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a b s t r a c t

Memory cells, the ultimate neurobiological substrates of working memory, remain active for

several seconds and are most commonly found in prefrontal cortex and higher multisensory

areas. However, if correlated activity in “embodied” sensorimotor systems underlies the for-

mation of memory traces, why should memory cells emerge in areas distant from their ante-

cedent activations in sensorimotor areas, thus leading to “disembodiment” (movement away

fromsensorimotor systems) ofmemorymechanisms?Wemodelled the formation ofmemory

circuits in six-area neurocomputational architectures, implementing motor and sensory pri-

mary, secondary and higher association areas in frontotemporal cortices along with known

between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neu-

roplasticity led to formation of cell assemblies distributed across the different areas of the

network.These action-perception circuits (APCs) ignited fullywhenstimulated, thusproviding

a neural basis for long-term memory (LTM) of sensorimotor information linked by learning.

Subsequent to ignition, activity vanished rapidly fromAPC neurons in sensorimotor areas but

persisted in those in multimodal prefrontal and temporal areas. Such persistent activity pro-

videsamechanismforworkingmemory foractions, perceptionsandsymbols, includingshort-

term phonological and semantic storage. Cell assembly ignition and “disembodied” working

memory retreat of activity to multimodal areas are documented in the neurocomputational

models’ activity dynamics, at the level of single cells, circuits, and cortical areas. Memory

disembodiment is explained neuromechanistically by APC formation and structural neuro-

anatomical featuresof themodelnetworks,especially thecentral roleofmultimodalprefrontal

and temporal cortices inbridgingbetweensensoryandmotor areas.These simulations answer

the “where” question of cortical workingmemory in terms of distributed APCs and their inner

structure, which is, in part, determined by neuroanatomical structure. As the neuro-

computational model provides a mechanistic explanation of how memory-related “disem-

bodied” neuronal activity emerges in “embodied” APCs, itmay be key to solving aspects of the

embodiment debate and eventually to a better understanding of cognitive brain functions.
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1. Introduction
When animals keep in mind the shape or colour of a stimulus

and perform a concordant matching response after a delay of

several seconds (delayed matching to sample task), some

neurons fire at an enhanced level throughout the delay (Fig. 1,

Constantinidis, Franowicz, & Goldman-Rakic, 2001; Fuster,

1995; Fuster & Alexander, 1971; Kojima & Goldman-Rakic,

1982; Romanski & Goldman-Rakic, 2002). Intriguingly, the

persistent responses of these memory cells are frequently

stimulus specific, thus being strong when, for example, red or

cross-shaped stimuli have to be memorized, but being

reduced for other items (e.g., Fuster & Jervey, 1981, 1982;

Miyashita & Chang, 1988). Memory cell activity provides a

neurobiological basis for workingmemory (Baddeley, 1992), in

both animals and humans, for stimuli from different modal-

ities (visual, auditory, speech) and their related concepts and

motor patterns (Baddeley, 2003; D’Esposito, 2007; Fuster, 2003;

Goldman-Rakic, 1995; Linden, 2007; Postle, 2006). Explanations

for persistent memory activity have been offered in terms of

reverberant firing (Verduzco-Flores, Bodner, Ermentrout,

Fuster, & Zhou, 2009; Zipser, Kehoe, Littlewort, & Fuster,

1993) and/or cell-intrinsic properties, especially calcium-

induced synaptic facilitation in prefrontal cortex (Fransen,

Tahvildari, Egorov, Hasselmo, & Alonso, 2006; Loewenstein &

Sompolinsky, 2003; Mongillo, Barak, & Tsodyks, 2008), within

distributed memory networks. The former account postulates

that reverberation of neuronal activity in strongly connected

cell assemblies distributed over different cortical areas is the

neuronal mechanism underlying working memory; the latter

proposes changes in calcium levels consequent to stimulation

and associated excitability modulation as the critical mecha-

nisms. Although these views are not a priori incompatiblewith

each other, we here provide new arguments in favour of a

networkmemory account based on perception action circuits.

Using a neurocomputational model mimicking cortical

neuroanatomical structure we show that network memory
Fig. 1 e Memory cell activity recorded from the prefrontal

cortex of a macaque monkey during a delayed-matching-

to-sample task. This peri-stimulus time histogram (PSTH)

plots firing rate (spikes per second, calculated for 30 msec

time bins) against time. In this task, the monkey was

required to make a saccade to a location where a cue had

been presented. There were 8 possible predetermined

locations (0�, 45�, 90�, ., 315�). The cue (C) stimulus was

presented for .5 sec (cue offset at time zero), followed by a

fixation point (FP) presented at the centre of the monitor.

After a 3 sec delay (D), the FP was removed, which gave the

monkey the signal to respond (R)., adapted from Takeda &

Funahashi, 2002).
mechanisms account for a feature of working memory left

unexplained by previous models, namely the topography and

distribution of memory cells in the cortex.

A most prominent feature of memory cell activity is that it

cannot be seen in all cortical areas to the same degree. Strong

and long-lasting persistent activity is reported primarily in

anterioreinferior temporal areas for visual stimuli, in superior

temporal areas for auditory stimuli including spoken words,

in posterior parietal cortex for tactile stimuli, and in specific

sections of dorsolateral and inferior prefrontal cortex for

stimuli of all modalities (for review, see D’Esposito, 2007;

Fuster, 2009; Romanski, 2004). While some memory cell ac-

tivity has also been reported in primary visual and auditory as

well as premotor cortex (Fuster, 1990; Lemus, Hernandez, &

Romo, 2009; Romo, Hernandez, & Zainos, 2004; Serences,

Ester, Vogel, & Awh, 2009; Super, Spekreijse, & Lamme,

2001), the percentage of memory cells in sensorimotor areas

is typically lower than in prefrontal and anterior-temporal

areas (Fuster, 1995, 2001; Linden, 2007). This local specificity

of memory cell activity poses problems to both of the above

accounts. Memory circuits resulting from correlated neural

activity across sensorimotor areas (see Fuster, 1995; Hebb,

1949; Pulvermüller, 1999) can be seen as functionally uni-

form, and are, in this case, compatible with equal activity

across their neurons. Therefore, in the context of learnt

working memory circuits, the topographically specific distri-

bution of memory cells across frontal, temporal and parietal

cortex begs for an explanation. Equally, the cell-intrinsic ac-

count fails to explain local specificity because neurons and

their excitability changes to stimulation are unlikely to be

unique to one or a few areas. If anything, one may be tempted

to argue that memory activity should be most pronounced

where stimuli elicit strongest responses and consequent

modulation of extracellular calcium concentrations would

therefore be most pronounced. Hence, experiments using vi-

sual stimuli should elicit stronger memory cell activity in the

directly stimulated primary sensory areas, but not in dorso-

lateral prefrontal cortex, where stimulus-elicited activation

typically arrives after several additional synaptic steps. This

prediction is in stark contrast with the experimental obser-

vation that primary cortices show some memory activity, but

memory cells are by far more common in anterior-temporal

and prefrontal cortex (see, for example, Fuster, 1995, 2001;

Linden, 2007).

To trace area-specificity of memory cell activity, we use a

model mimicking area structure and connectivity patterns

across a range of cortices, including primary, secondary and

higher-association areas (Garagnani & Pulvermüller, 2011;

Garagnani, Wennekers, & Pulvermüller, 2007, 2008, 2009;

Wennekers, Garagnani, & Pulvermüller, 2006), interconnected

according to evidence revealed by neuroanatomical studies on

long-range corticocortical fibres. Using Hebbian (Hebb, 1949)

learning principles, we trained this model so that perception-

action circuits (cell assemblies) emerged in it as a conse-

quence of the repeated presentation of specific sensory input

and motor output pattern pairs (D’Esposito, 2007; Fuster,

2003). In this model, the mechanism for associating sensory

and motor patterns is the build-up, by way of correlation

learning, of distributed cell assemblies spanning different

http://dx.doi.org/10.1016/j.cortex.2014.02.015
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areas and linking sensory with motor information, as sug-

gested by major brain models of working memory. These cell

assemblies are considered the cortical mechanism underlying

long-term memory (LTM), and their sustained activity the

neural basis of working memory. This approach explains the

emergence of memory traces as a consequence of stimulation

of the senses and concomitant motor patterns and is appli-

cable to the learning of basic perception-action contingencies

(Fuster, 2003), the acquisition of phonological forms of spoken

words (Braitenberg & Pulvermüller, 1992; Pulvermüller &

Fadiga, 2010), as well as to the grounding of concepts and se-

mantics in perception and action (Barsalou, 2008; Kiefer &

Pulvermüller, 2012; Meteyard, Cuadrado, Bahrami, &

Vigliocco, 2012; Pulvermüller, 2005). As correlated sensory

and motor activity is seen as the driving force of memory

formation, this approach provides a mechanism for so-called

“embodied” cognitive processes for perception, action, lan-

guage and concepts (Kiefer & Pulvermüller, 2012). A crucial

challenge for such an embodied neuronal model is to provide

a mechanism for the transition from sensorimotor activation

to memory trace formation, and from sensory stimulation to

persistentworkingmemory activations, which, asmentioned,

are most typically seen in areas far removed from the primary

cortical areas where stimulus information first arrives and

motor responses are being triggered (Fuster, 2009). Below, we

provide a mechanistic account for this transition from sen-

sory/motor to higher cortices, from “embodied” to “disem-

bodied” network activity. The explanation capitalizes on

principles and features of neuroanatomical structure and

function.

