understanding of the mechanisms underlying these
associations will be the first step towards concrete pathways for educational interventions.
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Figure 1.

The genetic cross-lagged model for self-evaluation (SEV) and mathematics achievement
(Math) from 9 to 12 years. The model on the left (a,b,c) tests the cross-lag from SEV9 to
Math12. The model on the right (d,e,f) tests the reverse cross-lag from Math9 to SEV12
Note. Measured variables are depicted in rectangles. Latent factors A (genetic factor), C
(shared environmental factor), and E (non-shared environmental factor) are presented in the
circles. Standardised path estimates (i.e., a;1~a44, C11~Ca4, €11~€44) are also represented in
the diagram. The thickness of each arrow indicates the strength of the corresponding path.
Nonsignificant paths are depicted by dashed lines. 95% confidence intervals of the estimates
are listed in Appendix B. To illustrate the methodology, the full model with all ACE factors
is presented here. However, as shared environmental factors were not significant in this
study, they were dropped from the full model and an AE model was used to obtain cross-
lagged estimates. The models represent only one member of the twin pair. If both siblings
are illustrated, all genetic factors should be connected by double-headed arrows with values
corresponding to the degree of genetic similarity (1.0 for MZ, 0.5 for DZ). The shared
environmental factors are set to be the same for both members of the twin, and the non-
shared environmental factors are uncorrelated for both members.
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Table 2

Phenotypic correlations between self-evaluation and mathematics achievement at 9 and 12 years

Mathat9 SEVat9 SEVatl2 Mathatl2
Math at 9 n :'31[252 h ='31%93 n ;5293
SEVate :'21?110 n :'510818 n ;28662
sevatiz L - 0 a0
Mathat12 ;3533 n ;1371 n ;2375

Note. Correlations for one randomly selected member of each twin pair (indicated by n). All the correlations are significant at p < .01. Correlations
before the adjustment of 1Q are above the diagonal and correlations after the adjustment of 1Q are below the diagonal. SEV = self-evaluation,
reported by children; Math = mathematics achievement, assessed by teachers according to the National Curriculum.
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Appendix A

Factor loadings on the first principal component of the items of mathematical self-evaluation.

Item Age9 Agel2

SPA - number 0.786  0.816
SPA — arithmetic 0.803  0.838
SPA — multiplying 0.776  0.815
Liking — number 0.82 0.822
Liking — arithmetic ~ 0.849  0.855

Liking — multiplying 0.812  0.821

Note. SPA — number: self-perceived ability of solving numbers; SPA — arithmetic: self —perceived ability of mental arithmetic; SPA — multiplying:
self-perceived ability of multiplying and dividing; liking — number: liking of solving numbers; liking — arithmetic: liking of mental arithmetic;
liking — multiplying: liking of multiplying and dividing.
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Path estimates (and 95% confidence intervals) of the genetic cross-lagged models in Figure 1

Appendix B

Genetic cross-lagged model
(Figure 1 a, b and c)

The second genetic cross-lagged model

(Figure 1d, e and f)

A

E

A

E

a1,=.69 (.65-.72)
a1,=.05 (.03-.07)
a;3=.04 (.02-.07)
a7,=.10 (.05-.16)
ay,=.34 (.29-.39)
ap3=.17 (.12-.23)
374=.03 (.00-.09)
a33=.21 (.16-.27)
a3,=.01 (.00-.05)
a4,=.42 (.33-50)

e4=.31 (.28-.35)
e1,=.02 (.01-.03)
e3=.01 (.00-.02)
e14=.02 (.00-.05)
€25=.60 (.55-.65)
£73=.05 (.03-.08)
£24=.00 (.00-.01)
e33=.51 (46-57)
£3,=.02 (.00-.04)
e44=.41 (.33-.49)

a41=.39 (.34-.43)
a1,=.08 (.05-.13)
a;3=.08 (.03-.15)
a,=.21 (.16-.28)
a5,=.61 (.56-.65)
a3=.05 (.02—.11)
324=.00 (.00-.01)
ag3=.43 (.33-51)
a3,=.00 (.00-.02)
a4=.21 (.16-.27)

e41=.61 (.57-.66)
e1,=.01 (.01-.02)
£13=.00 (.00-.01)
e14=.06 (.03-.08)
€5,=.30 (.28-.34)
€53=.02 (.00-.05)
€24=.00 (.00-.01)
e33=.42 (.35-51)
e34=.02 (.00-.05)
£44=.49 (.48-55)
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Note. All paths estimates are standardized and squared to refer to the percentage of variance explained. A = genetic; E = non-shared environment.
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