We should emphasize that structure and mechanisms

implemented in themodel are aimed at reflecting real cortical

structural and functional features known from neurobiology:

sparse and predominantly local connectivity within areas,

lateral inhibition, patchy and topographic between-area links

conforming with tracer and diffusion tensor and diffusion-

weighted imaging (DTI, DWI) studies are among the well-

documented anatomical features implemented (Amir, Harel,

& Malach, 1993; Braitenberg & Schüz, 1998; Douglas &

Martin, 2004; Gilbert & Wiesel, 1983; Rilling, 2014). Non-

linear activity summation, neuronal adaptation and synaptic

plasticity are among the neurophysiological features, with

Hebbian learning mechanisms implemented according to the

established synaptic plasticity phenomena of long-term

potentiation and depression (LTP, LTD) (Artola & Singer,

1993; Malenka & Nicoll, 1999; Matthews, 2001).
2. Materials and methods

Weused amean field networkmodel subdivided into banks or

“areas” of artificial neurons with reciprocal connections be-

tween andwithin “areas”. Themodel was constructed so as to

mimic a range of biologically realistic properties. We included

the following features:

1. Area structure: six areas, modelling pre-specified sensori-

motor and multimodal brain systems;

2. Between-area connectivity, constrained by specific neuro-

anatomical data and obeyed general neuroanatomical
principles in being sparse, random, initially weak and

topographic;

3. Within-area connectivity, which was similarly sparse,

random and initially weak, and exhibited a neighbourhood

bias towards local links;

4. Local and area-specific global regulation mechanisms;

5. Synaptic modification by way of Hebb-type learning

including both LTP and LTD;

6. Constant presence of uniform uncorrelated white noise

during all phases of learning and retrieval in all parts of the

network, and

7. Additional noise added to the stimulus patterns to mimic

realistic noisy input conditions during retrieval.

These features are discussed in more detail below (see also

Appendix A, Fig. 1, Discussion) and in previous publications

(Garagnani et al., 2008, 2009; Garagnani & Pulvermüller, 2011;

Garagnani & Pulvermüller, 2013).

2.1. Model architecture

To investigate the neurobiological mechanisms that underlie

the formation of memory traces in the cortex, we imple-

mented a biologically grounded neural-network model (illus-

trated in Fig. 2) reproducing structural and functional

properties of sensory,motor and association areas of the brain

along with their long-distance connectivity (Fig. 2A). The

model architecture used in previous simulations (Fig. 2, see

Garagnani et al., 2007, 2008) replicated the structure of the left

perisylvian cortex involved in storing correlations between

articulatoryephonological patterns constituting spoken word

forms and their corresponding auditoryephonological signals

(Pulvermüller, 1999). This architecture used three main audi-

tory areas, auditory core including primary auditory cortex

(A1), auditory belt (AB), and parabelt areas (PB), and three

inferior frontal areas, primary articulatory motor cortex (M1),

inferior premotor (PM) and prefrontal cortex (PF, Fig. 2A). The

model also realised some of the documented between-area

connections (green-coloured arrows, Fig. 2C), especially the

reciprocal links documented between adjacent areas (e.g., A1

and AB, AB and PB etc., Kaas & Hackett, 2000; Pandya, 1995;

Pandya & Yeterian, 1985; Pulvermüller, 1992; Rauschecker &

Tian, 2000; Young, Scannell, & Burns, 1995; Young, Scannell,

Burns, & Blakemore, 1994). Furthermore, long-distance con-

nections between inferior prefrontal and auditory parabelt

areas in anterior, lateral and posterior superior temporal

cortex were realised (Catani & Ffytche, 2005; Makris et al.,

1999; Parker et al., 2005; Petrides & Pandya, 2002; Romanski

et al., 1999). In addition to these previously implemented

next-neighbour connections and links between association

cortices (Fig. 2C), an increasing body of recent evidence in-

dicates the existence of “jumping” links, skipping one inter-

mediate area, especially between parabelt and premotor

(Fig. 2D, Petrides& Pandya, 2009; Saur et al., 2008) and between

belt and prefrontal areas (Kaas &Hackett, 2000; Rauschecker &

Scott, 2009; Romanski et al., 1999). Furthermore, previous ev-

idence had already indicated further “jumping” links between

non-adjacent areas within superior-temporal and inferior

frontal cortex (Deacon, 1992; Pandya & Yeterian, 1985; Young

et al., 1994). To improve the neuroanatomical plausibility of

http://dx.doi.org/10.1016/j.cortex.2014.02.015
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Fig. 2 e Brain areas, model architecture and connectivity. (A)e(B) Sets of cortical areas, which were imitated by the network’s

area structure and long-distance connectivity. Sensory (different shades of blue) andmotor (shades of red) areas relevant for

learning the associations (A) between articulatory movements and the resultant sounds e that is, primary auditory cortex

(AB), auditory belt (PB) and parabelt (PB), and inferior primary motor (M1), premotor (PM) and prefrontal (PF) cortex e and (B)

between visual stimuli and hand motor actions e that is, primary visual (V1), temporo-occipital (TO) and anterior-temporal

(AT) areas, as well as dorsolateral motor (M1), premotor (PM) and prefrontal cortex (PF). (C) Areamacrostructure and between

area connections of a previous network in which adjacent areas are connected reciprocally with each other and long-

distance connections link prefrontal and temporal association areas in the “centre” of the network. (D) Macrostructure of the

improved model motivated by neuroanatomical data (see text); in addition to next-neighbour between-area connections

displayed in (C), this network also includes connections that skip one area (purple arrows). Architecture (D) was used for

simulating sensorimotor learning and working memory. Model areas correspond to cortical areas in (A) and (B) as indicated

by the colour code, in particular primary motor (M1), premotor (PM), prefrontal (PF), and primary perceptual (P1), higher

perceptual (HP) and perceptual association (PA) areas. (E) Structure of network areas and connections within and between

them. Each area is comprised of two layers of 25 3 25 units, made of excitatory (upper colour-filled circles) and inhibitory

(lower grey-filled circles) cells. Each unit, or “node”, represents a cluster of pyramidal cells, and is implemented as a graded-

response leaky integrator (Appendix A). Within- (grey arcs) and between- (green and purple arcs) area connections are not

“all-to-all” but random, sparse and patchy, and topographically organised (not illustrated). (F) Microstructure of the

connectivity of one single excitatory cell (labelled “e”). Local (lateral) inhibition is implemented by an underlying cell “i”

c o r t e x 5 7 ( 2 0 1 4 ) 1e2 14
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the network, all of these “jumping” connections (purple-col-

oured arrows, Fig. 2D) were included in the model used in the

present study.

An important aspect of this six-area architecture (Fig. 2D) is

that all mechanisms and connectivity features implemented

in it are closely parallelled by properties found throughout the

cortex. Because of this feature, although the network’s motor,

sensory and higher areas were originally intended to model

inferior frontalmotor systems and superior temporal auditory

areas (Fig. 2A), they can also simulate processes in other sets

of sensory and motor areas which exhibit similar connection

structure and function. In fact, a similar area structure can be

distinguished in the ventral visual or “what” stream in infe-

rior-occipital and -temporal cortex and in the dorsolateral

motor system (Fig. 2B). These sets of areas are especially

important for learning correlations between visual stimuli

and hand-actions, for example for connecting information a

monkey processes in a prototypical delayed-matching-to-

sample experiment where visual stimuli must be responded

to by concordant motor movements of the hand. The dorso-

lateral prefrontal cortex allows for the same distinction of

motor, premotor and prefrontal areas as outlined for its

inferior part (Pandya & Yeterian, 1985; Rizzolatti & Luppino,

2001). The hand/arm motor area and adjacent premotor and

more rostral prefrontal regions are reciprocally connected

(Arikuni, Watanabe, & Kubota, 1988; Dum& Strick, 2002, 2005;

Lu, Preston, & Strick, 1994; Pandya & Yeterian, 1985; Rizzolatti

& Luppino, 2001), with links also documented between pre-

frontal and primary motor areas (Guye et al., 2003; Young

et al., 1995). Although the visual system has an extremely

complex anatomy (Young et al., 1995), a focus on the inferior

temporal “what” stream (Mishkin, Ungerleider, &Macko, 1983;

Ungerleider & Haxby, 1994) also allows, with some general-

isation, a distinction into primary visual, inferior tempor-

ooccipital and inferior anterior-temporal areas (blue-shaded

areas, Fig. 2B). These areas exhibit reciprocal next-neighbour-

connections (Distler, Boussaoud, Desimone, & Ungerleider,

1993; Nakamura, Gattass, Desimone, & Ungerleider, 1993)

and are also linked via the “jumping” link, by way of the

inferior longitudinal fascicle, from V1 to anterior temporal

regions (Catani, Jones, Donato, & Ffytche, 2003;Wakana, Jiang,

Nagae-Poetscher, van Zijl, & Mori, 2004). Furthermore,

neuroanatomical studies (Nakamura et al., 1993; Pandya &

Barnes, 1987; Ungerleider, Gaffan, & Pelak, 1989; Webster,

Bachevalier, & Ungerleider, 1994) and experiments inducing

inactivation by local cooling in the macaquemonkey (Bauer &

Fuster, 1976, 1978; Chafee & Goldman-Rakic, 2000; Fuster,

Bauer, & Jervey, 1981, 1985) suggest the presence of both long-

distance and jumping links between (visual) inferior temporal

and mid-dorsolateral prefrontal and premotor cortices anal-

ogous to those connecting (auditory) superior-temporal and

inferior frontal areas described earlier.

As the neuroanatomical model structure (Fig. 2D) shows

similarity with at least two large brain systems, those for
(representing a cluster of inhibitory interneurons situated withi

all cells situated within a local (53 5) neighbourhood (dark-colou

sparse excitatory links (in grey) to and from e are limited to a (1

excitatory projections (green and purple arcs) are topographic a

depicted).
auditoryearticulatory and for visualemanual association, we

use a general terminology for its areas. On the sensory side, a

primary perceptual, P1, a higher-perceptual, HP, and a

perceptual association area or convergence zone (Damasio,

1989), PA, are complemented in frontal lobe by a primary

motor, M1, premotor, PM, and prefrontal area, PF. The struc-

ture can also be interpreted as implementation of a crossing of

these systems (e.g., visual-to-articulatory association) and

other sensory-motor brain systems (for example haptic-

motor, olfactory-motor) may be captured by this or a similar

scheme. Our choice of target brain systems is motivated by

pre-existing experiments and the resultant host of data from

the typical visual delayed-matching-to-sample tasks (using

finger or hand responses) and from verbal working memory

tasks (implicating auditory input and the articulators as

output system), where distinct patterns of brain responses

have been reported (D’Esposito, 2007; Fuster, 2009; Postle,

2006).

Each model area included 25 � 25 ¼ 625 excitatory and the

same number of inhibitory neurons (Fig. 2E, for details, see

caption). Following general principles of cortical anatomy in

mammals, connections between and within areas were

sparse (thus realising only a small fraction of all possible

connections), patchy and topographic (Amir et al., 1993;

Braitenberg & Schüz, 1998; Gilbert & Wiesel, 1983), and such

that local connection probability fell off with distance

(Braitenberg & Schüz, 1998). As a network correlate of further

features of brain structure and function, local and area-

specific inhibition mechanisms were also implemented

(Fig. 2F, caption, Bibbig, Wennekers, & Palm, 1995; Palm, 1982;

Wennekers et al., 2006). These inhibitionmechanisms act as a

means to regulate and control activity in the network and

provide a correlate of attention (Braitenberg, 1978; Garagnani

et al., 2008; Palm, 1982). Details of the neuron model and the

Hebb-type learning mechanisms implemented, which

covered both LTP and LTD, are summarised in Appendix A.

2.2. Simulations

Model simulations were carried out in three steps. After

learning of sensorimotor patterns and build-up of cell assem-

blies, the resultant learnt LTM traces were precisely identified

and their integrity qualitatively tested. Finally, as a critical

step for this investigation, the retrieval phase scrutinised the

dynamic activation process that followed sensory stimulation

of memory traces, paying special attention to persisting

working memory activity.

2.2.1. Learning
Initially, all synaptic links and weights were random, sparse

and weak, mimicking well-known properties of cortical con-

nectivity (Braitenberg & Schüz, 1998). Twelve different to-be-

memorised sensorimotor patterns w were built and pre-

sented to the network; each pattern w included both a
n the same cortical column) receiving excitatory input from

red area) and projecting back to e, inhibiting it. Within-area

9 3 19) neighbourhood (light-coloured area); between-area

nd target 19 3 19 neighbourhoods in other areas (not

http://dx.doi.org/10.1016/j.cortex.2014.02.015
http://dx.doi.org/10.1016/j.cortex.2014.02.015


2 During testing, area P1 was stimulated with learnt sensory
pattern parts to which random noise had been added (on each
trial, cells not belonging to the original pattern might be
“switched on” with 5% probability).

3 As each excitatory cell in the network had its own local “twin”
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“sensory” and a “motor” component (17 specific cells in P1 and

another 17 in M1, equalling 2.72% of the neurons in each

respective 25 � 25 area). Each component was built by

choosing 17 cells at random within an area. By “a stimulus

pattern w was presented”, we mean that its 2 � 17 cells were

activated. A Hebbian learning rule (Appendix A) was used to

re-adjust synaptic weights throughout training. Due to

sensorimotor activation, neural activity was present in spe-

cific neurons in P1 and M1, which partly activated further

neural elements connected to these stimulated ones. Corre-

lated activity led to synaptic strengthening so that, eventually,

sensorimotor stimulation led to increasingly stronger activa-

tion spreading to specific neuron sets throughout the network,

which finally led to formation of a distributed LTM trace, a cell

assembly (for detailed description and analyses of cell as-

sembly formation in this type of network, see Garagnani et al.,

2008, 2009). At the onset of each “learning trial”, areas P1 and

M1 were simultaneously stimulated with one sensorimotor

pattern for 2 times steps. After each stimulation, network

activity was allowed to return to a predefined baseline value,

so that, when the next stimulus pair appeared, any possibly

contaminating activity related to the previous input was

minimal or absent. Because the amount of activity induced in

the network differed between patterns and changed over

learning, learning trials were followed by different inter-

stimulus intervals (ISIs). During these ISIs the only input to

the network was uniform white noise, simulating the spon-

taneous baseline neuronal firing observed in real neuronal

cells. Note that all parts of the network were subjected to the

same amount of noise. The trial-to-trial presentation

sequence of the different patterns was random. The training

stopped after each pattern had been presented 3000 times.

Hebbian learning was effective throughout learning trials,

during stimulus presentation and ISIs.

2.2.2. Cell assembly definition
As mentioned, formation of cell assemblies, that is, sets of

strongly and reciprocally linked distributed LTM circuits

associating the paired sensory (in P1) and motor (in M1)

pattern parts with each other, was observed. The pattern

neurons in the “periphery” of the network architecture (areas

P1 andM1, Fig. 2D) were thus linked with each other by way of

cells in themore “central” areas (HP, PA, PF, PM), where sensory

and motor information converges (Damasio, 1989). After the

3000 learning steps, 10 out of 12 patterns with subparts in all

six areas of the network could be successfully retrieved, i.e.,

stimulus-specific ignition and spreading activation across all

areas followed sensory stimulation (i.e., presentation of only

the P1 pattern part).1 Subsequent analyses were based on

these 10 successfully learnt circuits. To identify the neurons

forming each of the 10 cell assemblies across the different

network areas, activity of all 3750 excitatory network cells was

monitored. An excitatory cell was considered a member of a

given cell assembly if and only if its output (firing rate)

reached the .5 threshold (recall that a cell’s output is a

continuous value between 0 and 1) within 15 time steps upon
1 In Discussion below, we relate this limited retrieval perfor-
mance of the network to features that make the network more
biologically realistic (noise, random patchy connectivity etc.).
presentation of a (noisy2) sensory pattern. This threshold was

chosen on the basis of simulation results obtained with the

present and previous networks (Garagnani et al., 2008, 2009).

Following standard definitions in the literature on auto-

associative memories (see, e.g., Braitenberg, 1978; Palm,

1990), only excitatory cells were considered to be part of an

assembly.3 Average cell assembly size was 210 cells, with the

following average numbers of neurons in each of the areas: P1:

50; HP: 39; PA: 37; PF: 36; PM: 36; M1: 12.

2.2.3. Analysis of area, cell assembly and cell dynamics
Activity dynamics in the network was studied following sen-

sory stimulation of P1 with learnt pattern parts, to which

random noise had been added. To ascertain that noisy stim-

ulation led to cell assembly activation, stimulus duration was

set to 5 simulation time-steps. To obtain results with good

signal-to-noise ratio, each of the stimuli was presented 12

times, in 12 separate “trials”, and activation time courses were

averaged over “trials” for evaluation of results. For each of the

12 trials, we recorded the membrane potential of all assembly

cells within the network and the total activity in each of the

six cortical areas (i.e., sum of the firing rates of all cells within

an area) during the 5 time-steps preceding stimulus onset and

180 following off-set. Each trial was thought to imitate the

stimulation and memory maintenance part of trials of a

delayed matching-to-sample (DMTS) or verbal working

memory experiment, which typically last for seconds (see

Fig. 1). To investigate area dynamics, average activity (total

sum of firing rates of all cells averaged over trials) within each

area was plotted against time. The specific membrane po-

tential dynamics of a range of representative individual cell-

assembly neurons was also plotted, to give an impression of

the typical single cell response produced by the simulations.

As data from real single-unit recordings are typically

measured in number-of-spikes and displayed as peri-stimulus

time histograms (PSTHs, Fig. 1), to compare simulated results

with experimental data we also produced, for a small selec-

tion of typical cells monitored, examples of simulated spiking

behaviour. This was achieved by transforming the cells’

membrane potential y ¼ V(x,t) (defined by Eq. (A.1), Appendix

A) into a “spiking probability” value PSpike(y). More precisely,

PSpike(y) was obtained by rescaling (by a constant k) the

graded output O(y) of a cell (representing the average firing

rate of a cluster of neurons) and adding a spontaneous

(baseline) firing rate probability h to it:

PSpikeðyÞ ¼ k$OðyÞ þ h (1)

During the testing phase, the output of a cell O(y) was

computed according to the sigmoid function (2):
inhibitory cell (cf. Fig. 2F) and as connections between excitatory
cell and twin inhibitors were not modified by learning, inclusion
of the latter in the count would double the number of cell as-
sembly neurons but otherwise leave the results unchanged.
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OðyÞ ¼ 1
1þ e�2bðy�4Þ (2)

where y is the cell’s membrane potential, b a parameter

determining the slope of the sigmoid function at the inversion

point, and 4 is the threshold (i.e., the sigmoid inversion point).

We used b ¼ 1.5, 4 ¼ 3.5, k ¼ .4 and h ¼ .1, thereby adjusting

minimal and maximal spike rates to neurobiologically plau-

sible values. In particular, when the model-cell membrane y

approaches its resting potential (which in the model is 0) and,

thus, O(y) / 0, the probability of a spike occurring at any one

simulation time-step approaches h (i.e., w5 spikes/sec) on

average. On the other hand, when y >> 4 (i.e., O(y) / 1) and

the cell is firing at its maximum rate, the spiking probability

pSpike(y) / k þ h (i.e., w25 spikes/sec). These values are close

to experimental data obtained from real single-cell recordings

in awake, behaving monkeys (see, for example, Fig. 1, and

Table 1 in Shinomoto et al., 2009). The resulting signal-to-

noise ratio (k:h ¼ 4:1) is also comparable with that observed

in single-unit recordings from dorsolateral prefrontal

(Funahashi, 2006; Funahashi, Bruce, & Goldman-Rakic, 1989;

Fuster, Bauer, & Jervey, 1982) and inferotemporal (Fuster &

Jervey, 1981; Naya, Sakai, & Miyashita, 1996) cortices of the

monkey brain during delayed matching-to-sample tasks.
2.3. Statistical analysis

As preliminary data indicated a clear dissociation of activation

patterns between an early phase (from 7 to 14 time-steps post

stimulus onset), a middle (from 30 to 60 time-steps), and a late

(from 90 to 120 time-steps) interval, statistical analyses

focused on these time ranges. For statistical analysis, the

number of assembly cells exceeding pre-defined membrane

potential thresholds was contrasted between areas and time

intervals. These thresholds were set to the values of 0, 10 and
Table 1 e Statistical results of three-way ANOVAs
performed on the number of active cell assembly neurons
determined at low (0), medium (10) and high (20) cut-off
threshold at different time Intervals, in central versus
peripheral and anterior versus posterior areas.
Corresponding means and standard errors are presented
in Fig. 5.

Threshold Effect df F p<

q ¼ 0 Interval 2, 18 110.37 .00001

PosterioreAnterior 1, 9 8.21 .05

Centrality 2, 18 136.63 .00001

Interval � Posteriore

Anterior

2, 18 114.78 .00001

Interval � Centrality 4, 36 112.38 .00001

PosterioreAnterior �
Centrality

2, 18 10.43 .001

Interval � PosterioreAnt.

� Centrality

4, 36 169.22 .0001

q ¼ 10 Interval 1, 9 108.49 .00001

Centrality 2, 18 126.65 .00001

Interval � Centrality 2, 18 53.00 .00001

q ¼ 20 Interval 1, 9 42.64 .005

Centrality 2, 18 29.42 .00001

Interval � Centrality 2, 18 32.56 .00001
20 to cover the entire range of weaker and stronger activa-

tions. As before, results for each pattern were obtained by

averaging 12 “trials” of its presentation. Statistics were per-

formed over the 10 different patterns learnt by one network.

For statistical analysis, the data from the six areas were

first entered as one six-level factor “Area”. Because a signifi-

cant effect of this factor is ambiguous and could be due either

to a processing difference between anterior (frontal) and

posterior (perceptual) areas or to a difference between pri-

mary, secondary and higher areas, or to both of these differ-

ences, a second set of analysiswas performed. In this case, the

six-level Area factor was regrouped into two factors, the two-

level factor “AnteriorePosterior” or distinguishing anterior/

frontal from posterior/sensory areas or systems, and the

three-level factor “Centrality”, which distinguished, within

each systems, between primary (P1, M1), higher (HP, PM) and

association areas (PA, PF). Note that, in this case, any general

difference between frontal and perceptual area function

would emerge as a main effect of AnteriorePosterior, any

difference along the Centrality gradient, between primary and

gradually “higher” andmore multimodal areas, would surface

as a main effect of the three-level factor, and a non-additive

contribution of both factors would be manifest in a signifi-

cant interaction. Two- and three-way repeated-measures

Analyses of Variance (ANOVAs) were run with the two

factors Interval (3 levels; early vs middle vs late), and Area (six

levels for the six areas) and with three factors, Interval,

PosterioreAnterior (2 levels; posterior, anterior), and Centrality

(3 levels; primary, secondary, central). Separate ANOVAs were

carried out for each of the three thresholds. As no cells

exceeded the q¼ 10 threshold in the early interval, the Interval

factor included only two levels at that threshold and above.

Additional 3-way ANOVAs were also run (for q ¼ 10 and q ¼ 20

only) to investigate more specifically the “central” regions of

the network (higher sensory/motor, sensory association/pre-

frontal), with factors Interval (middle, late), PosterioreAnterior

(posterior, anterior), and Centrality (secondary, central). These

analyses were performed on both raw and normalized data,

obtained by dividing each area’s data point (number of cells)

by the maximum value across the six areas (separately for

each stimulus, time interval, and threshold q). Normalisation

was performed to check whether any interactions between

area and time variables were mere multiplicative scaling ef-

fects (possibly due to a larger quantity of assembly cells in one

area generally) or rather whether they persisted after

removing scaling differences between areas (i.e., multiplica-

tive areamain effects), thus revealing true differences in area-

specific cell dynamics.
3. Results

Upon stimulation, activation was first present in area P1,

where it peaked approximately 5 time steps after stimulation

onset. Peaks in higher perceptual areas emerged slightly later

(time-step 20) shortly followed by prefrontal and premotor

areas (21e25). P1’s activity showed a second, smaller, peak

(23e28), which emerged together with activity in M1.Whereas

persistent activity was (present but) at a low level in the pe-

riphery (P1 and M1; total area firing rate < 15), more “central”

http://dx.doi.org/10.1016/j.cortex.2014.02.015
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areas, that is, higher perceptual/motor and association cortex,

showed strong lasting activation (firing rate > 20), which

dropped to lower levels towards the end of the observation

period. Comparing activity levels between areas, association

areas PA and PF seemed to show strongest memory activation

towards the end of the observation period. Fig. 3 illustrates the

network response to stimulation of area P1 with one of the

learnt sensorimotor patterns. The other nine learnt patterns

produced qualitatively similar results.

Fig. 4 plots examples of single cell responses taken from

the different areas during stimulation of P1 with the same

pattern used to produce the data plotted in Fig. 3. As the total

number of cell assembly neurons in given areas varied be-

tween 10 and 50 (see Methods), one randomly chosen cell was

plotted for every seven cell assembly neurons to give an

impression of the range of responses obtained. To facilitate

comparison with existing neurophysiological data (as in

Fig. 1), for each area the action potential frequency of one of

these cells is plotted in a PSTH. Single cell plots confirm pre-

dominance of long-lasting memory activity in association

areas PF and PA throughout the observation period, and more

short-lived memory activity in secondary areas PM and HP.

Examples of the typical, more or less long-lasting responses in

higher and association areas are illustrated in the PSTHs.

Primary areas P1 and M1 did not produce large numbers of

cells exhibiting long-lasting sustained activity, although a

small number of memory cells (2 in P1 and 3 in M1) could also

be identified in the sample selected. However, P1 showed very

consistent stimulus-elicited early activation in the majority of

its cell assembly neurons.

Results consistent with the observations from Fig. 4 were

revealed by statistical tests performed on data obtained over

all patterns and cell assemblies. Fig. 5 further quantifies and

summarizes these results on the area-specificity of dynamic

activation patterns by illustrating the outcomes of statistical

analyses. The analyses took advantage of activation in all 6

areas and all 10 cell assemblies elicited by presentations of 10

different sensory pattern parts (see Methods). Each single

response was determined by averaging over 12 replications of

the same pattern part presentation. The two-way ANOVAs

showed significant interactions of the factors Interval � Area

regardless of which activation threshold was chosen, thus

confirming that responses differed between areas and time

intervals (q ¼ 0: F(10,90) ¼ 130.85, p < .0001; q ¼ 10:

F(5,45) ¼ 21.57, p < .0001; q ¼ 20: F(5,45) ¼ 17.05, p < .0001). For

the three-way ANOVAs, slightly different results emerged for

the different thresholds. When taking into account all active

neurons (q ¼ 0), a significant interaction of all three factors,

Interval � PosterioreAnterior � Centrality, resulted, which

was due to general enhancement of the number of active

neurons in the central layers compared with activity in pe-

ripheral areas, with the only exception of particularly strong

activity in the early interval in primary perceptual area

(F(4,36) ¼ 169.22, p < .0001; Fig. 5, left-bottom panel), which by

far surpassed that of all other areas and time intervals

(p < .0001). Memory activity thresholded at q ¼ 10 demon-

strated a significant interaction of the factors

Interval � Centrality (F(2, 18) ¼ 53.0, p < .00001), without any

effect of the PosterioreAnterior variable, thus suggesting that

responses in frontal and posterior cortex were similar to each
other but the distance from primary cortex led to a change in

the number of memory-active neurons: There were signifi-

cantly larger numbers of active cells in the four central (PA, PF,

HP, PM) areas compared with the peripheral ones (P1, M1),

along with a reduction of activity with time in the four central

areas only. Interestingly, this interaction was still significant

when the test was repeated on the raw and normalised data

from the four central areas only (F (1,9) ¼ 24.55, p < .001),

indicating that the number of cells reaching criterion dropped

more quickly (i.e., cells lost activation more rapidly) in the

secondary (HP, PM) than in the association (PA, PF) areas (see

Fig. 5,middle diagram). Thismeans that long-lastingmemory-

activity predominates in these association areas. Finally, the

most strongly active cells that remained after application of a

threshold criterion of q ¼ 20 confirmed another

Interval � Centrality interaction (Fig. 5, top-right); however,

this interaction did not survive normalisation in the analysis

of the four central areas only. Instead, main effects of Interval

(middle vs late) and Centrality (secondary vs central)

confirmed that cells responding very strongly to the stimulus

were generally more numerous during the middle than late

time windows (F (1,9) ¼ 22.76, p < .01), and more frequent in

the central (PA, PF) than in the secondary (HP, PM) areas

(F(1,9) ¼ 55.90, p < .0001).

These results show that themost activememory cells were

found predominantly in prefrontal and higher association

cortices, and that this strong activity was long-lasting almost

exclusively at these loci. Table 1 lists all significant main ef-

fects and interactions.
4. Discussion

A neurocomputational model mimicking the neuroanatom-

ical area structure of sensory, motor and adjacent multimodal

brain systems, the known connectivity within and between

these areas along with biologically-inspired physiological and

learning principles was used to model and explain the topo-

graphical specificity of perception processes and working

memory in the human brain. No a priori assumptions were

incorporated in the model other than 1) knowledge about

connectivity structure within and between cortical areas, and

2) neurophysiological principles, as manifest in mechanisms

of neuronal activation, deactivation and synaptic plasticity.

The model successfully replicated both the early predomi-

nance of sensory-evoked activity in primary perceptual

cortices and, crucially, the local specificity of persistent

working memory activity primarily seen in areas distant from

the loci of sensorimotor activation. Persistentmemory-related

activity was strong in these “central” areas of the networke in

higher perceptual and premotor, as well as in prefrontal and

perceptual association areas, the “higher” multimodal

convergence zones of the model e but was rare, although

occasionally observed, in primary cortices, both on the

perceptual and motor sides. Critically, strong long-lasting

“memory” activity was present almost exclusively in areas

that are, in terms of connectivity and localisation in the brain

and in the model, distant from sensory input and motor

output, namely in the prefrontal and higher-perceptual tem-

poral areas of the network. Converging results emerged from

http://dx.doi.org/10.1016/j.cortex.2014.02.015
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Fig. 3 e Memory dynamics in the “areas” of the neurocomputational model. (A) Example of a cell assembly, which is being

stimulated in area A1 (time step 6e11), then ignites (time steps 10e22), subsequently exhibits reverberant workingmemory

activity in all “higher” areas (HP, PA, PF, PM) and finally deactivates (time steps 130e140). Area P1 was stimulated by a

previously learnt sensory pattern. For each area, the averaged cumulative within-area firing rate (summed over all cells of

the area and averaged over 12 repeated presentations), is plotted against time. Stimulus onset and offset are indicated by

the small horizontal segment. Note the stronger sustained response of the four central model areas (HP, PA, PF, PM)

compared with that of the two peripheral (sensory and motor) areas (P1, M1). In area P1, an early response (peaking at

around 12 time-steps), driven by the presence of the stimulus in the sensory input, predominates, whereas in other areas

activity tends to peak slightly later and fall off gradually. (B) Activation in the six areas of the network to stimulation of one

previously learnt cell assembly. Areas are shown from left to right; the leftmost columns show stimulation to A1; white dots

indicate active neurons. Temporal dynamics of one single cell assembly stimulation (top left), ignition (middle and bottom

left), subsequent reverberation (top right) and deactivation (bottom right). To facilitate comparison, the structure of the cell

assembly is shown (twice) at the top left and right. Note that most cell assembly neurons are active during ignition and

activity is maintained longest in the “central” areas PF and HP.
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Fig. 4 e Simulated single-cell responses. Figure part (A) presents cell responses from the three sensory areas, and

Figure part (B) for the three motor areas. All responses are averaged over 12 trials following stimulation with the same

sensory pattern. Areas central to the network architecture, i.e., PF and PA, are at the top, followed by successively more

“peripheral” areas, i.e., PM and HP, and finally M1 and P1 at the bottom. Left panels: the average membrane potentials of

cells responding strongly to P1 stimulation with a given learned pattern are plotted against time. Right panels: The peri-

stimulus time histograms, or PSTHs, are plotted for one representative example cell from the corresponding panels on the

left. Firing rates are computed using Eq. (1) in Methods. Note transient activation in P1 and longer-lasting activation in all

other areas. Note furthermore, that longest-lasting strongest neuron responses are seen in “central” areas PF and PA. Some

cells in “peripheral” areas of the network, P1 and M1, also exhibit moderate sustained responses, but these are rare.
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simulated area-responses, cell assembly dynamics and single

cell responses. These features replicate important results

from single cell neurophysiology and large-scale neuro-

imaging (D’Esposito, 2007; Fuster, 2009), as we discuss in more

detail below. Our results may help explain why neuronal ac-

tivity reflecting working memory is so frequently seen in

multimodal higher association cortices albeit the correlated

patterns of cortical activation driving memory formation are

present in primary areas.

4.1. The cortical topography of active memory is
explained by neuroanatomical connectivity structure

Between-area connectivity of the model mimicked neuroan-

atomical connectivity between cortical areas as revealed by

tracer and DTI and DWI studies (for details, see Methods). A

key observation is that the connectivity structures of visuo-

motor and auditory-motor systems show important parallel-

isms. Therefore, the same network architecture was used to

simulate these systems and the results of corresponding

memory experiments. Results from two specific experimental
domains were addressed: typical visual DMTS tasks e as they

are carried out in animal experiments e and verbal working

memory processes for spoken language. In both cases, pos-

terior sensory (visual vs auditory) and frontal areas with

similar between-area connectivity structure (Fig. 1) are rele-

vant. In a typical visual DMTS task, a visual stimulus has to be

memorised in view of a specific action (typically a button

press) to be performed after a delay. In verbal working mem-

ory experiments, a spoken meaningless pseudoword or

meaningful word, or series of such items, have to be kept in

mind for later verbalearticulatory reproduction. In both cases,

sensory and motor systems carry input patterns that had

previously been associated with each other through learning.

In both cases, stimulation is to primary sensory cortex. In both

cases, however, experimental research documents that

memory-related brain activity is present predominantly in

prefrontal cortex regardless of stimulus type, and in sensory

association cortex, especially in anterior temporal lobe in vi-

sual DMTS tasks and posterior superior and middle temporal

cortex in verbal working memory, and to a lesser degree in

primary sensory areas (D’Esposito, 2007; Fuster, 2009; Linden,

http://dx.doi.org/10.1016/j.cortex.2014.02.015
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Fig. 5 e Cortical distribution of cells and activation profiles. For each model area, the number of active cells is plotted for

different time intervals after stimulation, an early (time steps 7e14; triangles), middle (30e60; squares), and late one

(90e120; diamonds). Results are plotted for three different activation criteria, applying thresholds to each cell’s average

membrane potential, for q [ 0 (bottom-left), q [ 10 (central), and q [ 20 (top-right). Means are plotted for ten different

previously learnt patterns. Error bars give standard errors of the mean (SE). Note the predominance of early activation in P1

(bottom-left panel, left triangle) and predominance of strong long-lasting activity in central association areas, in PF and PA

(top-right panel, diamonds).
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2007; Postle, 2006). Our model reproduces this between-area

shift and the resultant local dissociation between early

sensory-evoked and later working memory processes. Results

on differential area activation in early perceptual and subse-

quent memory processes were bolstered statistically using

ANOVAs. Statistics confirmed three important points: (1) that

early strong activation occurred in modality-specific sensory

systems, (2) that subsequent persistent activity emerged pre-

dominantly in “higher” or “central” areas of the networks

(including premotor, prefrontal, higher perceptual and

perceptual association cortex) distant from the primary sen-

sory input and motor output areas, and, most importantly, (3)

that strongest and most long-lasting memory responses were

specific to multimodal areas, in the model equivalents of

prefrontal cortex and temporal association cortex. These
results hold true for different sensorimotor systems, thus

indicating a degree of generality of the “upward shift” of

memory activity away from modality-specific primary and

towards multimodal “higher” areas.

After learning, stimulationwith a learnt perceptual pattern

elicited activity in all areas of the network, with gradual dif-

ferences between areas. Fig. 3A shows that around time steps

5e15, sensory activation in P1 dominated the network

response. Note that, although one may want to characterise

this early activation as purely “perceptual”, it cannot be

explained by sensory stimulation alone. In fact, even activity

in P1 persists a few time steps after external stimulation

ceased, providing evidence of memory maintenance. How-

ever, this perceptually-evoked activity is short-lived and de-

grades towards time step 15 (blue curve in Fig. 3A).

http://dx.doi.org/10.1016/j.cortex.2014.02.015
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Interestingly, at time steps 15e20, activation now peaks in all

areas of the network near-simultaneously (bottom left of

Fig. 3B). This is the almost simultaneous “explosion-like” cell

assembly activation process sometimes called ignition in the

literature on brain theory (Braitenberg, 1978; Dehaene &

Changeux, 2011; Friston, Breakspear, & Deco, 2012;

Pulvermüller, 1999; Wennekers et al., 2006). Ignition can be

related to LTM retrieval and, in our present simulations, re-

flects the rapid spreading of activation within a given learnt

cell assembly that links together specific sensory and motor

patterns. Therefore, these assemblies can be characterised as

action-perception circuits (APCs) and can be considered the basis

of LTM (Braitenberg & Schüz, 1998; Fuster, 1995; Hebb, 1949;

Pulvermüller & Fadiga, 2010). Ignition-related activation is

strong in the “central” areas and weak in the primary cortices.

Upon ignition, activity vanishes gradually, but tends to last

longest in prefrontal and higher perceptual areas, the multi-

modal convergence zones of the model (bottom right of

Fig. 3B). These dynamics of perceptual activation, ignition and

reverberation provide a putative neuronal model of the

cognitive processes of perception, recognition and LTM ac-

cess, and persistent working memory of/for familiar stimuli

for which individuals have corresponding actions in their

learnt action-schema repertoire. In a loose sense, all of the

processes that occur after external stimulation has ceased can

be considered to reflect active memory, that is, the functional

consequences of activity maintenance in circuits of neurons,

which emerged spontaneously via long-term changes in

synaptic weights brought about by correlation learning.

Persistent activememory is seen inmost auto-associative and

attractor networks (e.g., Hinton & Shallice, 1991; Verduzco-

Flores et al., 2009).4

The explanation of the results of our simulations of

working memory dynamics must rely on the between-area

anatomical connectivity structure of the model network.

Other explanations are difficult to maintain, as within-area

connectivity structure and all physiological properties did

not change across areas. In other words, specific “areas” of

our model corresponded to real cortical areas in the human

cortex insofar as they were given a similar inter-area

connection structure, and therefore showed similar connec-

tivity to those areas that received/produced input/output, as

real cortical areas. The long-distance between-area links

incorporated in this model were justified in light of tracer

studies in monkeys and DTI work in human subjects (see

Methods, Section 4.3 below, and, for example, Catani et al.,

2003; Kaas & Hackett, 2000; Makris & Pandya, 2009; Pandya

& Yeterian, 1985; Petrides & Pandya, 2009; Rizzolatti &

Luppino, 2001; Wakana et al., 2004; Young et al., 1995). Ac-

cording to these data, the motor and sensory cortices are not

directly linked by way of strong fibre bundles, but there are

massive connections between adjacent areas, second-next

areas, and additional links between frontal and temporal

association cortices. In addition, recent work has shown links

from prefrontal to auditory belt and inferior temporal areas,

and between a range of superior and temporal pole areas
4 Note that, in the present network structure, activity ceases
immediately if a naı̈ve network is stimulated before any learning
has taken place (see also Section 4.2 for further discussion).
with premotor cortex. All of these well-established links were

realised in the present model. These connections result, in a

cumulative manner, in a high number of long-distance

afferent and efferent connections in the prefrontal cortex

and the temporal association areas (note the four arrow

heads present in each of these areas in Fig. 2D), slightly less

cortico-cortical links to/from premotor and higher perceptual

cortices (three arrow heads), and a relatively low number of

incoming and/outgoing connections in primary cortices. It is

this connection structure that influenced the inner structure

of the LTM circuits formed and therefore their functional

dynamic activation and maintenance of activity. Our simu-

lations therefore suggest that the most richly connected

areas provide the connectivity basis for the most strongly

and most persistently active memory cells. Because of the

many synaptic links converging onto, and diverging from,

prefrontal and temporal association cortices, cell assembly

neurons located there are likely to be reciprocally and

strongly connected to a high number of other assembly cells,

and, therefore, to excite (as well as receive feedback from)

such fellow circuit members during cell assembly activation

and activity maintenance. As a result, activity within these

neurons is most persistent. These cells represent the inner

“core” of the cell assemblies, whereas neurons in primary

(and intermediate) areas are more likely to become part of

the assembly “halo” (Braitenberg, 1978), which is charac-

terised by smaller numbers of (and therefore overall weaker)

links to other cell assembly member-neurons. After sensory

stimulation and consequent cell assembly ignition, activity

gradually vanishes from the circuit’s neurons, first in the

halo and then, gradually, also from neurons towards the

more central circuit parts. As a result, memory activity

gradually “retreats” to the inner core, which most heavily

draws on prefrontal and higher perceptual areas. This

mechanism of memory retreat to cell assembly cores together

with neuroanatomical inter-area connectivity explain why

memory cells are so common in higher multimodal associa-

tion cortex and much less so in primary areas.

Based on the analogy proposed here between the inter-

area connectivity structure of auditoryearticulatory and

visualehand motor cortical systems, the explanation of

memory cell topography in cortex,whichwe lay out above, can

be applied to two different sensorimotor brain systems

sometimes classified as being part of the ventral and dorsal

stream, respectively. Only the ventral “what” stream of visual

processing was simulated in the visual working memory

model, assuming that for othermemory processes capitalising

on the location of visual stimuli in space, other more dorsal

(“where” stream) areas in the parietal lobe might be relevant

(Jeannerod, Arbib, Rizzolatti, & Sakata, 1995; Mishkin et al.,

1983). In the speech-language domain, two fibre bundles con-

nect posterior and anterior perisylvian regions, the dorsal

arcuate fascicle and the ventral internal capsule (Makris &

Pandya, 2009; Petrides & Pandya, 2009; Rilling et al., 2008;

Saur et al., 2008). The arcuate in part carries “ventral” con-

nections between middle temporal gyrus and prefrontal cortex

(Glasser & Rilling, 2008), and the capsule has even been

attributed a primary role in the ventral stream (Saur et al.,

2008). Likewise, both of these connection highways link ante-

rior, lateral and posterior superior temporal cortex with inferior

http://dx.doi.org/10.1016/j.cortex.2014.02.015
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prefrontal and premotor areas as part of the “dorsal” speech-

language processing stream (Kelly et al., 2010; Petrides &

Pandya, 2009; Rilling et al., 2008; Saur et al., 2008). Our model

does not explicitly distinguish between arcuatus and capsula

connections as part of “dorsal” superior temporal-to-inferior

frontal connectivity, although such differentiation might lead

to a worthwhile elaboration of the model in future. Crucially,

the processes of memory retreat emerging in the present

simulations are equally applicable to the higher convergence

zones of the ventral-stream’s anterior inferior temporal areas

(Fuster, 1995) and to those of the dorsal-stream’s anterior,

lateral and posterior superior temporal areas of the auditory

belt and parabelt (Kaas & Hackett, 2000; Romanski et al., 1999)

and their ventral and dorsal frontocentral counterparts.

Considering the anatomical differences between visual and

auditory systems, the move away from early sensory cortex

therefore results in an anterior-temporal shift in the ventral

visual stream (Fuster, 1995; Fuster & Jervey, 1981), but, in

contrast, in the auditory system, in amove away fromprimary

cortex in anterior (towards temporal pole), lateral (to middle

temporal sulcus and gyrus) and posterior (to temporoparietal

junction) directions, which may be modulated by task and

stimulusmaterials (see, for example,Acheson,Hamidi, Binder,

& Postle, 2011). Future theoretical, neurocomputational and

neuroimaging studiesarenecessary toelaborate, evaluate, and

eventually explain such more fine-grained predictions and

implications.

As mentioned, our neurocomputational study targets both

long-term structural and short-term working memory. With

this model, we assume that LTM mechanisms, especially the

structural synaptic changes that underlie the formation of

strongly connected distributed neuronal circuits, provide the

basis for working memory. Nevertheless, this functional rela-

tionship between LTM and working memory should not lead

one to equalise the two (see also Fuster, 1995). As our simula-

tions show, working memory activity gradually retreats to

“central” core parts of the LTM circuit, so that, although LTM

provides, in a sense, the underpinning for longer-lasting

working memory, the two may partly dissociate (Linden,

2007). The network implements similar memory processes in

frontal and posterior areas, thus suggesting a representational

rather than modulatory role of prefrontal cortex in working

memory. Note that there is a dispute about this issue in the

working memory literature. Some data suggested memory

impairment following temporary prefrontal lesion (for

example, Bauer & Fuster, 1976; Fuster, 1995; Fuster & Bauer,

1974; Owen, Sahakian, Semple, Polkey, & Robbins, 1995;

Wheeler, Stuss, & Tulving, 1995), whereas other works report

still intact memory after focal unilateral prefrontal damage,

thus speaking in favour of a role of this region in modulating

and controllingworkingmemory (for example, Petrides, 2000).

A possible integration of these results allows for a represen-

tational role of prefrontal cortex but admits that widely

distributed prefrontal areas, possibly in both cortical hemi-

spheres, can contribute, so that only large bilateral prefrontal

lesions may cause a deficit (see D’Esposito, Cooney, Gazzaley,

Gibbs, & Postle, 2006). Although addressing this issue was

outside the scope of this work, it is possible to use the present

model to simulate cortical lesions and help shedmore light on

the role of prefrontal cortex inworkingmemory and attention.
4.2. Biological features and network performance

As mentioned in the Introduction and Methods sections

above, our model aims at biological realism in several re-

spects. Its complex area structure replicates six areas of

pre-specified sensorimotor brain systems along with the

links between them. The specific between-area connection

structure shown in Fig. 1D, obtained from the evaluation of

neuroanatomical studies in humans and macaques (see

Methods), is replicated, along with the more general estab-

lished properties of long-distance cortico-cortical pro-

jections, which are known to be sparse, random, initially

weak and topographic. Real cortical within-area connectiv-

ity is mimicked in the model insofar as it emphasises local

links, and, once again, is sparse, random and initially weak.

The addition of local inhibition, by means of which each

neuron activates a “twin” local feedback-inhibitor cell when

active, and, in addition, of a more global area-specific

regulation mechanism represent further network features

inspired by cortical anatomy and physiology. On the func-

tional side, a biologically-motivated Hebb-type rule for

synaptic plasticity and learning realising both LTP and LTD

was implemented. In addition, the constant presence of

uncorrelated white noise in all parts of the network and,

furthermore, of noise overlaying any sensory input during

retrieval are further features that make the simulations

more comparable with real brain activity and real life

perceptual input.

The biologically inspired features of the model make it less

efficiente from an “engineering” perspectivee than recurrent

or attractor networks that prioritize functionality at the

expense of biological realism. For example, full all-to-all

connectivity between layers and within memory layers as it

is implemented in standard recurrent networks (e.g., Elman,

1991) makes it easy to associate (and recall) the different

components of a stimulus pattern. In contrast, the more bio-

logically realistic sparse connectivity implemented in the

present work makes it harder for the specific neurons co-

activated by a given pattern to link up with each other. This

is because, in cases where direct links between pattern neu-

rons are missing, indirect links need to be established, which

requires interlinking additional neurons and therefore addi-

tional training. Networks with only one (fully connected)

“hidden” layer (area) can efficiently store patterns and might

seem sufficient to simulate memory (e.g., Rogers et al., 2004);

however, it is biologically unrealistic to define a-priori one

cortical area as the only site of memory, as auto-associative

within-area connections characterise all parts of cortex, pri-

mary areas included (Braitenberg & Schüz, 1998). Thus, using

a network structure with several auto-associative “memory

layers” is more realistic when the phenomena of interest are

known to engage a range of cortical areas. However, the more

complex area structure comes with the need to modify more,

and more indirect, connections, which increase the risk of

retrieval errors. Likewise, the backpropagation learning rule

applied in many neural network simulations is optimised for

efficient learning across an entire network, whereas the Hebb-

type rule that captures important aspects of neocortical

plasticity requires strengthening of connections in the pe-

riphery of the network before synaptic changes may occur in

http://dx.doi.org/10.1016/j.cortex.2014.02.015
http://dx.doi.org/10.1016/j.cortex.2014.02.015


c o r t e x 5 7 ( 2 0 1 4 ) 1e2 114
its centre; simulation time and learning efficiency, therefore,

are far from being optimized here. Finally, the addition of

perceptual and brain-generated noise decreases the signal-to-

noise-ratio, rendering learning and retrieval more error-

prone. In sum, our approach trades effectiveness for biolog-

ical realism: whilst the former aspect was of no interest here,

the latter plays a vital role in providing a novel explanation of

area-specific cortical dynamics of working memory and other

specific predictions on cognitive brain processes (see also

Garagnani et al., 2008; Garagnani & Pulvermüller, 2011;

Garagnani & Pulvermuller, 2013).

Given the biologically inspired nature of our models, it

should not come as a surprise that the six-area network

performs less well than standard neural networks with re-

gard to storage and retrieval. In this context, it needs to be

mentioned that only 10 out of the 12 patterns were learnt to

criterion within the predefined learning phase. Given the

network’s 3750 neurons, this may seem as poor perfor-

mance, as 375 neurons per stored pattern is far below

standard associative memories’ capacity (e.g., Palm, 1980).

Nevertheless, one should bear in mind that vocabularies of

ca. 40,000 words (Pinker, 1994) are normally not fully and

errorlessly stored by the human cortex, which includes ca.

2*1010 neurons (Pakkenberg & Gundersen, 1997), thus

resulting in some 500,000 neurons per stored pattern.5

Therefore, after all, the “inefficient” network’s performance

appears not to be substantially below that of real brains, and

the high neuron-per-pattern ratio may eventually turn out to

be an additional biologically realistic feature. We should add,

however, that the network’s seemingly low memory capac-

ity is not a necessary feature of this architecture; for

example, we were able to successfully store up to 30

distributed patterns (each with neurons in each of the six

areas) in such a model (ca. 100 neurons per pattern). While

further work on optimising network’s memory storage ca-

pacity and retrieval is certainly possible, this was not the

aim of the present investigation.

As any model, the present implementation had to make

simplifying assumptions. For example, to keep computational

time manageable, we limited the overall network size (3750

neurons) and adopted a mean field approach; moreover, dur-

ing the learning stage, the cells’ transformation function was

replaced by a computationally less costly version. While

developing a complementary spiking neurons model with a

larger number of cellsmight desirable in the future, we should

note that mean field models correctly describe the average

behaviour of more realistic (but computationally more

demanding) spiking networks (see, for example, Deco et al.,

2013), and provide the sufficient level of complexity and re-

alism required for the phenomena of interest here.

Although the connection structure of the network was

motivated by neuroanatomical research, we note again that

this structure implies abstracting away from and omitting

some neuroanatomical detail (see Methods); therefore,
5 Note that these relationships change with different assump-
tions. Assuming that each artificial “neuron” of our model cor-
responds to a local neuronal cluster of ca. one thousand real
cortical neurons, the network’s (real-) neuron-per-pattern ratio
becomes 3.75*105
advancing the model by including further brain-structural

detail represents a fruitful perspective for the future. A

further obvious limitation of our work lies in the limited set

of areas (six in the present study); modelling additional

potentially relevant areas (for example, in parietal cortex)

may help us understand whether/how these sites may also

play a role in working memory. In this sense, the “brain-part

simulations” we offer do not exhaustively reveal the range of

areas relevant for working memory. Extending the network

would also lead to the addition of connections to and from

the currently simulated areas, so that even the primary areas

might increase their number of input and output connec-

tions. However, the difference in connectivity between relevant

primary, secondary and multimodal areas, which is so essential

for our results and explanation, seems manifest even when

looking at large connection matrices obtained for whole

brains. For example, one set of connectivity matrices (Sporns

& Zwi, 2004) shows relatively low numbers of connections of

primary perceptual areas V1 and M1 (BA 4) compared with

the higher perceptual areas MT or the dorsolateral prefrontal

area (BA 46). Therefore, it seems that the relatively richer

connectivity that multimodal “convergence” areas exhibit

when compared to primary ones, which is immanent to the

present network structure, may indeed be a common feature

of (smaller and larger) real anatomical networks. Further-

more, the selection of areas included in our model was made

so as to allow for the most direct pathways between sensory

and motor information (3 synaptic steps from P1 to M1), and

therefore the addition of further areas with more indirect

sensorimotor links (>3 steps) may not substantially change

the results, because more indirect links are less likely to

make important contributions to sensorimotor assembly

formation.
4.3. Relation to pre-existing neurobiologically-inspired
computational work

The present results build upon and extend a range of previous

simulations of memory circuits which already implemented

features of cortical anatomy and function (e.g., Bussey &

Saksida, 2002; Deco & Rolls, 2005; Elman, 1990; Farah &

McClelland, 1991; Knoblauch & Palm, 2002a, 2002b; Palm,

1987; Patterson, Nestor, & Rogers, 2007; Sommer &

Wennekers, 2001; Verduzco-Flores et al., 2009; Willshaw &

Buckingham, 1990; Willwacher, 1976; Zipser et al., 1993). We

focus here on the question of why memory processes arise

predominantly in specific areas of cortex, and answer this

question on the basis of intrinsic neuroanatomical structure.6

This new neuroanatomically-grounded explanation for the

specificity of the cortical distribution of memory cells shows

that the network memory account (Fuster, 1997) can address a

major question previously left unanswered. The present pro-

posal, namely, that the topography of memory cells results

from cortico-cortical connectivity structure, is not incompat-

ible with other models of working memory physiology, for

example at the single cell level in termsof extracellular calcium
6 Needless to say, there is a range of still open questions about
the brain basis of working memory which our model does not
address.
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concentration (Mongillo et al., 2008), but points to the need for

such accounts to explain why neurons in some areas show

stronger and more long-lasting memory activity than those in

other areas. Independently of the possibility to generate alter-

native accounts, the fact that the network memory theory can

explain the local dissociation of perceptual and working

memory processes using “embodied” APC formation and cor-

ticocortical connectivity structure increases the explanatory

power of this account and hence further strengthens it.

We simulatedmemory cells that activate and subsequently

lose activity with time. Sometimes, the neuron behaviour was

almost bistable, but typically there was activity loss with time.

Activity loss was sometimes faster, especially in perceptual

areas, sometimes short-lasting, typically in secondary areas

(premotor and secondary perceptual), and frequently long-

lasting and slowly decaying, especially in “higher” prefrontal

and perceptual association cortex where sensory and motor

activity converged. The range of memory cell dynamics

observed experimentally is even wider than the types docu-

mented in our simulations, also including cells that gain ac-

tivity with time and neurons showing lasting inhibition (for an

overview, see, Fuster, 1995). We did not focus on such addi-

tional cell responses but would like to remark that, for

example, tonically inhibited neurons below the level of spon-

taneous activity can be seen in the cells selected from area P1

(Fig. 4A, bottom). Further cell dynamics may emerge when

scrutinising not only excitatory cells that belong to cell as-

semblieseonwhichour current investigation focusesebut, in

addition, inhibitory and excitatory cells adjacent to cell as-

sembly neurons (which receive strong local inhibitory input

through inhibitory cells and potentially some additional

excitatory input) as well. Furthermore, use of a more complex

neuron model with detailed implementation of cellular or

synapticmechanismsmay lead tonetworksexhibitinganeven

richer set of cell activation dynamics. Because the replication

of the full range of experimentally observed firing behaviours

was not the focus of the present study, it is important to note

that a recent simulation study using analogous attractor net-

works of spiking neurons spanning different cortical regions

showed that “the multiple pattern types exhibited by cells in

working memory networks are inherent in networks with dy-

namic synapses, and that the variability and firing statistics in

such networks with distributed architectures agree with that

observed in the cortex” (Verduzco-Flores et al., 2009).

There is a growing literature on neurocomputatonal

models of language and cognition, including concepts and

their relationships (for review, see Stramandinoli, Marocco, &

Cangelosi, 2012; Wennekers et al., 2006; Wermter et al., 2009).

As mentioned, most of these models use standard architec-

tures such as variants of the perceptron (e.g., Farah &

McClelland, 1991) or simple recurrent networks (Elman,

1991), which are not easily linked to concrete neural struc-

tures, let alone specific cortical areas and their patterns of

connectivity. More recent approaches have used a wider array

of area-like “layers”, which show some parallelism to brain

structures. For example, Rogers and colleagues (Rogers et al.,

2004) implement separate layers for the processing of visual

features, perceptual, functional, linguistic and encyclopedic

knowledge, and semantics, which they liken to occipital vi-

sual, perisylvian language, and anterior-temporal conceptual
cortex. However, as already mentioned, recurrent connec-

tions, which yield memory activity, are only implemented in

their semantic (anterior-temporal) layer, so that the pre-

defined network architecture determines the locus of mem-

ory. This model does not provide, or attempt at, a neuro-

mechanistic explanation of the question of why the anterior-

temporal lobe becomes so important for semantic memory,

but, instead, implements this a priori. In contrast, our present

simulations explain why the anterior temporal lobe (alongwith

other higher convergence zones) becomes a hub of semantic

memory activation and storage. Similarly, Plaut presents a

brain-based model of optic aphasia (Plaut, 2002), which in-

cludes perceptual and motor areas directly linking into a se-

mantic convergence layer. This model is used for lesion

studies but could, with appropriate extension and inclusion of

additional areas, also be applied, similar to our own, to target

area-specific contributions to working memory processes.

When comparing our own model to previous ones, main dif-

ferences lie in the richer selection of areas linking perception

to motor regions and the greater emphasis on neuroanatom-

ical and neurophysiological features (see Section 4.2).

4.4. Embodiment and disembodiment: towards a
mechanistic integration of cognitive theories

Over and above its contribution to an explanation of the

cortical topography of memory cell activation, the proposed

mechanistic neurocomputational framework may help solv-

ing the current dispute in cognitive science between pro-

ponents of the embodied grounding perspective on symbolic,

conceptual and semantic processing (Barsalou, 1999;

Glenberg, 1997; Lakoff & Johnson, 1999; Pulvermüller, 1999)

and the contrarian cognitivist position attributing these pro-

cesses to a disembodied and “amodal” system (Bedny &

Caramazza, 2011; Fodor, 1983; Mahon & Caramazza, 2008).

Proponents of embodiment have accumulated evidence for

the activation of sensorimotor systems in symbol and concept

processing and for a causal role of sensorimotor systems for

speech perception and semantic understanding (Barsalou,

2008; Kiefer & Pulvermüller, 2012; Meteyard et al., 2012;

Moseley et al., 2013; Pulvermüller & Fadiga, 2010). For

example, support comes from the activation of specific sen-

sory or motor brain regions to words with specific meaning or

articulatory structure, and from cognitive-symbolic defects

arising from lesions in these same sensorimotor areas (e.g., in

motor cortex to hand-related words or auditory areas to

sound-related words, Kemmerer, Rudrauf, Manzel, & Tranel,

2012; Kiefer & Pulvermüller, 2012; Neininger & Pulvermüller,

2003; Trumpp, Kliese, Hoenig, Haarmeier, & Kiefer, 2013).

The disembodied perspective views symbolic processes to be

located in an “amodal system”, which is probably best iden-

tified withmultimodal cortical areas. This view is bolstered by

the activation and importance of brain areas with seemingly

general semantic and conceptual roles, especially in semantic

memory, including prefrontal, high-parietal and anterior-

temporal cortex (Binder & Desai, 2011; Bookheimer, 2002;

Patterson et al., 2007). This apparent discrepancy resulted in

a major dispute between the embodied and disembodied

schools, where the most important symbolic and semantic

processes and representations are attributed to “higher”
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multimodal areas by one camp and to sensory and motor

fields by the other. Of special relevance is the fact that it had

been suggested that a role of multimodal (or “amodal”) areas

in symbol or concept processing is inconsistent with the

embodied action-perception perspective (Bedny &

Caramazza, 2011). We here show that this is not correct: (1)

Learning of action perception patterns leads to the formation

of LTM circuits that include sensory and motor neurons along

with additional neural elements in convergence zones

bridging between the two. (2) The functional dynamics of

these circuits are such that, after their activation, activity

persists most reliably andmost extensively in themultimodal

areas. This investigation shows that the action perception

perspective rooted in brain structure and function integrates

and explains both embodied activation of sensorimotor sys-

tems in perception and memory access as well as disem-

bodiment and retreat of activation tomultimodal areas during

working memory. Therefore, by integrating and explaining

both embodied and disembodied processes in one model, for

the specific domain of action perception learning and mem-

ory, the present neurocomputational work may contribute to

a solution of the embodiment debate: Perception and

comprehension processes driving LTM circuit formation draw

upon “peripheral” sensorimotor areas (M1, P1), whereas

workingmemory activity gradually retreats to the “central” or

core parts of the circuits (PF, PA).

As mentioned, the present approach models the emer-

gence of memory traces as a consequence of stimulation of

the senses and concomitant motor patterns. This mechanism

can be applied to learning andmemory in a range of cognitive

domains. It certainly applies to basic relationships between

sensory input and motor output (e.g., the button press a

monkey performs to a given colour stimulus in DMTS exper-

iments, Fuster, 2003), as well as to that between acoustic and

articulatory phonological schemas of spoken words in lan-

guage acquisition (Pulvermüller & Fadiga, 2010), and equally to

the action- and perception-related knowledge about concepts

e e.g., that a hammer is characterized by typical visual shape,

manual action and goal (Barsalou, 2008; Cappa &

Pulvermüller, 2012; Kiefer & Pulvermüller, 2012; Meteyard

et al., 2012; Pulvermüller, 2005). In spite of these parallelisms

between sensorimotor, symbolic and conceptual learning in-

sofar as sensorimotor association appears as a crucial

component, conceptual and semantic processing certainly

also engages additional mechanisms not addressed in the

present study (Kiefer & Pulvermüller, 2012; Meteyard et al.,

2012). For example the question about the embodiment or

disembodiment of abstract concepts (see Barsalou & Wiemer-

Hastings, 2005; Casasanto, 2009; Pulvermüller, 2013) is left

untouched by the present simulations. Therefore, although

the mechanistic model accounts for the differential relevance

of embodied sensorimotor and disembodied multimodal sys-

tems to perception/comprehension and memory processes, it

clearly does not cover all facets of the embodiment debate.
7 These figures are meant to provide only an estimate of the
grain of the model; as noted previously Hubel D. Eye, brain, and
vision. New York: Scientific American Library, 1995, the size of a
macrocolumn (or “module”) varies substantially between cortical
layers (ranging from 0.1 mm2 in layer 4C to 4 mm2 in layer 3) and
cortical areas (ibid., p. 130).
5. Conclusions

Distributed APCs in neural networks incorporating features of

cortical neuroanatomy can explain one specific aspect of
working memory processes in the human and monkey brain,

namely its cortical topography. Memory cell activity is rarely

present in primary cortices, pronounced in higher secondary

perceptual and premotor areas, and especially strong and long-

lasting in higher association cortex, where multimodal infor-

mation from sensory andmotor domainsmassively converges.

The mechanistic cause and explanation of this topography of

working memory lie in correlation learning and the between-

area neuroanatomical connectivity structure of the cortex,

both of which were incorporated in the neurocomputational

architecture applied here. As we argue in the discussion, the

dispute between the proponents of embodiment and disem-

bodiment of symbolic and conceptual processing may, in part,

be reconciled by the observation that, although APCs are the

basis of sensorimotor and semantic learning, the working

memory processes supported by these APCs show “memory

retreat” of activation to the circuits’ ownmultimodal “cores” in

prefrontal and perceptual association areas.
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Appendix A

Each cell or “node” of the network represents a cortical col-

umn of approximately .25 mm2 size (Hubel, 1995), containing

w2.5$104 neurons7 (Braitenberg & Schüz, 1998). The state of

each cell x is uniquely defined by its membrane potential

V(x,t), representing the average of the sum of all excitatory

and inhibitory post-synaptic potentials acting upon neural

pool (cluster) x at time t. Themembrane potentialV(x,t) at time

t of a model cell xwithmembrane time-constant s is governed

by the equation:

s$
dVðx; tÞ

dt
¼ �Vðx; tÞ þ VInðx; tÞ (A.1)

where VIn(x,t) is the total input to x (sum of all excitatory and

inhibitory synaptic inputs to cell x at time t; inhibitory syn-

apses are given a negative sign).

The output of an excitatory cell x at time t is defined as

follows:

Oðx; tÞ ¼
8<
:

0
ðVðx; tÞ � 4Þ
1

if Vðx; tÞ � 4

if 0 < ðVðx; tÞ þ 4Þ � 1
otherwise

(A.2)

O(x,t) represents the average (graded) firing rate (number of

action potentials per time unit) of cluster x at time t; it is a
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Eq. (A.1) Excitatory cells: s ¼ 2.5 (in simulation

time-steps);

Inhibitory cells: s ¼ 5 (in simulation time-

steps);

Eq. (A.2.1) b ¼ 1.5, 4 ¼ 3.5

Eq. (A.3) Adaptation: a ¼ .026;

Eq. (A.4) Time constant for computing gliding-

average of cell activity:

sA ¼ 15 (in simulation time-steps);

Eq. (A.5) Post-synaptic potential thresholds for

LTP/LTD: q� ¼ .15, qþ ¼ .25;

Pre-synaptic output activity required for

synaptic change: qpre ¼ .05;

Learning rate: Dw ¼ .0005.
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piecewise-linear sigmoid function of the cell’s membrane

potential V(x,t), clipped into the range [0, 1] and with slope 1

between the lower and upper thresholds 4 and 4 þ 1. The

output O(x,t) of an inhibitory cell is 0 if V(x,t) < 0, and V(x,t)

otherwise. The value of 4 is varies in time, as explained below.

Thus, a clipped version of the transfer function (maximum

output ¼ 1) was used to calculate the excitatory unit output,

whereas the inhibitory units’ output was not clipped. This was

done in an attempt to provide powerful local inhibition and

regulation preventing instability of the network. These fea-

tures were constant across all “areas” of the network and

therefore cannot underlie any local functional differences

between areas.

The piecewise-linear function O(x,t) described above was

used e during the training phase of the simulations e as an

approximation of a continuous sigmoidal function. This

choice was motivated by practical considerations: calculating

the value of a piecewise linear function is much less compu-

tationally expensive than computing with non-linear trans-

formation functions; even with the linear variant,

computation time for learning in each individual networkwas

several days. Therefore, to keep computation effort manage-

able, the piecewise-linear approximation was used during

learning. However, as the aim of the testing phase was to

generate network responses comparable with real experi-

mental data, a more realistic, continuous version of the

transformation function was used during testing. To this end,

O(x,t) was re-defined as the following sigmoid (cf. also Eq. (2) in

the main text):

Oðx; tÞ ¼ 1
1þ e�2bðVðx;tÞ�4Þ (A.2.1)

where b/2 is the slope at the inversion point, and 4 (the

threshold) determines the inversion point of the sigmoid. The

transformation function for inhibitory cells remained

unchanged.

Neuronal adaptation was realised (in excitatory cells only)

by allowing the threshold 4 in Eqs. (A.2) and (A.2.1) to be cell-

specific and vary in time. More precisely:

4ðx; tÞ ¼ a$uðx; tÞ (A.3)

where u(x,t) is the time-average of the cell’s recent output and

a is the “adaptation strength” (see below for parameter values

used in the simulations).

For any excitatory cell x, the approximate time-average

u(x,t) of its output O(x,t) is estimated by integrating Eq. (A.4)

below, assuming initial average u(x,0) ¼ 0:

sA$
duðx; tÞ

dt
¼ �uðx; tÞ þ Oðx; tÞ (A.4)

The low-pass dynamics of the cells [Eq. (A.1), (A.2) and

(A.4)] are integrated using the Euler scheme with step size Dt,

where Dt ¼ .5 (in arbitrary units of time). Other parameter

values are reported below.

The learning rule used to simulate synaptic plasticity is

based on the ArtolaeBröchereSinger model of LTP/LTD

(Artola & Singer, 1993). In the implementation, we discretized

the continuous range of possible synaptic efficacy changes

into two possible levels, þDw and �Dw (with Dw << 1 and

fixed). We defined as “active” any link from a cell x such that
the output O(x,t) of cell x at time t is larger than qpre, where

qpre˛[0,1] is an arbitrary threshold representing the minimum

level of pre-synaptic activity required for LTP (or LTD) to occur.

Thus, given any two cells x and y linked with weight wt(x,y),

the new weight wtþ1(x,y) is calculated as follows:

wtþ1ðx; yÞ ¼

8>><
>>:

wtðx; yÞ þ Dw if Oðx; tÞ � qpre and Vðy; tÞ � qþ
wtðx; yÞ � Dw if Oðx; tÞ � qpre and q� � Vðy; tÞ < qþ
wtðx; yÞ � Dw if Oðx; tÞ < qpre and Vðy; tÞ � qþ
wtðx; yÞ otherwise

(A.5)
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